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Abstract

An operator ideal is proper if the only invertible operators it contains have finite rank.
We answer a problem posed by Pietsch (Operator ideals, North-Holland, Amsterdam,
1980) by proving (i) that the ideal of inessential operators is not maximal among proper
operator ideals, and (ii) that there is no largest proper operator ideal. Our proof is based
on an extension of the construction by Aiena and Gonzéalez (Math Z 233:471-479,
2000), of an improjective but essential operator on Gowers—Maurey’s shift space X g
(Math Ann 307:543-568, 1997), through a new analysis of the algebra of operators on
powers of X g. We also prove that certain properties hold for general C-linear operators
if and only if they hold for these operators seen as real: for example this holds for
operators belonging to the ideals of strictly singular, strictly cosingular, or inessential
operators, answering a question of Gonzalez and Herrera (Stud Math 183(1):1-14,
2007). This gives us a frame to extend the negative answer to the problem of Pietsch
to the real setting.
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1 Introduction

In this paper we consider operator ideals (or more generally, families of operators)
in the sense of Pietsch [29]. Unless specified otherwise by space we mean infinite
dimensional Banach space and by subspace we mean closed infinite dimensional
subspace. An operator will be a bounded linear operator between Banach spaces, and
L(X, Y) denotes the space of operators between the spaces X and Y. If U is an operator
ideal, then U (X, Y) is the subset of operators of L(X, Y) belonging to U. For all other
unexplained notation see what follows.

In his book Pietsch considers a family of spaces associated to an ideal U, see [29]
2.1: the space ideal Space(U) defined by

X € Space(U) < Idxy € U.

Of course this definition makes sense even when U is a family of operators which is
not an ideal. Note that it is immediate that the space ideal of U coincides with the space
ideal of its closure U°!°%, [29] Proposition 4.2.8, so in this context one does not need
to pay attention to whether the ideals considered are closed. In [29] 2.3.3 an ideal U is
called proper if Space(U) = F, the class of finite dimensional spaces; or equivalently,
if U (X) is a proper ideal of L(X) whenever X is infinite dimensional. Among proper
ideals one can mention the ideals of finite rank, compact, strictly singular, strictly
cosingular, or inessential operators, see definitions below. Problem [29] 2.3.6 asks
whether there is a largest proper operator ideal. It is actually conjectured by Pietsch
that such an ideal exists and is equal to the ideal In of inessential operators (a specific
case of [29] Conjecture 4.3.7, see [29] 4.3.1).

Problem 1 (Pietsch, 1980) Is the ideal of inessential operators the largest proper oper-
ator ideal?

Problem 2 (Pietsch, 1980) More generally, does there exist a largest proper operator
ideal?
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This can also be seen as a special case of [29] Problem 2.2.8, where Pietsch asks
whether, given a space ideal A (see [29] Definition 2.1.1), there exists a largest operator
ideal U with A = Space(U). Problems 1 and 2 correspond to the space ideal F of
finite dimensional spaces for which F' = Space(In).

Recall that an operator R € L(X,Y) is said to be inessential, R € In(X, Y), if
Idx — TR is Fredholm for any T € L(Y, X) (equivalently Idy — RT is Fredholm
for any such T'); otherwise we shall say that it is essential. Two spaces X and Y are
essentially incomparable if L(X,Y) = In(X, Y); equivalently, L(Y, X) = In(Y, X).

There is a natural direction in which to investigate whether In is the largest proper
operator ideal, which was suggested to the author by Manuel Gonzélez. This would
be to study the question in the setting of complex spaces as well as real spaces and
obtain strong structural differences between the complex and the real cases. Indeed if
some C-linear operator is essential as real but inessential as complex, then this might
mean that one gets a larger proper ideal than the real ideal of inessential operators.

More generally it is a natural question, related to the study of complex structures on
real Banach spaces, to understand the differences between real and complex versions
of some classical operator ideals, and this is a first aim of this paper. More precisely we
ask whether a C-linear operator belongs to a certain ideal as C-linear if and only if it
does as an R-linear operator. It is obvious for example that an operator is compact as C-
linear if and only if it is compact as R-linear. The question for strictly singular appears
in [16] as Remark 2.7, and for inessential was personally asked by M. Gonzilez.

While an R-strictly singular (resp. R-inessential), C-linear operator is clearly
always C-strictly singular (resp. C-inessential), the converse is not immediate, since
there are more real subspaces (resp. operators) than complex subspaces (resp. opera-
tors) in a complex space. However we shall show that the answer is actually positive,
and holds also for many other classical ideals. The result depends on a characterization
based on the notion of self-conjugacy of a complex ideal, see Proposition 5.

Theorem 1 A C-linear operator is inessential as a complex operator if and only if it
is inessential as a real operator. The same holds for the ideals of

e strictly singular operators,
e strictly cosingular operators,
e A-factorable operators if A is a complex and self-conjugate space ideal.

Going back to Pietsch’s problem, in particular the direction suggested above does
not work. In a second part of the paper we use another approach to Problems 1 and 2,
which we shall actually solve negatively.

An operator is improjective, T € Imp(X, Y), if the restriction of 7' to a comple-
mented subspace of X is never an isomorphism onto a complemented subspace of Y,
see Tarafdar [31]. When L(X, Y) = Imp(X, Y) (equivalently L(Y, X) = Imp(Y, X)),
then X and Y are said to be projectively incomparable. 1t is straightforward that all
inessential operators are improjective, and that Id x is never improjective for X infinite
dimensional.

In 2000, Aiena and Gonzélez proved that there exist operators which are impro-
jective but not inessential, [1] Theorem 3.6. Actually they obtain two projectively
incomparable spaces and an operator between them which is essential, [1] Proposition
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1046 V. Ferenczi

3.7. This suggests a direction to find a proper ideal larger than In, providing a negative
answer to Problem 1: since Idxy € Imp only when X is finite dimensional, we would
be done if Imp were an operator ideal. However in the same paper Aiena and Gonzélez
prove that the improjective operators do not form an ideal, [1] Theorem 3.6.

The example of [1] relies on the theory of spaces with few operators (or exotic
spaces) of Gowers-Maurey, see [27]. As commented in the Aiena-Gonzalez paper,
while hereditarily indecomposable spaces (first defined by Gowers-Maurey [17]) have
the property that all operators are either Fredholm or inessential, on the other hand, in
indecomposable spaces operators are either Fredholm or improjective; so it is natural
to consider an indecomposable space which is not HI. Their example is therefore
based on the “shift space” X g of Gowers-Maurey [18] which has these properties, see
also Maurey’s surveys [26] and [27] for a more thorough description. Considering the
complex version of X, they find an infinite codimensional subspace Y of Xg which
is projectively incomparable with Xg; however there is an operator T € L(Xgs,7Y)
which is not inessential.

If X is a Banach space, Op(X) denotes the family of X-factorable operators. This
is an ideal if, e.g., X is isomorphic to its square. It is easy to see that two spaces X
and X’ are projectively incomparable if and only if Op(X) N Op(X”) is proper. So in
particular Op(Xs) NOp(Y) is proper and contains an operator which is not inessential.
A negative answer to Problem 1 would follow if Op(Xs) N Op(Y) were an ideal; but
since X g is not isomorphic to its square this has no reason to hold.

In this paper we show how to enhance Aiena-Gonzdlez’s result so that the asso-
ciated Op-class is an ideal: we define Op=®(X) the class of operators which are
X"-factorable for some n € N and observe that it is an ideal. The crucial point is then
to go back to the construction of [18] to prove that all powers of the spaces Xg and Y
(or possibly some technical variation of them) are projectively incomparable, which
means that U := Op=“(Xs) N Op=?(Y) is a proper ideal. Since the essential opera-
tor T defined in [1] belongs to U, the ideal of inessential operators is not the largest
among proper ideals. This answers Problem 1 of Pietsch. Actually we prove slightly
more:

Theorem 2 The ideal of inessential operators is not maximal among proper operator
ideals, i.e. there exists a proper operator ideal V withIn C V.

Based on the observation of Aiena-Gonzdlez that their construction actually pro-
vides an example of two improjective operators whose sum is not improjective, we
find two versions of the above ideal and two operators belonging to each of them but
whose sum is invertible on Xs. As a corollary there actually cannot exist a largest
proper ideal. So we have a stronger result, namely the answer to Problem 2 of Pietsch
is also negative.

Theorem 3 There is no largest proper operator ideal.

These examples hold both in the real and complex setting. We actually use some
ideas of the first part of the paper to extend our negative answers from the complex
to the real setting. To be able to treat both the complex and real cases in a unified
way, we shall replace the complex version (call it X(C)) of X used in the above
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description, by the complexification X = (Xg(R))c of the real version Xg(R) of
Xs. While these two spaces are certainly not isomorphic, their algebras of operators
have very similar properties, sufficiently for our purposes, and so all of the above
applies to X. But additionally X is much easier to relate to a real space (through
complexification), and this will provide us with a real solution based on operators on
Xs(R).

1.1 Background and definitions

In what follows Ix, or sometimes Idx, denotes the identity map on X. We use the
notation X >~ Y to mean that the spaces X and Y are linearly isomorphic.

We recall a few basic results about certain operator ideals and Fredholm theory. For
more details we refer to [25] or to the survey of B. Maurey [26].

An operator § € L(X, Y) is strictly singular, § € SS(X, Y), when S|z is never an
isomorphism onto its range, for Z an (infinite dimensional) subspace of X; itis strictly
cosingular, S € CS(X, Y), when QS is never surjective for Q the quotient map onto
a quotient of ¥ by some infinite codimensional subspace of Y. Both S and CS are
closed operator ideals.

An operator T : X — Y is Fredholm if it has closed image and finite dimen-
sional kernel and cokernel. It is finitely singular if there exists a finite codimensional
(closed) subspace Y of X such that the restriction 7T}y is an isomorphism onto its
range TY - this terminology appears in [18]; such operators are more classically
called upper semi-Fredholm, as in [1]. It is infinitely singular otherwise, which is
equivalent to saying that for any ¢ > 0 there exists an infinite dimensional subspace
Z of X such that ||7}z]| is at most & ([26] Proposition 3.2). From this last charac-
terization it is also useful to note (i) that the class of infinitely singular operators
is preserved by strictly singular perturbations, and (ii) that an operator is infinitely
singular as soon as its restriction to some infinite dimensional subspace is infinitely
singular.

Recall that K denotes the closed ideal of compact operators. We have the following
classical inclusions:

KCSSNCSCSS+CSCInCImp

The ideal of inessential operators is closely related to Fredholm theory; in particular
an inessential perturbation of a Fredholm operator is Fredholm (and so this holds as
well for compact or strictly singular perturbations).

A Banach space is decomposable if it is the (topological) direct sum of two infinite
dimensional closed subspaces, indecomposable otherwise, and hereditarily indecom-
posable (HI) if it contains no decomposable subspace. The first example of an HI space
was due to Gowers-Maurey [17] and since then a great number of other indecompos-
able or HI examples with various additional properties have been obtained (some of
which may be found in [27]).
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1048 V. Ferenczi

2 Complex ideals versus real ideals

In this section we recall and develop tools to compare R-linear and C-linear behaviours
of operators, with Theorem 1 as our objective.

2.1 Complex structures

The theory of complex structures on Banach spaces was born after the example by
Bourgain (1986) of two spaces which are linearly isometric as real spaces but not
isomorphic as complex spaces [5]. Actually the two spaces used by Bourgain are
complex conjugate and so the real linear isometry is just the identity map between
them.

A complex structure on a real space X is the space X equipped with a C-linear
structure whose underlying real structure coincides with the original one. Allowing
renormings, this is in correspondence with R-linear operators J on X of square equal
to — Iy, which define the multiplication x +> i.x. The number of complex structures
on a space is understood up to (C-linear) isomorphism and has been studied in several
papers. For example a real space is said to have unique complex structure if it admits
complex structures and all of them are mutually isomorphic. Examples of spaces
with unique complex structure are: (a) the Hilbert space (folklore or the next list of
examples), (b) the spaces £, L,(0, 1), co, C([0, 1]) and more generally real spaces
admitting a complex structure and whose complexification is primary (Kalton, Theo-
rem 28 in [14]), (c) an hereditarily indecomposable example [12], (d) a non-classical
example with a subsymmetric basis [9], and (e) others. Examples of spaces without
complex structure are James space [10], a uniformly convex space of Szarek [30], the
original Gowers-Maurey space [17], as well as many other spaces with small spaces
of operators. “Extremely non-complex” real spaces are considered in [23]. Complex
versus quaternionic structures on some exotic real spaces are studied in [28].

In [12] are also provided spaces with exactly n complex structures, whenevern > 2.
This also gives examples of spaces with a complex structure which is not unique but
still is isomorphic to its conjugate. An example with exactly Ry complex structures
is due to Cuellar [8], and one with 2% and additional properties is due to Anisca [2]
(it is not hard to check that the original example of Bourgain also admits 2™ such
structures). See also [3] for considerations on the number of complex structures in the
setting of complexity of equivalence relations on Polish spaces.

In [20] Kalton, using a variation of Kalton-Peck space Z; from [22], defined a much
simpler example of complex space Z> («) (o a non-zero real parameter) not isomorphic
to its conjugate Z,(«) (which here identifies with Z>(—a)). According to the proof of
[20] Theorem 2, see [7], it actually holds that Z;(«) does not even embed into Z; ().
Regarding Z; it seems to be an interesting open question whether it admits a unique
complex structure. Finally the most extreme example seems to appear in [12], with a
space admitting exactly two complex structures, which are conjugate (and therefore
R-linearly isometric) but totally incomparable as complex spaces (meaning that no
C-linear subspace of one is C-isomorphic to a C-linear subspace of the other).
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There is no largest proper operator ideal 1049

These examples show that there can be quite a variety of complex structures on a
given real space, and therefore it is a natural and non trival question not only to relate
properties of operators seen as R-linear or seen as C-linear, but also seen as C-linear
with respect to different complex structures on the same real space.

We refer to Pietsch [29] for background on operator ideals. In this paper we shall use
the word class to define a family of normed spaces which is stable under isomorphisms.
A class of operators which does not necessarily define an ideal is also defined in the
sense of Pietsch, i.e. with varying domain and codomain.

The concept of complexification of real spaces, and of linear operators on them,
is well-known, and recalled below. It is for example extremely useful in order to use
spectral theory in the context of real spaces. There is a less well-known and almost
trivial process, which we shall call here realification, and which is simply the one
obtained by “forgetting” the multiplication by i on a space and “only remembering”
the R-linear structure.

We list the definitions of complexification and realification in various situations
below. Before that, let us fix an important notation. Since we shall always go back
and forth between real and complex ideals or classes, to avoid confusion and when
relevant we shall reserve lower case letters (u, ss, cs, in, ...) for classes of R-linear
operators and upper case letters (U, SS, CS, IN, ....) for classes of C-linear operators.
The same will hold for classes of spaces (a,... for classes of real spaces, A,... for classes
of complex spaces).

2.2 Normed spaces

The complexification X¢ of a real space X is the space X @ X equipped with the com-
plex structure associated to J(x,y) = (—y, x). Elements of X¢ are often denoted
x 41y, x,y € X, although we shall usually prefer the notation (x, y) to avoid confu-
sion. Regarding the realification:

Definition 1 Let X be a complex space. The realification Xg of X is the space X
equipped with the real structure underlying its complex structure.

As is usual we denote by X the conjugate of the complex space X, i.e. the space X
equiped with the law A.x := Ax. It is clear that the realifications of X and X coincide.
Note also that if 7 is C-linear from X to Y, then it also acts as a C-linear operator,
denoted 7, from X to Y.

Remark 1 The following hold:

1. if X is areal space then (Xc)r = X @ X.
2. if X is a complex space then (Xgr)c =~ X & X; specifically, the formula

Rx(x,y) =(x+y,iy —ix)

defines a C-linear isomorphism Ry from X & X onto (Xg)c.

Proof 1. is obvious. For 2., the use of the map Ry is essentially an observation of
N.J. Kalton which appears in a first form in [14] Lemma 27 and then more clearly
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1050 V. Ferenczi

in a paper of W. Cuellar Carrera [9] Lemma 2.1. It is clear that Ry defines an R-
linear isomorphism, and the fact that it is a C-linear isomorphism follows from the
computation:

Rx(i(x,y)) = Rx(ix, —iy) = (i(x = y), y+x) =i(y +x,i(y —x)) =iRx(x, y).

O

2.3 Classes of spaces

Itis then natural to define complexification and realification of classes of spaces, where
we recall that the classes are understood to be invariant by isomorphism.

Definition 2 If « is a class of real spaces, we define the class ac of complex spaces
by

X eac & Xgr €a.
If A is a class of complex spaces, we define the class Ar of real spaces by
X € Ap & X € A.

Remark 2 The following hold:

1. If X is a real space and a a class of real spaces, then X € (ac)r iff X% ea.
2. If X is a complex space and A a class of complex spaces, then X € (Ar)c iff
X®XeA.

2.4 Linear operators

Similar concepts are defined for bounded linear operators.
Definition 3 If 7 is R-linear from X to Y then its complexification Tc from X¢ to Yo

is well-known, and defined as

Tc(x,y) = (Tx, Ty).
Conversely for T C-linear between complex spaces X and Y, its realification Tg will
be T seen as R-linear between Xr and Y.

Notethat T + T is an algebrahomomorphism from the space £(X, Y) to L(X¢, Y¢),
and that T + Tg is an algebra homomorphism from £(X, Y) to L(XR, Yr). As a
consequence:

Remark 3 The following hold:

1. if T is R-linear then the realification of the complexification of T is (g 2) acting

from X2 to Y2,
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There is no largest proper operator ideal 1051

2. if T is C-linear then the complexification of the realification of T may be seen as

TO . - = .
( 0 T) acting from X @& X to Y @ Y, in the sense that

T oo\
(Tr)c = Ry o 0o T ORX ,

Where_ Ry (resp. Ry) is the identification between ¥ @ Y and (Yr)c (resp. between
X @ X and (XRr)c) defined in Remark 1.

Proof 1. is clear. For 2. we compute
(TR)c 0 Rx)(x,x') = (TR)c(x + ¥/, ix" —ix) = (T(x + '), T(ix" — ix)),

and

T 0 /! /! . /
(Ryo 0o T )(x,x):Ry(Tx,Tx)z(Tx+Tx,l(Tx —Tx)).
Then we observe that the two expressions coincide by C-linearity of 7. O

2.5 Classes of operators and/or ideals

Finally we define complexification and realification for classes of operators. We shall
see that these definitions behave well with operator ideals in the sense of Pietsch.

Definition4 1. Let u be a class of R-linear operators. We define the complexification
uc of u by

Tecucs Trecu
2. Let U be a class of C-linear operators. We define the realification Ug of U by
TeUr < TceU

Lemma 1 Ifu is areal (closed) ideal of operators then uc is a complex (closed) ideal.
If U is a complex (closed) ideal of operators then U is a real (closed) ideal.

For uc note that this relies on the fact that if 7 € uc then iT € uc, because
(iT)r = iTr € u since i is an R-linear operator and u is a real ideal.
The following natural notion will prove extremely important.

2.6 Conjugate classes and/or ideals

Definition 5 For U a complex class of operators let us denote by U the conjugate
class, i.e.
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1052 V. Ferenczi

Definition 6 A complex class U of operators is self-conjugate if U = U.

The class U is not to be mistaken with the closure of U, which is denoted U< .
The proof of the next proposition is left as an exercise.

Proposition 1 The ideals of compact, strictly singular, strictly cosingular, inessential
operators, and the class of improjective operators are self-conjugate.

Proposition 2 [fu is a real class of operators, then uc is self-conjugate.
Proof For a C-linear operator T the R-linear operators Tk and (T)g coincide. O

To develop examples of ideals which are not self-conjugate, we consider Op(X),
the class of X-factorable operators, i.e. operators which factor through the Banach
space X.

Definition 7 If X is a Banach space, then Op(X) denotes the class of X-factorable
operators, i.e. for T € L(Y,Z), T € Op(X)iff T = UV forsome V € L(Y, X) and
UelLlX,2Z2).

Let us note the useful observation that Op(X) = Op(X) whenever X is a complex
space. We recall the well-known fact:

Proposition 3 If X is a Banach space which contains a complemented subspace iso-
morphic to X?, then Op(X) is an operator ideal.

Note that Op(X) has no reason to be closed in general.

Proposition 4 Let X be a complex space which is not isomorphic to a complemented
subspace of X. Then Op(X)®'% is not self conjugate. In particular Op(X) is not self-
conjugate.

Proof We shall prove that Ix does not belong to Op(X)<% = Op(X)°l°s.

Indeed assume there exist A : X — X and B : X — X such that 7 := Iy — AB
has norm ||T'|| < e. Then for ¢ small enough AB = I — T would be an isomorphism
on X and therefore B would be an isomorphic embedding of X into X. Finally the
image BX would be complemented in X by B(I — T)~' A. This is a contradiction. 0

Of course spaces not isomorphic to a complemented subspace of their conjugate
and at the same time isomorphic to their squares (so that Op(X) is an ideal) must be
rather exotic. We present two examples of such spaces and therefore of ideals which
are not self-conjugate.

Example 1 If F is the complex HI space totally incomparable with its conjugate from
[12], then the ideal Op(£2(F))°'° is not self conjugate.

Proof The space F is complemented in £5(F) but does not embed in £ (F) = £,(F).
Indeed, see for example [6], a space which embeds into £, (F) either contains a copy
of ¢ (which cannot hold in the case of the HI space F') or embeds into F" for some
n, which contradicts the total incomparability of F with F. O
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There is no largest proper operator ideal 1053

A less exotic example, even “elementary” in the words of Kalton, is provided by
him in [20].

Example 2 If Z,(«) is the version of Kalton-Peck complex space defined by Kalton
[20], then Op(Z>(«))°! is an ideal which is not self conjugate, for a # 0.

Proof The space Z;(«) does not embed into its conjugate, if & # 0, see [20] Proof of
Theorem 2 and [7]. On the other hand, it admits a canonical 2-dimensional “symmetric
decomposition” in the same way as Z» does and in particular is isomorphic to its square.

O

3 Applications to real and complex versions of ideals
3.1 Real and complex versions of classical ideals

We use the analysis of the previous section to relate a certain correspondence between
real and complex versions of ideals to the self-conjugacy property.

Proposition 5

1. Let u be a real ideal. Then (uc)r = u. o
2. Let U be a complex ideal. Then (Ur)c = U NU.
3. A complex ideal U is self-conjugate if and only if (Ur)c = U.

Proof 1.Indeed T € (uc)r if and only if T¢ € uc if and only if (Tc)r € u, which

orT
2.T € (Ur)cifandonlyif T € Urifandonlyif (Tr)c € U, which by Remark 32.

means that <T O) belongs to u and is equivalent to T € u by the ideal properties.

T - . =
means that ( 0 %) acting on X @ X belongs to Uj; this is equivalent to 7', T € U by

the ideal properties.
3. follows from 2. and from Proposition 2. O

We shall consider the real and complex versions of the ideals of strictly singular,
strictly cosingular, inessential operators, and of the class of improjective operators. We
denote ss, cs, in, imp the real versions and SS, C S, IN, IMP the complex versions of
these.

Let us first note that a C-linear operator is C-strictly singular as soon as it is R-
strictly singular. In our language

ss¢c C SS.
It is an easy exercise that the property

uc cU

also holds if u = c¢s,in,imp and U = CS, IN, IMP, respectively. Actually we have
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Proposition 6 AnR-linearmap T is strictly singular (resp. strictly cosingular, inessen-
tial, improjective) if and only if Tc is strictly singular (resp. strictly cosingular,
inessential, improjective). In other words,

Upr=u

holds ifu = ss,cs,in,imp and U =SS, CS, IN, IMP, respectively.

Proof We use Proposition 5. Since ss¢ C SS then ss = (ssc)r C SSgr. Conversely
if T : X — Y is not strictly singular, let Z C X be a subspace such that 717 x is
an isomorphism into Y. Then Tc/z. x. is a C-linear isomorphism from Z¢ into Y¢
and since Zc is a C-linear subspace of X¢, T¢ is not strictly singular. Summing up
T ¢ss=T ¢ SSg.

Since cs¢ C CS, the inclusion ¢s C CSg holds. Conversely if T : X — Y is
not strictly cosingular, then let QO be the quotient map onto the quotient Z of Y by
some infinite codimensional subspace of Y for which QT is surjective. Then Q¢ is the
quotient map from Y onto the quotient Z¢ of Y, and Q¢ T is surjective, therefore
Tt is not strictly cosingular.

Since inc C IN, the inclusion in C INR holds. Conversely if T : X — Y
is not inessential, let U : Y — X be such that Id — UT is not Fredholm. Then
(Id = UT)c =1d — UcTg is not Fredholm, and therefore T¢ is not inessential.

Since impc C IMP, the inclusion imp C IMPg holds. Conversely if 7 : X — Y
is not improjective, let W be complemented in X and Z in Y such that T restricts to
an isomorphism between W and Z. Then T¢ restricts to an isomorphism between the
complemented subspaces W¢ and Z¢ of X¢ and Y respectively, so is notimprojective.

O

Corollary 7 A C-linear operator is strictly singular (resp. strictly cosingular, inessen-
tial) ifand only ifit is strictly singular (resp. strictly cosingular, inessential) as R-linear.
In other words

U=uc

holds ifu = ss,cs,in,imp and U =SS, CS, IN, IMP, respectively.

Proof Since ss = SS, it follows that ssc = (SSr)c and this is equal to SS by Propo-
sition 5, since SS is self-conjugate. The same reasoning holds for strictly cosingular
and inessential operators. O

We formalize these ideas as follows:

Proposition8 Let U be a complex ideal, and let u = U, i.e., T € u <& Tgc € U.
Then the following are equivalent:

1. for any C-linear operator T between two complex spaces, T € U if and only if T
seen as R-linear is in u,

2. uc =U,

3. U is self-conjugate.
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Definition 8 When u = Ug and 1-2-3 of Proposition 8 hold, we say that (u, U) is a
regular pair of ideals.

Corollary 9 The pairs (ss, SS), (cs, CS), and (in, IN) are regular.
In terms of complex structures on a real Banach space, this also means:

Corollary 10 If (u, U) is a regular pair of ideals, then an operator belonging to U with
respect to a complex structure on the real space X, also belongs to U with respect to
any other complex structure on X for which it is C-linear.

Another very relevant family of operator ideals are the ideals Op(A), generalizing
Definition 7 of Op(X). According to [29] Definition 2.1.1 a space ideal A is a class
of spaces containing the finite dimensional ones and stable under taking direct sums
and complemented subspaces. The ideal Op(A) is defined in [29] 2.2.1:

Definition 9 If A is a space ideal, then T € Op(A) if and only if T is X-factorable for
some X € A.

_If Aisacomplex space ideal we define in an obvious may the conjugate space ideal
A by

XeAsXeA,

and say that A is self-conjugate if A = A. If A is complex, we also denote by op(A)
the ideal of R-linear operators which factor (by R-linear operators) through Xy for
some X € A.

Proposition 11 Let A be a complex and self-conjugate space ideal. Then the pair
(op(A), Op(A)) is a regular pair of ideals.

Proof We claim that op(A) = Op(A)r. Indeed assume 7 is an R-linear operator
factoring through Xg for some X € A. Then T¢ factors through (Xgr)c. Since (XRr)c
is isomorphic to X @ X by Remark 12., and since A is a self-conjugate space ideal, it
also belongs to A. So T¢ belongs to Op(A), which means by definition that 7 belongs

to Op(A)Rr. Conversely if T¢ belongs to Op(A), then the matrix <T 0 belongs to

(U
op(A) from which it follows easily that T itself belongs to op(A). Since the claim
holds, the result follows from the fact that Op(A) is obviously self conjugate and from
Proposition 8. O

The above extends obviously to ideals of operators T € L(Y, Z) which factorize
through A as operators of L(Y, Z**). As an easy application we also obtain the regular
pair of ideals: (real £,-factorable operators, complex £ ,-factorable operators), (real
o -integral operators, complex o -integral operators),..., see [29] 19.3 and 23 for details.
We also leave as an exercise to the reader to find examples of regular pair of ideals
related to the ideal Ut of operators factorizing through a given operator 7' (under the
necessary restrictions).
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3.2 Improjective operators and examples of non-regular pairs

Since improjective operators do not form an ideal, according to [1], Proposition 8 does
not apply to them. What is true is the following slightly more restrictive statement:

Proposition 12 Let X, Y be two complex Banach spaces such that the space Imp(X &
X, Y ®Y) is a linear subspace of L(X & X,Y & Y). Then a C-linear operator T
between X and Y is improjective if and only if it is improjective as R-linear.

Proof We already observed that R-improjective implies C-improjective. Assume now
T is not improjective as R-linear. Then (Tr)c is not improjective between X¢ and

T
Yc, which by Remark 32. is equivalent to saying that < 0 %) is not improjective from

- = TO TO 00 S
X®XtoY @Y. Since ( 0 7) = ( 0 O) + <0 7)’ the hypothesis implies that

0T

improjective from X to Y, and in the second case, T is not improjective from X to Y,
or equivalently, since Imp is self-conjugate, again 7 : X — Y is not improjective. O

TOY. . S 00}). . S
00/ not improjective or that [ = — ) is not improjective. In the first case, T not

We can use the examples of non-self-conjugate ideals from Sect. 2 to give immediate
examples of pairs which are not regular, showing that the hypotheses of Proposition
11 are necessary. Let X be Z>(«) or €2 (F) and consider the complex and real ideals
Op(X), the ideal of X-factorable C-linear operators (factorizing with C-linear maps),
and op(X), the ideal of X-factorable R-linear operators (factorizing with R-linear
maps). Then:

Example 3 The pair (op(X), Op(X)) is not a regular pair.

Question 1 Find other natural examples of regular or non-regular pairs of ideals.

4 A solution to the problem of Pietsch

Recall that an operator ideal (or class) U is proper if Ix € U implies X finite dimen-
sional, and that Op(X) is the class of X-factorable operators. We first list a few useful
facts.

Proposition 13 Let U be an operator ideal, and X,Y, Z be infinite dimensional
Banach spaces. Then

1. U is proper if and only if U C Imp,

2. if U is proper, then so is the operator ideal In 4 U,

3. Idz € Op(X) if and only if Z embeds complementably in X,

4. Op(X) NOp(Y) is proper if and only if X and Y are projectively incomparable.

Proof 1. The class Imp is proper and being proper is hereditary; this proves the “if”
part. For the “only if” part, assume U ¢ Imp for some ideal U, let T € L(Yy, Zy) be
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an element of U which is not improjective, and let t € L(Y, Z) be an isomorphism
between infinite dimensional complemented subspaces Y of Yy and Z of Zy which
witnesses that T is not improjective. The ideal properties of U imply that t and ¢~
belong to U. It follows that also Idy = t~! o ¢ belongs to U, implying that U is not
proper.

2. Assume Idz belongs to In+ U, and let S be some inessential operator on Z such
that Idz + S belongs to U. Since Idz + § is Fredholm with index 0 and by the ideal
properties of U, we deduce that some automorphism on Z belongs to U, and therefore
that Idz itself belongs to U. In particular, U is non proper as soon as In 4 U is not.

3. If Idz = TV is a factorization witnessing that Idz € Op(X), then VT is a
projection onto the isomorphic copy V Z of Z. Conversely if T is an embedding of
Z into X whose range T Z is complemented by a projection P of X onto Z, then
Idz = PT € Op(X).

4. the class Op(X)NOp(Y) is not proper if and only if there exists an infinite dimen-
sional space Z such thatIdz € Op(X) NOp(Y), i.e. by 3. Z embeds complementably
inboth X and Y. O

Item 4. in Proposition 13 suggest a way of constructing new proper ideals. However
the problem is that Op(X) is not in general an ideal, unless for example X is isomorphic
to its square; but this last property is unlikely to happen for Gowers-Maurey spaces.
To remedy this obstruction we extend Op(X) as follows:

Definition 10 Let X be a Banach space. We denote by Op=®(X) the ideal of operators
which are X" -factorable for some n € N.

It is clear that Op=“(X) is an ideal: if R, T € L(Y, Z) are X"" and X" -factorable
respectively, then R+T is X" -factorable. See for example the proof of [29] Theorem
2.2.2. From Proposition 134. we deduce:

Remark 4 Let X, Y be infinite dimensional Banach spaces. Then the ideal Op=®(X) N
Op=“(Y) is proper if and only X" and Y" are projectively incomparable for all
m,n € N.

We now consider X g, the “shift-space” defined by Gowers and Maurey in [18], see
also [27] and more details in [26] (see also [19] for considerations on equivalence of
projections on Xg). The space X is an indecomposable, non hereditarily indecom-
posable space, admitting a Schauder basis for which the shift operator S is an isometric
embedding, implying that X is isomorphic to its hyperplanes. Actually the complex
version of Xg has the very strong following rigidity property:

Proposition 14 (Gowers—Maurey) The following are equivalent for a subspace Y of
Xs.'

1. Y is isomorphic to Xg
2. Y is complemented in Xg
3. Y is finite codimensional in X g

We shall use the next crucial proposition, whose proof is postponed until the next
section and is of a more technical nature. The proof involves multidimensional versions
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of the machinery used by Gowers and Maurey in [18], and therefore requires some
familiarity with the use of K-theory for algebras of operators on Banach spaces and
in particular properties of Fredholm operators, as quite well explained in [26]. It also
requires certain facts of the K-theory of the Wiener algebra A(T), as well as some
conditions to apply complexification and obtain the real case. For these reasons we
keep those details for the next section.

Proposition 15 Let X g be the real or complex shift space of Gowers-Maurey. Assume
m,n € N. Let Y be an infinite codimensional subspace of Xs. Then there is no
isomorphism between an infinite dimensional complemented subspace of X' and a
subspace of Y".

Let us note here that we shall actually prove that a complemented subspace of X'
must be isomorphic to X g for some g < m, and therefore Proposition 15 will follow
from the fact that X ¢ does not embed into Y. Note also that the case m = n = 1 in
the complex case is immediate from Proposition 14 and this is the idea that was used
by Aiena and Gonzdlez in [1].

Let us first mimic the construction of [1] inside Xg. The first observation is that
the spectral properties of the shift operator S are similar to the usual properties of the
shift on £,, as follows.

Given ¢t € T (resp. {—1, 1} in the real case), the operator Id — ¢S is injective. We
claim that its image is not closed; indeed otherwise Id — ¢S would be an isomorphism
onto its image, and this is false, by considering for any N € N, the vector

N
Xy = Zt”en,
n=1

which has norm at least N /log, (N + 1) by [18] Theorem 5, while
(Id — £8)(xy) = tey — t" ey

has norm at most 2. This implies that for any r € T (resp. {—1, 1} in the real case) and
for some compact operator K; on X g, the operator

T, :=1d —tS + K,

has image of infinite codimension (see for example [24] Theorem 5.4). Denote Y; =
Im(7}) and consider 7; as an operator into Y;.

Proposition 16 Givent € T (resp. {—1, 1} in the real case), the ideal
U := Op~*(Xs) NOp~“(Yy)
is a proper ideal which is not contained in the ideal of inessential operators.
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Proof Since Y; is infinite-codimensional, by Proposition 15, all powers of X g and of ¥;
are projectively incomparable, or equivalently, Op=~® (X s)NOp=®(Y;) is a proper ideal.
Denote by iy, x the canonical inclusion of Y; inside X . The operator T; : X5 — Y;
belongs to Uy, and it is essential, since Id — %iy,xs T, = 1d — %(Id —tS+K;) =
%(Id + tS — K;) is not Fredholm. O

Theorem 4

1. In is not maximal among proper ideals: there exists a proper operator ideal V
withIn CV C Imp;
2. there is no largest proper ideal.

Proof 1.Pick V =V, := In+ U, which is a proper operator ideal by Proposition 132.,
contained in Imp by Proposition 131., and not equal to In by Proposition 16. 2. An
ideal U containing all proper ideals must contain Uy and U_j. Therefore the operators
T'=Id—S+Kjand T_; =1d+ S + K_; belong to U.

Then the Fredholm operator iy, x o 71 +iy_; x, o T—1 = 2Id+ K1 + K_1 belongs
to U, and therefore Id =Idx belongs to U. Since X s is infinite dimensional, U cannot
be proper. O

5 The proof of projective incomparability

This section is devoted to the proof of Proposition 15.

5.1 Complex version versus complexification of the shift space

We recall a few facts from [18]. If X (KK) is the version of the shift space defined
on K = R or C, then there exists an algebra homomorphism and projection map @
from L(Xs(K)) to some algebra of operators denoted A. S denotes the right shift and
L the left shift on the canonical basis of Xg. Elements of A are those of the form
D(T)=23 40 ar Sk + D ksl a_i L¥ for some sequence (a)x € £1(Z, K), which we
shall denote (ax(T))x, and we have that ||® (T)|| = > ez lax(T)|. For simplification
we shall denote @ (T') = Y, axS¥ in the situation above, even if S is not formally
invertible. The map @ has the property that 7 — @(T) is strictly singular for any
T € L(Xs(K)), which allows to reduce most of the study of operators on X¢(K) to
operators in A.

From this the authors of [18] concentrate on the complex case, in which case £ (Z)
identifies with the Wiener algebra A(T) of complex valued functions in C(T) whose
Fourier series have absolutely summable coefficients.

We may use the complex version X g(C) of Xg to give a negative answer to the
problem of Pietsch in the complex case. In order to be able to treat the real case as
well we shall see that it is enough to replace X s(C) by the complexification of the
real version of Xg, denoted (Xs(R))c. A few comments are in order. Both X g(C)
and (Xg(R))c have natural Schauder bases and contain two canonical isometric real
subspaces W and i W, where W is the space generated by real linear combinations of
elements of the basis. While in the complexification (X s(R))c these two form a direct
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sum, this is probably not the case inside Xg(C). Indeed the “no shift” version of the
norm of this space is the norm on Gowers-Maurey’s HI space, which is known to be
HI as a real space (see the comments on p475 of [12]) and therefore indecomposable
as a real space, and it is probable that similarly W and i W do not form a direct sum
in X g(C). This makes it more difficult to study real subspaces of X s(C) and suggests
the use of (Xs(R))c instead.

Consider the complexification (X s (R))c. Note that it is equipped with the complex-
ification of the shift operator on X g(IR), which is just the shift operator on (Xs(R))c
with its natural basis, and which we denote also S; therefore S is a power bounded,
isomorphic embedding on the space, inducing an isomorphism with its hyperplanes.
Likewise the complexification of the left shift is power bounded. By classical results
about complexifications, operators on the space are of the foom 7" = A + iB,
where A, B are R-linear operators (meaning that the formula (A 4+ iB)(x + iy) =
Ax — By 4+ i(Bx + Ay) holds); it follows that

T(x+iy) =Y (ax +ib)S* x +iy) + (V+iW)(x +iy)
keZ

= St +iy) + (V +iW)(x +iy),
keZ

where the series Ay is absolutely summable in C, the action of S on the complex space
(Xs(R))c is identified with the shift operator S there, and where V, W are strictly
singular. By the results of Sect. 3 this is the same as saying that 7 — ) ", Ax S is strictly
singular as a complex operator. Therefore we may also define an algebra homorphism
and projection map (again called @) from L((Xs(R))c) to the algebra (again denoted
A) of operators of the form @ (T') = ZakSk for (ax)ir € £1(Z, C) denoted (ar (T))r.

Summing up, in what follows, X will denote either the complex version Xs(C) of
the shift space, or the complexification (X g(R))c of the real version of the shift space,
and A and ¢ the corresponding algebra and map.

Asin [18], ¥ is the map defined from L(X) to the Wiener algebra A(T) by

&(T) = ZakSk = ¥ (T)(") = Zake’”‘@.

keZ keZ

While in the case of X = Xg(C), ¥ induces an isometric isomorphism between A
and A(T) ([18] Lemma 11), in the case of X = (Xs(IR))c the map ¥4 is just an
isomorphism, whose norm and norm of the inverse depend on the equivalent norm
chosen on (Xs(R))c (by [18] Lemma 11 in the real case). This does not affect the rest
of our computations.

We shall also denote by @ the induced projection from L (X", X™) = M, ,(L(X))
onto My, ,(A),i.e.if T = (T;;); j € My, n(L(X)) then we define

D ((Tij)i,j) = (@(T3j))i,j
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and we note that

&(T) = ZAkSk,
k

where Ay = Ax(T) € M, ,(C) is the matrix (ax(7;;));, j, which is a less cumbersome

notation than the more detailed (>, a,i’j Sk)i,j, with a,i’/ = ar(T;)).
Likewise we define a map ¥ from L(X", X"") to M,, ,(A(T)) by the formula

U (T) (") = ZAk(T)eikG.
k

We shall make use of some notation and results of K-theory of Banach algebras. If A
is a unital Banach algebra, then M, (A) denotes the set of (n, n)-matrices of elements
of A of arbitrary size, i.e. Moo (A) = U,, M, (A) with the natural embeddings of M,,(A)
into M,,1(A). Idempotents of M, (A) coincide with idempotents in one of the M,, (A).
Among them 7,, denotes the identity on M, (A) (seeninside M, (A)). Asusual GL,(A)
denotes the set of invertibles in M, (A), and we also define GL(A) = U, GL,,(A)
with the natural embedding of GL,(A) inside GL,4+1(A) defined by adding ones
along the diagonal. If A € L(X) is an algebra of operators on a space X then I, will
also be denoted Idx» or Ix». Two idempotents P, Q of My (A) are similar if there
exists some N € N and some M in GL y(A), such that, denoting the natural copy of
M inside G Lo (A) still by M, the relation

P=M'oM

holds. Note in particular that if P and Q are two similar idempotents in M, (L (X))
for some X then the images PX and QX are isomorphic. Regarding the very basic
results of K-theory we shall use, we refer to [4] for background and [26] for a survey
in a language familiar to Banach space specialists.

5.2 Properties in the Wiener algebra A(T)

We recall classical or easy properties of the algebra C(T) of continuous complex
functions on the complex circle T, the Wiener algebra A(T) of functions in C(T)
with absolutely summable Fourier series, and their matrix algebras. They are certainly
folklore but not always easy to find explicitly in the literature, so we sometimes prefer
to give a short proof rather than a too abstract or too general argument. We recall
Wiener’s Lemma [32]: if an element of A(T) is invertible in C(T) (i.e. does not vanish
anywhere on T), then its inverse belongs to A(T) as well. See [26], either Lemma 7.2
for a Banach space theoretic proof or the commentary after Proposition 2.2 for the
classical proof.
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Proposition 17 The following hold

1. Anelement M of M, (C (T)) is invertible if and only if det(M) is invertible in C (T)

2. An element M of M,,(A(T)) which is invertible in M,,(C (T)) must be invertible in
M, (A(T))

3. The set GL,(A(T)) of invertibles in M,,(A(T)) is dense in GL, (C(T))

Proof 1. follows from the cofactor formula in the abelian algebra C(T). 2. follows
from the cofactor formula and the fact that det(M)~! belongs to A(T) by Wiener’s
Lemma. 3. since A(T) is dense in C(T), M,,(A(T)) is dense in M, (C(T)). If M is
invertible in M, (C(T)) then an element of M, (A(T)) close enough to M will be
invertible in M, (C(T)) and therefore in M, (A(T)). O

Lemma 2 Two idempotents of Mo (A(T)) which are similar in Mo (C (T)) are similar
in Moo (A(T)).

Proof Let P and Q be such idempotents, and let M be invertible in some G Ly (C(T))
such that Q = M PM~'. By Proposition 17 3. we may find a perturbation M’ of
M belonging to GLy(A(T)). Then Q' = M'PM'isan idempotent of My (A(T))
which is similar to P in My (A(T)), but also to Q if M’ was chosen close enough to
M. Indeed it is a classical and immediate computation (valid in any Banach algebra)
that Q and Q' are similar through the invertible U = I — Q(Q' — Q) + (Q — 0" Q
as soon as Q' is close enough to Q in My (C(T)) (see e.g. [26] Lemma 9.2). Since Q
and Q' belong to the algebra My (A(T)), U is an invertible of My (A(T)). O

5.3 Complemented subspaces in powers of X

Recall that X is either X5(C) or (Xg(R))c. We now prove several results indicating
how the rigidity properties of X proved in [18] carry over to its powers X”. As a first
result and for clarity let us quickly repeat the ideas of [18] to show that X s(R)¢ also
satisfies the equivalence of Proposition 14.

Proposition 18 The following are equivalent for an infinite dimensional subspace Y
of X

1. Y is isomorphic to X
2. Y is complemented in X
3. Y is finite codimensional in X

Proof 3. = 2. is trivial, and 3. = 1. is due to the existence of the shift operator S. 1.
= 3.: if there is an embedding of X into X, it is not infinitely singular, and it follows
that it must be Fredholm. This can be seen as a consequence of Corollary 20, whose
proof follows below. 2. = 3.: If P is a projection on X then ¥ (P) is an idempotent
in A(T), therefore it is either constantly O or 1, meaning that @ (P) is either Ix or 0.
Then either P or Id — P is a strictly singular projection and therefore has finite rank.
So Y = PX has finite codimension. O

We now prove a technical lemma which is a multidimensional version of Lemma
14 from [18]. It can be thought of as carrying spectral properties of the shift map S
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over to general operators on powers of X. This involves two aspects: passing from S to
linear combinations of powers of S as in [18], and passing from the one dimensional
to the multidimensional setting. The version presented here strongly benefited from
suggestions of the referee.

Lemma3 Let T € L(X", X™), for m,n € N. If some non-zero (a;)i=1....,
belongs to Ker (W (T)(t)) for some t € T, then the restriction of T to the subspace
{(ayx, ..., 0nx), x € X} of X" is infinitely singular.

Proof To give a reasonably detailed proof we first fix some useful notation. For k = n
orm,a = (a1, ...,o) in Ck and x € X we definea © x := (ayx, ..., arx) € XK.
Equipping C* and X* with the respective £;-sum norms we note and shall use the esti-
mate |aOx|| < ||l |lx]. We alsoequip (m, n) scalar matrices with their corresponding
norm as operators from C" to C" (equipped with their respective £;-sum norms), and

for such a matrix A and for « = («y,...,a,) € C", 8 = (B, ..., Bn) € C", we
denote

Bi aj

IBm oy

Note the estimate ||Ax| < ||A||||e||, that we shall use along the proof.
Recall that ¥ (T) (1) = ), t* Ax, where the Ay are (m, n) scalar matrices, and that
o = (ay, ..., a,) belonging to the kernel of the matrix ¥ (T')(¢#) means that

0= ZtkAkOl = ZtkAk
k k

o1
(o47]

Recall also that &(T) = Y, AxSk.
For N € L (the lacunary set of integers defined in [18]), consider the vector

log, (1 + N?2) 2
XN ::xN(t) = ng Z t_-’ej e X.
j=N?

The vector x has norm 1 as stated in the proof of [18] Lemma 14 (a consequence of
[18] Lemma 7). We claim that if « = (a7, ..., o) belongs to the kernel of ¥ (T')(¢),
then

P(T)(aOxy) =D(T)(ajxn, ..., apxN)

tends to O when N tends to co. This will imply that the restriction of @ (T') to the
subspace {¢ ©® x,x € X} is infinitely singular: indeed by choosing values of N
sufficiently far apart, we can then define a subspace Y generated by a basic sequence
of vectors of the form o« ® xy, N € L, with successive supports on the natural basis
of X", so that the restriction of @ (T') to Y has norm at most some given & > 0. Since
T — & (T) is strictly singular, this implies, as commented in the Background section,
that T itself is infinitely singular on the required subspace {o © x, x € X}.
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To prove the claim let us fix a non-zero « in the kernel of ¥ (T)(¢), assuming
without loss of generality that ||« || = 1. Taking N large enough so that ||@(T) — Uy/||
is less than some given ¢ > 0, with Uy = Z/ICV:_ N Ak Sk, it is sufficient to prove that
lUn(x © xpn)|l < € for N large enough.

We note that

N log (1 + N?)
Un@O@xy)= Y A @0xy) =———" Z Zz TAS @ @e)),
k=—N k=—N j=N2
where we used the linearity of the maps x — (AR)(x © x), for all A (m,n)-scalar
matrices, R operators on X, and @ € C". Note also the key formula (AR)(¢ © x) =
(Aa) ® Rx, from which
AcS (@ @ ej) = (Ara) © ¢4

holds. We deduce that

N2 N  2N?
- Un(@Oxy) = 17 (Aka) O ek,
logy (1 + N%) k:Z—:N j§2 "

which, by using i = j + k and reorganizing, becomes

2N24N min(N,i—N?)
Uv@oxn) = Yy > *(Ara) ©ej (1)

i=N2—-N k=max(—N,i—2N?)

N2
log> (1 + N2
Note that the inside sums

min(N,i—N?)
vi(er) = > *(Are) O e

k=max(—N,i—2N?)

are uniformly bounded over i: indeed the ¢;’s are normalized and therefore

+00 +00
i@l < D llArell < D 1Akl < +oo.
k=—00 k=—0c0

In the sum over i in (1) we have 4N terms t_iyi () corresponding to N2—-N<i<
N2+ N and 2N2 — N < i < 2N? + N, and therefore the sum of these terms is
dominated in norm by

+o00
AN Y A 2
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We note that for each of the remaining terms =/ y; () in (1), corresponding to i €
Iy := [N?+ N,2N?2 - N1, the sum defining y; («) runs exactly over k in [N, N].
So the sum of those ¢ " y; (&) is

N N
Yo =17 Y (A 06 = ( > t"(Aw)) © (Z z—"e,-) 3)

iely iely k=—N k=—N iely

where we used the bilinearity of the maps (o, x) = o © x.
Using that o belongs to the kernel of ), t* Ay and that || Aya|l < ||Ax|l, we have
that

N
Yo )| = | Y A | = Y A )
k=—N lk|>N |k|>N
On the other hand
) N2 )
T . —— Y e
1 1 2
icly ogy (I + N7) i€[N2,N2+N[ U2N2—N,2N2]
SO
» N? 2N?
Zt e = 5 +2N = ———— ®)
. log,(1 + N?) log, (1 + N?)
iely
for large enough N € L. From (3),(4) and (5) we deduce
, 2N?
™ < — A 6
Dot < T D A (6)

iely |k|>N

Inserting in (1) the estimates (2) and (6) corresponding to i outside and inside of
Iy respectively, we finally obtain

4log, (1 + N?)
IUn@ @ X0 = == Al +2 3 1Al ™
keN k>|N|
This tends to O when N tends to infinity, as claimed. O

Following the terminology from [26], we shall say that a scalar valued map ¢
defined on T vanishes on T if ¢ (#) = O for some ¢ € T, and does not vanish on T if
¢() #Oforallt € T.
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Proposition 19 The following hold for n € N:
T,
1. Let T € L(X, X"), written in blocks as T = | . If there exists some t € T
T,
such that W (T;)(t) =0 foralli =1, ...,n, then T is infinitely singular.
2. Let T € L(X"). If det(¥ (T')) vanishes on T then T is infinitely singular.
3. Let T € L(X"™). If det(¥ (T')) does not vanish on T then T is Fredholm.

Proof Assertion 1. follows from setting « = 1 in Lemma 3.

Likewise, if ¢t € T is such that det(¥ (T)(¢)) = O then there exists a non-zero
a = (ay,...,a,) € C" belonging to Ker(¥(T)(t)), and therefore T is infinitely
singular on some associated infinite dimensional subspace of X” by Lemma 3. As
commented in the Background section, this means that 7 itself is infinitely singular,
and this proves 2.

3. If det(W(T)(t)) # O for all t+ € T then ¥ (T) is invertible in M, (A(T)) by
Proposition 17 1. 2. Let U be an operator such that ¥ (U) = Y (T)" L. From¥ (TU) =
Idand¥ (UT) = Id wededuce TU —Id and U T —1d are strictly singular, and therefore
T is Fredholm. O

Corollary 20 Operators on X" are either Fredholm or infinitely singular. In particular
the space X" is not isomorphic to its subspaces of infinite codimension.

In the next proposition we shall use the fundamental fact that the monoid of
similarity classes of idempotents in M, (C(T)) is N, or equivalently, that the rank
(i.e. for A € My (C(T)) the common rank of all matrices A(¢) for r € T), is the
only associated similarity invariant. This is a consequence of the essential fact that
K1 (C) := Ko(C((T)) identifies with the set of homotopy classes of invertibles in
G L, (C) and therefore is {0} by contractibility of GL, (C) (here C{(T) denotes ele-
ments of C(T) which vanish in 1). See for example [4] Theorem 8.2.2, which also
reformulates as the Ko-group of C(T) being equal to Z, see for example [4], Example
5.3.2 (c), or [26], Example 1 p49 or Examples 9.4.1.

Proposition 21 Let n € N. A complemented subspace of X" is isomorphic to X™ for
some m < n.

Proof Let P be a projection defined on X" and note that @ (P) is also a projection,
which is a strictly singular perturbation of P. According to the Lemma on p49 of [26],
the map P is therefore similar to a projection onto either some finite codimensional
subspace of @ (P)X", or @(P)X" @ E where E is finite dimensional. Therefore P X"
is a finite dimensional perturbation of @ (P)X" and since X™ is isomorphic to its
finite dimensional perturbations, it is enough to prove the assertion for @ (P). In other
words we may assume that P € M, (A).

The image of P through ¥ is an idempotent of M, (A(T)) and in particular of
M, (C(T)). By the fact before the proposition, ¥ (P) is similar inside My, (C(T)) to
one of the canonical projections I, (i.e. the identity of M,,(C(T))). According to
Lemma 2, it follows that ¥ (P) is similar to [,,, inside M (A(T)), i.e.

W(P)=MI,M™!
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for some invertible M in My(A(T)) of appropriate dimension, and therefore the
relation lifts to

P=UldynU™!

for some invertible U in GLy(A) (seeing also P and Idx= as operators on X” in
the canonical way). It follows that P X" is isomorphic to X™. Finally m < n as a
consequence of Corollary 20. O

The proof of the above proposition implies the more technical result which follows:

Lemma4 If P € M,(A) is a projection on X" such that PX" is isomorphic to X,
then there exist operators Uy, ..., Uy, Vi, ..., V, in A such that

PX" ={(Uix,...,Ux),x € X}
and such that
uvi+---+U,V, =Idy.

Proof By the above P = UldxU ™! for some U € GLy(A) in the appropriate
dimension N, but it is easily checked that this dimension may be assumed to be n and
therefore U € G L, (A). It follows that P admits the matrix representation

P =(UiVj)i<i, j<n

with Zi ViU; = Idyx, where (Uy, ..., U,) is the first column of U and (V{, ..., V)
is the first row of U ! and therefore these operators belong to A. Note also that
Idy =U;Vy +---+ U,V, since A is abelian. We have the formula

Py, ...,xp) = Wz,...,Uy2)

where z = ), Vix; and since ) ; V;U; = Idy, z takes all possible values in X.
Therefore

PX" = {(Uix, ..., Upx), x € X).

O

A 1-dimensional subspace of C" generated by a vector a is complemented by the
orthogonal projection p(v) = <”‘;’|1"2> a. In the next lemma we show how a similar result
holds in X" for operators in M, (A). By diag(M) we shall denote the diagonal block
matrix operator on X" with M € L(X) on the diagonal. For arbitrary W € A, we
denote by W the operator in A such that ¥ (W) = ¥ (W). That s, if W = Y nez anS",
then W = 3", _, a—,S". We extend this definition in an obvious way to elements of
My, (A). Finally if T € M, 1 (A), then T' € M; ,(A) denotes the transposed matrix
of T.
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Lemma5 Assume T € My 1(A) is finitely singular from X to X". Then T X is com-
plemented in X" by the projection P = Bdiag(A~"), where A = T'.T € Aand
B=T.T € M,(A.

Proof Let us see T as a column

where each T; is an operator in A. Since 7 is finitely singular, ¥ (4) = ), |l1/(T,~)|2
does not vanish on T, by Proposition 19 1.. So it is invertible (in A(T) by Wiener’s
lemma), and so A is invertible in 4. The map P takes values in 7X and we claim
that PT = T, implying that P is a projection onto 7 X. The claim follows from the
computation (using that A is abelian)

PT =TT diag A" )T =TT (A™'T); =T Y (TA™'T) =TAAT =T. 1

14
We can now prove the main technical result of this section.

Proposition 22 Assume m,n € N. Let Y be an infinite codimensional subspace of
X. Then there is no isomorphism between a complemented subspace of X" and a
subspace of Y".

Proof Assume there is such an isomorphism. By Proposition 21, it follows that there
exists an isomorphic embedding R of X into Y”. We denote T = @ (R), and since
R — T is strictly singular, we note that 7 is finitely singular. So by Lemma 5, P =
TT' diag(A~") is a projection onto 7 X, where A := T'T.

Let U;, V; be given for P by Lemma 4. Therefore, and letting s := 7 — R,

Uy Ui Ui
| =pP| ¢ | = 7T diaga™)
Un Un Un
Ui Ui
= sT diag(A~") | : | + RT diag(A™") | :
U, U,
Ui
Since s is strictly singular, the operator | : | is therefore the sum of a strictly singular
Un
51
operator | : | and of an operator with values in Y", which implies that U; — s;

Sn

@ Springer



There is no largest proper operator ideal 1069

takes values in Y for i = 1, ..., n. Then the operator Zi(Ui — ;) V; takes values
in Y, and on the other hand itis equal to ), U; Vi — >, 5;V; = Idx — >, 5; V;. We
would therefore obtain a strictly singular perturbation of the identity with values in an
infinite codimensional subspace of X, a contradiction with the stability properties of
the Fredholm class. O

We finally arrive to the objective of this section, the Proof of Proposition 15: if
Y is an infinite codimensional subspace of Xg (real or complex), then there is no
isomorphism between a complemented subspace of X'¢' and a subspace of Y".

Proof In the complex case this is just Proposition 22 for X = X g(C). In the real case,
if Z is a complemented subspace of X'¢' isomorphic to a subspace of Y", then Z¢ is a
complemented subspace of (X )¢ isomorphic to a subspace of Y, and therefore Z¢
(and Z) must be finite dimensional by Proposition 22 in the case X = (Xs(R))c. O

6 Comments and problems

Our results leave open the following new version of [29] Problem 2.2.8.

Problem 3 For which space ideals A does there exist a largest operator ideal U with
A = Space(U)?

Recall that a space ideal is a class of spaces containing the finite dimensional ones
and stable under taking direct sums and complemented subspaces. For any ideal U,
Space(U) is a space ideal, [29] Theorem 2.1.3, and conversely a space ideal A always
coincides with Space(Op(A)), [29] Theorem 2.2.5. And our main result is that the
answer to Problem 3 is negative for the space ideal F' of finite dimensional spaces.

Our techniques can actually be used to obtain a negative answer for for several
additional classical space ideals, including the space ideal H of spaces isomorphic
to a Hilbert space (finite or infinite dimensional) or the space ideal of superreflexive
spaces. This is consequence of the next general proposition. Recall that two Banach
spaces are said to be totally incomparable when no infinite dimensional subspace of
one is isomorphic to a subspace of the other.

Proposition 23 Let X g be Gowers-Maurey’s shift space. Let A be a space ideal with
the property that all Banach spaces in A are totally incomparable with X 5. Then there
is no largest ideal among the class of operator ideals U satisfying A = Space(U).

Proof Given spaces X, X', denote by Op (X, X”) the class of operators which factor
both through W @ X", for some n € Nand W € A, and through W’ & X'?, for some
p € Nand W € A. This in a ideal by the hypothesis that A is a space ideal. We
make the following Claim: If Y is an infinite codimensional subspace of X, then
Space(Op“(Xs, Y)) = A.

Assuming the Claim holds, apply it to Y1 and Y_; from Proposition 16. So the
ideals Op;“ (X, Y1) and Op3“ (X, Y_1) both have their space ideal equal to A. On
the other hand fori = —1, 1 the operator 7; defined before Proposition 16 belongs to
Op;“(Xs, Y;) and therefore, since iy, x; o T1 +iy_, x5 o T— is Fredholm on X, the
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operator Idy, belongs to the sum of the two ideals. Since X g does not belong to A,
this implies that Space(Op;“ (X, Y1) + Op;*“(Xs, Y_1)) contains a space which is
not in A. Therefore there is no largest ideal U among those with Space(U) = A.

To prove the Claim, we use the classical result of Edelstein and Wojtaszczyk [11]
that total incomparability between two spaces Z1, Z; implies that any complemented
subspace Z of Z @ Z, is isomorphic to the sum of two complemented subspaces of Z
and of Z; respectively. First note that if Z belongs to A then Idz obviously factorizes
through Z @ X and through Z @ Y, and therefore belongs to Op3“(Xs, Y). So
we have the inclusion A C Space(Opj“’(X s, Y)). Conversely assume Idz belongs
to Op;“(Xs, Y). Then by Remark 4 and total incomparability, it follows from the
Edelstein-Wojtaszczyk result that (i) Z must be isomorphic to W @& X’ for some
W € A and X’ complemented into some power X' and (ii) Z must be isomorphic to
W’ @ Y’ for some W' € A and some complemented subspace Y’ of some power Y".
From (i) and (ii), X’ embeds complementably into W’ & Y. Total incomparability of
W’ with Y’ of X" with W', and the Edelstein-Wojtaszczyk result imply that X" embeds
complementably into Y’ @ F for some finite-dimensional F, and therefore into some
power of Y. By Proposition 15 this implies that X" is finite dimensional and therefore
that Z belongs to A. We have proved the reverse inclusion Space(Op;“ (X, Y)) C
A. O

Since X is separable reflexive, the following remain open:

Question2 1. Let RE F L denote the space ideal of reflexive spaces. Does there exist
a largest operator ideal U with Space(U) = REFL?
2. Same question for the space ideal of separable spaces.

It may be amusing to observe that it follows from Proposition 21 that the class
A of spaces isomorphic to some power of Xg is a space ideal. Therefore A =
Space(Op=®(Xg)) by [29] Theorem 2.2.5.

Some natural comments and questions about examples from the first part of the
paper are also included below.

Question 3 Are the spaces Z>(«) and Z>(«) from [20] projectively incomparable for
a # 07 essentially incomparable?

Ferenczi-Galego [13] prove that if a space is essentially incomparable with is con-
jugate, then it does not contain a complemented subspace with an unconditional basis.
For Z5(«) (more generally, for twisted Hilbert spaces), by Kalton [21], a comple-
mented subspace with an unconditional basis would have to be hilbertian. We do not
know whether Z;(«) contains a complemented Hilbertian copy (for Z» this is impos-
sible, by [22] Corollary 6.7). It may be worth pointing out that the above result from
[13] actually holds (with the same proof) for projective incomparability:

Proposition 24 [f a complex space X is projectively incomparable with its conjugate,
then it does not contain a complemented subspace with an unconditional basis.

Proof 1f Y is a subspace of X with an unconditional basis (ey), then Y is a subspace
of X which is isomorphic to Y by themap » ; Aje; = »_; A;e;. If Y is complemented
in X then Y is complemented in X. O
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