
XXVI ENMC, XIV ECTM
25 a 27 de outubro de 2023

TWO MODELING APPROACHES FOR AN EPIDEMIC DISEASE SPREADING
PROCESS
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Abstract. The present work presents two different approaches for an epidemic disease spreading
process based on the already established SIR Model, the first approach uses a cellular automata
approach to simulate an epidemy, the second approach usea a biflux spatial diffusion equation,
based on the model developed by Bevilacqua and Galeão to simulate the same phenomena. The
results are shown in figures and briefly commented. The goal is to present those two approaches
that might allow for a better representation of the phenomena.
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1. INTRODUCTION

Different models have been proposed to better understand the transmission mechanism of
infections and in the most common models the population is divided into categories, usually:
Susceptible, Infected and Recovered/Removed, this model is known as SIR model. There are
several approaches that based on those categories tries to simulate an epidemic scenario. The
regular SIR model formulation does not take in consideration the movement of the individuals
in the population of study, some studies (Cai, Y. et al., 2019; Zhu, Ren and Zhu, 2018; Wang,
Xie and Kuniya, 2020) have successfully applied the diffusion-reaction equation to model this
phenomena in a SIR model.
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In this work we present two different ways of modeling an epidemic disease spreading
process based on the SIR model: a discrete process with the aid of a cellular automata and a
continuum approach with the biflux anomalous diffusion equation.

It is stated in the literature that geographic features such as rivers and mountains have
been implicated as physical barriers to a raccoon population movement, which means a
potential impediments to epidemic rabies (Smith et al., 2002). Bevilacqua et al. (2011; 2013)
have developed an analytical formulation for anomalous diffusion, the BG Model, in which
temporary retention that may be caused by a physical barrier, is taken into consideration,
resulting in a fourth-order partial differential equation, besides the retention phenomena
a secondary flux of recovering can be represented by the subsidiary flux of this model
(Bevilacqua, 2021).

Up to our knowledge, there are no previous implementation of the BG Model in modeling a
disease spreading phenomena, due to the relevance of a retention phenomena in this context and
the need for understanding the infection evolution we aim to propose a model based on biflux
anomalous diffusion that we hope can be used to better represent this very broad and important
subject.

2. CELLULAR AUTOMATA

A cellular automaton consists of a model in which space, time and states are discrete (Mistro,
1998). In one dimension, it can be understood as a vector with a finite set of possible values
that can vary over time iterations, and in two dimensions it can be understood as a matrix with
the same characteristics.

Therefore, we will define a SIR model through an N × M automaton where each cell
represents an individual, who can be susceptible, infected or recovered. For the one-dimensional
model, we consider M = 1. The possible state transitions are described on Figure 1.

Figure 1: Diagram with the possible states and transitions.

For each iteration, all individuals interact with v other individuals who are up to d units
away from them horizontally for the one-dimensional model and horizontally and vertically
for the two-dimensional model. In each interaction between an infected and a susceptible
individual, the latter can become infected with probability pi. At the end of each iteration,
infected individuals can recover with probability pr.

3. BIFLUX ANOMALOUS DIFFUSION

For the sake of simplicity, in this section we shall assume the discrete and symmetric case
of redistribution.

Let’s consider a region in space that contains a high concentration of particles, represented
by cell i in Fig. 2. In a particle spreading process with retention, a portion (α) of the particles is
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retained, and the non-retained portion (β) is redistributed into neighboring cells. This process
is represented in Fig. 2, where β = 1− α. When it comes to the diffusion of a infectious agent
in a population β can also be related to the probability of a state transition.

ii - 1i - 2i - 3i - 4i - 5 i + 1 i + 2 i + 3 i + 4 i + 5

i - 1i - 2i - 3i - 4i - 5 i + 1 i + 2 i + 3 i + 4 i + 5i

αβ
2

β
2

t

t+1

t+2
i - 1i - 2i - 3i - 4i - 5 i i + 1 i + 2 i + 3 i + 4 i + 5

β
2

β
2

β
2

β
2

β
2

β
2

α α α

Figure 2: The discrete distribution as a function of time in the BG model for biflux anomalous diffusion
with constant β.

This phenomenon in a continuous medium and with the possibility that the redistribution
has a spatial dependence is governed by the following partial differential equation (Bevilacqua
et al., 2011):

∂p(x, t)

∂t
= K2

∂

∂x

[
β(x)

∂p(x, t)

∂x

]
−K4

∂
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[
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∂3p(x, t)

∂x3

]
(1)

where p(x, t) represents the concentration, K2 is the diffusion coefficient and K4 is the reactivity
coefficient.

Equation (1) is called the Biflux Anomalous Diffusion Equation, or BG Model for
anomalous diffusion and it is the base of development of the more general equation. For a
review of how Eq. (1) was obtained we recommend reading the analytical development of this
model in Bevilacqua et al. (2011; 2013).

3.1 Biflux Theory in the Disease Spreading Context

Let’s focus now on the phenomenological characteristics of the BG Model applied in an
epidemic disease spread context, which is one of the approaches proposed in the present study.

According to Bevilacqua (2021) the subsidiary flux can represent a flux of state transition,
that is for example, from the Infected state to the Recovered state. Based on that we start by
stating the following hypothesis

(i) There’s an evolution in space of the agent state;

(ii) There is a constant rate of recovering;

(iii) Rate of infected is also affected by a secondary flux of recovering;

(iv) A recovered agent never leaves this states, i.e. once recovered it becomes immune to the
infection.
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hypothesis i) means we are representing the phenomena with a spatial diffusion formulation, ii)
means the main recovering mechanism is not the secondary flux, iii) sets the implementation
of the secondary flux as a state transition flux and iv) simplifies the studied phenomena not
accounting for deaths in the population with the exception for deaths due to the boundary
conditions.

With the above hypothesis the proposed model is given by the following system of partial
differential equations

∂S

dt
=

∂

∂x

(
DS

∂S

∂x

)
− rSI (2)

∂I

dt
= di

∂

∂x

(
β(x)

∂I

∂x

)
+ rSI − αI −K4

∂

∂x

[
β(x)(1− β(x))

∂3I(x, t)

∂x3

]
(3)

∂R

dt
=

∂

∂x

(
DR

∂S

∂x

)
+ aI +K4

∂

∂x

[
β(x)(1− β(x))

∂3I(x, t)

∂x3

]
(4)

here S(x, t), I(x, t) and R(x, t) denotes the densities of susceptible, infected and recovered
individuals at location x and time t. DS , dI and DR are positive diffusion coefficients, α is the
rate of recovering and r is the rate of disease transmission.

Two boundary conditions are used to generate results with the proposed model, the first is
the Dirichlet boundary condition given by

S(x, t) = S0 (5)
I(x, t) = I0 (6)
R(x, t) = R0 (7)

at x = 0 or x = L. With S0 = I0 = R0 = 0 an environment where the boundary of the
region is hostile for the survival of the population is represented. Due to the characteristics of
the phenomena S(x, t), I(x, t) and R(x, t) are all ≥ 0 for {x ∈ R|0 < x < L} and with the
divergence theorem it is trivial to show that the population decays to 0 when t → ∞.

The second is the Neumann boundary condition, given by

∂S(x, t)
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x=0,L

= 0 (8)

∂I(x, t)
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∂R(x, t)

∂x
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x=0,L

= 0 (10)

in this case the population number remains constant since there’s no flux on the boundaries.
The second boundary condition for Infected is defined as no subsidiary flux at the boundary.

4. RESULTS

4.1 Cellular Automata

A summary of all parameters used in the simulations is shown in Table 1.
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Table 1: Parameters of the SIR model via automaton.

Parameter Meaning
N Number of automaton lines
M Number of automaton columns
v Number of interactions per individual
d Maximum interaction distance
pi Probability of infection
pr Probability of recovery

To simulate the one-dimensional model, we consider N = 1000 and M = 1. As for the two-
dimensional model, we take N = M = 100. In both cases, we let the infection and recovery
probabilities pi = 0.03 and pr = 0.06 fixed, changing only the number of interactions with
neighbors v and the maximum interaction distance d.

In Figure 3, the result of 300 iterations of the one-dimensional model with v = 3 and d = 50
is presented.

Figure 3: One-dimensional simulation results with v = 3 and d = 50.

It should be noted that the value of d must be much smaller in the two-dimensional model
than in the one-dimensional model. For individuals far enough from the frontier, while in
the one-dimensional model an individual has 2d neighbors, in the two-dimensional model this
number grows to (2d+ 1)2 − 1.

Therefore, while in the one-dimensional model for d = 50 each individual had 100
neighbors, for d = 3 and d = 5 in the two-dimensional model, each individual has 48 and 120
neighbors, respectively. The result of the simulations of 400 iterations of the two-dimensional
model with d = 3 and d = 5 for v = 3 are presented, respectively, in Figures 4 and 5.
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Figure 4: Two-dimensional simulation results with v = 3 and d = 3.

Figure 5: Two-dimensional simulation results with v = 3 and d = 5.

4.2 BG Model

The results were generated with the following parameters

Table 2: Parameters of the BG Model.

Parameter Meaning Value
Dr = Ds = di Diffusivity Coefficient 0.02

r Rate of infection transmission 0.03
α Rate of recovery 0.06
K4 – 10−4

and the initial condition is given by (Wang, Xie and Kuniya, 2020)

I(x, 0) = 0.01e−(x−10)2 (11)
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S(x, 0) = 1− I(x, 0) (12)

R(x, 0) = 0 (13)

Figure 6 shows the numerical solution of Eqs (3), (4) and (2), with the parameters presented
in Table 2 and the no flux at the boundaries condition.
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Figure 6: Solution of the proposed BG Model for a disease spreading process with β = 0.5 and constant
population.
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Figure 7: Solution of the proposed BG Model for a disease spreading process with β = 0.5 and decaying
population.

Figure 7 shows the result with the deadly boundary condition, this implies the population
number decays with time. Interestingly, in this case the Infected peak happens faster. The
actual reasoning for this still needs more research. The computational cost of the BG Model
implementation on a i7-12700H with NVIDIA RTX 3060 was around 16ms, which is a
reasonable time considering the relevance of the topic.

Comparing Figures 3 and 6 we can see two main differences, the first one is the density of
people in the recovered and susceptibles categories are not the same, this happens because no
correlation between the models parameters were used and both were chosen based on previous
published work in the literature for each model. The second difference is the fact that the
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Cellular Automata method was able to predict some degree of variations, almost like random
category transfer happening during the simulation.

5. CONCLUSIONS

The present work shows two different approaches to modeling a disease spreading process,
the first approach uses a SIR model with cellular automata while the second approach includes
a subsidiary flux to represent a transition between agent state in a novel approach that we hope
will allow for a better refinement of the phenomena, both approaches were able to represent
the disease spreading process. When faster results are needed the BG Model proved itself less
computational costly and with the capacity of representing a secondary flux of state transition,
while the celular automata showed that it is a method capable of capturing small and random
variations in the state transition that makes a difference when the population number is small,
the difference becomes unnoticeable in the 2D scenario due to the bigger number of agents
involved.

For future works we aim to introduce the retention effect on the cellular automata, while
also evolving the theory behind the application of the BG Model in an epidemic process and,
hopefully, find a correlation of parameters between both methods.
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