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ABSTRACT
In this paper, we investigate a convection–diffusion–reaction problem in
a thin domain endowed with the Robin-type boundary condition describ-
ing the reaction catalyzed by the upper wall. Motivated by the microfluidic
applications, we allow the oscillating behavior of the upper boundary and
analyze the resonant case where the amplitude and period of the oscilla-
tion have the same small order as the domain’s thickness. Depending on
the magnitude of the reaction mechanism, we rigorously derive three dif-
ferent asymptotic models via the unfolding operator method. In particular,
we identify the critical case in which the effects of the domain’s geometry
and all physically relevant processes become balanced.
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1. Introduction

The flow problems posed in thin domains (domains whose longitudinal dimension is much larger
than the transverse one) are of great interest due to their practical importance. In real-life applications,
the boundary of such domains are usually not perfectly smooth, i.e. they usually have some small
rugosities, dents, etc. In solid mechanics, the typical examples of such structures would be thin rods,
plates or shells. Lubrication devices and blood circulatory system are the obvious examples associated
to fluid mechanics. No matter the context is, introducing the small parameter as the perturbation
quantity in the domain boundary makes the analysis very challenging from the mathematical point
of view.

Motivated by the numerous applications in which the effective flow is significantly affected by the
irregular wall roughness, we suppose that the upper boundary of our thin domain has an oscillating
behavior. Namely, the considered domain reads

Rε =
{
(x, y) ∈ R

2 : 0 < x < 1, 0 < y < εh
(x
ε

)}
, 0 < ε � 1. (1)

In the sequel, we address the following elliptic boundary-value problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−κ�uε + Qε(y)∂xuε + cuε = f ε in Rε ,

κ
∂uε

∂νε
= εα(g(x)− uε) on �ε =

{
(x, y) ∈ R

2 : 0 < x < 1, y = εh
(x
ε

)}
,

∂uε

∂νε
= 0 on ∂Rε\�ε .

(2)
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2 J. C. NAKASATO ET AL.

Here κ , c = const. > 0, the vector νε = (νε1 , ν
ε
2 ) is the unit outward normal to ∂Rε and ∂

∂νε
is the

outside normal derivative. For the function Qε , we assume

Qε(y) = Q
( y
ε

)
,

where Q ∈ L∞(0, h1) is a non-negative function, h1 = maxx∈R h(x). This assumption is reasonable
from the point of view of the applications, since we are tackling the process in a thin domain and
Qε can be interpreted as the entering (unidirectional) velocity in e.g. the solute transport problem
(see [1,2]). The boundary perturbation function h satisfies the usual assumptions listed in (Hh), see
Section 2.1. Finally, we suppose g ∈ L2(0, 1). As you can see, the governing equation is endowed with
the Robin-type boundary condition which models the reaction catalyzed by the upper wall. By tak-
ing the reaction coefficient in the form εα , α ∈ R (see (2)2), our aim is to address different order of
magnitudes of the prescribed reaction mechanism. Such type of elliptic boundary-value problems
describes many processes naturally arising in chemical engineering, in particular related to microflu-
idic applications (see e.g. [3]). Our goal is to study the asymptotic behavior of the described problem,
as ε → 0.

To achieve our goal, we employ the homogenization technique based on the unfolding method
proposed in [4,5] (see also [6]). Due to its ability to elegantly treat the surface integrals, the unfolding
method has been extensively used for derivation of lower-dimensional approximations in the last
period.We refer the reader e.g. to [7–10]. In this work, we adapt the variant of thismethod introduced
by Arrieta and Villanueva-Pesqueira [11,12] for thin domains. As a result, we obtain three different
asymptotic models, depending on the value of the coefficient α. More precisely, for α < 1, the process
turns out to be dominated by the function g from the Robin boundary condition, with g ∈ H1(0, 1)
(see Theorem 3.4). For α > 1, the effective model does not depend on g (see Theorem 3.5), meaning
that the reaction mechanism does not affect the process. Between those two cases, we identify the
critical (and themost interesting) caseα = 1 capturing the effects of the domain’s geometry and all the
physical processes relevant to the problem as well (see Theorem 3.1).We firmly believe that the results
presented here could prove useful in numerical simulations of the convection–diffusion–reaction
problems in thin domains with irregularities.

To conclude the Introduction, let us provide more bibliographic remarks on the subject. In [13],
the Neumann problem for the Laplace equation posed in a domain (of thickness O(1)) with highly
oscillating boundary has been considered via asymptotic expansion method. Using rigorous analysis
in appropriate functional setting, a thin-domain situation has been addressed in [14]. It should be
emphasized that, in both papers, a homogeneous Neumann boundary condition has been imposed
and that the transition to a Robin-type boundary condition cannot be considered straightforward
whatsoever. The present work can be viewed as the continuation of our recent work [15] in which
a thin domain without boundary oscillations has been studied. Notice that introducing boundary
irregularities to the problem forced us to completely change the approach.

2. Preliminary results

In this section, we introduce some notations and the functional setting. First we notice that the
variational formulation of (2) reads∫

Rε
κ∇uε∇ϕ + Qε(y)∂xuεϕ + cuεϕdxdy + εα

∫
�ε

uεϕdS

=
∫
Rε

f εϕdxdy + εα
∫
�ε

gϕdS , ∀ϕ ∈ H1(Rε). (3)
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Remark 2.1: The existence and uniqueness inH1(Rε) follows as in [15, Lemma 3.4] under condition

c > ||Q||2L∞(0,h1)/4κ . (4)

In fact, it can be proved that the bilinear form aε : H1(Rε)× H1(Rε) �→ R set by

aε(u, v) =
∫
Rε
κ∇u∇v + Qε(y)∂xuv + cuvdxdy

is continuous and uniformly coercive.

Thus, we have a family of solutions {uε}ε>0 given by (3) and we are concerned here about the
asymptotic behavior at ε = 0.

2.1. The unfolding operator

In order to study the convergence of the solutions uε , we apply the unfolding method firstly intro-
duced in [4,5] (see also [6]) for oscillating coefficients and perforated domains. Here, we just give
some notations and recall the main results concerning this method in the thin domain situation. The
proofs and all the details can be found in [11,12].

The function h used to set the thin domain (1) satisfies the following hypothesis:
(Hh) h : R → R is a strictly positive, Lipschitz and L-periodic with h′ ∈ L∞(R). Also, if

h0 = minx∈R h(x) and h1 = maxx∈R h(x), we have 0 < h0 ≤ h(x) ≤ h1 for all x ∈ R.
Throughout this paper, we use the following notations. We call Y∗ the representative cell of the

thin domain Rε which is given by

Y∗ = {
(y1, y2) ∈ R

2 : 0 < y1 < L and 0 < y2 < h(y1)
}
. (5)

The average of ϕ ∈ L1loc(R
2) on a measure setO ⊂ R

2 is denoted by 〈ϕ〉O := 1
|O|

∫
O ϕ(x) dx , where

|O| sets the Lebesgue measure of any measure setO.
We will also need the following functional spaces which are defined by periodic functions in the

variable y1 ∈ (0, L)
L2#(Y

∗) = {ϕ ∈ L2(Y∗) : ϕ(y1, y2) is L − periodic iny1},
L2#
(
(0, 1)× Y∗) = {ϕ ∈ L2((0, 1)× Y∗) : ϕ(x, y1, y2) is L − periodic in y1},

H1
#(Y

∗) = {ϕ ∈ H1(Y∗) : ϕ|∂leftY∗ = ϕ|∂rightY∗}.
If we denote by [a]L the unique integer number such that a = [a]LL + {a}L where {a}L ∈ [0, L), then
for each ε > 0 and any x ∈ R, we have

x = ε
[x
ε

]
L
L + ε

{x
ε

}
L

where
{x
ε

}
L

∈ [0, L).

Let us also denote

Iε = Int

( Nε⋃
k=0

[kLε, (k + 1)Lε]

)
,

where Nε is the largest integer such that εL(Nε + 1) ≤ 1. We also set

�ε = (0, 1)\Iε = [εL(Nε + 1), 1), Rε0 =
{
(x, y) ∈ R

2 : x ∈ Iε , 0 < y < εh
(x
ε

)}
and Rε1 =

{
(x, y) ∈ R

2 : x ∈ �ε , 0 < y < εh
(x
ε

)}
.

Notice that we have�ε = ∅ if εL(Nε + 1) = 1. In this case Rε0 = Rε and Rε1 = ∅.
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Definition 2.2: Let ϕ be a Lebesgue-measurable function in Rε . The unfolding operator Tε acting on
ϕ is defined as the following function in (0, 1)× Y∗:

Tεϕ(x, y1, y2) =

⎧⎪⎨⎪⎩
ϕ

(
ε
[x
ε

]
L
L + εy1, εy2

)
a.e. (x, y1, y2) ∈ Iε × Y∗,

0 a.e. (x, y1, y2) ∈ �ε × Y∗.

Proposition 2.3: The unfolding operator satisfies the following properties:

(1) Tε is linear and satisfies Tε(ϕψ) = Tε(ϕ)Tε(ψ).
(2) Letϕ a Lebesgue function in Y∗ extended periodically in the first variable. Then,ϕε(x, y) = ϕ( x

ε
, y
ε
)

is measurable in Rε and Tε(ϕε)(x, y1, y2) = ϕ(y1, y2).Moreover, if ϕ ∈ L2(Y∗), then ϕε ∈ L2(Rε).
(3) For all ϕε ∈ L1(Rε), we have

1
L

∫
(0,1)×Y∗

Tε(ϕ)(x, y1, y2)dxdy1dy2 = 1
ε

∫
Rε
ϕ(x, y)dxdy − 1

ε

∫
Rε1
ϕ(x, y)dxdy.

(4) Tε(ϕ) ∈ L2((0, 1)× Y∗) for all ϕ ∈ L2(Rε) with

||Tε(ϕ)||L2((0,1)×Y∗) =
(
L
ε

) 1
2
||ϕ||L2(Rε0) ≤

(
L
ε

) 1
2
||ϕ||L2(Rε) .

(5) ∂y1Tε(ϕ) = εTε(∂xϕ) and ∂y2Tε(ϕ) = εTε(∂yϕ) a.e. (0, 1)× Y∗ for all H1(Rε).
(6) If ϕ ∈ H1(Rε), then Tε(ϕ) ∈ L2((0, 1);H1(Y∗)) with

∣∣∣∣∂y1Tε(ϕ)∣∣∣∣L2((0,1)×Y∗) = ε

(
L
ε

) 1
2
||∂xϕ||L2(Rε0) ≤ ε

(
L
ε

) 1
2
||∂xϕ||L2(Rε) ,

∣∣∣∣∂y2Tε(ϕ)∣∣∣∣L2((0,1)×Y∗) = ε

(
L
ε

) 1
2 ∣∣∣∣∂yϕ∣∣∣∣L2(Rε0) ≤ ε

(
L
ε

) 1
2 ∣∣∣∣∂yϕ∣∣∣∣L2(Rε) .

From now on, we will use the following rescaled norms in the thin open sets:

|||ϕ|||L2(Rε) = ε−1/2 ||ϕ||L2(Rε) , ∀ϕ ∈ L2(Rε),

|||ϕ|||H1(Rε) = ε−1/2 ||ϕ||H1(Rε) , ∀ϕ ∈ H1(Rε).

Notice that Proposition 2.3 is essential to pass to the limit since allows us to transform an integral
over Rε into one over the fixed set (0, 1)× Y∗.

Hence, the unfolding criterion for integrals (u.c.i.) plays an important role.

Definition 2.4: A sequence (ϕε) satisfies the unfolding criterion for integrals (u.c.i) if

1
ε

∫
Rε1

|ϕε|dxdy → 0.

It is known that any sequence (ϕε) ⊂ L2(Rε) with norm ||| · |||L2(Rε) uniformly bounded satisfies
the (u.c.i). Moreover, if we have (ψε) set as

ψε(x, y) = ψ
(x
ε
,
y
ε

)
for any ψ ∈ L2(Y∗), then (ϕεψε) also satisfies (u.c.i).
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In the sequel, we recall some convergence properties of the unfolding operator.

Proposition 2.5: (1) Let ϕ ∈ L2(0, 1). Then, Tεϕ → ϕ strongly in L2((0, 1)× Y∗).
(2) Let (ϕε) be a sequence in L2(0, 1) such that ϕε → ϕ strongly in L2(0, 1). Then, Tεϕε →

ϕ strongly in L2((0, 1)× Y∗).

Next, we give a suitable decomposition in order to introduce other convergence results. We write
ϕε(x, y) = Vε(x)+ ϕr(x, y) where V is set as

Vε(x) := 1
εh0

∫ εh0

0
ϕε(x, s) ds a.e. x ∈ (0, 1). (6)

Proposition 2.6: Let ϕε ∈ H1(Rε) with |||ϕε|||H1(Rε) uniformly bounded and Vε(x) defined as in (6).
Then, there exists a function ϕ ∈ H1(0, 1) such that, up to subsequences

Vε ⇀ ϕ weakly in H1(0, 1) and strongly in L2(0, 1),

TεVε → ϕ strongly in L2
(
(0, 1)× Y∗) ,

|||ϕε − Vε|||L2(Rε) → 0,

|||ϕε − ϕ|||L2(Rε) → 0,

Tεϕε → ϕ strongly in L2
(
(0, 1);H1(Y∗)

)
.

Finally, we recall a compactness result proved in [12, Theorem 3.1] which allows us to pass to the
limit in the gradient sequences.

Theorem 2.7: Let ϕε ∈ H1(Rε) with |||ϕε|||H1(Rε) uniformly bounded.
Then, there exist ϕ ∈ H1(0, 1) and ϕ1 ∈ L2((0, 1);H1

#(Y∗)) such that (up to a subsequence)

Tεϕε → ϕ strongly in L2
(
(0, 1);H1(Y∗)

)
,

Tε∂xϕε ⇀ ∂xϕ + ∂y1ϕ1 weakly in L2
(
(0, 1)× Y∗) ,

Tε∂yϕε ⇀ ∂y2ϕ1 weakly in L2
(
(0, 1)× Y∗) .

2.2. Boundary unfolding

In this section, we set the unfolding operator on the oscillating upper boundary of Rε . For this sake,
we adapt the one introduced in [4,5] yielding the appropriated results to our case. Notice that under
assumptions (Hh) we have that �ε is a Lipschitz border.

Definition 2.8: Let φ be a measurable function on �ε . The boundary unfolding operator T b
ε is

defined by

T b
ε φ(x, y) =

⎧⎨⎩φ
(
ε
[x
ε

]
L + εy

)
a.e. Iε × ∂uY∗,

0 a.e.�ε × ∂uY∗,

where ∂uY∗ is the upper boundary of the representative cell Y∗ given by

∂uY∗ = {(y1, y2) ∈ R
2 : y1 ∈ (0, L), and y2 = h(y1)}.
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Proposition 2.9: The boundary unfolding satisfies the following properties:

(1) T b
ε is linear.

(2) T b
ε (ϕψ) = T b

ε (ϕ)T b
ε (ψ), for all ϕ, ψ Lebesgue measurable in �ε .

(3) For any ϕ ∈ L1(Rε),

1
L

∫
(0,1)×∂uY∗

T b
ε ϕ(x, y)dxdσ(y) =

∫
�ε0

ϕdS =
∫
�ε
ϕdS −

∫
�ε1

ϕdS, (7)

where �εi is the upper boundary of R
ε
i for i= 0,1.

(4) Suppose that ϕ ∈ L2(�ε). Then,

||T b
ε ϕ||L2((0,1)×∂uY∗) ≤ 1

L
||ϕ||L2(�ε).

(5) (Unfolding criterion for integrals) Suppose that ϕε ∈ L2(�ε) is such that ||ϕε||L2(�ε) ≤ c, with c
independent on ε. Then, ∫

�ε1

|ϕ|dS → 0.

(6) Let ψε ∈ H1(Rε) such that Tεψε ⇀ ψ̂ in L2((0, 1);H1(Y∗)) with ψ̂ ∈ H1(0, 1). Then,

T b
ε ψε ⇀ ψ̂ in L2((0, 1);H

1
2
(
∂uY∗)

)
.

Proof: It is not difficult to see that Properties 1, 2, 4 and 6 follow from the definition of the boundary
unfolding operator. We discuss the remaining ones.

3.: Indeed,∫
(0,1)×∂uY∗

T b
ε ϕ(x, y)dxdS =

Nε−1∑
k=0

∫ (k+1)Lε

kLε

∫
∂uY∗

ϕ
(
ε
[x
ε

]
L + εy

)
dσ(y)dx

=
Nε−1∑
k=0

Lε
∫
∂uY∗

ϕ
(
εkL + εy

)
dσ(y)dx. (8)

From the change of variables s = εkL + εy, we get dσ(s) = εdσ(y). Also, denoting by

�ε,k =
{
(x, y) : kLε ≤ x ≤ (k + 1)Lε, y = εh

(x
ε

)}
for k ≥ 0

it is clear that
Nε−1⋃
k=0

�ε,k = �ε0 .

Then, by (8) we get
Nε−1∑
k=0

L
∫
�ε,k

ϕ(s)dσ(s) =
∫
�ε0

ϕdS. (9)

5.: Let ϕε ∈ L2(�ε) such that ||ϕε||L2(�ε) ≤ C with C independent on ε. Then∫
�ε1

|ϕ|dS ≤ |�ε1 |1/2||ϕ||L2(�ε) ≤ C|�ε1 |1/2 → 0. �
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3. Main results

Here, we prove our main results. As emphasized, the asymptotic behavior of the considered problem
greatly depends on the value of the coefficientα appearing in the Robin boundary condition (2)2. First
we analyze the critical case α = 1. After that, we address two remaining characteristic cases α < 1
and α > 1, respectively.

3.1. Case α = 1

Theorem 3.1: Let uε be the solution of the problem (2) with α = 1, f ε ∈ L2(Rε) and |||f ε|||L2(Rε)
uniformly bounded. Also, assume there exists f̂ ∈ L2((0, 1)× Y∗) such that

Tεf ε ⇀ f̂ weakly in L2
(
(0, 1)× Y∗) .

Then, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1
#(Y∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y∗)

)
,

Tε∂xuε ⇀ ∂xu + ∂y1u1 weakly in L2
(
(0, 1)× Y∗) ,

Tε∂yuε ⇀ ∂y2u1 weakly in L2
(
(0, 1)× Y∗) .

Moreover, we have that u is the solution of⎧⎪⎨⎪⎩
−κquxx + pux +

(
c + |∂uY∗|

|Y∗|
)
u = f̄ + |∂uY∗|

|Y∗| g in (0, 1),

ux(0) = ux(1) = 0,

where the homogenized coefficients q and p are given by

q = 1
|Y∗|

∫
Y∗

(
1 − ∂y1X

)
dy1dy2 and p = 1

|Y∗|
∫
Y∗

Q
(
1 − ∂y1X

)
dy1dy2

and X ∈ H1
#(Y∗) with

∫
Y∗ Xdy1dy2 = 0 is the unique solution of∫
Y∗

∇X∇ϕdy1dy2 =
∫
Y∗
∂y1ϕdy1dy2 ∀ϕ ∈ H1

#(Y
∗). (10)

Also, the forcing term f̄ is given by

f̄ = 1
|Y∗|

∫
Y∗

f̂ dy1dy2.

Proof: (a) Uniform bounds.
Take ϕ = uε as a test function in (3). Then

1
ε

∫
Rε
κ|∇uε|2 + Qε(y)∂xuε∇uε + c(uε)2dxdy +

∫
�ε
(uε)2dS

= 1
ε

∫
Rε

f εuεdxdy +
∫
�ε

guεdS , ∀ϕ ∈ H1(Rε).

Hence, by Remark 2.1, assumption (4) and definition of the norm ||| · |||, one gets using the coercive
constantm> 0 independent of ε that

m|||uε|||2H1(Rε) + ||uε||2L2(�ε) ≤ |||f ε|||L2(Rε)|||uε|||L2(Rε) + ||g||L2(�ε)||uε||L2(�ε). (11)
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Thus, since we have from [16–18] that there exists C0 > 0 independent of ε such that

||ϕ||L2(�ε) ≤ C0ε
−1/2‖ϕ‖H1(Rε), (12)

we obtain that

m|||uε|||2H1(Rε) ≤ |||uε|||H1(Rε)
(|||f ε|||L2(Rε) + C0||g||L2(�ε)

)
.

By hypotheses |||f ε|||L2(Rε) is uniformly bounded. Also,

||g||2L2(�ε) ≤ max
x∈[0,1]

√
1 + ‖h′‖2L∞(R)‖g‖2L2(0,1).

Therefore, there exists C> 0 independent of ε > 0 such that

|||uε|||H1(Rε) ≤ C

which implies that uε is uniformly bounded in ||| · |||H1 .
(b) Limiting problem.
Let us apply Propositions 2.3 and 2.9 in (3). Then,∫
(0,1)×Y∗

kTε∇uεTε∇ϕ + TεQεTε∂xuεTεϕ + cTεuεϕdxdy1dy2 +
∫
(0,1)×∂uY∗

T b
ε u

εT b
ε ϕdσ(y)

+ L
ε

∫
Rε1
κ∇uε∇ϕ + Qε(y)∂xuεϕ + cuεϕdxdy + L

∫
�ε1

uεϕdS

=
∫
(0,1)×Y∗

Tεf εTεϕdxdy1dy2 +
∫
(0,1)×∂uY∗

T b
ε gT b

ε ϕdxdσ(y)

+ L
ε

∫
Rε1

f εϕdxdy + L
∫
�ε1

gϕdS, (13)

for any ϕ ∈ H1(Rε).
Since we have uniform bounds for the solutions of (2) in the |||.|||H1(Rε) norm, we can apply

Theorem 2.7. Thus, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1
#(Y∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y∗)

)
,

Tε∂xuε ⇀ ∂xu + ∂y1u1 weakly in L2
(
(0, 1)× Y∗) ,

Tε∂yuε ⇀ ∂y2u1 weakly in L2
(
(0, 1)× Y∗) . (14)

Also, by Proposition 2.9, one gets

T b
ε uε → u inL2((0, 1);H

1
2
(
∂uY∗)). (15)

By (14) and (15), for test functions ϕ(x, y) = ϕ(x), we can pass to the limit in (13) yielding∫
(0,1)×Y∗

κ
(
∂xu + ∂y1u1

)
∂xϕ + Q

(
∂xu + ∂y1u1

)
ϕ + cuϕdxdy1dy2

+
∫
(0,1)×∂uY∗

uϕdxdσ(y) =
∫
(0,1)×Y∗

f̂ϕdxdy1dy2 +
∫
(0,1)×∂uY∗

gϕdxdσ(y). (16)

Nowwe obtain the relation between u1 and the solutionX of the auxiliary problem (10). For this sake,
consider the sequence

vε(x, y) = εφ(x)ψ
(x
ε
,
y
ε

)
, (x, y) ∈ Rε , (17)
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where φ ∈ C∞
0 (0, 1) and ψ ∈ H1

#(Y∗). Then, Propositions 2.3 and 2.5 provide

Tεvε → 0 strongly in L2
(
(0, 1)× Y∗) ,

Tε∂xvε → φ∂y1ψ strongly in L2
(
(0, 1)× Y∗) ,

Tε∂yvε → φ∂y2ψ strongly in L2
(
(0, 1)× Y∗) . (18)

Now, we take vε as a test function in (13). Passing to the limit as ε → 0, we get∫
(0,1)×Y∗

(
∂xu + ∂y1u1, ∂y2u1

)
φ∇yψdxdy1dy2 = 0.

From the density of tensor product C∞
0 (0, 1)⊗ H1

#(Y∗) in L2((0, 1);H1
#(Y∗)), we can rewrite the

above equation as∫
(0,1)×Y∗

(
∂xu + ∂y1u1, ∂y2u1

)∇yψdxdy1dy2 = 0, ∀ψ ∈ L2((0, 1);H1
#(Y

∗)). (19)

It is not difficult to check that (19) has a unique solution in the Hilbert space H1(0, 1)×
L2((0, 1);H1

#(Y∗)/R). We refer the reader to [12] for details.
Since X is the unique L-periodic solution of the problem (10) and u is independent of y1 and y2,

we have that −∂xu(x)X(y1, y2) satisfies∫
Y∗

−∂xu∇X∇ψdy1dy2 =
∫
Y∗

−∂xu∂y1ψdy1dy2, ∀ψ ∈ L2((0, 1);H1
#(Y

∗)). (20)

Consequently, it follows from (19) that

u1(x, y1, y2) = −∂xu(x)X(y1, y2). (21)

Now we are in position to rewrite (16) as∫
(0,1)×Y∗

κ
(
∂xu − ∂xu∂y1X

)
∂xϕ + Q

(
∂xu − ∂xu∂y1X

)
ϕ + cuϕdxdy1dy2

+
∫
(0,1)×∂uY∗

uϕdxdσ(y) =
∫
(0,1)×Y∗

f̂ϕdxdy1dy2 +
∫
(0,1)×∂uY∗

gϕdxdσ(y).

Hence, since u and ϕ are independent on y1 and y2, we get∫ 1

0
κ∂xu

[∫
Y∗

(
1 − ∂y1X

)
dy1dy2

]
∂xϕ +

[∫
Y∗

Q
(
1 − ∂y1X

)
dy1dy2

]
∂xuϕdx + |Y∗|c

∫ 1

0
uϕdx

+ |∂uY∗|
∫ 1

0
uϕdx =

∫ 1

0

[∫
Y∗

f̂ dy1dy2
]
ϕdxdy1dy2 + |∂uY∗|

∫ 1

0
gϕdx.

Dividing both sides by |Y∗| gives∫ 1

0

[
κ q ∂xu∂xϕ + p ∂xuϕ + c uϕ

]
dx + |∂uY∗|

|Y∗|
∫ 1

0
uϕdx =

∫ 1

0
f̄ϕdx + |∂uY∗|

|Y∗|
∫ 1

0
gϕdx,

for all ϕ ∈ H1(0, 1). It follows from [19] that the coefficients q and p are strictly positive, and then,
the limit equation is a well posed problem. Thus, uε is a convergent sequence which leads us to the
end of the proof. �
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Remark 3.2: Notice the effect of the oscillating behavior on the homogenized coefficients q and p
given by the auxiliary function X. Also, we emphasize the effect of the Lebesgue measure of the sets
Y∗ and ∂uY∗ at the limit equation, as well as, the flux condition on the border sets by g. All these
ingredients can be seen at the homogenized equation.

Remark 3.3: See [12] for a discussing on some properties of the homogenized coefficient q. In
particular, they show that 0< q< 1.

3.2. Case α < 1

Theorem 3.4: Let uε be the solution of the problem (2) with α < 1, f ε ∈ L2(Rε) and |||f ε|||L2(Rε)
uniformly bounded. Also, assume g ∈ H1(0, 1). Then, as ε → 0,

Tεuε → g strongly in L2
(
(0, 1);H1(Y∗)

)
in such way that

|||uε − g|||L2(Rε) → 0. (22)

Proof: Let

wε(x, y) = uε(x, y)− g(x) ∀(x, y) ∈ Rε , (23)

where g is extended trivially to Rε .
One can rewrite (3) as follows:∫

Rε
κ∇wε∇ϕ + Qε(y)∂xwεϕ + cwεϕdxdy + εα

∫
�ε

wεϕdS

+
∫
Rε
κ∇g∇ϕ + Qε(y)∂xgϕ + cgϕdxdy =

∫
Rε

f εϕdxdy, (24)

for all ϕ ∈ H1(Rε).
(a) Uniform bounds.
We can proceed as in (11). It follows from Remark 2.1 and condition (4) taking ϕ = wε in (24)

that

m|||wε|||2H1(Rε) ≤ m|||wε|||2H1(Rε) + εα−1||wε||2L2(�ε)
≤ C|||wε|||H1(Rε),

where C is a positive constant given by

C = max
{|||f ε|||L2(Rε), κ|||∇g|||L2(Rε), ‖Q‖L∞(0,h1)|||∇g|||L2(Rε), c|||g|||L2(Rε)

}
.

Notice that C does not depend on ε. Indeed, it follows from the assumption |||f ε|||L2(Rε) uniformly
bounded and estimates

|||∇g|||2L2(Rε) = 1
ε

∫ 1

0

∫ εh(x/ε)

0
g′(x)2dxdy ≤ 1

ε

∫ 1

0
g′(x)2εh(x/ε) dx

≤ h1‖g′‖2L2(0,1)
and

|||g|||2L2(Rε) ≤ h1‖g‖2L2(0,1).
Thus, there exists positive constants C1 and C2, independent of ε, such that

|||wε|||H1(Rε) ≤ C1 and εα−1||wε||2L2(�ε) ≤ C2. (25)

(b) Limits of wε .
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By the uniform bound of wε in the |||.|||H1 norm, it follows from Theorem 2.7 that there exist
w ∈ H1(0, 1) and w1 ∈ L2((0, 1);H1

#(Y∗)) such that

Tεwε → w strongly in L2
(
(0, 1);H1(Y∗)

)
,

Tε∂xwε ⇀ ∂xw + ∂y1w1 weakly in L2
(
(0, 1)× Y∗) ,

Tε∂ywε ⇀ ∂y2w1 weakly in L2
(
(0, 1)× Y∗) . (26)

Also, by Proposition 2.9, one gets

T b
ε w

ε → w inL2((0, 1);H
1
2
(
∂uY∗)). (27)

Now, due to Proposition 2.9 and (25), there exists C> 0 independent of ε such that

||w||
L2
(
(0,1);H

1
2 (∂uY∗)

) ≤ ||w − T b
ε w

ε||
L2
(
(0,1);H

1
2 (∂uY∗)

) + ||T b
ε w

ε||
L2
(
(0,1);H

1
2 (∂uY∗)

)
≤ ||w − T b

ε w
ε||

L2
(
(0,1);H

1
2 (∂uY∗)

) + C||wε||L2(�ε)

≤ ||w − T b
ε w

ε||
L2
(
(0,1);H

1
2 (∂uY∗)

) + Cε1−α . (28)

Therefore, sinceα < 1 andw depends just on x-variable, we can pass to the limit in the inequality (28)
as ε → 0 obtaining that

w = 0 in (0, 1).

Hence, due to (23) and (26), one can conclude that

Tεuε → g strongly in L2
(
(0, 1);H1(Y∗)

)
.

It follows from Proposition 2.6 that

|||uε − g|||L2(Rε) → 0

concluding the proof of the theorem. �

3.3. Case α > 1

Theorem 3.5: Let uε be the solution of the problem (2) with α > 1, f ε ∈ L2(Rε) and |||f ε|||L2(Rε)
uniformly bounded. Assume that there exists f̂ ∈ L2((0, 1)× Y∗) such that

Tεf ε ⇀ f̂ weakly in L2
(
(0, 1)× Y∗) .

Then, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1
#(Y∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y∗)

)
,

Tε∂xuε ⇀ ∂xu + ∂y1u1 weakly in L2
(
(0, 1)× Y∗) ,

Tε∂yuε ⇀ ∂y2u1 weakly in L2
(
(0, 1)× Y∗) .

Moreover, u is the solution of {−κquxx + pux + cu = f̄ in (0, 1)

ux(0) = ux(1) = 0,
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where the homogenized coefficients q and p are given by

q = 1
|Y∗|

∫
Y∗

(
1 − ∂y1X

)
dy1dy2 and p = 1

|Y∗|
∫
Y∗

Q
(
1 − ∂y1X

)
dy1dy2

and X ∈ H1
#(Y∗) with

∫
Y∗ Xdy1dy2 = 0 is the unique solution of∫
Y∗

∇X∇ϕdy1dy2 =
∫
Y∗
∂y1ϕdy1dy2 ∀ϕ ∈ H1

#(Y
∗).

Also, the forcing term f̄ is given by

f̄ = 1
|Y∗|

∫
Y∗

f̂ dy1dy2.

Proof: The proof follows the same arguments as in that one of Theorem 3.1.
(a) Uniform bounds.
Take ϕ = uε as a test function in (3). Then, arguing again as in (11), we get from Remark 2.1 and

the condition (4) that

m|||uε|||2H1(Rε) + εα−1||uε||2L2(�ε) ≤ |||f ε|||L2(Rε)|||uε|||L2(Rε) + εα−1||g||L2(�ε)||uε||L2(�ε).
Thus, it follows from (12) that there exists C> 0, independent of ε > 0, such that

|||uε|||H1(Rε) ≤ |||f ε|||L2(Rε)|||uε|||L2(Rε) + C εα−1||g||L2(0,1)|||uε|||H1(Rε).

Consequently, |||f ε|||L2(Rε) uniformly bounded, α > 1 and ε < 1 guarantee uε uniformly bounded
in ||| · |||H1 .

(b) Limiting problem
Let us rewrite (3) using Proposition 2.3. We have∫

(0,1)×Y∗
kTε∇uεTε∇ϕ + TεQεTε∂xuεTεϕ + cTεuεϕdxdy1dy2

+ εα−1
∫
(0,1)×∂uY∗

T b
ε u

εT b
ε ϕdσ(y)

+ L
ε

∫
Rε1
κ∇uε∇ϕ + Qε(y)∂xuεϕ + cuεϕdxdy + Lεα−1

∫
�ε1

uεϕdS

=
∫
(0,1)×Y∗

Tεf εTεϕdxdy1dy2 + εα−1
∫
(0,1)×∂uY∗

T b
ε gT b

ε ϕdxdσ(y)

+ L
ε

∫
Rε1

f εϕdxdy + Lεα−1
∫
�ε1

gϕdS. (29)

Hence, since we have uniform bounds for the solutions in the |||.|||H1(Rε) norm, we can apply
Theorem 2.7. Thus, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1

#(Y∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y∗)

)
,

Tε∂xuε ⇀ ∂xu + ∂y1u1 weakly in L2
(
(0, 1)× Y∗) ,

Tε∂yuε ⇀ ∂y2u1 weakly in L2
(
(0, 1)× Y∗) . (30)

Also, by Proposition 2.9, one gets

T b
ε uε → u inL2((0, 1);H

1
2
(
∂uY∗)). (31)
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By (30), (15) and α > 1, for test functions ϕ(x, y) = ϕ(x), we can pass to the limit (29) getting∫
(0,1)×Y∗

κ
(
∂xu + ∂y1u1

)
∂xϕ + Q

(
∂xu + ∂y1u1

)
ϕ + cuϕdxdy1dy2

=
∫
(0,1)×Y∗

f̂ϕdxdy1dy2 ∀ϕ ∈ H1(0, 1). (32)

Now, one can proceed as in the proof of Theorem 3.1 to obtain∫ 1

0

[
κ q ∂xu∂xϕ + p ∂xuϕ + c uϕ

]
dx =

∫ 1

0
f̄ϕdx, ∀ϕ ∈ H1(0, 1)

which completes the proof. �
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