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Abstract

Boarding and alighting modeling at the bus stop level is an important tool for operational
planning of public transport systems, in addition to contributing to transit-oriented develop-
ment. The interest variables, in this case, present two particularities that strongly influence
the performance of proposed estimates: they demonstrate spatial dependence and are count
data. Moreover, in most cases, these data are not easy to collect. Thus, the present study
proposes a comparison of approaches for transit ridership modeling at the bus stop level,
applying linear, Poisson, Geographically Weighted and Geographically Weighted Poisson
(GWPR) regressions, as well as Universal Kriging (UK), to the boarding and alighting data
along a bus line in the city of Sdo Paulo, Brazil. The results from goodness-of-fit measures
confirmed the assumption that adding asymmetry and spatial autocorrelation, isolated and
together, to the transportation demand modeling, contributes to a gradual improvement in
the estimates, highlighting the GWPR and UK spatial estimation techniques. Moreover, the
spatially varying relationships between the variables of interest (boardings and alightings)
and their predictors (land use and transport system features around the bus stops), shown
in the present study, may support land use policies toward transit-oriented development. In
addition, by using an approach with little information, the good results achieved proved that
satisfactory boarding and alighting modeling can be done in regions where there is a lack of
travel demand data, as in the case of emerging countries.
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Introduction and Background

Alignment between urban planning and transport is one of the pillars of sustain-
able city development. Associations between land use and urban mobility support
the development of sustainable public policies, which are essential for encouraging
Transit Ridership (TR), an important instrument for social inclusion and accessibil-
ity. In this context, transport modeling is one of the tools that by quantifying and
explaining the effects of urban practices concerning the displacement of people and
goods, provide support to urban policies at the most diverse geographic scales.

Generally conditioned by data availability, urban travel modeling encompasses
different approaches, which can be differentiated by the spatial unit of analysis used.
Regarding Public Transport, studies can be found at the system level (Cervero &
Dai, 2014; Hensher & Golob, 2008; Hensher et al., 2014; Joonho et al., 2019; Taylor
et al., 2009), on Traffic Analysis Zones (TAZs), neighborhoods or districts (Chiou
et al., 2015; Kalaanidhi & Gunasekaran, 2013; Ma et al., 2018; Siddiqui et al., 2015;
Tu et al., 2018), bus lines (Kyte et al., 1985; Peng et al., 1997), train stations, metro
stations and bus stops (Gan et al., 2019; Pulugurtha & Agurla, 2012; Sun et al.,
2016; Zhu et al., 2019), and individual or household (Ewing et al., 2014; Siddiqui
et al., 2015) ranging from the most aggregated to the most disaggregated level. In a
simplified way, the adopted spatial unit of analysis strongly influences the interven-
ing factors, or explanatory variables, which can be considered in the study.

The urbanized area or system approach allows, for example, the inclusion of
covariates such as population, jobs, age and color distribution, regional, meteoro-
logical and topographic characteristics, Gross Domestic Product (GDP), income,
fleet, fare, capacity, number of Public Transport (PT) stations, modal split, PT net-
work mileage, frequency, characteristics of the road system, etc. Models that analyze
only an urbanized area, segmented into Traffic Analysis Zones, neighborhoods or
districts, are able to refine the socioeconomic, land use and transportation system
covariates, compared to previous approaches. In this case, however, fare variations
cannot be analyzed, for situations where it is unique in the city, as well as fleet, cli-
mate and other factors.

Research carried out on bus lines, in turn, maintains the aggregated characteris-
tics of the Traffic Analysis Zones, however, considering that they are usually based
on time series, the effect of the variation in the fare can be analyzed once more.
In addition, covariates related to the type of line are also liable to be included in
the models. The more disaggregated approaches (individual and household), on the
other hand, in addition to further refining the socioeconomic characteristics of previ-
ous treatments, add to the set of factors assessed in the Traffic Analysis Zones, trip
characteristics, such as time, distance and cost, and user perception.

Finally, between the most disaggregated level and bus lines, some studies
address train, metro stations and bus stops as spatial aggregation units. These
models, which consist of one of the most recent approaches of Transit Rider-
ship, can efficiently quantify the benefits of transit-oriented development, that is,
from urban policies applied in neighborhoods, which converge with urban plan-
ners” needs. Traditional Traffic Analysis Zones modeling, in contrast, assumes
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an average value of the explanatory variables in each spatial unit, which prevents
capturing variations at the local level and can lead to ecological fallacy. On the
other hand, considering the bus stop as a unit of analysis, boarding and alighting
volume estimates can be obtained using models, quickly and economically, sup-
porting the planning of the PT network (Cervero, 2006). This modeling is carried
out based on socioeconomic variables, land use and the transport system around
the stops.

The travel data, however, which consist of the variable of interest in these mod-
els, show two characteristics of fundamental importance for the performance of the
estimates, which are: they refer to counts, that is, they can assume only non-nega-
tive integer values and have asymmetry (they are heteroscedastic); and present spa-
tial autocorrelation, which means that travel demand values close to each other in
space tend to demonstrate similar behavior. Thus, travel demand models have been
improved over the years so as to account for these unique characteristics in the mod-
eling process. Concerning the spatial units of interest for sustainable urban plan-
ning (bus stops and stations), studies can be found regarding the modeling of Transit
Ridership at the bus stop or station level based on classical linear regression (Cer-
vero, 2006; Gutiérrez et al., 2011; Ryan & Frank, 2009). This traditional model, also
known as Ordinary Least Squares (OLS), is appropriate for continuous variables and
its residuals cannot be dependent on each other, in which case the OLS assumptions
are violated (Yan & Su, 2009) and the statistical inference is compromised, that is,
the estimator is no longer the one with the least variance. Solutions such as variable
transformations and decay functions were adopted by some authors to avoid such
problems, although the real nature of the data has not been considered.

In the 1980s, an expansion of the linear model to other probability distributions
introduced Poisson and Negative Binomial regressions that, unlike the normal dis-
tribution, model count data. These models, which have also been used to address
Transit Ridership at the bus stop and station level (Choi et al., 2012; Chu, 2004;
Pulugurtha & Agurla, 2012), can demonstrate a better performance than the tradi-
tional OLS. Despite this, these approaches still overlook the spatial autocorrelation
found in the response variable.

Attempts to solve this limitation culminated in the emergence of spatial regres-
sions, which can consider autocorrelation based on inclusion, as a covariate, of the
spatially lagged dependent variable (Spatial Lags Model - SLM), or through model
residuals (Spatial Error Model - SEM), and in both cases, the spatial interaction is
captured through a spatial weight matrix, usually based on the distance between the
points of the database (Fotheringham et al., 2003). These techniques have also been
used in ridership models at the station level (Gan et al., 2019), although, accord-
ing to Fotheringham et al. (2003), these models do not reflect the spatial hetero-
geneity of the database on a local level because the autocorrelation is expressed in
terms of only one parameter. Geographically Weighted Regression (GWR), which
generates a different model for each geographic coordinate, would be more appro-
priate, in this case, to address the autocorrelation and spatial heterogeneity of the
estimated parameters (Brunsdon et al., 1996). In GWR applications to Transit Rider-
ship (Blainey & Mulley, 2013; Blainey & Preston, 2010; Cardozo et al., 2012), the
results always demonstrate a better performance than the global models.
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Despite being able to deal satisfactorily with the database’s spatial dependence,
GWR has limitations that, similar to the OLS model, also assumes normality of
the variable of interest, which, in the case of Transit Ridership, is not observed.
Thus, geographically weighted models for count data have recently been developed,
called Geographically Weighted Poisson Regression (GWPR) and Geographically
Weighted Negative Binomial Regression (GWNBR). Although these models can be
easily found in traffic accident modeling (Bao et al., 2018; Gomes et al., 2017, 2019;
Liu et al., 2017; Obelheiro et al., 2020; Xu et al., 2017; Xu & Huang, 2015), using it
for ridership forecasting is still rare, and it is restricted to the application of GWPR
in the scope of metro stations (Liu et al., 2018) and GWNBR for train ridership
(Zhu et al., 2019), which again points to a better performance of local models com-
pared to their global version, Poisson regression and Negative Binomial regression,
respectively.

Another multivariate spatial model that, similar to GWR, also addresses spatial
dependence and is capable of generating a continuous surface of estimated values,
refers to the Geostatistics interpolator known as Universal Kriging (UK). The great-
est benefit of this technique is to be able to use the maximum available informa-
tion on the response and explanatory variables when forecasting the values of inter-
est in non-sampled sites, which makes it highly recommended for dealing with the
lack of data, a situation often found in travel demand variables along bus lines. In
the context of Transit Ridership, few studies have been found to date: Zhang and
Wang (2014) applied UK to estimate the number of Boardings in metro stations. On
the other hand, Marques and Pitombo (2021a) tested the suitability of UK to model
Boardings at the bus stop level, using different groups of predictors. Although the
results were satisfactory, the authors compared UK results only with Linear Regres-
sion, and did not account for the potential spatial heterogeneity of the predictors.
Models for count data were overlooked as well. The main differences between previ-
ous transit ridership studies and the present article are outlined in Table 1.

Based on the studies cited above, the following research gaps can be highlighted:
(1) Application of spatial models in the context of bus stops: the approaches found
so far are restricted to addressing the asymmetry shown by bus stop travel data,
overlooking the spatial autocorrelation potentially found in the models, as well as
both characteristics simultaneously. (2) Ridership modeling at the bus stop level:
although the approaches by train and metro stations also represent a contribution
to sustainable urban planning, bus stops are densely distributed within cities (as
opposed to rail stations), allowing the incorporation of characteristics from a higher
number of neighborhoods into the modeling. Furthermore, it cannot be said that
such data fall into the group of scarce variables, since the information on station
boarding and alighting is obtained relatively easily. Bus transit, on the other hand, is
a much more popular system than rail transit, which is found only in large cities. (3)
In most of the studies whose spatial unit of analysis is bus stops (Dill et al., 2013;
Kerkman et al., 2015; Ryan & Frank, 2009), the authors apply only the traditional
linear model. Although Chu (2004) applied both the OLS and Poisson regressions,
only the results of the count data model are shown. Thus, no comparison is made
between the two types of models, which prevents the visualization of the gains pro-
vided by using the most appropriate regression. Even in other studies, which address
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the transit demand at the station level and in which more than one type of model is
applied (Blainey & Mulley, 2013; Blainey & Preston, 2010; Cardozo et al., 2012;
Choi et al., 2012; Gan et al., 2019; Liu et al., 2018; Zhu et al., 2019), the regressions
address only one of the characteristics previously mentioned, sometimes asymmetry,
sometimes spatial autocorrelation, or the authors do not compare it with the tradi-
tional linear model. Thus, improvements can be observed provided by including one
or the other particularity in ridership modeling, but never both.

Therefore, the present article aims to model the bus stop boarding and alighting
volume from GWR for count data and multivariate spatial interpolators. In addition,
we aimed to compare different models from classical linear regression to GWPR
and UK, using Poisson global regressions, and traditional GWR as well. This pro-
posal intends to allow the visualization of the gradual gains achieved by addressing
asymmetry and spatial autocorrelation separated and, later, together. This analysis
will be carried out based on a real case study, based on line 6045-10 in the city of
Séao Paulo, Brazil.

This paper has four sections. “Materials and Method” section describes the
proposed method and the database used, dividing it into the description of the
dependent variables, independent variables and modeling procedure. The results
and discussions are detailed in “Results and Discussion™ section, which is organ-
ized as follows: first, the results referring to Boarding are presented and then those
of Alighting. Afterward, goodness-of-fit results from all models of Boardings and
Alightings are compared. Still in “Results and Discussion” section, a subsection
is presented to compare the results and characteristics of the present study with
previous ones. Finally, “Conclusions, Main Constraints and Final Recommenda-
tions” section outlines the main conclusions reached and suggests themes for future
research.

Materials and Method

The database to be used in the present study is based on the results of a boarding and
alighting survey carried out on 8 bus lines in the city of Sdo Paulo, Sao Paulo State,
Brazil. For each direction of the lines (inbound and outbound, resulting in 16 cases),
a spreadsheet was made available by Sdo Paulo Transporte SA (SPTrans), containing
the number of boardings and alightings per bus stop, encoded by an identifier, in 6
different time bands, covering 24 h of a Tuesday in 2017. Having identified the bus
stops and their respective geographic coordinates, also provided by SPTrans, it was
possible to proceed with the spatialization of this database.

Dependent Variables

The 16 unidirectional lines underwent an exploratory spatial dependence analysis
by calculating the Moran index (Moran, 1948) for the number of boardings and
alightings per bus stop in the Morning Peak Hours (MPH, from 5 a.m. to 8.59 am),
Between Peak Hours (BPH, from 9 a.m. to 3.59 p.m.), Afternoon Peak Hours (APH,
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from 4 p.m. to 7.59 p.m.), Evening Peak Hours (EPH, from 8 pm to 11.59 p.m.) and
the total number of Boarding and Alighting passengers from 5 a.m. to 11.59 p.m.
The Moran index was calculated in the R environment (Paradis et al., 2004; R Core
Team, 2020), using weight matrices based on the inverse of the Euclidean distance
between the bus stops of the database.

As we are focusing on spatially dependent data, the line to be chosen should be
the one whose boarding and alighting volume demonstrates a strong and significant
spatial dependence, that is, higher numbers of the Moran index, (when compared to
the other lines and time bands) associated with pseudo p-values smaller than 0.05.
In this context, within the 8 lines considered by the Boarding and Alighting counts
survey, the 6045-10-1 line (inbound trip of the 6045-10 line) with 47 bus stops stood
out in relation to Boardings in the total number of trips from 5 a.m. to 11.59 p.m.
The Alighting volume in that same period showed high and significant spatial auto-
correlation in the outbound trip, line 6045-10-2 with 49 bus stops. Thus, the number
of Boardings on line 6045-10-1 and Alightings on line 6045-10-2 were established
as dependent variables, both referring to the set of trips made from 5 a.m. to 11.59
p-m. Figure 1 shows both directions of line 6045-10 and respective bus stops in the
city of Sao Paulo.

From the bus stop numbering, it can be seen that the inbound trip, line 6045-10-
1, starts in the southwest region of the map and ends in the northeast portion. The
outbound trip, in turn, line 6045-10-2, originates in the northeast and ends its itiner-
ary in the southwest corner.

Independent Variables

As mentioned in “Introduction and Background” section, transit ridership modeling
at the bus stop level basically covers three groups of explanatory variables: socioec-
onomic, land use and the transport system variables. Table 2 summarizes the board-
ing and alighting models at the bus stop level found in the literature.

As can be observed, the independent variables that model the boarding and
alighting volume can also be classified as variables related to Transit Ridership
supply or demand. Supply variables include those related to the transport system,
while socioeconomic and land use predictors fall into the category of independ-
ent variables related to potential demand. Based on this, in the case of the present
study, potential predictors were collected both related to bus stops and referring to
their area of influence, comprising a 400 m radius buffer centered on the bus stops
(Zhao et al., 2003). Overlapping catchment areas were prevented by using Thiessen
polygons, similar to the method adopted by Zhang and Wang (2014) and Sun et al.
(2016), in a Geographic Information System (GIS) environment. Table 3 consoli-
dates the potential predictors raised, as well as the database on the basis of which
they were calculated.

The potential predictor collection was carried out in a GIS environment. The
population variable was calculated based on the areal interpolation of the shapefile
of the 2017 Origin/Destination (O/D) Survey (Metrd, 2019), given in Traffic Anal-
ysis Zones. The area, in hectares, of the 16 predominant land use categories was
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Fig. 1 Map showing lines 6045-10-1 and 6045-10-2 with their 47 and 49 bus stops, respectively

obtained through the shapefile available on the GeoSampa website, which details the
land use in S@o Paulo, in blocks, in 2016. Among the land use categories available,
the following can be found: horizontal and vertical residential, commerce and ser-
vices, industry and warehouses, public facilities, schools etc. All 16 land use types
are cited in Table 3. These data were also used together to calculate the entropy
index (Song et al., 2013) around the bus stops, which reflects the mix of land uses
found in the region. The other independent variables of potential demand, which
include socioeconomic information surrounding the bus stops, were collected from
the average of the households sampled by the O/D survey that were covered by the
buffer, and, in areas that did not contain any households, the results of the areal
interpolation of the aggregated data by Traffic Analysis Zone were used.

To avoid multicollinearity and parameter redundancy, as well as to identify the
variables with the greatest potential to explain Boardings and Alightings, Pearson’s
linear correlation coefficient (R) among all the variables in the database was calcu-
lated. When a pair of potential predictors had a value of R equal to or greater than
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Table 3 Potential predictors for Boarding and Alighting modeling

Predictor(s) Originated from

Variable type

Source

Distance, in meters, to the nearest bus
terminal

Bus stop Supply

Distance, in meters, to the nearest train or
metro station (station distance)

Distance, in meters, to the nearest bus
terminal, train or metro station (intra/
intermodal dist)

Number of bus lines passing by the bus
stop, except the 6045-10 line

Average frequency, in trips per hour, of
the bus lines, except the 6045-10 line
(frequency)

Population, in inhabitants (population) Catchment area Demand

Area, in hectares, of the following land
uses: no information; low standard
horizontal residential; medium/high
standard horizontal residential; low
standard vertical residential; medium/
high standard vertical residential; com-
merce and services (com serv area);
industry and warehouses; residential,
commerce and services; residential,
industry and warehouses; commerce,
services, industry and warehouses;
public facilities; schools; empty land;
and without predominance

Entropy Index

Average household income, in BRL
(income)*

Average car ownership
Female (%)

Population with no complete higher
education (%)

Workers and students (%)
Households with no private vehicles (%)

Percent of people aged up to 14, up to 17,
aged between 18 and 22, 18 and 29, 18
and 39 and above 60 years old

Number of roads Supply
Road length, in meters

Number of intersections

Number of intersections per meter of road

Number of Points of Interest

GeoSampa shapefile

2017 GTFS data provided by
SPTrans

2017 Origin and Destination
survey shapefile, given
in Traffic Analysis Zones
(Metrd, 2019)

GeoSampa shapefile, given
in blocks

Household data from the
2017 Origin and Destina-
tion survey (Metrd, 2019)

Open Street Map

* BRL 1.00 is equivalent to USD 0.18 (Feb. 2021)

0.60, the variable with the lowest correlation with Boardings and Alightings was
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discarded. As R values up to 0.60 indicate only a moderate correlation (Profillidis &
Botzoris, 2019), this threshold was deemed acceptable in order to combat the omit-
ted variable bias. It is worth mentioning that the variables listed in Table 3 were col-
lected for the bus stops and areas of influence of both lines separately as the inbound
and outbound trips are not exactly coincident.

Modeling

After completing the Boarding and Alighting database with its predictors, we pro-
ceeded to the modeling stage. At this stage, for each type of model, we sought to
find the combination of explanatory variables that optimized the estimates by mini-
mizing the sum of squares of the differences between the real and estimated values,
known as Squared Error (SE, Eq. 1) (Hollander & Liu, 2008). Thus, for each type of
regression, all the possibilities resulting from the combinations between the covari-
ates selected in “Independent Variables” subsection were considered. The modeling
step was performed in the R environment (R Core Team, 2020), an open and free
programming interface, and in the GWR4.09 free software.

SE= Y [yi-v]’ )
i=1

Where y; and y*; are the real and estimated values of the dependent variable in
geographical position i; and n is the number of bus stops. Initially, the traditional
linear model was calibrated, whose structure is shown in Eq. 2 (Yan & Su, 2009).

y=by+bx;+bhx+...+Bx +e 2)

Where the response variable y comprises the linear combination of explana-
tory variables x, added to a random error €. The  parameters to be estimated are
numbers that reflect the contribution of each covariate to explaining the variance of
y. From the Ordinary Least Squares estimator, which, in the case of linear regres-
sion, coincides with the Maximum Likelihood estimator, the f§ coefficients can be
obtained according to Eq. 3 (Yan & Su, 2009).

p=(xx)"'x'Y 3)

Where X and Y are, respectively, the explanatory variable matrix and the vector
of observations of the dependent variable. In R, the traditional linear regression was
generated and optimized using the “olsrr” package (Hebbali, 2020). Then, the non-
normal count data were analyzed using the Poisson regression, represented by Eq. 4
(Myers et al., 2010).

In(u) = By + Prxy + Prxy + -+ + By 4

Where u is the expected value of the response variable. The Poisson regres-
sion, unlike the linear one, admits that the variance of the information to be mod-
eled is not constant, but that this variance varies as a function of u (Hilbe, 2014),
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converging with the nature of the count data. Afterward, the isolated treatment of
autocorrelation and spatial heterogeneity was addressed by the traditional GWR
model (Eq. 5) (Brunsdon et al., 1996; Fotheringham et al., 2003).

Vi = Bl v)) + ; Bl vy + €; )

Where (u;,v;) represent the coordinates of the i-th point in space and f,(u;,v;)
refers to the realization of the continuous function f,(u,v) at point i (Fothering-
ham et al., 2003). In the case of GWR, the spatial interaction between the point
at which the model will be estimated and other points in the database is given by
a weight that varies depending on the distance between these points and a maxi-
mum radius (bandwidth - ) outside of which it is assumed zero spatial depend-
ence. Equation 6 (Brunsdon et al., 1996) shows how f parameters are calculated
in traditional GWR.

B = (X'WX)" X'W,Y (©)

Where W, refers to the weight assigned to the remaining points in the database
at the time of the calibration of the geographically weighted model in point i.
Finally, the local spatial model that also considers the non-normal count data is
structured in Eq. 7 (da Silva & Rodrigues, 2014; Nakaya et al., 2005).

ll’l(ﬂl) = ﬂO(ui’ V,‘) + Z ﬁk(ui’ vi)xik (7)
k

As in the global model, two probability distributions for the response variable
are allowed: Poisson and Negative Binomial. Within the scope of GWR, GWPR
and GWNBR, the model can be optimized by selecting the weighting function
(kernel) and respective bandwidth that minimize the Akaike Information Crite-
rion (AIC) (Sakamoto et al., 1986) of the regression or a Cross-Validation (CV)
metric. Based on this, in a simplified preliminary analysis, the Gaussian and bi-
square kernels were analyzed, both with adaptive distance. The second was the
one that showed the lowest AIC values and, consequently, comprised all the geo-
graphically weighted models. In turn, the adaptive bandwidth was chosen over the
fixed one because it allows both points located in a region with a high density of
bus stops and those located in areas with a lack of bus stops to receive the same
amount of data when the model is calibrated. In this case, b corresponds to the
distance between each bus stop where the model will be estimated and the most
distant neighbor to be considered in the calibration, that is, in areas with a high
density of points, b will be small, whereas regions with a lack of bus stops will
receive a greater bandwidth. Thus, for each of the possible Boarding and Alight-
ing models, two different bandwidths were obtained: the first minimizing the CV
criterion, which is based on the Squared Error; and the second, minimizing the
AIC. Afterward, the model was generated from these two optimal bandwidths and
the bi-square kernel, structured in Eq. 8 (Fotheringham et al., 2003).
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d. 2]?
W, = [1—@)] if dy <b )

0 otherwise

Where Wij refers to the weight assigned to point j at the time of calibration of
the model in i; d; is the distance between points i and j; and b is the optimal band-
width. Finally, we selected the model whose combination of covariates and band-
width resulted in the smallest SE. This procedure was carried out according to codes
available in the “sp” packages (Bivand et al., 2013; Pebesma & Bivand, 2005) and
“GWModel” (Gollini et al., 2015; Lu et al., 2014) of R.

The last model to be applied to the database refers to Universal Kriging (UK). As
this technique is not commonly used to address spatially discrete variables, the fol-
lowing subsection brings a more detailed discussion about it.

Universal Kriging

Universal Kriging is one of the spatial interpolators from Geostatistics, a tool that
deals with spatial autocorrelation using a probabilistic approach of regionalized var-
iables (Matheron, 1971). Inspired by the work of Krige (1951) Geostatistics was first
created to model spatially continuous variables, that is, variables that can assume
a value at each geographic coordinate within the field in which they occur. As it is
impossible to collect the real value of these variables throughout the whole spatial
field, geostatistical interpolators seek to use the maximum information from col-
lected samples to generate a continuous surface of estimated values covering both
sampled and non-sampled points. Based on a probabilistic approach, geostatistical
interpolators are unbiased and with minimum variance, providing uncertainty meas-
ures as well (variance of estimate), features not present in deterministic interpola-
tors. Because of the convenience of Geostatistics to estimate in non-sampled loca-
tions, studies addressing spatially discrete variables started to apply geostatistical
interpolators to overcome the lack of data caused by obstacles in the field collection
(cost, access, topography). In this context, applications can be found in epidemi-
ology, aquiculture, agriculture, forest sciences (Carvalho et al., 2015; Goovaerts,
2009; Kerry et al., 2016; Stelzenmiiller et al., 2005), and, more recently, in the trans-
portation engineering area, including accidents/road safety and travel demand mod-
eling (Gomes et al., 2018; Klatko et al., 2017; Majumdar et al., 2004; Marques &
Pitombo, 2021a, b; Pinto et al., 2020; Selby & Kockelman, 2013; Wang & Kockel-
man, 2009; Yang et al., 2018).

The bibliographic review by Marques and Pitombo (2020) highlighted the sig-
nificant contributions from Geostatistics to various studies involving travel demand
variables, which are usually spatially discrete. Research addressing the modal choice
in the context of households/individuals (Chica-Olmo et al., 2018; Pitombo et al.,
2015), trip generation in Traffic Analysis Zones (Lindner et al., 2016), traffic volume
in road segments (Selby & Kockelman, 2013; Yang et al., 2018) and boardings and
alightings at stations or bus stops (Marques & Pitombo, 2021a, b; Zhang & Wang,
2014) can be found. Most methods (field surveys, automatic counters, sensors etc.)
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that support the exhaustive collection of this information require high financial
resources, which may not be available for emerging countries like Brazil.

Unlike some geostatistical models that depend only on the variable of interest,
Universal Kriging allows the inclusion of external explanatory variables. Accord-
ing to Fotheringham et al. (2003), it fits into the group of spatial regressions, how-
ever, unlike the SLM and SEM models, the spatial interaction between bus stops in
the database, in the case of kriging, occurs in terms of the semivariogram function
(Eq. 9) (Matheron, 1971; Cressie, 1993; Goovaerts, 1997).

N
1
Y = 5 2:, [z, + 1) - Z(x)]? ©)

In this case, Z(x;) expresses the residual between the real and predicted values at
point i; and N is equivalent to the number of pairs located at a distance 4. If the resid-
uals show spatial autocorrelation, their values will be similar to each other at close
bus stops in space and less similar as the distance between the bus stops increases.
Thus, the semivariogram function graph presents an increasing form, from the ori-
gin or in its neighborhood, until reaching a sill, which refers to the maximum pos-
sible difference between the residuals and occurs at a distance beyond which there is
no more spatial dependence between the database points.

The UK structure is similar to that of linear regression (Eq. 2), that is, the esti-
mates are calculated both through the linear combination parameters of explanatory
variables, known as large-scale variation, and the theoretical semivariogam model,
which reflects the short-range variation (spatial dependence) and is part of the krig-
ing error term (Cressie, 1993). Regarding the theoretical semivariogram, the adjust-
ment of three models typically used was tested: exponential (exp), Gaussian (gau)
and spherical (sph) (Olea, 2006). Using the restricted maximum likelihood estima-
tor, Universal Kriging estimates are given by Eq. 10 (Cressie, 1993; Selby & Kock-
elman, 2013; Zhang & Wang, 2014).

¥ (%) = [X,] 181+ [ V| [V, te) (10)

Where X, is the matrix of explanatory variable observations of point x,; f is the
vector of linear parameter estimates; V,, represents the vector of estimated covari-
ances between sample points and point x,, while V, expresses the matrix of esti-
mated covariances between sample points. It is worth remembering that covariance
(V) and semivariogram (y) functions are related according to Eq. 11, where ¢, and
¢, stand out, respectively, for the nugget effect and partial sill parameters from the
theoretical semivariogram.

V(h) = cy+c; —y(h) (1n

UK estimates were calculated in R using the “georob” package (Papritz, 2020a,
b).

Although the explanatory variables used in the modeling stage showed a
good correlation with Boardings and Alightings, not all of them had statistically
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significant parameters in all the models in which they participated. Thus, in the
case of global models (linear and Poisson regressions), it was established that, in
addition to presenting the lowest Squared Error among the models analyzed in
each category, the model with the best performance should also contain only vari-
ables whose parameters were statistically significant for a level of at least 90%
confidence interval (p <0.10).

Figure 2 illustrates the modeling structure adopted in this article, from a sim-
pler to a more complex approach. The figure summarizes the formulations previ-
ously described, illustrating the disadvantages and advantages in each stage of the
sequence of models tested here.

The comparison between the best models in each category was performed
using various goodness-of-fit measures, namely: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) (Hollander & Liu, 2008) and percentage of
error, which must be close to O to reflect a good performance of the technique.
To verify the best fit of local models over the global ones, the Akaike weight
(Fotheringham et al., 2003) was calculated for the following pairs of models: (1)
GWR and Linear Regression; and (2) GWPR and Poisson regression. Based on
the AIC, which helps to choose the most parsimonious model from a set of com-
peting models, the Akaike weight (w) for model i is given by Eq. 12.

_exp(=AIC;/2)
Y exp(-AIC;/2)

As the Akaike weights of models being compared sum to 1, this measure rep-
resents the likelihood that each model is the best. So, the greater the weight,
the greater the probability of the respective model being the best (Fothering-
ham et al., 2003). The results and discussion about these points are described
in “Results and Discussion” section.

(12)
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Results and Discussion

Table 4 consolidates the descriptive measures of the data used in the present
study. Figure 3, in turn, shows the spatial variation of the variables of interest,
and of population, income, land use and stations around the 6045-10 bus line.
From the linear correlation analysis, five predictors went to the Boarding mod-
eling stage: population; commerce and service area (com serv area); distance
to the nearest train or metro station (station distance); distance to the nearest
bus terminal, train or metro station (intra/intermodal dist), replacing the previ-
ous variable; and average family income (income). For Alightings, the following
predictors were selected: population; average frequency (frequency); distance to
the nearest train or metro station (station distance); and average family income
(income). For the sake of brevity, only the explanatory variables that were main-
tained in the final models of each of the categories described in the previous sec-
tion are shown, as well as the dependent variables.

Despite the effort to collect the other variables, many pairs of potential predictors
showed a statistically significant (p <0.10) Pearson coefficient correlation greater
than 0.60. Bearing in mind that, in the presence of multicollinearity, the addition
of more covariates does not significantly improve the performance of the model but
can lead to misunderstandings in the value of the parameters, several covariates of
Table 3 were discarded. In addition, adding more information to the modeling can
lead to high costs due to data collection, making it difficult to apply the equations.
However, even though several predictors were discarded, the set of variables chosen
has both data related to potential demand and supply, that is, information regarding
land use, socioeconomic features and the transport system around bus stops.

It is observed that both dependent variables demonstrate the positive asymme-
try commented in “Materials and Method” section: their median is less than the
mean and, in the case of Alightings, this difference is even more substantial. The
null number of users boarding and alighting occurs only once in the set of trips
made from 5 a.m. to 11.59 p.m.; at the last bus stop for Boardings, and at the first
one, for Alightings, as expected.

Moran’s I results for Boardings and Alightings were 0.34 and 0.26, respec-
tively. Both of them had associated p-value equal to 0. The spatial autocorrela-
tion of Boardings and Alightings is illustrated by Fig. 3, which reveals that most
passengers enter the 6045-10-1 line at its first bus stops, in the southwest region
of the map. However, there are other peaks along the route until it reaches its last
bus stops, in the northeast portion of the map. The inverse direction (6045-10-2
line) shows the opposite, as the number of passengers alighting is low in its first
stops and starts to increase as the line runs along its route.

Despite there being some spatial correlation between the two variables of
interest, the authors decided to perform the modeling separately as a way to
compensate for the small number of bus stops with Boarding and Alighting data
available. Therefore, it would be possible to verify the consistence of the mod-
els’ results. In addition, as the 6045-10-1 and 6045-10-2 lines share only one bus
stop, adding Boardings and Alightings was not an option.
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t Trip direction l Trip direction
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Fig.3 Maps of a Boardings along 6045-10-1 line; b Alightings along 6045-10-2 line; ¢ Population den-
sity at the TAZ level; d Average household income at the TAZ level; e Predominant land use at the block
level; and f Bus, train and metro stations in the vicinity of the lines of interest

Figure 3c shows that the case study lines are situated in a densely populated
area in the southwest region of Sdo Paulo, whose main center also corresponds to
the city’s geographic center. This area is characterized by households with low-to-
medium income (Fig. 3d), however high-income households are present at the end
of the inbound trip (Boardings) and the beginning of the outbound trip (Alightings).
In the case of the commerce and service area variable, which explained Boardings
only, there is a preponderance of null values in its distribution of approximately
60%. In fact, as shown in Fig. 3e, the 6045-10 line runs through a predominantly
residential area, with a few blocks of commercial or residential and commercial
related use.

The following subtopics detail the results of Boarding and Alighting modeling.
As defined in “Materials and Method” section, for each type of model, all possible
combinations of covariates were considered, in order to find the set of predictors that
generated the smallest Squared Error. Thus, for Boardings, there were 23 possible
models in each category; and for Alightings, there were 15. The 8 surplus Board-
ing models refer to cases in which the station distance variable was replaced by the
intra/intermodal dist variable, which showed a better performance in some situa-
tions. Since, in the case of geographically weighted models, the bandwidth can be
optimized in two different ways, within the scope of GWR and GWPR, the number
of possible models was twice that of the other categories.
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Boardings

Table 5 shows the results of the sequence of calibrated models for the Boarding
dependent variable. In a preliminary analysis, the Negative Binomial regression,
which can model the overdispersion phenomenon, that is, when the variance of
the data exceeds its mean, was also considered. However, their results were worse
than those of the Poisson regression, both in the case of Boarding and Alighting.
Thus, only the Poisson model, among the models for count data, will be shown in
the present study. Bearing in mind that, in the generalized global model analysis,
the Poisson regression performed better than the Negative Binomial, we did not use
GWNBR in the modeling stage, which is why this model does not appear in the
results.

The linear regression model for Boardings is
Boardings = —47.43 + 0.02 % Population + 34.17 + Comservarea + 0.04 * Stationdistance. 1N€ sign obtained for
the predictors’ coefficients, positive in the three cases, reveals that the greater the
number of inhabitants and the provision of commerce and services around the bus
stops, the greater the number of Boardings at them. For example, for each 1 new
hectare of commerce and services area, the Boardings volume is likely to increase
by 34 passengers, if the other attributes are held constant. In the case of popula-
tion, an increase of one passenger boarding is expected to occur only if the number
of inhabitants increases by 1/0.02 = 50, ceteris paribus. Recall that the set of trips
embedded in the dependent variable covers a typical full day (from 5 a.m. to 11.59
p.m.), therefore users who may have jobs along the 6045-10-1 line may have used
any of its 47 bus stops to return home at the end of the day. In addition, consider-
ing that this line departs from a distant region of train and metro stations, slowly

Table 5 Global and local models for Boardings along the 6045-10-1 line (N=47)

Model/Predictor Intercept Population Com serv Station Intra/inter- Income
area distance modal dist

Linear regression -47.43522  0.02357 34.17471 0.03721
Poisson regression  3.55100 0.00021 0.07332 0.00058 -0.00010
GWR Min -5.95226  -0.02893  -33.92728
WN*=19) 254 246590 001392  -31.05199
50% 68.28957  0.02083 7.94510
75% 105.03428 0.04605  46.72116
Max 278.22104 0.05380  89.67780

GWPR Min 193027  -0.00013  -0.72354 -0.00236 -0.00018
(N*=19) 25% 251549  0.00012  -0.56295 -0.00027 -0.00016
50% 322689  0.00029  0.01206 0.00011 -0.00003
75% 4.15367  0.00034  0.14317 0.00103 0.00001
Max 5.61469  0.00036  0.56053 0.00120 0.00016
UK -112.90000 0.03755 0.05203

* Number of neighbors corresponding to the optimal bandwidth. In local models GWR and GWPR, the
bus stop where the model is calibrated does not participate in the calibration. GWR: Geographically
Weighted Regression; GWPR: Geographically Weighted Poisson Regression; UK: Universal Kriging
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approaching some of them as it travels the route, the sign of the third explanatory
variable is also plausible, that is, the largest volumes of Boardings are observed in
the most distant areas of the central regions, and it is in these environments where
the train and metro stations are usually located.

The resulting model for Poisson regression is
Boardings = exp(3.55 + 0.00021 * Population + 0.07332  Comservarea + 0.00058 # Intra/interdistance — 0.00010 * income) -
Income, as expected, appears with a negative sign, that is, bus stops with areas
of influence characterized by a population with lower income, tend to generate a
greater number of Boardings than those located near high-income regions. There-
fore, if the household income increases by BRL 100.00 (USD 18.00 (Feb. 2021))
and the other attributes are held constant, the associated decrease in the number of
Boardings is of [exp(—0.00010 x 100) — 1] = 1.00%.

The maps in Fig. 4 show the spatial variation of the estimated parameters of the
GWR and respective p-values. It can be seen that the parameters of certain bus stops
were negative. The resulting conclusion would be that the larger the population
around these bus stops, the lower the number of Boardings. Probably, increasing

\
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Fig.4 Estimated Boarding GWR parameters and respective statistical significance
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the population in these regions would stimulate the use of other travel modes. The
negative sign may also reflect the fact that, for these bus stops, the model lacks other
explanatory variables. However, both in the case of population and area of com-
merce and services, all negative parameters were not statistically significant, which
means that these variables probably do not contribute to explaining the variation of
Boardings at these bus stops. The local R2 ranged from 0.569 to 0.972, with 70% of
the models calibrated for each bus stop showing a determination coefficient greater
than 0.700.

The parameters estimated in the Boarding GWPR and respective p values
are shown in Fig. 5. When comparing the map of population coefficients and
Fig. 3¢ (population density), it can be seen that negative signs of population occur
in densely populated regions but with a relatively small Boardings volume. On the
other hand, the first and last bus stops of the inbound trip correspond to high and
low density areas, respectively, showing proportionately bigger and smaller values
of Boardings, which justifies the positive coefficient of the population for these bus
stops. In addition, while the Poisson regression indicates an increase of only 7.61%
in the number of Boardings if the commerce and services area increases by 1 hec-
tare, there are points with an associated increase ranging from 60 to 70% in GWPR
(the last category in Fig. 5), if the other attributes are held constant.

In the case of the intra/intermodal distance variable, the negative coefficients can
be explained as follows: some bus stops located very far from bus terminals, metro
or train stations may have their Boarding volume negatively impacted as they are
unable to serve as elements of intra and intermodal integration. Stronger positive
impacts of the proximity to stations can be seen at bus stops situated near the end of
the inbound trip, densely supplied by stations (Fig. 3f), and where there is a peak in
the Boardings volume. In the case of income, positive signs indicate bus stops with
a Boardings volume proportional to the surrounding average income, while negative
effects can be seen in areas with high Boardings volume, but low income, and in
areas with low Boardings volume, but high income. Statistically significant positive
coefficients belong to bus stops surrounded by low-to-medium income areas, and
where an intermediate Boardings volume occurs, as shown in Fig. 3.

Figure 5 shows that there is a much larger number of bus stops with statistically
significant parameters in GWPR compared to GWR. Bearing in mind that, in the
calibration of both models, the data used was the same, this result may suggest that
GWPR is more suitable for Boarding modeling at the bus stop level than GWR.
Based on the number of bus stops whose parameters were statistically significant
(» <0.10), the covariates can be ranked by degree of importance as follows: popula-
tion, intra/intermodal distance, area of commerce and services, and income. Another
important observation is that all explanatory variables have bus stops with statis-
tically significant positive and negative coefficients, which corroborates the spa-
tial heterogeneity of the parameters estimated in the stop-level Transit Ridership
modeling.

Afterward, the UK model is presented. Note that the UK with the lowest SE
retained only two explanatory variables: population and station distance, both with
expected signs. This result emerges from the formulation of this regression itself:
comprising a linear combination of predictors and S coefficients to be estimated, UK
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assumes that the spatial autocorrelation of the database is present in the residuals of
the model. Thus, the best fit for the UK occurs in cases where the explanatory vari-
ables are able to clearly discriminate this spatial dependence on residuals, and the
inclusion of too many predictors may compromise this function.

Alightings

Table 6 consolidates the models calibrated for Alightings.

The optimal linear regression for Alightings contained, in a similar way to that of
Boardings, three explanatory variables, two of which exactly coincide with those of
the previous model: population and intermodal distance. While the intensity of the
distance effect remains similar to the case of Boardings, the impact of the population
variable is greater regarding Alightings. If the population increases by 50 inhabit-
ants, the number of Alightings is expected to increase by 1.5, ceteris paribus.

The negative sign of the average frequency variable reveals that regions with a
dense coverage of the PT network present a volume of passengers alighting less
than areas less supplied by the system. This conclusion shows that most trips on
the 6045-10-2 line are attracted to places with less accessibility to PT than in the
central regions. This destination may refer to the household of PT users, indicating
that, probably, the return line 6045-10-2 serves a considerable portion of work-home
trips. Assuming that on line 6045-10-2, return trips from work prevail, it can be
stated that the sign of the income coefficient in the Poisson regression is also con-
sistent with that expected.

The spatial variability of the parameters estimated in GWR and GWPR, together
with their statistical significance, is shown in Figs. 6 and 7, respectively. The local
R? for GWR ranges from 0.265 to 0.996, in which 70% of the bus stops have an R?
value above 0.600.

Following the same pattern of Boardings, GWPR also maintained the same
predictors that appeared in the final Poisson regression. As both 6045-10-1 and

Table 6 Global and local models for Alightings along the 6045-10-2 line (N=49)

Model\Predictor Intercept Population =~ Frequency  Station distance  Income
Linear regression 228.42797 0.03072 -64.70247 0.03009
Poisson regression 5.33800 0.00019 -0.37750 0.00020 -0.00007
GWR Min  -96.91727 -0.02829 -0.02806
WN=17) 25%  -22.90870  0.01017 -0.01540
50%  -3.88202 0.04913 -0.00006
75%  13.60073 0.06111 0.00055
Max  303.72456 0.09157 0.04025
GWPR Min 1.17558 -0.00016 -0.49110 -0.00090 -0.00023
(N=20) 25% 155685 0.00027 -0.19205  -0.00023 -0.00007
50%  2.79466 0.00030 -0.00026 0.00017 -0.00003
75%  4.39613 0.00034 0.15553 0.00030 0.00005
Max  7.68902 0.00058 0.35559 0.00035 0.00007
UK -159.20000  0.04209 0.06845
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Fig. 6 Estimated Alighting GWR parameters and respective statistical significance

6045-10-2 lines have itineraries close to each other in space, similar relationships
between Boardings and Alightings and their predictors are expected.

The expected effects of the frequency variable on Alightings vary from —38.80%
to +42.70% if the frequency increases by 1 trip/hour and the other attributes are
held constant. This impact is only —31.44% in the global Poisson model. Bus stops
whose average frequency of the other lines that pass through them positively impacts
the volume of Alightings possibly serve as intramodal integration nodes.

The p values found suggest the following classification of the degree of impor-
tance of the parameters to explain Alightings: population, intermodal distance, fre-
quency and average household income. An interesting result is that the two most
important explanatory variables for Boardings and Alightings were the same in
GWPR: population and distance to the nearest station, or to the nearest station or
bus terminal. It is important to note that population is part of the group of inde-
pendent variables of potential demand, and intermodal or intra/intermodal distance
comprises the group of supply variables. Therefore, the local modeling that also
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Fig. 7 Estimated Alighting GWPR parameters and respective statistical significance
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accounts for the asymmetry of the travel demand variables, contains explanatory
variables with statistically significant parameters from both categories of predictors.

The best performing Alighting UK, in turn, presents the same explanatory vari-
ables as its Boarding counterpart, but with slight differences in the estimated coef-
ficients. In both cases, the theoretical semivariogram with the best performance was
also the same: the exponential model.

Goodness-of-fit Comparison of All Models

Table 7 summarizes the results of the goodness-of-fit measures applied to the global
and local models of Boardings and Alightings.

In general, the techniques can be ranked, from the weakest to the strongest per-
formance, as follows: (1) traditional linear regression; (2) Poisson regression; (3)
GWR; (4) GWPR; and (5) UK. Note that, in the case of Boardings, the Poisson
regression was better than the linear regression only regarding the MAE. However,
the classic linear model, which assumes continuous variables of interest, has the
drawback of allowing the prediction of negative values for Boardings and Alight-
ings, which does not occur in the Poisson regression.

Based on this and using the MAE results for Alightings, the advantages, that is,
relative reductions in error arising from the incorporation of asymmetry and auto-
correlation, in isolation and together, to the process of modeling, can be illustrated
as follows: -17.11% in the Poisson regression; -40.86% in GWR; -42.58% in GWPR;
and —92.27% in the UK with the best performance. In Boardings, the following
sequence is verified: -1.14%, -27.50%, -38.02% and —92.41%, using, as a reference,
in both cases, the absolute mean error of the linear regression.

Basically, the global models differ from the local ones in that, in the second type
of regression, bus stops with equal values of the explanatory variables are unlikely
to have an identical predicted value for Boardings and Alightings, since, in this case,
the result also depends on the spatial arrangement of the bus stops. However, while
GWR and GWPR are considered local models because they allow, among other con-
veniences, the discrimination of the spatial heterogeneity of the model parameters,
the local character of UK comes from the semivariogram function, which presents
advantages in the case of data that are difficult to acquire. Thus, when comparing the
two best performing methods, it can be seen that GWPR contributes to the knowl-
edge of the way in which the Transit Ridership in each region would respond locally
to changes in land use and in the transport system, guiding the transit-oriented urban
development. As shown in Tables 5 and 6, the range of variation of the parameters
in the GWR and GWPR corroborates the existence of this spatial heterogeneity. UK,
in turn, provides accurate estimates with a small amount of information.

When it refers to goodness-of-fit measures based on the log-likelihood, the AIC
of local models was lower in comparison with global models. The Poisson and Lin-
ear Regression for Boardings had an AIC of 2,332 and 552, respectively, while the
AIC for GWPR and GWR was, respectively, 773 and 520. For Alightings, the results
showed the same pattern: AIC of 579 and 542 for Linear Regression and GWR,
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respectively; and 2,186 and 992, respectively, for Poisson Regression and GWPR.
As the linear and Poisson models come from different probability distributions, the
AIC results must not be used to compare all models simultaneously, but they con-
firm once again the better fit of local models over their global counterparts. The
Akaike Information Criteria for the UK Boardings and Alightings was, respectively,
554 and 580. Although these values are higher than those for LR, the AIC from LR
does not take into account the semivariogram part of UK, which is nonlinear. There-
fore, the comparison between UK and its non-spatial counterpart (LR) should be
made by the measures shown in Table 7.

Table 8 displays the Akaike weights from the comparison between local, GWPR
and GWR, and global models, PR and LR, respectively. Based on these weights of
evidence, GWR and GWPR are certainly better options than their global counterpart.

Comparison with Previous Studies

Table 9 summarizes the characteristics of the models for Boarding and Alighting at
the bus stop level already developed, together with their respective goodness-of-fit
measures. The models presented in the present study were also included, for com-
parison purposes.

Attention is drawn to the fact that most of the models are from the USA, with
only one representative in the Netherlands. This is probably due to the difficulty
of acquiring reliable data on the movement of passengers along bus lines, that is,
Boarding and Alighting per bus stop. The traditional Boarding and Alighting counts
survey, which supports the collection of such information, is quite expensive and
few municipalities have resources for this purpose. Automatic passenger counters,
which could replace Boarding and Alighting survey, have not yet been popularized,
especially in less developed countries. An alternative would be to synchronize the
smart card data with the GPS of the buses, however, even in this case, some assump-
tions would have to be made to estimate the Boarding and Alighting bus stops,
which could end up affecting the accuracy of the results. Thus, the present research,
by providing Boarding and Alighting models per bus stop in a developing country,
contributes to knowledge of how the relations between land use and transit ridership
on a bus stop level take place in these regions.

It can also be observed that the studies address, as a dependent variable, only the
number of Boardings or the sum of Boardings and Alightings. Although it is not
wrong to assume that there is some correlation between Boardings and Alightings,

Table 8 Akaike weights

Model Boardings Akaike weights Alightings
Akaike
weights

LR 0.000 0.000

GWR 1.000 1.000

PR 0.000 0.000

GWPR 1.000 1.000

@ Springer



Transit Ridership Modeling at the Bus Stop Level: Comparison...

Apms 9A1I0adsaI 9) UT UMOYS [OPOW 159

TP 085 =DIV 4 6 3N
T€8°0 = 2 Opnadsq 14 0T AdMD
09L°0 = 2 pawsnlpy 4 LT AMD
880°1- = pooyI[yI[-307] 14 o uossIoq
209°0 = 2 pawsnlpy € 6 ST10 Sunysny
65Y 4SS =DIV 4 Ly N
L¥8°0 = 2 0pndsq ¥ 61 AdMO
L1L°0 = 24 pasnlpy 4 61 AMD
191°1- = pooyt[ay1[-307] v Ly uosstoq
$55°0 = 2 pasnipy € Ly (0] Suipreog [izeig sIoyIne oy,
79L°0 = 24 pasnlpy 81 ¥8T°1
TLL'O = 2d pasnlpy 81 T€C'l  (reour-5o)) §70  (wyinresSo)) SunysSie +Sulpleog  SPUBHIOYIN (S102) "Te 10 ueunjIoy
£6°0 = 2 pawsnlpy 6T 0S¢
79°0 = 2 pasnlpy 6T 00t
69°0 = 2 pasnlpy 6T vIT’L  (reeur-S0[) 70  (wytreSor) Sunysie + Surpreog vsn (€1027) e 3R A
#JUI[-30] Yim
L€y = pooyray-1senb paoario) Tl LS8‘T  [EIWOUIQ dANESAN Surpreog vsn  (Z107) vpndy pue eyimanng
0£€°0 = 2 pasnlpy 8 786°¢
87¢'0 = 2 paIsnlpy L 786'¢  (mour-Sop) §70  (wprresSor) Sunysie + Surpreog vsn (6007) NueLq pue ueky
TLO'81- = pooyI[[-307] SI 896°C uossiod Surpreog vsn (¥002) nU4D
s103o1paId sdojs snq
SOINSLIW JY-JO-SSOUPOOH)  JO IoquInN  JO IoquinN [oPOIN J1qeLea Jjuopuadoq Anuno) QOURIRJY

[9A9] dojs snq oy} Je spopowr dIYsIOpLI JO S)NSAI pue saIjed,] 6 3|qel

pringer

As



S.d. F. Marques, C. S. Pitombo

the present study shows that the variables that explain Boardings and Alightings can
be different and, even those that are repeated in both cases, result in different coef-
ficients. Thus, the effect of such variables on Boardings and Alightings may vary
from case to case.

As described in “Introduction and Background” section, the studies found had
not yet provided a spatial approach to Boardings and Alightings. Table 9 also shows
that the number of bus stops used in previous studies is considerably greater than
that of the present case study, which reveals the availability of variables of interest
for almost all or the whole bus network in such cities. This coverage, however, is dif-
ficult in regions that have a lack of technology or resources for this purpose.

Regarding the number of predictors, on the other hand, the present study had
an extensive set of possible explanatory variables. However, the multicollinearity
analysis reduced this group to only four predictors, both in the case of Boardings
and Alightings, which did not prevent us from achieving good results. In fact, as the
available database has a small number of points (47 and 49), the inclusion of more
predictor data into the modeling would cause the parameters from these predictors
to have statistical significance issues (p-value > 0.10), especially in the case of GWR
and GWPR, as they use only part of the database for calibration. Because the main
focus of the modeling was to predict well Boardings and Alightings, we decided to
test all possible combinations of predictors (considering only those without or with
low correlation between them) that could achieve the best performance in goodness-
of-fit measures. Bearing in mind that each model has its own characteristics, the set
of predictors was different for the five models compared. When it refers to the spa-
tial models (GWR, GWPR and UK), for example, the group of predictors selected
would be the one that highlights the spatial dependence remaining in the residuals of
the model, which is an issue that can be found when a small number of specific pre-
dictors is used (in the present case study, the resulting set of predictors was not able
to control the spatial dependence of Boardings/Alightings in the non-spatial mod-
els). Thus, following this method enabled us to address a problem faced by munici-
palities with a lack of data on travel demand and its intervening factors. However,
even when more predictor data is included in the model, testing for spatial depend-
ence on residuals of the non-spatial models must not be overlooked, and if autocor-
relation is present, spatial/local models are preferred.

We also recognize that a fairer comparison between the five approaches would
be possible only if all models had the same set of explanatory variables. However,
the decision to improve the goodness-of-fit measures for each type of model, as a
method to achieve the best boarding and alighting estimates, could not retain the
restriction of the same predictors for all models. This analysis can be tested in future
studies.

Finally, the UK results are surprising: using only two explanatory variables, the
Boarding and Alighting UK generated estimates with the median absolute error of
3.20% and 4.34%, respectively (Table 7). The goodness-of-fit measures obtained
in the present study indicate that, even though there is not a considerable number
of predictors, it is possible to develop models with satisfactory prediction perfor-
mance. Although it is recognized that several of the potential predictors shown in
Table 3 influence the passenger demand, the excess of information embedded in the
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model makes it difficult to use it to forecast the number of Boarding and Alight-
ing in hypothetical and/or future scenarios or in other cities/regions, since, for this,
all predictors would also need to be estimated for the same condition. In addition,
transit ridership models with many explanatory variables are only possible when the
number of bus stops considered is also large, otherwise problems arise in the statisti-
cal significance of the estimated parameters. Thus, the present study also contributes
to Boarding and Alighting modeling in cases in which only a small number of bus
stops have data on the variables of interest and the amount of data on land use and
transport is scarce.

Conclusions, Main Constraints and Final Recommendations

The aim of the present study was to assess the gains provided by addressing asym-
metry and spatial autocorrelation of stop-level transit ridership in its modeling.
Global and local models for continuous and discrete data were applied to the Board-
ing and Alighting variables along a bus line in the city of Sdo Paulo, Brazil. The
results showed that, in fact, there is a gradual improvement in estimates as the two
peculiarities of transit ridership are accounted for by the modeling.

In this context, the following topics summarize the research contributions of the
present study:

e The solidification and methodological advancement of Boarding and Alight-
ing at the bus stop level, through a comparison of models that consider specific
aspects of such variables: asymmetry and spatial autocorrelation.

e The methodological procedure accounts for the lack of data usually faced by
developing countries. Even though only a few predictors are used, the proposed
models were able to provide good ridership estimates.

e Spatial dependence plays an important role to improve goodness-of-fit measures
of stop-level ridership modeling.

e The predictors’ effects on Boarding and Alighting can significantly vary from
one bus stop to another.

The proposed models (GWPR and UK, for instance) have potential applications
to urban and bus network planning. Based on the results achieved, the following rec-
ommendations are highlighted:

e The decision on whether to use a local model (GWPR, for instance) or UK for
ridership prediction may be a matter of availability of data or policy. Coefficients
from local models can be used to guide urban planning towards increasing transit
patronage. However, if the main objective is only to achieve accurate ridership
predictions, UK may be preferred.

e Results suggest that population and station distance (poxy for accessibility) are
important predictors for Boarding and Alighting and, as such, they should not be
overlooked in a transit ridership modeling by either GWPR or UK.
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e The proposed models can support the analysis of ridership change in future or
hypothetical scenarios, based on variations in the predictor information. In addi-
tion, they can provide Boarding and Alighting estimates for bus stops that lack
these data.

e  When ridership estimates are required for an exhaustive number of bus stops, the
predictor data can be interpolated by means of kriging (or any other method).
Therefore, a continuous surface of estimated ridership values, covering all the
bus stops, can be obtained from the spatial models.

¢ Boarding and Alighting estimates for all bus stops of a route will provide munici-
palities with sufficient information to carry out the bus fleet sizing, as well as the
bus frequency.

The main constraints of the present study can be outlined as follows:

e Given the small sample available for performing the modeling, the results can
hardly be generalized. However, the proposed method had the former intention
of stimulating the use of spatial and local models in the bus stop context, making
it possible for forthcoming studies with bigger Boarding and Alighting datasets
to use them and contribute to strengthening the results achieved.

e The dependent variable covers only passengers entering or leaving each specific
line. However, the desired scenario would be to have the sum of passengers who
enter or leave all bus lines that pass through the sampled bus stops so we could
use the models to predict the total ridership in any bus stop.

e Only one of the eight lines was used as a case study. However, the proposed
method can be easily applied to the remaining lines as well, separately.

In order to stimulate the consolidation of the appropriate transit ridership mod-
eling at the bus stop level, some topics may be recommended for future work, such
as:

e Calculating the goodness-of-fit measures based on a validation sample apart
from the calibration sample used in the present analysis. This procedure would
enable us to verify if the techniques of better performance in the calibration
would also stand out in the validation.

e To address the cases with more than one line, including the analysis of overlap-
ping between lines.

e To test semiparametric geographically weighted models, which admit both pre-
dictors of fixed and spatially varying parameters.

e Bearing in mind that UK was the only geostatistical model used, future research
could also benefit from the comparison between UK and another multivariate
interpolator from Geostatistics, such as Cokriging.

e To address the boarding and alighting data from multiple time bands in a dis-
aggregated way, using geographically weighted models for panel data and spa-
tio-temporal Geostatistics. In this case, the temporal autocorrelation of travel
demand could be accounted for by the modeling, together with the already
addressed factors: asymmetry and spatial autocorrelation.
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