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Deep learning pose detection 
model for sow locomotion
Tauana Maria Carlos Guimarães de Paula 1*, Rafael Vieira de Sousa 2, 
Marisol Parada Sarmiento 1, Ton Kramer 3, Edson José de Souza Sardinha 2, Leandro Sabei 1, 
Júlia Silvestrini Machado 1, Mirela Vilioti 1 & Adroaldo José Zanella 1*

Lameness affects animal mobility, causing pain and discomfort. Lameness in early stages often goes 
undetected due to a lack of observation, precision, and reliability. Automated and non-invasive 
systems offer precision and detection ease and may improve animal welfare. This study was conducted 
to create a repository of images and videos of sows with different locomotion scores. Our goal is to 
develop a computer vision model for automatically identifying specific points on the sow’s body. The 
automatic identification and ability to track specific body areas, will allow us to conduct kinematic 
studies with the aim of facilitating the detection of lameness using deep learning. The video database 
was collected on a pig farm with a scenario built to allow filming of sows in locomotion with different 
lameness scores. Two stereo cameras were used to record 2D videos images. Thirteen locomotion 
experts assessed the videos using the Locomotion Score System developed by Zinpro Corporation. 
From this annotated repository, computational models were trained and tested using the open-source 
deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). 
The top-performing models were constructed using the LEAP architecture to accurately track 6 (lateral 
view) and 10 (dorsal view) skeleton keypoints. The architecture achieved average precisions values 
of 0.90 and 0.72, average distances of 6.83 and 11.37 in pixel, and similarities of 0.94 and 0.86 for 
the lateral and dorsal views, respectively. These computational models are proposed as a Precision 
Livestock Farming tool and method for identifying and estimating postures in pigs automatically and 
objectively. The 2D video image repository with different pig locomotion scores can be used as a tool 
for teaching and research. Based on our skeleton keypoint classification results, an automatic system 
could be developed. This could contribute to the objective assessment of locomotion scores in sows, 
improving their welfare.

Lameness in animals affects locomotion, causing pain and discomfort1,2. In the Welfare Quality Assessment 
Protocol for pigs, project sponsored by the European Union3, lameness is one of the most important parameters 
to assess good health, as a welfare criterion to check for absence of injuries. Due to pain caused by lameness, 
animals reduce their activities, such as eating, drinking, walking, and socializing4; however, they perform more 
passive activities, such as sleeping and lying down4,5, which compromises their species-specific behaviour.

Lameness is exhibit throughout the breeding cycle of the pig and can be diagnosed in the first three weeks of 
the piglet’s life6. Lesions in the locomotor system can be related to lameness7. The prevalence of lameness in sows 
is rarely reported and is usually underestimated, with reports ranging from 8 to 65%810. In a study by Jorgensen7, 
lesions were identified in the locomotor systems of 71–99% of the sows, including surface lesions on the claw 
and heel, as well as inappropriate claw sizes and excessive wear on the sidewall of the claw. In another study, it 
was found that 96% of sows had cracks in the heel9. A Brazilian study showed that 99.1% of sows present claw 
lesions, and 89.9% of sows present heel overgrowth and erosion lesions11. The presence of lameness in pigs is 
multifactorial and impacted by genetics, fights among animals, vitamin and mineral imbalances in the diet10,12, 
the type of feed provided1, and, especially, concrete floor housing13. Furthermore, housing conditions influence 
hoof health14,15, since poor hygiene, wet floors, and high animal density can lead to secondary problems, such 
as lesion contamination and subsequent infections14.
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Lameness is responsible for the unplanned culling of 11% of sows and 13% of gilts annually, resulting in 
estimated treatment costs between €37 and €138 per lame sow16. Additionally, it was estimated that between 20 
and 30% of the sows that become lame during pregnancy die 10 days after farrowing17. Piglets born from lame 
sows exhibit changes in weight at weaning, increased aggressive behaviour, and altered quantity of vocalizations 
during emotional tests18. Likewise, heel lesions are associated with the presence of crushed piglets, and mummi-
fied foetuses are twice as likely to be borne from lame sows as from non-lame sows9. Lameness in sows results in 
economic losses, health and welfare problems, and negative impacts to the offspring of the sows7,18.

In the study by Heinonen et al.1, 10% of animals with lameness were either not identified as lame by their 
owners or did not receive treatment. Lameness often goes unnoticed in its early stages; as a result, the animals 
receive treatment at advanced ages2. It is of outmost importance to carry out a diagnosis of lameness in the early 
stages of the condition in order to prevent situations of stress and unnecessary pain for the animal8 and to pro-
mote quick recovery. Identifying sows with early signs of lameness is ideal for improving welfare and reducing 
economic impacts2,19,21.

Animal observation is necessary for identifying and treating lameness. In pig farming, observation and 
correct identification of lameness are often lacking due to untrained staff and time-consumption, resulting in 
low precision and diagnosis reliability2. A common method for assessing lameness in pigs is assigning a visual 
numerical rating score (NRS) using a locomotion scale system20,22. However, this method is subjective, as it 
depends on the training and experience of the observer, which compromises the reliability and precision of the 
methods21. Currently, objective methods for assessing lameness are being investigated by utilizing technology to 
yield dependable analyses, precise diagnoses, and minimal labour requirements2,21, such as Precision Livestock 
Farming (PLF) technologies.

PLF technology manages individual animals by utilizing continuous real-time monitoring, including sensors, 
cameras, and sound analysis23. This monitoring is accessible to the operator at any given time, thereby keeping 
the operator apprised of the animal’s condition23. 2D colour camera (RGB) has been used in 33% of studies for 
assessing gait in pigs24. Emerging technologies aligned with the PLF paradigm enable management issues to 
be detected, provide more precise guidance for executing decision-making and management tasks25, and assist 
in monitoring animal health and behaviour26 through individual recognition27. As a result, it reduces labour 
requirements and provides nonsubjective data for evaluating and improving animal welfare indicators25,26. Some 
examples of proposed PLF technology being used with pigs are the Sow Stance Information System (SowSIS)28,29, 
automatic monitoring of pig locomotion using images30, automatic piglet tracking31, vocalization use for identify-
ing sex, age, and distress in pigs32, and behavioural recognition in pigs and cattle33.

Pose models have also been used as Precision Livesock Farming -PLF tools with other animals, including 
farmed pigs, such as:34 proposed a pose estimation model for pigs in collective pens to detect diseases early on 
by observing behavior. The problem of limb occlusion, e.g. leg, elbow, and tail, can be solved using this model. 
In a previous work35, it was proposed to use the software created as a semi-automatic tool to find, identify and 
track poses of infrared marks and label the 3D images. Published research36, reported the use of pose software 
for automatic individual identification of pig, recording weight and activity levels.

This study was conducted with two key goals. First, a repository containing 2D videos images assessed by 
experts and featuring sows displaying distinct locomotion scores is established. Second, a methodology for con-
structing a computational model through automated machine vision systems to identify the lateral and dorsal 
poses of sows in locomotion is developed by employing deep learning techniques.

Materials and methods
Data were collected in a commercial pig farm (Topgen) located in Jaguariaíva, Paraná, Brazil. The experiment 
was conducted with the approval of the Ethics Committee on Animal Use (CEUA) of the Faculty of Veterinary 
Medicine and Animal Science at the University of São Paulo (USP) under registration number 9870211117. The 
study was conducted according to the ARRIVE guidelines (https://​arriv​eguid​elines.​org/). Vision computer mod-
els were created through support by the Robotics and Automation Group for Biosystems Engineering (RAEB) 
at the Faculty of Animal Science and Food Engineering of the USP.

Animal experimentation and data acquisition
A sample of 500 sows in locomotion (Landrace × Large White, Afrodite line) was used to individually record 2D 
videos images (it has two dimensions: width and length) to create the video image repository.

The farm’s routine was not altered for this experiment. Data was collected every day between 8 a.m. and 5 p.m. 
from May 9th through May 17th, 2022.

The filming setup was built in an empty pen (6 × 4 m) in the farm facilities. A solid floor area was delimited 
with two galvanized wires (2.10 mm) to create a corridor. At the end of the corridor, a return area was provided 
for the animals. The corridor and the wall were painted with white acrylic wall paint to enhance the contrast 
between the animals and the setting. The filming area measured 1.5 m wide by 5 m long.

The equipment was strategically chosen as follows: a Dell Inspiron 15 5502 laptop (featuring Core i7, Micro-
soft Windows 11, 16 GB RAM, 512 GB SSD, NVIDIA GeForce) was used to record lateral videos, and a Dell 
Inspiron 3421 laptop (featuring Core (TM) i5, Microsoft Windows 10, NVIDIA Geforce) was used to record 
dorsal videos. A ZED 2i Stereo Camera (Stereolabs Inc., USA) was positioned 0.6 m from the floor and 3 m away 
from the corridor wall where the animals passed. Another camera was positioned above the corridor at 2.05 m 
from the floor. This configuration yielded comprehensive lateral and dorsal views of the entire length of the 
animals, extending from the cranial to caudal. To regulate the luminance of the environment and enhance the 
video quality, an artificial light system was placed on each extreme of the corridor behind the wires and 2.5 m 
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away from the corridor wall (Greika PK-SB01 lighting kit, two 50 × 70 cm soft boxes). Figures 1 and 2 illustrate 
the data acquisition facilities.

The ZED 2i camera was configured to capture RGB images and point clouds in HD (1920 × 1080 pixels) at 
15 frames per second, with an average duration of 30 s per video per animal.

Video preprocessing and annotation
The filtering process had two stages: the sow entering the corridor and the sow passing through the corridor, as 
illustrated in Fig. 1. Only the returning part was used for training the models (right lateral side of the animal and 
the entire dorsal side of the animal). A Python script was used to remove the moment when the animal leaves 
the pen. The video was then converted from SVO to MP4 format.

A total of 1207 videos, 565 lateral and 642 dorsal videos, were recorded; however, 40% of the videos were not 
used due to issues encountered during filming. Some problems included the sow not walking, being inactive for 
a long time, or running instead of walking, and video defects such as cuts in the image or low image quality. A 
total of 364 lateral and 336 dorsal videos were converted to the MP4 format (Fig. 3).

Thirteen experts in farm animal locomotion assessment categorized each sow video using the Zinpro Swine 
Locomotion Scoring system. The scores ranged from 0 to 3, from no signs of lameness to severe lameness 
(Table 1).

The 364 lateral videos were evaluated by the experts using Google Forms. Only the lateral view was assessed by 
the experts. After the 364 videos were analysed, 11 videos were removed because the experts were unable to clas-
sify the animals’ locomotion scores due to the sows slipping at the beginning of the video, making it difficult for 
the experts to assess locomotion. Scores indicated by more than 50% of the experts were considered as the final 

Figure 1.   Scenario used to collect the data of sows in locomotion. (a) superior view, and (b) lateral view. The 
red dashed line is the animal’s route of entering and turning around. The blue dashed line is the animal’s route 
out of the pen.

Figure 2.   Scenario and equipment used to collect the data of sows in locomotion using lateral and dorsal views. 
(1) laptop (Core i7); (2) under the table Zed i2 camera and (3) along with the feed tube; (4) corridor where the 
animals walked; (5) Greika PK-SB01 lighting kit; and (6) laptop (Core (TM) i5).
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score. In addition, descriptive statistical analysis through the mean, median, standard deviation, maximum and 
minimum with box plot visualization was performed to identify outlier experts, resulting in the removal of three 
experts and their respective responses. The statistical analysis was performed using Jamovi37 and R38 software.

In the SLEAP software (Social LEAP Estimates Animal Poses), only lateral videos that had the corresponding 
dorsal view were used. The score assigned to each lateral view video was also assigned to the corresponding dorsal 
view video for each sow. During the video evaluations for determining locomotion scores, there were divergent 
responses. Therefore, the differences between the scores were calculated using Microsoft® Excel, after which the 
degree of certainty of the answer was calculated. To calculate the differences between the answers (DBA), the 
maximum function is added to the range of locomotion scores (0, 1, 2 and 3); the range of locomotion scores is 
subtracted from this; and the maximum is then added again. The formula for calculating the DBA demonstrated 
for the first time is as follows (1):

After calculating DBA, the response confidence, provided in Table 2, was calculated by applying if–then 
functions. If the DBA is less than − 1, then there is no confidence in the score evaluation. If the DBA is less than 
0, then there is 25% certainty in the score evaluation. If the DBA is less than 2, then there is 75–100% certainty 
in the score evaluation.

(1)DBA = max(loc scores)− (sum(loc scores)−max(loc scores))

Figure 3.   Workflow chart of the proceorganizing videos to add to SLEAP software and save on the website 
Animal Welfare Science Hub, as well as the training and testing models and results.

Table 1.   Zinpro’s Swine locomotion scoring system to assess lameness in pigs.

Scores Description

0 No signs of lameness. The animal moves easily with little inducement and is comfortable on all its feet

1 The animal moves relatively easily, but there are visible signs of lameness in at least one leg. The animal is reluctant to bear weight 
with that leg, but it still moves easily between sites in the barn

2 The animal exhibits lameness in one or more limbs and compensatory behaviours such as dipping of the head or arching of the 
back

3 The animal shows real reluctance to walk or to bear weight on one or more limbs. As a result, moving the animal between places 
on the farm is difficult

Table 2.   Degree of reliability of the evaluation by lameness experts of the sows’ locomotion scores.

Calculation of difference between answers Calculation of confidence in answering

< (− 1) 0%

< (0) 25%

< (1) 75%

< (2) 100%
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Computer vision models
The computational models were constructed and tested for different deep learning architectures. The processing 
of the models was carried out using an HP Z2 Tower G5 workstation computer with an Intel Xeon W-1270 CPU, 
32 GB RAM, Windows 10 Pro for Workstations version 21H2, and the tool SLEAP (version 1.3.0). SLEAP is 
an open-source software developed in the Python programming language that provides a deep learning-based 
framework for pose estimation in different animal species39.

The SLEAP software was input with a total of 106 2D videos in both the lateral and dorsal views, with 33 vid-
eos for each locomotion score of 0, 1, and 2, and seven videos for a locomotion score of 3 due to the low number 
of animals with this score. Initially, the framework was defined as a skeleton related to a set of keypoints that 
were marked on the animal’s body in each frame of the video. The lateral skeleton was defined by 13 keypoints: 
snout, neck, right and left hock, right and left metacarpal, dorsal neck, dorsal tail, rump, and hoof right, left, front 
and posterior (Fig. 4c). To simplify the model, a lateral skeleton with 11 keypoints was also defined, where the 
dorsal neck and dorsal tail keypoints were removed (Fig. 4b). For the dorsal view, a skeleton with 10 keypoints 
was created: neck, scapula right/left, spine middle, pelvic right and left, tail, head, thoracic and lumbar (Fig. 4e). 
A preliminary analysis was performed on the established keypoints to identify variations. Based on this analysis, 
a lateral skeleton with 6 keypoints, removing the dorsal neck, dorsal tail, right and left hock, neck and right and 
left metacarpal keypoints (Fig. 4a) and a dorsal skeleton with 7 keypoints, further removing the head, thoracic, 
and lumbar keypoints (Fig. 4d) were established. There were 20,323 frames in the lateral videos, of which 3293 
frames were manually labelled by two trained individuals. There were 14,537 frames in the dorsal videos, of 
which 2311 frames were manually labelled. Only the frames in which the sows were fully visible in the videos 
were considered for training and testing the models.

The keypoints were defined to identify and analyse movements for future kinematic studies and to relate these 
movements to the sow’s locomotion score, determined by the panel of observers. The snout and neck keypoints 
were chosen to identify compensatory head movements. The neck dorsal, tail dorsal, neck, and tail keypoints 
were chosen to identify spine arching. The hocks, hoots, and metacarpals keypoints were chosen to identify 
which limb the sow had difficulty walking on34.

The SLEAP software allows for the settings to be customized to improve the computational model according 
to the project’s needs. Nineteen models (Table 4) with 6, 7, 10, 11 and 13 keypoint skeletons were developed 
using 5 different convolutional neural network (CNN) architectures: LEAP, U-Net, ResNet-50, ResNet-101, and 
ResNet-152.

LEAP (Estimates Animal Poses): LEAP’s pose estimation architecture is based on deep learning and uses a 
15-layer convolutional neural network to predict the positions of animal body parts40.
U-Net: U-Net is a convolutional neural network (CNN) architecture with 23 layers and a "U"-shaped format41. 
The presence of both an encoder and a decoder in this architecture helps it address complex tasks such as 
posture classification42,43.
ResNet-50: ResNet-50 is a 50-layer residual neural architecture trained on the ImageNet image database; it 
is an improved version of the CNN44.

Figure 4.   Identification of sows skeletons lateral and dorsal views in SLEAP software. (A) (6 keypoints), (B) (11 
keypoints) and (C) (13 keypoints) = Lateral view sow. (D) (7 keypoints) and (E) (10 keypoints) = Dorsal view 
sow. Keypoints: (1) snout, (2) hoof front right, (3) hoof front left, (4) hoof posterior right, (5) hoof posterior 
left, (6) rump, (7) neck, (8) pastern right, (9) pastern left, (10) hock right, (11) hock left, (12) dorsal neck, (13) 
dorsal rump, (14) scapula left, (15) scapula right, (16) middle, (17) pelvic right, (18) pelvic left, (19) lumbar, (20) 
thoracic, (21) head.
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ResNet-101 and ResNet-152: ResNet-101 and ResNet-152 are residual neural architectures with 101 layers 
and 152 layers, respectively44.

Figure 4a–e, as well as pixel error graphics, were generated with SLEAP software. The videos of sows with 
labelled keypoints (ground truth) and unlabelled keypoints (predicted by the algorithm) were developed in the 
SLEAP software. With these data, a video could be developed with only the x and y coordinates in pixels and 
without the animal by using the script created in MATLAB R2021b (Mathworks Inc., USA). The videos are pro-
vided in the supplementary material (Supplementary Videos 1 and 2). The general and specific hyperparameters 
in the 19 models for lateral and dorsal views, such as input scale, epochs, batch size, initial learning rate, Gaussian 
noise, and rotation, were configured. The split method was used for model evaluation, where the videos images 
repository was randomly split into 85% for training and validation and 15% for testing.

Metrics for evaluating computational models
Pose estimation is a difficult activity for the algorithm to perform, as it involves variations in lighting, perspective 
projection, and the occlusion of portions of images39,45. The model’s evaluation is complex because it involves 
many errors that affect the performance of the algorithm45,46. In addition, the average precision (AP) metric 
cannot interpret the behaviour of the algorithm and does not identify all the existing errors45,46. Due to some 
limitations in pose estimation analysis, new metrics for the task have been developed, such as object keypoint 
similarity (OKS), mean average precision (mAP), and distance average (dist.avg).

The OKS metric was designed to identify different types of errors in pose estimation algorithms; it can be 
used for estimating the poses of humans and animals. This metric calculates the average similarity between the 
person’s labelled (ground truth) and the unlabelled (predicted by the algorithm) keypoints45,47. OKS calculates 
the true value and predicts the similarity of human keypoints. OKS is defined by Eq. (2):

where di is the Euclidean distance between the detected keypoint and its corresponding ground truth; vi is the 
visibility flag of the ground truth; s denotes the person scale (in our study, this is the sow); and ki is a per keypoint 
constant that controls falloff22,39. When the SLEAP software was developed, OKS was employed as a lower bound 
on the true accuracy of the model because some reference points on animals can be difficult to precisely locate39. 
The distribution of OKS scores and the mAP metric were obtained to summarize accuracy across the dataset.

The mAP is based on object keypoint similarity (OKS). The mAP is the mean value of multiple APs with dif-
ferent thresholds47 and is used to measure the average accuracy of pose estimation across multiple individuals48. 
The mAP metric provides an overall evaluation of all the keypoints, so its evaluation is more accurate, as each 
keypoint has a different scalar47. Calculating mAP, which is used to evaluate the pose estimation accuracy in 
SLEAP, involves considering predicted instances as either true positives (TP) or false positives (FP) based on 
OKS39. The mAP and the mean average recall (mAR) metrics provide balanced estimates of accuracy, yielding 
reliable precision39. AP is defined by Eq. (3)47:

The distance average (Dist. avg) measures the Euclidean distance between the ground truth and model predic-
tions based on the algorithm and architecture of each skeleton keypoint45,49. Thus, in the labelling and training 
phases of the neural network, ground truth labels were provided to identify body part positions in the images40.

A variation on the use of Euclidean distance as a metric is the percentage correct of keypoints (PCK), which 
assesses the accuracy of joint localization47, has also been used; PCK is used to indicate whether each keypoint 
prediction is correct47. The PCK metric has been used in other studies as well in human50,51 and animal47 pose 
estimation tasks. The PCK is calculated using Eq. (4):

where n is the n th target; dni is the Euclidean distance between the i th predicted keypoint and its ground truth 
of the n th target; α is a constant parameter that controls the relative correctness of the evaluation; and sn is a 
normalized scalar of the n th target. α and s vary among different works.

In addition, pixel errors were analysed for each of the labelled reference points on the animal’s body.

Results
Data repository
A repository was created with 281 lateral videos images and 237 dorsal videos images separated by sow loco-
motion scores with 75% and 100% evaluation confidence. Technical problems in the acquisition of the images 
compromised de number of dorsal images, as the selection criteria was based on the agreement among evalua-
tors, who only assessed lateral views. Given the fact that, 20.67% lateral videos images and 29.46% dorsal videos 
images had less than 75% of the assessment confidence, by the evaluators, they were excluded from the tested 
dataset. Each video was approximately 30 s long and in MP4 format (Table 3).
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∑
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In this work, only one dataset was created with lateral and dorsal videos. The dataset was used to evaluate the 
locomotion scores by the experts and part of it was used to develop the models.

Finally, a total of 106 pairs of videos, from the existing repository, evaluated by assessors, were selected as a 
data set for the development of the models.

The video repository with the videos images separated by locomotion score is open access and is available on 
the Animal Welfare Science Hub website https://​www.​anima​lwelf​are-​hub.​com/​video-​repos​itory.

The videos with the labeled keypoints are not available.

Modelling
Simulations of hyperparameter changes were carried out in order to demonstrate how the data set can be used 
for animal analysis, as described in Table 4. Similarly, specific hyperparameters were selected, as described in 
Table 4. According to the data presented in Table 5, obtaining high accuracy (mAP) and similarity (OKS) values 
between the ground truth and predicted values, as well as a low distance between the labelled and predicted 
keypoint (dist.avg), was possible. In addition, the accuracy of the correct keypoints is within the distance limit 

Table 3.   Evaluation confidence of videos with lateral and dorsal views in different locomotion scores.

Views Scores

Assessment 
confidence

75% 100%

Lateral

0 28 131

Number of the videos

1 30 43

2 19 23

3 4 3

Dorsal

0 27 97

1 26 40

2 19 21

3 3 4

Table 4.   Configuration of general and specific hyperparameters in each model of the lateral and dorsal views 
for the different keypoints from the pig skeleton. Batch size: number of samples processed before the model 
is updated; Epoch: the number of complete passes through the training dataset; Initial Learning Rate: how 
quickly the model is adapted to the problem; Rotation Angle (min/max): image rotation angle; Gaussian noise 
adds randomness to the input data or weights.

Model View
Skeleton (number of 
keypoints) Architecture

Hyperparameters

Specific General

1

Lateral

6

2 11 Max stride 8

3 13 LEAP Filters 64 Input scaling 0.25

4
Dorsal

7 Filters rate 2 Epochs 200

5 10 Initial learning rate 0.0001

6

Lateral

6

U-Net

Stem stride none Gaussian noise mean 0

7 11 Max stride 16 Gaussian noise standard 
deviation 5

8 13 Filters 16 Rotation maximum angle 5

9

Dorsal

7 Filters rate 2 Rotation minimum angle -5

10 10
Middle block Activated

Interpolate activated Activated

11
Lateral

11 Weights frozen Activated

12 13 Res-Net50 Method interpolation Activated

13 Dorsal 10 Block stride 2

14
Lateral

11 Filters 64 Input scaling 0.25

15 13 Res-Net101 Filters rate 1 Epochs 200

16 Dorsal 10 Refine convolutional layer 2 Initial learning rate 0.0001

17
Lateral

11 Batch norm activated activated

18 13 Res-Net152 Transposed Conv kernel size 4

19 Dorsal 10 Max stride 32

https://www.animalwelfare-hub.com/video-repository
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between predicted and labelled keypoints. Skeleton models with 10, 11 and 13 keypoints were tested. The best 
skeletons were subsequently created with 6 and 7 keypoints, these being the lateral 1 and dorsal 5 models.

The results in Table 5 indicate that the models with the ResNet-50, ResNet-101, and ResNet-152 architectures 
were inferior to the models with the LEAP and U-Net architectures. Therefore, the models with 6 and 7 keypoints 
skeletons were not trained with the ResNet architectures on the lateral and dorsal views.

Figure 5 is a representation of the posture detection sequence in lateral and dorsal videos after the training 
stage. For a better view of the video, see the supplementary material.

Precision was analysed by comparing each model using the OKS, mAP, and dist.avg metrics, the PCK 
(Table 5), and the errors per pixel for each keypoint labelled on the sows (Figs. 6 and 7). Figures 6 and 7 show 
the differences in keypoint identification based on the pixel error dispersion marked in all the videos trained 
with the LEAP and using the two best models.

Based on the presented results, we have successfully achieved the goal of building computational models to 
identify sequences of lateral and dorsal poses in videos with different locomotion scores of sows. Currently,he 
project is using these results to obtain and to study the kinematic report of pose detections over time, in order 
to relate it to the locomotion score assessed by the experts.

Discussion
Models 1 and 5 (Table 5), which both utilized the LEAP architecture with different skeletons, performed better 
than the other 17 models. This was indicated by their high OKS and mAP values, which are close to one, indicat-
ing high pose estimation accuracy48. Furthermore, (Dist.avg) between the ground truth and the predictions was 
low, indicating that the predictions were close to the ground truth. Additionally, hyperparameters such as the 
degree of image rotation and Gaussian noise (Table 4) were adjusted to artificially increase the number of images 
in training and make the model more robust52. However, the models using the ResNet architecture and different 
skeletons achieved results below those of the other models, as evidenced by the low OKS and mAP values and 
the high Dist.avg value between the ground truth and predictions.

Studies that have used ResNet-50 and ResNet-101 indicated that both architectures are more accurate because 
they had deeper layers and achieved better results than shallower layers53, providing advanced feature representa-
tions for a wide range of images44. These architectures have been used in tasks such as monitoring sow lactation 
and piglet movement54 as well as in classifying microscopy images55. However, in our study, the Res-Net archi-
tecture did not show superior results to the LEAP and U-Net architectures, which might be due to overfitting 
or saturation of precision leading to degradation53. We argue that the complexity of the architecture, coupled 
with the variability in training parameters, can contribute to the occurrence of overfitting, driven by the memo-
rization capacity of the training data. The likelihood of saturation increases with the depth of layers within the 
architecture. In light of this, it is worth noting that the ResNet 50, ResNet 101, and ResNet 152 architectures 
possess greater depth and complexity when compared to the LEAP and U-Net architectures.

Table 5.   Comparison of precision metrics in each model of the lateral and dorsal views generated using the 
different keypoint skeletons. OKS Object keypoint similarity, mAP mean average precision, Dist.avg distance 
average; Correct Percentage of Keypoints (PCK).

Model Skeleton (number of keypoints)

Views

Architectures

Precision metrics

OKS mAP Dist.avg PCK

1 6

Lateral

0.94 0.90 6.83 0.51

2 11 0.93 0.89 7.86 0.44

3 13 LEAP 0.93 0.88 8.25 0.43

4 7
Dorsal

0.84 0.69 12.53 0.25

5 10 0.86 0.72 11.37 0.28

6 6

Lateral

0.93 0.89 7.45 0.48

7 11 0.92 0.88 8.07 0.45

8 13 U-Net 0.92 0.87 8.71 0.41

9 7
Dorsal

0.78 0.57 13.28 0.28

10 10 0.80 0.63 11.62 0.26

11 11
Lateral

0.41 0.01 34.99 0.05

12 13 ResNet-50 0.76 0.51 19.03 0.14

13 10 Dorsal 0.39 0.01 26.17 0.03

14 11
Lateral

0.52 0.10 28.80 0.08

15 13 ResNet-101 0.54 0.11 26.79 0.08

16 10 Dorsal 0.50 0.11 26.03 0.05

17 11 0.61 0.23 23.00 0.10

18 13 Lateral ResNet-152 0.51 0.06 31.52 0.09

19 10 Dorsal 0.50 0.10 22.90 0.07



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16401  | https://doi.org/10.1038/s41598-024-62151-7

www.nature.com/scientificreports/

The LEAP architecture outperformed the other architectures, probably because it was designed to use prob-
ability distribution to locate each part of the animal’s body in the image and predict the animal’s poses40. Methods 
for analysing animal behaviour or movement usually require many labelled keypoints; however, deep learning-
based analysis methods are flexible with respect to the number of labelled keypoints56. The locomotor behaviour 
of sows on skeletons labelled with 6, 10, 11 and 13 keypoints was analysed.

The PCK metric has a distribution threshold between 0.05 and 0.3, which is 0.05 highly accurate for locating 
the keypoint47. Therefore, models that have PCK values within this threshold indicate that they will have high 

Figure 5.   Lateral and dorsal videos screenshots of the keypoint detection results. (A) visão lateral com os 
keypoints nas cores amarelo (predito pelo software) e azul (ground truth). (B) visão lateral com os keypoints na 
cor amarelo (predito pelo software). (C) visão dorsal com os keypoints nas cores amarelo (predito pelo software) 
e azul (ground truth). (D) visão lateral com os keypoints na cor amarelo (predito pelo software).

Figure 6.   Error in pixels of each keypoint with the 06-keypoint sow skeleton of model 1 using the LEAP 
architecture and the lateral view.
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accuracy in identifying the keypoint on the animal’s skeleton. For example, model 1 had the highest PCK value 
compared to all the models. As such, it demonstrated high accuracy in correctly locating the predicted keypoints 
in relation to the labelled (ground truth) keypoints on the animal’s skeleton. As shown in Fig. 6, the anterior 
and posterior left Hoofs keypoints exhibited greater degrees of error and variation in the pixel results than the 
anterior and posterior right hoots keypoints. During the sows’ locomotion, the keypoints on the left hoof were 
sometimes occluded. Something similar occurred in the study of Wang et al.34, where the keypoint of the hoof 
was very important for behavioural analysis and pig movement identification.

Figure 7 shows that the middle and scapula left keypoints exhibited the greatest degree of error and variation 
in the pixel results. Artificial intelligence has difficulty comprehending the middle keypoint because it has no 
specific features when compared to the rump keypoint, which has a specific feature. The scapula left keypoint 
may have had difficulty distinguishing between the colour of the sow and the colour of the wall due to the 
similarity between these colours. The same issue occurred with some of the keypoints in the study conducted 
by Wang et al.34.

Data collection in this study was simpler and faster than in other studies. This can be considered an advantage 
over the SowSIS system28,29, which requires installing plates and a ramp, a long period of data collection, adapting 
the animals, and installing equipment. However, keeping the data collection location clean was challenging for 
the authors of28,29 and for this work. All these studies, including the present one, required locomotion experts 
to evaluate the videos and a manual labelling team to train the model. Creating the repository of labelled real 
images was essential for training the computer vision model57. The lack of good quality image repositories for 
training and testing models in the algorithm development phase is a limitation58. Moreover, manually labelling 
all the videos is time-consuming and laborious56,57. Thus, our results indicate that the data repository that was 
made available through this research, could be used as a research and teaching tool for professionals, teachers 
and students to evaluate sow locomotion in a practical way. Based on the results, using the LEAP architecture 
with skeletons of six keypoints in the lateral view and 10 keypoints in the dorsal view for pose estimation in 
sow locomotion using deep learning showed favourable results. These architectures achieved accuracies of 0.90 
and 0.72, average distances of 6.83 and 11.37, and similarities of 0.94 and 0.86, for the lateral and dorsal views 
respectively. Our computer model was able to identify the animal’s pose accurately and precisely.

The results presented in this manuscript indicated that the study has offered data to promote further kin-
ematic studies to help in the early detection of lameness in sows, automatically. A novel contribution is the fact 
that we demonstrate that, it was possible to obtain a lateral model and a dorsal model, from the same sow, at the 
same time. The development of lateral and dorsal models was studied, because in pig farms the use of an imag-
ing system at height of the animals is very challenging. Curious animals can damage the equipment and injure 
themselves. Also, if the system is used in a group housing, one animal can be occluded by another. For these 
reasons, the dorsal model is promising.

The proposed PLF tool can be useful on farms where some management is done individually. The com-
putational system could be used to evaluate sows when they are subjected to management practices. Animals 
could be evaluated, individually, when they are moved to the farrowing house, out of the farrowing house, for 
example. On the farm where the video image database was obtained, the sows are handled individually from the 
stalls, after mating, to the pen. The study presented demonstrates that it is possible to use a deep learning tool to 
identify keypoints on the animal’s body, which are related to lameness detection. In addition, by demonstrating 

Figure 7.   Error in pixels of each keypoint with the 10-keypoint sow skeleton of model 5 using the LEAP 
architecture and dorsal view.
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promising results, there is the possibility of expanding to establish lameness detection models with several 
animals, in several scenarios.

The biggest challenges in this study were to obtain a balanced database of video images including a good 
representation of all locomotion scores, especially scores 2 and 3. In addition, labelling the lateral and dorsal 
videos was laborious and time-consuming. Training the models was very time-consuming, especially the ResNet 
50, ResNet 101 and ResNet 152 models, which took around 20 h. The LEAP and U-Net models took around 8 h.

Conclusion
Computational models have the potential to automatically identify and to estimate locomotion poses in sows. 
The results showed high values of similarity (OKS), average precision (mAP) and accuracy of the location of 
keypoints (PCK) and low distance between the ground truth keypoints and the predictions (average distance). 
The purpose of these models is to be used as a tool and a method for precision livestock farming that can help 
objectively identify the locomotion behaviour of sows, identifying lameness at early stages, to promote rapid 
interventions, improving animal welfare. In the repository of 2D video images with different locomotion scores 
contributed to the development of this work and is available to support other research and teaching activities 
related to sow locomotion.

Data availability
The data supporting the findings of this paper are available from the corresponding author upon reasonable 
request.
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