
Vol.:(0123456789)

Applied Spatial Analysis and Policy
https://doi.org/10.1007/s12061-022-09482-y

1 3

Transit Ridership Modeling at the Bus Stop Level: 
Comparison of Approaches Focusing on Count 
and Spatially Dependent Data

Samuel de França Marques1   · Cira Souza Pitombo1 

Received: 23 July 2021 / Accepted: 22 August 2022 
© The Author(s) 2022

Abstract
Boarding and alighting modeling at the bus stop level is an important tool for operational 
planning of public transport systems, in addition to contributing to transit-oriented develop-
ment. The interest variables, in this case, present two particularities that strongly influence 
the performance of proposed estimates: they demonstrate spatial dependence and are count 
data. Moreover, in most cases, these data are not easy to collect. Thus, the present study 
proposes a comparison of approaches for transit ridership modeling at the bus stop level, 
applying linear, Poisson, Geographically Weighted and Geographically Weighted Poisson 
(GWPR) regressions, as well as Universal Kriging (UK), to the boarding and alighting data 
along a bus line in the city of São Paulo, Brazil. The results from goodness-of-fit measures 
confirmed the assumption that adding asymmetry and spatial autocorrelation, isolated and 
together, to the transportation demand modeling, contributes to a gradual improvement in 
the estimates, highlighting the GWPR and UK spatial estimation techniques. Moreover, the 
spatially varying relationships between the variables of interest (boardings and alightings) 
and their predictors (land use and transport system features around the bus stops), shown 
in the present study, may support land use policies toward transit-oriented development. In 
addition, by using an approach with little information, the good results achieved proved that 
satisfactory boarding and alighting modeling can be done in regions where there is a lack of 
travel demand data, as in the case of emerging countries.
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Introduction and Background

Alignment between urban planning and transport is one of the pillars of sustain-
able city development. Associations between land use and urban mobility support 
the development of sustainable public policies, which are essential for encouraging 
Transit Ridership (TR), an important instrument for social inclusion and accessibil-
ity. In this context, transport modeling is one of the tools that by quantifying and 
explaining the effects of urban practices concerning the displacement of people and 
goods, provide support to urban policies at the most diverse geographic scales.

Generally conditioned by data availability, urban travel modeling encompasses 
different approaches, which can be differentiated by the spatial unit of analysis used. 
Regarding Public Transport, studies can be found at the system level (Cervero & 
Dai, 2014; Hensher & Golob, 2008; Hensher et al., 2014; Joonho et al., 2019; Taylor 
et al., 2009), on Traffic Analysis Zones (TAZs), neighborhoods or districts (Chiou 
et al., 2015; Kalaanidhi & Gunasekaran, 2013; Ma et al., 2018; Siddiqui et al., 2015; 
Tu et al., 2018), bus lines (Kyte et al., 1985; Peng et al., 1997), train stations, metro 
stations and bus stops (Gan et  al., 2019; Pulugurtha & Agurla, 2012; Sun et  al., 
2016; Zhu et al., 2019), and individual or household (Ewing et al., 2014; Siddiqui 
et al., 2015) ranging from the most aggregated to the most disaggregated level. In a 
simplified way, the adopted spatial unit of analysis strongly influences the interven-
ing factors, or explanatory variables, which can be considered in the study.

The urbanized area or system approach allows, for example, the inclusion of 
covariates such as population, jobs, age and color distribution, regional, meteoro-
logical and topographic characteristics, Gross Domestic Product (GDP), income, 
fleet, fare, capacity, number of Public Transport (PT) stations, modal split, PT net-
work mileage, frequency, characteristics of the road system, etc. Models that analyze 
only an urbanized area, segmented into Traffic Analysis Zones, neighborhoods or 
districts, are able to refine the socioeconomic, land use and transportation system 
covariates, compared to previous approaches. In this case, however, fare variations 
cannot be analyzed, for situations where it is unique in the city, as well as fleet, cli-
mate and other factors.

Research carried out on bus lines, in turn, maintains the aggregated characteris-
tics of the Traffic Analysis Zones, however, considering that they are usually based 
on time series, the effect of the variation in the fare can be analyzed once more. 
In addition, covariates related to the type of line are also liable to be included in 
the models. The more disaggregated approaches (individual and household), on the 
other hand, in addition to further refining the socioeconomic characteristics of previ-
ous treatments, add to the set of factors assessed in the Traffic Analysis Zones, trip 
characteristics, such as time, distance and cost, and user perception.

Finally, between the most disaggregated level and bus lines, some studies 
address train, metro stations and bus stops as spatial aggregation units. These 
models, which consist of one of the most recent approaches of Transit Rider-
ship, can efficiently quantify the benefits of transit-oriented development, that is, 
from urban policies applied in neighborhoods, which converge with urban plan-
ners´ needs. Traditional Traffic Analysis Zones modeling, in contrast, assumes 
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an average value of the explanatory variables in each spatial unit, which prevents 
capturing variations at the local level and can lead to ecological fallacy. On the 
other hand, considering the bus stop as a unit of analysis, boarding and alighting 
volume estimates can be obtained using models, quickly and economically, sup-
porting the planning of the PT network (Cervero, 2006). This modeling is carried 
out based on socioeconomic variables, land use and the transport system around 
the stops.

The travel data, however, which consist of the variable of interest in these mod-
els, show two characteristics of fundamental importance for the performance of the 
estimates, which are: they refer to counts, that is, they can assume only non-nega-
tive integer values ​​and have asymmetry (they are heteroscedastic); and present spa-
tial autocorrelation, which means that travel demand values ​​close to each other in 
space tend to demonstrate similar behavior. Thus, travel demand models have been 
improved over the years so as to account for these unique characteristics in the mod-
eling process. Concerning the spatial units of interest for sustainable urban plan-
ning (bus stops and stations), studies can be found regarding the modeling of Transit 
Ridership at the bus stop or station level based on classical linear regression (Cer-
vero, 2006; Gutiérrez et al., 2011; Ryan & Frank, 2009). This traditional model, also 
known as Ordinary Least Squares (OLS), is appropriate for continuous variables and 
its residuals cannot be dependent on each other, in which case the OLS assumptions 
are violated (Yan & Su, 2009) and the statistical inference is compromised, that is, 
the estimator is no longer the one with the least variance. Solutions such as variable 
transformations and decay functions were adopted by some authors to avoid such 
problems, although the real nature of the data has not been considered.

In the 1980s, an expansion of the linear model to other probability distributions 
introduced Poisson and Negative Binomial regressions that, unlike the normal dis-
tribution, model count data. These models, which have also been used to address 
Transit Ridership at the bus stop and station level (Choi et  al., 2012; Chu, 2004; 
Pulugurtha & Agurla, 2012), can demonstrate a better performance than the tradi-
tional OLS. Despite this, these approaches still overlook the spatial autocorrelation 
found in the response variable.

Attempts to solve this limitation culminated in the emergence of spatial regres-
sions, which can consider autocorrelation based on inclusion, as a covariate, of the 
spatially lagged dependent variable (Spatial Lags Model - SLM), or through model 
residuals (Spatial Error Model - SEM), and in both cases, the spatial interaction is 
captured through a spatial weight matrix, usually based on the distance between the 
points of the database (Fotheringham et al., 2003). These techniques have also been 
used in ridership models at the station level (Gan et  al., 2019), although, accord-
ing to Fotheringham et  al. (2003), these models do not reflect the spatial hetero-
geneity of the database on a local level because the autocorrelation is expressed in 
terms of only one parameter. Geographically Weighted Regression (GWR), which 
generates a different model for each geographic coordinate, would be more appro-
priate, in this case, to address the autocorrelation and spatial heterogeneity of the 
estimated parameters (Brunsdon et al., 1996). In GWR applications to Transit Rider-
ship (Blainey & Mulley, 2013; Blainey & Preston, 2010; Cardozo et al., 2012), the 
results always demonstrate a better performance than the global models.
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Despite being able to deal satisfactorily with the database’s spatial dependence, 
GWR has limitations that, similar to the OLS model, also assumes normality of 
the variable of interest, which, in the case of Transit Ridership, is not observed. 
Thus, geographically weighted models for count data have recently been developed, 
called Geographically Weighted Poisson Regression (GWPR) and Geographically 
Weighted Negative Binomial Regression (GWNBR). Although these models can be 
easily found in traffic accident modeling (Bao et al., 2018; Gomes et al., 2017, 2019; 
Liu et al., 2017; Obelheiro et al., 2020; Xu et al., 2017; Xu & Huang, 2015), using it 
for ridership forecasting is still rare, and it is restricted to the application of GWPR 
in the scope of metro stations (Liu et  al., 2018) and GWNBR for train ridership 
(Zhu et al., 2019), which again points to a better performance of local models com-
pared to their global version, Poisson regression and Negative Binomial regression, 
respectively.

Another multivariate spatial model that, similar to GWR, also addresses spatial 
dependence and is capable of generating a continuous surface of estimated values, 
refers to the Geostatistics interpolator known as Universal Kriging (UK). The great-
est benefit of this technique is to be able to use the maximum available informa-
tion on the response and explanatory variables when forecasting the values of inter-
est in non-sampled sites, which makes it highly recommended for dealing with the 
lack of data, a situation often found in travel demand variables along bus lines. In 
the context of Transit Ridership, few studies have been found to date: Zhang and 
Wang (2014) applied UK to estimate the number of Boardings in metro stations. On 
the other hand, Marques and Pitombo (2021a) tested the suitability of UK to model 
Boardings at the bus stop level, using different groups of predictors. Although the 
results were satisfactory, the authors compared UK results only with Linear Regres-
sion, and did not account for the potential spatial heterogeneity of the predictors. 
Models for count data were overlooked as well. The main differences between previ-
ous transit ridership studies and the present article are outlined in Table 1.

Based on the studies cited above, the following research gaps can be highlighted: 
(1) Application of spatial models in the context of bus stops: the approaches found 
so far are restricted to addressing the asymmetry shown by bus stop travel data, 
overlooking the spatial autocorrelation potentially found in the models, as well as 
both characteristics simultaneously. (2) Ridership modeling at the bus stop level: 
although the approaches by train and metro stations also represent a contribution 
to sustainable urban planning, bus stops are densely distributed within cities (as 
opposed to rail stations), allowing the incorporation of characteristics from a higher 
number of  neighborhoods into the modeling. Furthermore, it cannot be said that 
such data fall into the group of scarce variables, since the information on station 
boarding and alighting is obtained relatively easily. Bus transit, on the other hand, is 
a much more popular system than rail transit, which is found only in large cities. (3) 
In most of the studies whose spatial unit of analysis is bus stops (Dill et al., 2013; 
Kerkman et al., 2015; Ryan & Frank, 2009), the authors apply only the traditional 
linear model. Although Chu (2004) applied both the OLS and Poisson regressions, 
only the results of the count data model are shown. Thus, no comparison is made 
between the two types of models, which prevents the visualization of the gains pro-
vided by using the most appropriate regression. Even in other studies, which address 
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the transit demand at the station level and in which more than one type of model is 
applied (Blainey & Mulley, 2013; Blainey & Preston, 2010; Cardozo et al., 2012; 
Choi et al., 2012; Gan et al., 2019; Liu et al., 2018; Zhu et al., 2019), the regressions 
address only one of the characteristics previously mentioned, sometimes asymmetry, 
sometimes spatial autocorrelation, or the authors do not compare it with the tradi-
tional linear model. Thus, improvements can be observed provided by including one 
or the other particularity in ridership modeling, but never both.

Therefore, the present article aims to model the bus stop boarding and alighting 
volume from GWR for count data and multivariate spatial interpolators. In addition, 
we aimed to compare different models from classical linear regression to GWPR 
and UK, using Poisson global regressions, and traditional GWR as well. This pro-
posal intends to allow the visualization of the gradual gains achieved by addressing 
asymmetry and spatial autocorrelation separated and, later, together. This analysis 
will be carried out based on a real case study, based on line 6045-10 in the city of 
São Paulo, Brazil.

This paper has four sections. “Materials and Method” section describes the 
proposed method and the database used, dividing it into the description of the 
dependent variables, independent variables and modeling procedure. The results 
and discussions are detailed in “Results and Discussion” section, which is organ-
ized as follows: first, the results referring to Boarding are presented and then those 
of Alighting. Afterward, goodness-of-fit results from all models of Boardings and 
Alightings are compared. Still in “Results and Discussion” section, a subsection 
is presented to compare the results and characteristics of the present study with 
previous ones. Finally, “Conclusions, Main Constraints and Final Recommenda-
tions” section outlines the main conclusions reached and suggests themes for future 
research.

Materials and Method

The database to be used in the present study is based on the results of a boarding and 
alighting survey carried out on 8 bus lines in the city of São Paulo, São Paulo State, 
Brazil. For each direction of the lines (inbound and outbound, resulting in 16 cases), 
a spreadsheet was made available by São Paulo Transporte SA (SPTrans), containing 
the number of boardings and alightings per bus stop, encoded by an identifier, in 6 
different time bands, covering 24 h of a Tuesday in 2017. Having identified the bus 
stops and their respective geographic coordinates, also provided by SPTrans, it was 
possible to proceed with the spatialization of this database.

Dependent Variables

The 16 unidirectional lines underwent an exploratory spatial dependence analysis 
by calculating the Moran index (Moran, 1948) for the number of boardings and 
alightings per bus stop in the Morning Peak Hours (MPH, from 5 a.m. to 8.59 am), 
Between Peak Hours (BPH, from 9 a.m. to 3.59 p.m.), Afternoon Peak Hours (APH, 
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from 4 p.m. to 7.59 p.m.), Evening Peak Hours (EPH, from 8 pm to 11.59 p.m.) and 
the total number of Boarding and Alighting passengers from 5 a.m. to 11.59 p.m. 
The Moran index was calculated in the R environment (Paradis et al., 2004; R Core 
Team, 2020), using weight matrices based on the inverse of the Euclidean distance 
between the bus stops of the database.

As we are focusing on spatially dependent data, the line to be chosen should be 
the one whose boarding and alighting volume demonstrates a strong and significant 
spatial dependence, that is, higher numbers of the Moran index, (when compared to 
the other lines and time bands) associated with pseudo p-values smaller than 0.05. 
In this context, within the 8 lines considered by the Boarding and Alighting counts 
survey, the 6045-10-1 line (inbound trip of the 6045-10 line) with 47 bus stops stood 
out in relation to Boardings in the total number of trips from 5 a.m. to 11.59 p.m. 
The Alighting volume in that same period showed high and significant spatial auto-
correlation in the outbound trip, line 6045-10-2 with 49 bus stops. Thus, the number 
of Boardings on line 6045-10-1 and Alightings on line 6045-10-2 were established 
as dependent variables, both referring to the set of trips made from 5 a.m. to 11.59 
p.m. Figure 1 shows both directions of line 6045-10 and respective bus stops in the 
city of São Paulo.

From the bus stop numbering, it can be seen that the inbound trip, line 6045-10-
1, starts in the southwest region of the map and ends in the northeast portion. The 
outbound trip, in turn, line 6045-10-2, originates in the northeast and ends its itiner-
ary in the southwest corner.

Independent Variables

As mentioned in “Introduction and Background” section, transit ridership modeling 
at the bus stop level basically covers three groups of explanatory variables: socioec-
onomic, land use and the transport system variables. Table 2 summarizes the board-
ing and alighting models at the bus stop level found in the literature.

As can be observed, the independent variables that model the boarding and 
alighting volume can also be classified as variables related to Transit Ridership 
supply or demand. Supply variables include those related to the transport system, 
while socioeconomic and land use predictors fall into the category of independ-
ent variables related to potential demand. Based on this, in the case of the present 
study, potential predictors were collected both related to bus stops and referring to 
their area of influence, comprising a 400 m radius buffer centered on the bus stops 
(Zhao et al., 2003). Overlapping catchment areas were prevented by using Thiessen 
polygons, similar to the method adopted by Zhang and Wang (2014) and Sun et al. 
(2016), in a Geographic Information System (GIS) environment. Table 3 consoli-
dates the potential predictors raised, as well as the database on the basis of which 
they were calculated.

The potential predictor collection was carried out in a GIS environment. The 
population variable was calculated based on the areal interpolation of the shapefile 
of the 2017 Origin/Destination (O/D) Survey (Metrô, 2019), given in Traffic Anal-
ysis Zones. The area, in hectares, of the 16 predominant land use categories was 
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obtained through the shapefile available on the GeoSampa website, which details the 
land use in São Paulo, in blocks, in 2016. Among the land use categories available, 
the following can be found: horizontal and vertical residential, commerce and ser-
vices, industry and warehouses, public facilities, schools etc. All 16 land use types 
are cited in Table  3. These data were also used together to calculate the entropy 
index (Song et al., 2013) around the bus stops, which reflects the mix of land uses 
found in the region. The other independent variables of potential demand, which 
include socioeconomic information surrounding the bus stops, were collected from 
the average of the households sampled by the O/D survey that were covered by the 
buffer, and, in areas that did not contain any households, the results of the areal 
interpolation of the aggregated data by Traffic Analysis Zone were used.

To avoid multicollinearity and parameter redundancy, as well as to identify the 
variables with the greatest potential to explain Boardings and Alightings, Pearson’s 
linear correlation coefficient (R) among all the variables in the database was calcu-
lated. When a pair of potential predictors had a value of R equal to or greater than 

Fig. 1   Map showing lines 6045-10-1 and 6045-10-2 with their 47 and 49 bus stops, respectively
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0.60, the variable with the lowest correlation with Boardings and Alightings was 

Table 3   Potential predictors for Boarding and Alighting modeling

* BRL 1.00 is equivalent to USD 0.18 (Feb. 2021)

Predictor(s) Originated from Variable type Source

Distance, in meters, to the nearest bus 
terminal

Bus stop Supply GeoSampa shapefile

Distance, in meters, to the nearest train or 
metro station (station distance)

Distance, in meters, to the nearest bus 
terminal, train or metro station (intra/
intermodal dist)

Number of bus lines passing by the bus 
stop, except the 6045-10 line

2017 GTFS data provided by 
SPTrans

Average frequency, in trips per hour, of 
the bus lines, except the 6045-10 line 
(frequency)

Population, in inhabitants (population) Catchment area Demand 2017 Origin and Destination 
survey shapefile, given 
in Traffic Analysis Zones 
(Metrô, 2019)

Area, in hectares, of the following land 
uses: no information; low standard 
horizontal residential; medium/high 
standard horizontal residential; low 
standard vertical residential; medium/
high standard vertical residential; com-
merce and services (com serv area); 
industry and warehouses; residential, 
commerce and services; residential, 
industry and warehouses; commerce, 
services, industry and warehouses; 
public facilities; schools; empty land; 
and without predominance

GeoSampa shapefile, given 
in blocks

Entropy Index -
Average household income, in BRL 

(income)*
Household data from the 

2017 Origin and Destina-
tion survey (Metrô, 2019)Average car ownership

Female (%)
Population with no complete higher 

education (%)
Workers and students (%)
Households with no private vehicles (%)
Percent of people aged up to 14, up to 17, 

aged between 18 and 22, 18 and 29, 18 
and 39 and above 60 years old

Number of roads Supply Open Street Map
Road length, in meters
Number of intersections
Number of intersections per meter of road
Number of Points of Interest
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discarded. As R values up to 0.60 indicate only a moderate correlation (Profillidis & 
Botzoris, 2019), this threshold was deemed acceptable in order to combat the omit-
ted variable bias. It is worth mentioning that the variables listed in Table 3 were col-
lected for the bus stops and areas of influence of both lines separately as the inbound 
and outbound trips are not exactly coincident.

Modeling

After completing the Boarding and Alighting database with its predictors, we pro-
ceeded to the modeling stage. At this stage, for each type of model, we sought to 
find the combination of explanatory variables that optimized the estimates by mini-
mizing the sum of squares of the differences between the real and estimated values, 
known as Squared Error (SE, Eq. 1) (Hollander & Liu, 2008). Thus, for each type of 
regression, all the possibilities resulting from the combinations between the covari-
ates selected in “Independent Variables” subsection were considered. The modeling 
step was performed in the R environment (R Core Team, 2020), an open and free 
programming interface, and in the GWR4.09 free software.

Where yi and y*i are the real and estimated values of the dependent variable in 
geographical position i; and n is the number of bus stops. Initially, the traditional 
linear model was calibrated, whose structure is shown in Eq. 2 (Yan & Su, 2009).

Where the response variable y comprises the linear combination of explana-
tory variables xk added to a random error ε. The β parameters to be estimated are 
numbers that reflect the contribution of each covariate to explaining the variance of 
y. From the Ordinary Least Squares estimator, which, in the case of linear regres-
sion, coincides with the Maximum Likelihood estimator, the β coefficients can be 
obtained according to Eq. 3 (Yan & Su, 2009).

Where X and Y are, respectively, the explanatory variable matrix and the vector 
of observations of the dependent variable. In R, the traditional linear regression was 
generated and optimized using the “olsrr” package (Hebbali, 2020). Then, the non-
normal count data were analyzed using the Poisson regression, represented by Eq. 4 
(Myers et al., 2010).

Where µ is the expected value of the response variable. The Poisson regres-
sion, unlike the linear one, admits that the variance of the information to be mod-
eled is not constant, but that this variance varies as a function of µ (Hilbe, 2014), 

(1)SE =

n∑
i=1

[
yi − y∗

i

]2

(2)y = �0 + �1x1 + �2x2 +…+ �kxk + �

(3)� =
(
XtX

)−1
XtY

(4)ln (�) = �0 + �1x1 + �2x2 +⋯ + �kxk
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converging with the nature of the count data. Afterward, the isolated treatment of 
autocorrelation and spatial heterogeneity was addressed by the traditional GWR 
model (Eq. 5) (Brunsdon et al., 1996; Fotheringham et al., 2003).

Where (ui,vi) represent the coordinates of the i-th point in space and βk(ui,vi) 
refers to the realization of the continuous function βk(u,v) at point i (Fothering-
ham et al., 2003). In the case of GWR, the spatial interaction between the point 
at which the model will be estimated and other points in the database is given by 
a weight that varies depending on the distance between these points and a maxi-
mum radius (bandwidth - b) outside of which it is assumed zero spatial depend-
ence. Equation 6 (Brunsdon et al., 1996) shows how β parameters are calculated 
in traditional GWR.

Where Wi refers to the weight assigned to the remaining points in the database 
at the time of the calibration of the geographically weighted model in point i. 
Finally, the local spatial model that also considers the non-normal count data is 
structured in Eq. 7 (da Silva & Rodrigues, 2014; Nakaya et al., 2005).

As in the global model, two probability distributions for the response variable 
are allowed: Poisson and Negative Binomial. Within the scope of GWR, GWPR 
and GWNBR, the model can be optimized by selecting the weighting function 
(kernel) and respective bandwidth that minimize the Akaike Information Crite-
rion (AIC) (Sakamoto et al., 1986) of the regression or a Cross-Validation (CV) 
metric. Based on this, in a simplified preliminary analysis, the Gaussian and bi-
square kernels were analyzed, both with adaptive distance. The second was the 
one that showed the lowest AIC values ​​and, consequently, comprised all the geo-
graphically weighted models. In turn, the adaptive bandwidth was chosen over the 
fixed one because it allows both points located in a region with a high density of 
bus stops and those located in areas with a lack of bus stops to receive the same 
amount of data when the model is calibrated. In this case, b corresponds to the 
distance between each bus stop where the model will be estimated and the most 
distant neighbor to be considered in the calibration, that is, in areas with a high 
density of points, b will be small, whereas regions with a lack of bus stops will 
receive a greater bandwidth. Thus, for each of the possible Boarding and Alight-
ing models, two different bandwidths were obtained: the first minimizing the CV 
criterion, which is based on the Squared Error; and the second, minimizing the 
AIC. Afterward, the model was generated from these two optimal bandwidths and 
the bi-square kernel, structured in Eq. 8 (Fotheringham et al., 2003).

(5)yi = �0(ui, vi) +
∑
k

�k(ui, vi)xik + �i

(6)�i =
(
XtWiX

)−1
XtWiY

(7)ln
(
�i

)
= �0(ui, vi) +

∑
k

�k(ui, vi)xik
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Where Wij refers to the weight assigned to point j at the time of calibration of 
the model in i; dij is the distance between points i and j; and b is the optimal band-
width. Finally, we selected the model whose combination of covariates and band-
width resulted in the smallest SE. This procedure was carried out according to codes 
available in the “sp” packages (Bivand et al., 2013; Pebesma & Bivand, 2005) and 
“GWModel” (Gollini et al., 2015; Lu et al., 2014) of R.

The last model to be applied to the database refers to Universal Kriging (UK). As 
this technique is not commonly used to address spatially discrete variables, the fol-
lowing subsection brings a more detailed discussion about it.

Universal Kriging

Universal Kriging is one of the spatial interpolators from Geostatistics, a tool that 
deals with spatial autocorrelation using a probabilistic approach of regionalized var-
iables (Matheron, 1971). Inspired by the work of Krige (1951) Geostatistics was first 
created to model spatially continuous variables, that is, variables that can assume 
a value at each geographic coordinate within the field in which they occur. As it is 
impossible to collect the real value of these variables throughout the whole spatial 
field, geostatistical interpolators seek to use the maximum information from col-
lected samples to generate a continuous surface of estimated values covering both 
sampled and non-sampled points. Based on a probabilistic approach, geostatistical 
interpolators are unbiased and with minimum variance, providing uncertainty meas-
ures as well (variance of estimate), features not present in deterministic interpola-
tors. Because of the convenience of Geostatistics to estimate in non-sampled loca-
tions, studies addressing spatially discrete variables started to apply geostatistical 
interpolators to overcome the lack of data caused by obstacles in the field collection 
(cost, access, topography). In this context, applications can be found in epidemi-
ology, aquiculture, agriculture, forest sciences (Carvalho et  al., 2015; Goovaerts, 
2009; Kerry et al., 2016; Stelzenmüller et al., 2005), and, more recently, in the trans-
portation engineering area, including accidents/road safety and travel demand mod-
eling (Gomes et al., 2018; Klatko et al., 2017; Majumdar et al., 2004; Marques & 
Pitombo, 2021a, b; Pinto et al., 2020; Selby & Kockelman, 2013; Wang & Kockel-
man, 2009; Yang et al., 2018).

The bibliographic review by Marques and Pitombo (2020) highlighted the sig-
nificant contributions from Geostatistics to various studies involving travel demand 
variables, which are usually spatially discrete. Research addressing the modal choice 
in the context of households/individuals (Chica-Olmo et al., 2018; Pitombo et al., 
2015), trip generation in Traffic Analysis Zones (Lindner et al., 2016), traffic volume 
in road segments (Selby & Kockelman, 2013; Yang et al., 2018) and boardings and 
alightings at stations or bus stops (Marques & Pitombo, 2021a, b; Zhang & Wang, 
2014) can be found. Most methods (field surveys, automatic counters, sensors etc.) 

(8)Wij =

⎧
⎪⎨⎪⎩

�
1 −

�
dij

b

�2
�2

if dij < b

0 otherwise
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that support the exhaustive collection of this information require high financial 
resources, which may not be available for emerging countries like Brazil.

Unlike some geostatistical models that depend only on the variable of interest, 
Universal Kriging allows the inclusion of external explanatory variables. Accord-
ing to Fotheringham et al. (2003), it fits into the group of spatial regressions, how-
ever, unlike the SLM and SEM models, the spatial interaction between bus stops in 
the database, in the case of kriging, occurs in terms of the semivariogram function 
(Eq. 9) (Matheron, 1971; Cressie, 1993; Goovaerts, 1997).

In this case, Z(xi) expresses the residual between the real and predicted values at 
point i; and N is equivalent to the number of pairs located at a distance h. If the resid-
uals show spatial autocorrelation, their values will be similar to each other at close 
bus stops in space and less similar as the distance between the bus stops increases. 
Thus, the semivariogram function graph presents an increasing form, from the ori-
gin or in its neighborhood, until reaching a sill, which refers to the maximum pos-
sible difference between the residuals and occurs at a distance beyond which there is 
no more spatial dependence between the database points.

The UK structure is similar to that of linear regression (Eq. 2), that is, the esti-
mates are calculated both through the linear combination parameters of explanatory 
variables, known as large-scale variation, and the theoretical semivariogam model, 
which reflects the short-range variation (spatial dependence) and is part of the krig-
ing error term (Cressie, 1993). Regarding the theoretical semivariogram, the adjust-
ment of three models typically used was tested: exponential (exp), Gaussian (gau) 
and spherical (sph) (Olea, 2006). Using the restricted maximum likelihood estima-
tor, Universal Kriging estimates are given by Eq. 10 (Cressie, 1993; Selby & Kock-
elman, 2013; Zhang & Wang, 2014).

Where X0 is the matrix of explanatory variable observations of point x0; β is the 
vector of linear parameter estimates; Vso represents the vector of estimated covari-
ances between sample points and point x0, while Vs expresses the matrix of esti-
mated covariances between sample points. It is worth remembering that covariance 
(V) and semivariogram (γ) functions are related according to Eq. 11, where co and 
c1 stand out, respectively, for the nugget effect and partial sill parameters from the 
theoretical semivariogram.

UK estimates were calculated in R using the “georob” package (Papritz, 2020a, 
b).

Although the explanatory variables used in the modeling stage showed a 
good correlation with Boardings and Alightings, not all of them had statistically 

(9)�(h) =
1

2N

N∑
i=1

[
Z(xi + h) − Z

(
xi
)]2

(10)y∗
(
x0
)
=
[
Xo

]
[�] +

[
VT
s0

][
V−1
s

]
[�]

(11)V(h) = c0 + c1 − �(h)
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significant parameters in all the models in which they participated. Thus, in the 
case of global models (linear and Poisson regressions), it was established that, in 
addition to presenting the lowest Squared Error among the models analyzed in 
each category, the model with the best performance should also contain only vari-
ables whose parameters were statistically significant for a level of at least 90% 
confidence interval (p < 0.10).

Figure 2 illustrates the modeling structure adopted in this article, from a sim-
pler to a more complex approach. The figure summarizes the formulations previ-
ously described, illustrating the disadvantages and advantages in each stage of the 
sequence of models tested here.

The comparison between the best models in each category was performed 
using various goodness-of-fit measures, namely: Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE) (Hollander & Liu, 2008) and percentage of 
error, which must be close to 0 to reflect a good performance of the technique. 
To verify the best fit of local models over the global ones, the Akaike weight 
(Fotheringham et al., 2003) was calculated for the following pairs of models: (1) 
GWR and Linear Regression; and (2) GWPR and Poisson regression. Based on 
the AIC, which helps to choose the most parsimonious model from a set of com-
peting models, the Akaike weight (w) for model i is given by Eq. 12.

As the Akaike weights of models being compared sum to 1, this measure rep-
resents the likelihood that each model is the best. So, the greater the weight, 
the greater the probability of the respective model being the best (Fothering-
ham et  al., 2003). The results and discussion about these points are described 
in “Results and Discussion” section.

(12)wi =
exp

�
−AICi∕2

�
∑

j exp
�
−AICj∕2

�

Advantages:

• Simple structure

• Easy 

interpretation

• Easy calibration

Linear 
Regression

Geographically
Weighted Poisson 

Regression

Limitations:

• More appropriate 

for continuous 

variables

• Independence of 

errors

• Constant 

variance

Advantages:

• Count data 

model

• Variance varies 

as a function of 

the mean

• Predicts only non-

negative values

Poisson 
Regression

Limitations:

• Do not account 

for spatial 

dependence of 

data

Advantages:

• Accounts for spatial 

autocorrelation

• Accounts for spatial 

heterogeneity of 

parameters 

Limitations:

• Assumes data 

normality

• Constant variance

Advantages:

• Count data model

• Accounts for spatial 

autocorrelation

• Accounts for spatial 

heterogeneity of 

parameters 

Limitations:

• May require an

expressive amount of

data

Geographically
Weighted

Regression
Advantages:

• Appropriate for 

cases when little 

information is 

available

• Accounts for spatial 

autocorrelation

• Robust estimators 

of the variogram 

reduce the effect of 

outliers from non-

normal data

Universal 
Kriging

Limitations:

• Assumes data 

normality

• Do not account for

spatial 

heterogeneity of 

parametersGradual improvements

Fig. 2   Comparison of models focusing on count and spatially dependent data
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Results and Discussion

Table  4 consolidates the descriptive measures of the data used in the present 
study. Figure  3, in turn, shows the spatial variation of the variables of interest, 
and of population, income, land use and stations around the 6045-10 bus line. 
From the linear correlation analysis, five predictors went to the Boarding mod-
eling stage: population; commerce and service area (com serv area); distance 
to the nearest train or metro station (station distance); distance to the nearest 
bus terminal, train or metro station (intra/intermodal dist), replacing the previ-
ous variable; and average family income (income). For Alightings, the following 
predictors were selected: population; average frequency (frequency); distance to 
the nearest train or metro station (station distance); and average family income 
(income). For the sake of brevity, only the explanatory variables that were main-
tained in the final models of each of the categories described in the previous sec-
tion are shown, as well as the dependent variables.

Despite the effort to collect the other variables, many pairs of potential predictors 
showed a statistically significant (p < 0.10) Pearson coefficient correlation greater 
than 0.60. Bearing in mind that, in the presence of multicollinearity, the addition 
of more covariates does not significantly improve the performance of the model but 
can lead to misunderstandings in the value of the parameters, several covariates of 
Table 3 were discarded. In addition, adding more information to the modeling can 
lead to high costs due to data collection, making it difficult to apply the equations. 
However, even though several predictors were discarded, the set of variables chosen 
has both data related to potential demand and supply, that is, information regarding 
land use, socioeconomic features and the transport system around bus stops.

It is observed that both dependent variables demonstrate the positive asymme-
try commented in “Materials and Method” section: their median is less than the 
mean and, in the case of Alightings, this difference is even more substantial. The 
null number of users boarding and alighting occurs only once in the set of trips 
made from 5 a.m. to 11.59 p.m.; at the last bus stop for Boardings, and at the first 
one, for Alightings, as expected.

Moran’s I results for Boardings and Alightings were 0.34 and 0.26, respec-
tively. Both of them had associated p-value equal to 0. The spatial autocorrela-
tion of Boardings and Alightings is illustrated by Fig. 3, which reveals that most 
passengers enter the 6045-10-1 line at its first bus stops, in the southwest region 
of the map. However, there are other peaks along the route until it reaches its last 
bus stops, in the northeast portion of the map. The inverse direction (6045-10-2 
line) shows the opposite, as the number of passengers alighting is low in its first 
stops and starts to increase as the line runs along its route.

Despite there being some spatial correlation between the two variables of 
interest, the authors decided to perform the modeling separately as a way to 
compensate for the small number of bus stops with Boarding and Alighting data 
available. Therefore, it would be possible to verify the consistence of the mod-
els’ results. In addition, as the 6045-10-1 and 6045-10-2 lines share only one bus 
stop, adding Boardings and Alightings was not an option.
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Figure  3c  shows that the case study lines are situated in a densely populated 
area in the southwest region of São Paulo, whose main center also corresponds to 
the city´s geographic center. This area is characterized by households with low-to-
medium income (Fig. 3d), however high-income households are present at the end 
of the inbound trip (Boardings) and the beginning of the outbound trip (Alightings). 
In the case of the commerce and service area variable, which explained Boardings 
only, there is a preponderance of null values ​​in its distribution of approximately 
60%. In fact, as shown in Fig. 3e, the 6045-10 line runs through a predominantly 
residential area, with a few blocks of commercial or residential and commercial 
related use.

The following subtopics detail the results of Boarding and Alighting modeling. 
As defined in “Materials and Method” section, for each type of model, all possible 
combinations of covariates were considered, in order to find the set of predictors that 
generated the smallest Squared Error. Thus, for Boardings, there were 23 possible 
models in each category; and for Alightings, there were 15. The 8 surplus Board-
ing models refer to cases in which the station distance variable was replaced by the 
intra/intermodal dist variable, which showed a better performance in some situa-
tions. Since, in the case of geographically weighted models, the bandwidth can be 
optimized in two different ways, within the scope of GWR and GWPR, the number 
of possible models was twice that of the other categories.

 Trip direction  Trip direction 

a) 

d) 

c)b)

e) f) 

Fig. 3   Maps of a Boardings along 6045-10-1 line; b Alightings along 6045-10-2 line; c Population den-
sity at the TAZ level; d Average household income at the TAZ level; e Predominant land use at the block 
level; and f Bus, train and metro stations in the vicinity of the lines of interest
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Boardings

Table  5 shows the results of the sequence of calibrated models for the Boarding 
dependent variable. In a preliminary analysis, the Negative Binomial regression, 
which can model the overdispersion phenomenon, that is, when the variance of 
the data exceeds its mean, was also considered. However, their results were worse 
than those of the Poisson regression, both in the case of Boarding and Alighting. 
Thus, only the Poisson model, among the models for count data, will be shown in 
the present study. Bearing in mind that, in the generalized global model analysis, 
the Poisson regression performed better than the Negative Binomial, we did not use 
GWNBR in the modeling stage, which is why this model does not appear in the 
results.

The linear regression model for Boardings is 
Boardings = −47.43 + 0.02 ∗ Population + 34.17 ∗ Comservarea + 0.04 ∗ Stationdistance . The sign obtained for 
the predictors’ coefficients, positive in the three cases, reveals that the greater the 
number of inhabitants and the provision of commerce and services around the bus 
stops, the greater the number of Boardings at them. For example, for each 1 new 
hectare of commerce and services area, the Boardings volume is likely to increase 
by 34 passengers, if the other attributes are held constant. In the case of popula-
tion, an increase of one passenger boarding is expected to occur only if the number 
of inhabitants increases by 1∕0.02 = 50 , ceteris paribus. Recall that the set of trips 
embedded in the dependent variable covers a typical full day (from 5 a.m. to 11.59 
p.m.), therefore users who may have jobs along the 6045-10-1 line may have used 
any of its 47 bus stops to return home at the end of the day. In addition, consider-
ing that this line departs from a distant region of train and metro stations, slowly 

Table 5   Global and local models for Boardings along the 6045-10-1 line (N = 47)

* Number of neighbors corresponding to the optimal bandwidth. In local models GWR and GWPR, the 
bus stop where the model is calibrated does not participate in the calibration. GWR: Geographically 
Weighted Regression; GWPR: Geographically Weighted Poisson Regression; UK: Universal Kriging

Model/Predictor Intercept Population Com serv 
area

Station 
distance

Intra/inter-
modal dist

Income

Linear regression -47.43522 0.02357 34.17471 0.03721
Poisson regression 3.55100 0.00021 0.07332 0.00058 -0.00010
GWR​
(N* = 19)

Min -5.95226 -0.02893 -33.92728
25% -2.46590 0.01392 -31.05199
50% 68.28957 0.02083 7.94510
75% 105.03428 0.04605 46.72116
Max 278.22104 0.05380 89.67780

GWPR
(N* = 19)

Min 1.93027 -0.00013 -0.72354 -0.00236 -0.00018
25% 2.51549 0.00012 -0.56295 -0.00027 -0.00016
50% 3.22689 0.00029 0.01206 0.00011 -0.00003
75% 4.15367 0.00034 0.14317 0.00103 0.00001
Max 5.61469 0.00036 0.56053 0.00120 0.00016

UK -112.90000 0.03755 0.05203



	 S. d. F. Marques, C. S. Pitombo 

1 3

approaching some of them as it travels the route, the sign of the third explanatory 
variable is also plausible, that is, the largest volumes of Boardings are observed in 
the most distant areas of the central regions, and it is in these environments where 
the train and metro stations are usually located.

The resulting model for Poisson regression is 
Boardings = exp(3.55 + 0.00021 ∗ Population + 0.07332 ∗ Comservarea + 0.00058 ∗ Intra∕interdistance − 0.00010 ∗ income) . 
Income, as expected, appears with a negative sign, that is, bus stops with areas 
of influence characterized by a population with lower income, tend to generate a 
greater number of Boardings than those located near high-income regions. There-
fore, if the household income increases by BRL 100.00 (USD 18.00 (Feb. 2021)) 
and the other attributes are held constant, the associated decrease in the number of 
Boardings is of 

[
exp(−0.00010 ∗ 100) − 1

]
= 1.00%.

The maps in Fig. 4 show the spatial variation of the estimated parameters of the 
GWR and respective p-values. It can be seen that the parameters of certain bus stops 
were negative. The resulting conclusion would be that the larger the population 
around these bus stops, the lower the number of Boardings. Probably, increasing 

Com serv area
-33.93 - -26.99
-10.09
4.72 - 26.34
38.96 - 59.97
66.41 - 89.68

Population p-value
> 0.10
< 0.10

Com serv p-value
> 0.10
< 0.10

Population
-0.029 - -0.001
0.006 - 0.009
0.013 - 0.029
0.044 - 0.046
0.049 - 0.054

0 21
Kilometers

Intercept p-value
> 0.10
< 0.10

Intercept
-5.95 - -2.44
6.68 - 25.27
49.24 - 85.50
99.14 - 170.42
208.36 - 278.22

0 21
Kilometers

0 21
Kilometers

0 21
Kilometers

0 21
Kilometers

0 21
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Fig. 4   Estimated Boarding GWR parameters and respective statistical significance
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the population in these regions would stimulate the use of other travel modes. The 
negative sign may also reflect the fact that, for these bus stops, the model lacks other 
explanatory variables. However, both in the case of population and area of com-
merce and services, all negative parameters were not statistically significant, which 
means that these variables probably do not contribute to explaining the variation of 
Boardings at these bus stops. The local R² ranged from 0.569 to 0.972, with 70% of 
the models calibrated for each bus stop showing a determination coefficient greater 
than 0.700.

The parameters estimated in the Boarding GWPR and respective p values ​​
are shown in Fig.  5. When comparing the map of population coefficients and 
Fig. 3c (population density), it can be seen that negative signs of population occur 
in densely populated regions but with a relatively small Boardings volume. On the 
other hand, the first and last bus stops of the inbound trip correspond to high and 
low density areas, respectively, showing proportionately bigger and smaller values 
of Boardings, which justifies the positive coefficient of the population for these bus 
stops. In addition, while the Poisson regression indicates an increase of only 7.61% 
in the number of Boardings if the commerce and services area increases by 1 hec-
tare, there are points with an associated increase ranging from 60 to 70% in GWPR 
(the last category in Fig. 5), if the other attributes are held constant.

In the case of the intra/intermodal distance variable, the negative coefficients can 
be explained as follows: some bus stops located very far from bus terminals, metro 
or train stations may have their Boarding volume negatively impacted as they are 
unable to serve as elements of intra and intermodal integration. Stronger positive 
impacts of the proximity to stations can be seen at bus stops situated near the end of 
the inbound trip, densely supplied by stations (Fig. 3f), and where there is a peak in 
the Boardings volume. In the case of income, positive signs indicate bus stops with 
a Boardings volume proportional to the surrounding average income, while negative 
effects can be seen in areas with high Boardings volume, but low income, and in 
areas with low Boardings volume, but high income. Statistically significant positive 
coefficients belong to bus stops surrounded by low-to-medium income areas, and 
where an intermediate Boardings volume occurs, as shown in Fig. 3.

Figure 5 shows that there is a much larger number of bus stops with statistically 
significant parameters in GWPR compared to GWR. Bearing in mind that, in the 
calibration of both models, the data used was the same, this result may suggest that 
GWPR is more suitable for Boarding modeling at the bus stop level than GWR. 
Based on the number of bus stops whose parameters were statistically significant 
(p < 0.10), the covariates can be ranked by degree of importance as follows: popula-
tion, intra/intermodal distance, area of commerce and services, and income. Another 
important observation is that all explanatory variables have bus stops with statis-
tically significant positive and negative coefficients, which corroborates the spa-
tial heterogeneity of the parameters estimated in the stop-level Transit Ridership 
modeling.

Afterward, the UK model is presented. Note that the UK with the lowest SE 
retained only two explanatory variables: population and station distance, both with 
expected signs. This result emerges from the formulation of this regression itself: 
comprising a linear combination of predictors and β coefficients to be estimated, UK 
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Fig. 5   Estimated Boarding GWPR parameters and respective statistical significance
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assumes that the spatial autocorrelation of the database is present in the residuals of 
the model. Thus, the best fit for the UK occurs in cases where the explanatory vari-
ables are able to clearly discriminate this spatial dependence on residuals, and the 
inclusion of too many predictors may compromise this function.

Alightings

Table 6 consolidates the models calibrated for Alightings.
The optimal linear regression for Alightings contained, in a similar way to that of 

Boardings, three explanatory variables, two of which exactly coincide with those of 
the previous model: population and intermodal distance. While the intensity of the 
distance effect remains similar to the case of Boardings, the impact of the population 
variable is greater regarding Alightings. If the population increases by 50 inhabit-
ants, the number of Alightings is expected to increase by 1.5, ceteris paribus.

The negative sign of the average frequency variable reveals that regions with a 
dense coverage of the PT network present a volume of passengers alighting less 
than areas less supplied by the system. This conclusion shows that most trips on 
the 6045-10-2 line are attracted to places with less accessibility to PT than in the 
central regions. This destination may refer to the household of PT users, indicating 
that, probably, the return line 6045-10-2 serves a considerable portion of work-home 
trips. Assuming that on line 6045-10-2, return trips from work prevail, it can be 
stated that the sign of the income coefficient in the Poisson regression is also con-
sistent with that expected.

The spatial variability of the parameters estimated in GWR and GWPR, together 
with their statistical significance, is shown in Figs. 6 and 7, respectively. The local 
R² for GWR ranges from 0.265 to 0.996, in which 70% of the bus stops have an R² 
value above 0.600.

Following the same pattern of Boardings, GWPR also maintained the same 
predictors that appeared in the final Poisson regression. As both 6045-10-1 and 
Table 6   Global and local models for Alightings along the 6045-10-2 line (N = 49)

Model\Predictor Intercept Population Frequency Station distance Income

Linear regression 228.42797 0.03072 -64.70247 0.03009
Poisson regression 5.33800 0.00019 -0.37750 0.00020 -0.00007
GWR​
(N = 17)

Min -96.91727 -0.02829 -0.02806
25% -22.90870 0.01017 -0.01540
50% -3.88202 0.04913 -0.00006
75% 13.60073 0.06111 0.00055
Max 303.72456 0.09157 0.04025

GWPR
(N = 20)

Min 1.17558 -0.00016 -0.49110 -0.00090 -0.00023
25% 1.55685 0.00027 -0.19205 -0.00023 -0.00007
50% 2.79466 0.00030 -0.00026 0.00017 -0.00003
75% 4.39613 0.00034 0.15553 0.00030 0.00005
Max 7.68902 0.00058 0.35559 0.00035 0.00007

UK -159.20000 0.04209 0.06845
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6045-10-2 lines have itineraries close to each other in space, similar relationships 
between Boardings and Alightings and their predictors are expected.

The expected effects of the frequency variable on Alightings vary from − 38.80% 
to + 42.70% if the frequency increases by 1 trip/hour and the other attributes are 
held constant. This impact is only − 31.44% in the global Poisson model. Bus stops 
whose average frequency of the other lines that pass through them positively impacts 
the volume of Alightings possibly serve as intramodal integration nodes.

The p values found suggest the following classification of the degree of impor-
tance of the parameters to explain Alightings: population, intermodal distance, fre-
quency and average household income. An interesting result is that the two most 
important explanatory variables for Boardings and Alightings were the same in 
GWPR: population and distance to the nearest station, or to the nearest station or 
bus terminal. It is important to note that population is part of the group of inde-
pendent variables of potential demand, and intermodal or intra/intermodal distance 
comprises the group of supply variables. Therefore, the local modeling that also 
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Fig. 6   Estimated Alighting GWR parameters and respective statistical significance
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Fig. 7   Estimated Alighting GWPR parameters and respective statistical significance
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accounts for the asymmetry of the travel demand variables, contains explanatory 
variables with statistically significant parameters from both categories of predictors.

The best performing Alighting UK, in turn, presents the same explanatory vari-
ables as its Boarding counterpart, but with slight differences in the estimated coef-
ficients. In both cases, the theoretical semivariogram with the best performance was 
also the same: the exponential model.

Goodness‑of‑fit Comparison of All Models

Table 7 summarizes the results of the goodness-of-fit measures applied to the global 
and local models of Boardings and Alightings.

In general, the techniques can be ranked, from the weakest to the strongest per-
formance, as follows: (1) traditional linear regression; (2) Poisson regression; (3) 
GWR; (4) GWPR; and (5) UK. Note that, in the case of Boardings, the Poisson 
regression was better than the linear regression only regarding the MAE. However, 
the classic linear model, which assumes continuous variables of interest, has the 
drawback of allowing the prediction of negative values for Boardings and Alight-
ings, which does not occur in the Poisson regression.

Based on this and using the MAE results for Alightings, the advantages, that is, 
relative reductions in error arising from the incorporation of asymmetry and auto-
correlation, in isolation and together, to the process of modeling, can be illustrated 
as follows: -17.11% in the Poisson regression; -40.86% in GWR; -42.58% in GWPR; 
and − 92.27% in the UK with the best performance. In Boardings, the following 
sequence is verified: -1.14%, -27.50%, -38.02% and − 92.41%, using, as a reference, 
in both cases, the absolute mean error of the linear regression.

Basically, the global models differ from the local ones in that, in the second type 
of regression, bus stops with equal values ​​of the explanatory variables are unlikely 
to have an identical predicted value for Boardings and Alightings, since, in this case, 
the result also depends on the spatial arrangement of the bus stops. However, while 
GWR and GWPR are considered local models because they allow, among other con-
veniences, the discrimination of the spatial heterogeneity of the model parameters, 
the local character of UK comes from the semivariogram function, which presents 
advantages in the case of data that are difficult to acquire. Thus, when comparing the 
two best performing methods, it can be seen that GWPR contributes to the knowl-
edge of the way in which the Transit Ridership in each region would respond locally 
to changes in land use and in the transport system, guiding the transit-oriented urban 
development. As shown in Tables 5 and 6, the range of variation of the parameters 
in the GWR and GWPR corroborates the existence of this spatial heterogeneity. UK, 
in turn, provides accurate estimates with a small amount of information.

When it refers to goodness-of-fit measures based on the log-likelihood, the AIC 
of local models was lower in comparison with global models. The Poisson and Lin-
ear Regression for Boardings had an AIC of 2,332 and 552, respectively, while the 
AIC for GWPR and GWR was, respectively, 773 and 520. For Alightings, the results 
showed the same pattern: AIC of 579 and 542 for Linear Regression and GWR, 
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respectively; and 2,186 and 992, respectively, for Poisson Regression and GWPR. 
As the linear and Poisson models come from different probability distributions, the 
AIC results must not be used to compare all models simultaneously, but they con-
firm once again the better fit of local models over their global counterparts. The 
Akaike Information Criteria for the UK Boardings and Alightings was, respectively, 
554 and 580. Although these values are higher than those for LR, the AIC from LR 
does not take into account the semivariogram part of UK, which is nonlinear. There-
fore, the comparison between UK and its non-spatial counterpart (LR) should be 
made by the measures shown in Table 7.

Table 8 displays the Akaike weights from the comparison between local, GWPR 
and GWR, and global models, PR and LR, respectively. Based on these weights of 
evidence, GWR and GWPR are certainly better options than their global counterpart.

Comparison with Previous Studies

Table 9 summarizes the characteristics of the models for Boarding and Alighting at 
the bus stop level already developed, together with their respective goodness-of-fit 
measures. The models presented in the present study were also included, for com-
parison purposes.

Attention is drawn to the fact that most of the models are from the USA, with 
only one representative in the Netherlands. This is probably due to the difficulty 
of acquiring reliable data on the movement of passengers along bus lines, that is, 
Boarding and Alighting per bus stop. The traditional Boarding and Alighting counts 
survey, which supports the collection of such information, is quite expensive and 
few municipalities have resources for this purpose. Automatic passenger counters, 
which could replace Boarding and Alighting survey, have not yet been popularized, 
especially in less developed countries. An alternative would be to synchronize the 
smart card data with the GPS of the buses, however, even in this case, some assump-
tions would have to be made to estimate the Boarding and Alighting bus stops, 
which could end up affecting the accuracy of the results. Thus, the present research, 
by providing Boarding and Alighting models per bus stop in a developing country, 
contributes to knowledge of how the relations between land use and transit ridership 
on a bus stop level take place in these regions.

It can also be observed that the studies address, as a dependent variable, only the 
number of Boardings or the sum of Boardings and Alightings. Although it is not 
wrong to assume that there is some correlation between Boardings and Alightings, 

Table 8   Akaike weights Model Boardings Akaike weights Alightings 
Akaike 
weights

LR 0.000 0.000
GWR​ 1.000 1.000
PR 0.000 0.000
GWPR 1.000 1.000
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the present study shows that the variables that explain Boardings and Alightings can 
be different and, even those that are repeated in both cases, result in different coef-
ficients. Thus, the effect of such variables on Boardings and Alightings may vary 
from case to case.

As described in  “Introduction and Background” section, the studies found had 
not yet provided a spatial approach to Boardings and Alightings. Table 9 also shows 
that the number of bus stops used in previous studies is considerably greater than 
that of the present case study, which reveals the availability of variables of interest 
for almost all or the whole bus network in such cities. This coverage, however, is dif-
ficult in regions that have a lack of technology or resources for this purpose.

Regarding the number of predictors, on the other hand, the present study had 
an extensive set of possible explanatory variables. However, the multicollinearity 
analysis reduced this group to only four predictors, both in the case of Boardings 
and Alightings, which did not prevent us from achieving good results. In fact, as the 
available database has a small number of points (47 and 49), the inclusion of more 
predictor data into the modeling would cause the parameters from these predictors 
to have statistical significance issues (p-value > 0.10), especially in the case of GWR 
and GWPR, as they use only part of the database for calibration. Because the main 
focus of the modeling was to predict well Boardings and Alightings, we decided to 
test all possible combinations of predictors (considering only those without or with 
low correlation between them) that could achieve the best performance in goodness-
of-fit measures. Bearing in mind that each model has its own characteristics, the set 
of predictors was different for the five models compared. When it refers to the spa-
tial models (GWR, GWPR and UK), for example, the group of predictors selected 
would be the one that highlights the spatial dependence remaining in the residuals of 
the model, which is an issue that can be found when a small number of specific pre-
dictors is used (in the present case study, the resulting set of predictors was not able 
to control the spatial dependence of Boardings/Alightings in the non-spatial mod-
els). Thus, following this method enabled us to address a problem faced by munici-
palities with a lack of data on travel demand and its intervening factors. However, 
even when more predictor data is included in the model, testing for spatial depend-
ence on residuals of the non-spatial models must not be overlooked, and if autocor-
relation is present, spatial/local models are preferred.

We also recognize that a fairer comparison between the five approaches would 
be possible only if all models had the same set of explanatory variables. However, 
the decision to improve the goodness-of-fit measures for each type of model, as a 
method to achieve the best boarding and alighting estimates, could not retain the 
restriction of the same predictors for all models. This analysis can be tested in future 
studies.

Finally, the UK results are surprising: using only two explanatory variables, the 
Boarding and Alighting UK generated estimates with the median absolute error of 
3.20% and 4.34%, respectively (Table  7). The goodness-of-fit measures obtained 
in the present study indicate that, even though there is not a considerable number 
of predictors, it is possible to develop models with satisfactory prediction perfor-
mance. Although it is recognized that several of the potential predictors shown in 
Table 3 influence the passenger demand, the excess of information embedded in the 
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model makes it difficult to use it to forecast the number of Boarding and Alight-
ing in hypothetical and/or future scenarios or in other cities/regions, since, for this, 
all predictors would also need to be estimated for the same condition. In addition, 
transit ridership models with many explanatory variables are only possible when the 
number of bus stops considered is also large, otherwise problems arise in the statisti-
cal significance of the estimated parameters. Thus, the present study also contributes 
to Boarding and Alighting modeling in cases in which only a small number of bus 
stops have data on the variables of interest and the amount of data on land use and 
transport is scarce.

Conclusions, Main Constraints and Final Recommendations

The aim of the present study was to assess the gains provided by addressing asym-
metry and spatial autocorrelation of stop-level transit ridership in its modeling. 
Global and local models for continuous and discrete data were applied to the Board-
ing and Alighting variables along a bus line in the city of São Paulo, Brazil. The 
results showed that, in fact, there is a gradual improvement in estimates as the two 
peculiarities of transit ridership are accounted for by the modeling.

In this context, the following topics summarize the research contributions of the 
present study:

•	 The solidification and methodological advancement of Boarding and Alight-
ing at the bus stop level, through a comparison of models that consider specific 
aspects of such variables: asymmetry and spatial autocorrelation.

•	 The methodological procedure accounts for the lack of data usually faced by 
developing countries. Even though only a few predictors are used, the proposed 
models were able to provide good ridership estimates.

•	 Spatial dependence plays an important role to improve goodness-of-fit measures 
of stop-level ridership modeling.

•	 The predictors’ effects on Boarding and Alighting can significantly vary from 
one bus stop to another.

The proposed models (GWPR and UK, for instance) have potential applications 
to urban and bus network planning. Based on the results achieved, the following rec-
ommendations are highlighted:

•	 The decision on whether to use a local model (GWPR, for instance) or UK for 
ridership prediction may be a matter of availability of data or policy. Coefficients 
from local models can be used to guide urban planning towards increasing transit 
patronage. However, if the main objective is only to achieve accurate ridership 
predictions, UK may be preferred.

•	 Results suggest that population and station distance (poxy for accessibility) are 
important predictors for Boarding and Alighting and, as such, they should not be 
overlooked in a transit ridership modeling by either GWPR or UK.
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•	 The proposed models can support the analysis of ridership change in future or 
hypothetical scenarios, based on variations in the predictor information. In addi-
tion, they can provide Boarding and Alighting estimates for bus stops that lack 
these data.

•	 When ridership estimates are required for an exhaustive number of bus stops, the 
predictor data can be interpolated by means of kriging (or any other method). 
Therefore, a continuous surface of estimated ridership values, covering all the 
bus stops, can be obtained from the spatial models.

•	 Boarding and Alighting estimates for all bus stops of a route will provide munici-
palities with sufficient information to carry out the bus fleet sizing, as well as the 
bus frequency.

The main constraints of the present study can be outlined as follows:

•	 Given the small sample available for performing the modeling, the results can 
hardly be generalized. However, the proposed method had the former intention 
of stimulating the use of spatial and local models in the bus stop context, making 
it possible for forthcoming studies with bigger Boarding and Alighting datasets 
to use them and contribute to strengthening the results achieved.

•	 The dependent variable covers only passengers entering or leaving each specific 
line. However, the desired scenario would be to have the sum of passengers who 
enter or leave all bus lines that pass through the sampled bus stops so we could 
use the models to predict the total ridership in any bus stop.

•	 Only one of the eight lines was used as a case study. However, the proposed 
method can be easily applied to the remaining lines as well, separately.

In order to stimulate the consolidation of the appropriate transit ridership mod-
eling at the bus stop level, some topics may be recommended for future work, such 
as:

•	 Calculating the goodness-of-fit measures based on a validation sample apart 
from the calibration sample used in the present analysis. This procedure would 
enable us to verify if the techniques of better performance in the calibration 
would also stand out in the validation.

•	 To address the cases with more than one line, including the analysis of overlap-
ping between lines.

•	 To test semiparametric geographically weighted models, which admit both pre-
dictors of fixed and spatially varying parameters.

•	 Bearing in mind that UK was the only geostatistical model used, future research 
could also benefit from the comparison between UK and another multivariate 
interpolator from Geostatistics, such as Cokriging.

•	 To address the boarding and alighting data from multiple time bands in a dis-
aggregated way, using geographically weighted models for panel data and spa-
tio-temporal Geostatistics. In this case, the temporal autocorrelation of travel 
demand could be accounted for by the modeling, together with the already 
addressed factors: asymmetry and spatial autocorrelation.
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