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Abstract—The world has a considerable portion of its popu-
lation living in vulnerable conditions, with about 47% of people
living in poverty and approximately 9.3% in extreme poverty. To
understand and face this problem, it is essential to have access
to updated data on poverty and trace the socioeconomic profile
of the population. In this context, Censuses and demographic
surveys play a crucial role. However, conducting a Census in
certain regions faces significant challenges, both in terms of cost
and logistics. It is a complex process that demands significant
resources and an extensive data collection effort throughout the
national territories. Given the difficulties of collecting data in
the traditional way, passively collected data sources, such as
satellite imagery, may be an alternative way to measure these
results. Therefore, we use computational techniques to combine
nighttime and daytime satellite imagery to predict socioeconomic
indicators. Our results demonstrate the efficacy of combining
these features in predicting the average income of cities across
Brazil. In particular, the use of neural networks for inferring
socioeconomic indicators has demonstrated highly effective. This
technique holds the potential to enhance our comprehension of
the socioeconomic landscape in Brazil and provide technical
means for the analysis of countries that face difficulties in
conducting Censuses. Our method has convincingly demonstrated
that satellite images can be used and applied for socioeconomic
purposes.

Index Terms—Deep Learning, Socioeconomic indicators, Re-
mote Sensing, Satellite Imagery

I. INTRODUCTION

Recurrently, the world has been confronted with series of
global challenges, particularly regarding vulnerable popula-
tions. Conflicts, financial crises, and the impact of the COVID-
19 pandemic have worsened the socioeconomic conditions of
these populations [2], requiring a comprehensive understand-
ing of their needs and the implementation of effective public
policies.

Particularly, in Brazil, poverty is a reality that affects a
significant portion of the population. Continuously, millions of
people live in extreme poverty, facing difficulties in meeting
their basic needs [22] [1]. Understanding the magnitude and
dynamics of these social problems remains a challenge in
many countries, making it difficult to implement socioeco-
nomic measures.

Nationwide census is the standard manner to gather infor-
mation about a population and its socioeconomic characteris-
tics. These surveys are costly and demand significant effort,
especially in countries with a large population like Brazil,
which has over 200 million inhabitants. The allocated budget

for the 2022 Brazilian census was nearly U$ 400 million [14],
which prevents continuous monitoring of the population. With
a decennial periodicity between censuses, there is a large gap
between social problems and government actions. In Brazil,
the COVID-19 pandemic aggravated the situation, especially
in hard-to-reach regions, postponing the 2020 census in two
years [20].

The delay in obtaining the data negatively impacts the
development of efficient public policies. Fortunately, in recent
decades, the availability of a large amount of passively gener-
ated data has shown potential in overcoming these obstacles
- among these data sources, satellite imagery stands out. In
the 21st century, numerous satellites have been launched for
remote sensing, generating massive public data [18]. At the
same time, machine learning (ML) techniques have become
increasingly sophisticated, enabling the analysis and mapping
of populations in vulnerable situations [4].

This work utilizes Deep Learning models combined with
daytime and nighttime satellite images to predict indicators,
particularly the average monthly income across the national
territory of Brazil, the 5th largest country in the world. The
hypothesis is that the patterns observed in aerial images of
urban agglomerations can reveal the level of socioeconomic
indicators. The proposal uses transfer learning techniques,
loading the weights of a model pre-trained with dataset Ima-
geNet [24] into a new model; initially, we train a feedforward
network to predict nighttime light (NTL) indices. This first
stage provides a fine-tuning of the methodology. Subsequently,
the model provides features used to estimate the average
income of cities. Through regression analysis, we demonstrate
that the features extracted by the model are effective in
predicting this socioeconomic indicator.

The rest of the article is organized as follows: Section
II describes related works, introducing the background of
using deep learning and satellite images for predicting so-
cioeconomic indicators. Section III describes the methodology
proposed. Section IV presents the experiments and results.
Finally, Section V presents the conclusions.

II. RELATED WORK

A popular approach in the analysis of economic activity
involves the use of satellite images. Such images, when
captured during the night, can detect light emissions. One of
the pioneering studies, by Elvidge et al. [8], has demonstrated



Fig. 1: Methodology Workflow

a high correlation between nighttime lights (NTL) and gross
domestic product (GDP), as well as electricity consumption.
The study covered 21 countries and utilized nighttime images
from the Defense Meteorological Satellite Program (DMSP)
[16]. In another work, Elvidge et al. [9] demonstrated that NTL
has the potential to indicate human presence and land surface
changes, in addition to predicting metrics like annual growth
rates. However, according to Jean et al. [11], this approach is
not as effective to distinguish differences in economic activity
over impoverished areas, where light levels are generally low
and homogeneous.

Another approach used by various authors involves the
utilization of only daytime lights for predicting socioeconomic
indicators. The study conducted by Duque et al. [7] is based on
the premise that the physical appearance of a human settlement
reflects its society. The assumption is that people living in
urban areas with similar housing conditions have similar social
and demographic characteristics. In their study, they used
images acquired with DigitalGlobe’s Quickbird satellite [6] to
extract land cover, urban texture, and urban structure features.

Xie et al. [27] combines nighttime and daytime lights. The
authors trained a neural network to predict nighttime light
indices from daytime images. From the neural network, they
extracted features that relate the images to the socioeconomic
indicators of each location. Subsequently, using the features,
a second model applies regularized regression methods (ridge

and lasso) to predict poverty indices based on the Living
Standards Measurement Study (LSMS) conducted in Uganda
[13]. Upon this methodology, Jean et al. [11] proposed an
expansion of this work to five African countries: Nigeria,
Tanzania, Uganda, Malawi, and Rwanda.

In the case of Brazil, the first study proposing a similar
methodology to Xie et al. and Jean et al. was conducted by
Castro and Alvarez [5], who focused on two Brazilian states:
Rio Grande do Sul and Bahia. Following recent works, Castro
and Alvarez presented multiple approaches, comparing only
nighttime light features, only daytime light features, features
extracted from a transfer learning model (pre-trained with
ImageNet), and the combination of all these features using
regularized regression methods.

III. METHODOLOGY

The goal is to extract socioeconomic features from satellite
imagery using a fine-tuned Convolutional Neural Network
(CNN) [12] enabling us to predict the average monthly income
of Brazilian cities. Our hypothesis is that by training a model
to predict the radiance levels (class) of Nighttime Lights
(NTL), it will produce features suited to identify human-built
structures such as roads, buildings, and farms. Such structures,
which correlate to the wealth of a population, should provide
for predicting the monthly income of the corresponding urban
areas by means of a Regularized Regression model.



Our methodology utilizes NTL images – illustrated in
Figure 2, from which we gather georeferenced data labeled
with radiance indices across the Brazilian territory. From
the georeferenced data, we acquire the set of corresponding
daytime images considering each NTL point. Next, we use the
daytime images as input and the NTL radiance indices of each
city as labels; with this setting, we fine-tune a CNN model
pre-trained with ImageNet. The model, previously trained on
a general images-classification problem, now is refined to
predict the radiance levels given the daytime images. Lastly,
we use the features extracted by the CNN model as input to a
Regularized Linear Regression model whose goal is to predict
the average monthly income of the cities.

Figure 1 illustrates the methodology: (I) Gaussian mixture
discrete radiance categorization; (ii) retrieval of corresponding
daytime images; (iii) fine-tuning of the CNN model; and
(iv) regression. The subsequent subsections provide a detailed
description of each step.

A. Gaussian mixture radiance categorization

We acquired nighttime satellite images of Brazil from the
Visible Infrared Imaging Radiometer Suite (VIIRS) satellite
[17], which provides comprehensive global nighttime imagery.
The images, dated 2021, contain georeferenced radiance levels
representing the intensity of artificial lights in the entire globe.
We refer to these georeferenced radiance levels as NTL points.

To associate each NTL point with its corresponding city, we
employed a geospatial shapefile containing the boundaries of
the Brazilian municipalities. These shapefiles were obtained
from the official website of the Brazilian Institute of Geogra-
phy and Statistics (IBGE) [19]. By matching the coordinates
of each NTL point to the boundaries of the municipalities, we
assigned the points to their respective city codes.

Next, we classify each point based on its radiance level; we
used the technique Gaussian Mixture Model. The categoriza-
tion was necessary because the next steps of the methodology
are based on a classification task, hence, it assumes discrete
labels.

According to Bishop [3], a Gaussian Mixture Model is
defined as a linear superposition of K Gaussian densities:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (1)

where x is the observed variable, πk is the mixing coefficient
for the k-th component, and µk and Σk are the mean vector
and covariance matrix, respectively, for the k-th component.

We employed K = 3 Gaussian distributions to achieve
three categories of NTL intensity: low, medium, and high.
By fitting the GMM to the average radiance values of the
cities, we estimated the mean, covariance, and weights for
each Gaussian distribution. Subsequently, we assigned each
city to the category represented by the Gaussian distribution
with the highest weight, categorizing them into low, medium,
or high NTL intensity.

Fig. 2: NTL image from satellite VIIRS/DNB. The image
depicts Brazil in 2021.

B. Retrieval of corresponding daytime images

In addition to nighttime images, we employed high-
resolution daytime images. For each selected city, we chose
the 100 NTL points closest to the city center. For each of
these points, we obtained their corresponding daytime image.
Complementing the NTL images, the incorporation of daytime
images adds contextual information about the urban landscape,
infrastructure, and socioeconomic characteristics of the cities.

To acquire the daytime images, we used the Google Maps
Static API [23]. This API allows the download of images with
400x400 resolution at zoom level 16 – illustrated in Figure 3.
The API ensures consistency as all images are obtained under
the same specifications. Accordingly, each daytime image is
linked to its corresponding NTL radiance, indicating low,
medium, or high intensity.

C. CNN fine-tuning

After labeling the daytime images with their NTL radiance
classes, the next step was to extract features from these images
using a CNN pre-trained with ImageNet – we experimented
with architectures VGG16 [25] and ResNet50 [10]. These
images are used as input, and their labels as output, to
train the model. That is, the model is trained to predict the
corresponding class of each daytime image. Upon completion
of the training process, the model will have extracted highly-
descriptive features from the daytime images. This process,
known as fine-tuning, entailed unfreezing the weights of the
convolutional layers and adding a new block of classification.

Upon completion of the training, we considered the last
block of layers to extract the output from the final convolu-
tional layer, resulting in a feature vector for each input image.
We hypothesize that if these features can accurately predict the
radiance class, they are also suited for predicting the monthly
income of Brazilian cities. This is due to the correlation
between radiance and human-built structures, which in turn
reflect the socioeconomic status of a population.



Fig. 3: Daytime images from Google Maps Static API representing low, medium and high NTL radiance classes respectively

We obtained 100 feature vectors for each of the 140 cities,
each of which contains 2,048 feature maps with 7x7 size. Each
set of 100 vectors was aggregated into a single vector by means
of average. This process resulted in 140 vectors, one for each
city.

We compared architectures VGG16 and ResNet50 in the
preliminary task of predicting the radiance. VGG16 achieved
an accuracy of 0.83, while ResNet50 yielded a slightly lower
result of 0.82. We present the results in Table I, in the table,
one can see that VGG16 presented the best results for all the
metrics, but AUC. The performance of architectures VGG16
and ResNet50 differ by nearly 1%, which is not statistically
significant. Yet, these results indicate a higher prospect for
VGG16, which might surpass the performance of ResNet50
in larger datasets, or for similar problems. For the rest of this
work, we experiment with both architectures, as detailed in
Section IV.

TABLE I: CNN architecture metrics obtained by training
the models to predict the NTL radiance class from daytime
images.

Model Accuracy Precision Recall AUC

VGG16 0,8333 0,8333 0,8333 0,9144

ResNet50 0,8210 0,8213 0,8205 0,915

D. Regularized Linear Regression
In the final step, we employed the features extracted from

the daytime images to predict the average monthly income
of the cities. This machine learning process considered the
projected average monthly income provided by the Brazilian
agency Fundacao Getulio Vargas (FGV) for 2020 [26]; this
income projection is based on the Individual Income Tax
Return and on the preliminary population estimate from the
Brazilian Institute of Geography and Statistics.

We used this data to fit a Regularized Linear Regression,
which is a technique that introduces a penalty term to the tradi-
tional least squares method, helping to prevent overfitting and

improving generalization performance. In our case, we used
ElasticNet regularization, which combines both L1 (lasso) and
L2 (ridge) penalties, as follows:

min
w

1

2nsamples
∥Xw − y∥22 + αρ∥w∥1 +

α(1− ρ

2
)∥w∥22 (2)

where nsamples is the number of samples in the dataset, y the
target vector, X the feature matrix, and w the coefficient vector
to be estimated; α is the regularization parameter that controls
the overall strength of regularization – a higher value of α
leads to a stronger regularization; ρ is the mixing parameter
in the range [0,1] that determines the balance between regu-
larizations L1 and L2 – 1.0 for L1 only and 0.0 for L2 only.

IV. EXPERIMENTS AND RESULTS

We present our experiments and results with respect to the
task of predicting the average monthly income of Brazilian
municipalities using features extracted from satellite imagery.

A. Dataset

For our experiments, we sampled the georeferenced NTL
points to create a representative dataset of the cities and their
respective radiance levels. Considering the vast variation of
city sizes across Brazil, a different number of NTL points
would be required to adequately represent each city. While a
small number of NTL points may suffice for smaller cities,
the same number would only represent the city center for
larger metropolitan areas, failing to capture the socioeconomic
reality of the entire municipality. To address this issue, we
constructed our database using cities where 100 nighttime light
points adequately covered the entire city, thereby excluding
very small and very large cities. We followed previous works,
by Xie et al. [27], and Jean et al., and Castro and Alvares [5],
who selected the 100 nearest NTL points to the urban center
of each city.

We derived the list of cities from the Preliminary Population
of Municipalities, which is based on the data from the 2022
Brazilian Demographic Census [21]. Specifically, we selected
cities based on the population size distribution – see Figure



4, focusing on cities within the 10th and the 75th percentile.
This range corresponds to cities with approximately 3,000 to
25,000 inhabitants.

Next, we created a uniform sample comprising 140 cities
randomly selected, with approximately six cities per each of
the 26 Brazilian states. The sample was designed to ensure
an even distribution across the three NTL intensity classes
described in the previous subsection, thereby encompassing
the full range of city amplitudes. The distribution of cities per
NTL radiance class and Brazilian states are presented in Table
II. We retrieved 14,000 daytime images, considering the 140
cities of our dataset, or 100 images per city.

For the task of training the CNN model to predict the NTL
class of daytime images, we split our dataset of images into
training, validation, and testing, with 70% used for training,
15% for validation, and 15% for testing.

TABLE II: Quantity of cities by Brazilian state and NTL
radiance class.

State Low Medium High Total

Acre (AC) 1 1 1 3
Alagoas (AL) 2 2 2 6

Amapa (AP) 1 1 1 3

Amazonas (AM) 1 2 2 5

Bahia (BA) 2 2 2 6

Ceara (CE) 2 2 2 6

Espı́rito Santo (ES) 2 2 2 6

Goias (GO) 2 2 2 6

Maranhão (MA) 2 2 2 6

Mato Grosso (MT) 2 2 2 6

Mato Grosso do Sul (MS) 2 2 2 6

Minas Gerais (MG) 2 1 2 5

Para (PA) 0 2 1 3

Paraı́ba (PB) 2 2 2 6

Parana (PR) 2 2 2 6

Pernambuco (PE) 2 2 2 6

Piauı́ (PI) 2 2 2 6

Rio de Janeiro (RJ) 1 2 2 5

Rio Grande do Norte (RN) 2 2 1 5

Rio Grande do Sul (RS) 2 2 2 6

Rondônia (RO) 1 1 1 3

Roraima (RR) 2 2 2 6

Santa Catarina (SC) 2 2 2 6

São Paulo (SP) 2 2 2 6

Sergipe (SE) 2 2 2 6

Tocantins (TO) 2 2 2 6

Total 45 48 47 140

B. Experimental setting

We directly compare our methodology with the work pro-
posed by Castro and Alvares [5], our comparison baseline.
This work uses a complex workflow and an intricate set
of features. It comprises four feature extraction processes,
referred to as “Multiple features” that are combined into four
groups of features extracted from satellite imagery.

The experiments were performed on a Ryzen(R) 9 CPU,
32GB RAM, NVIDIA RTX3090 24GB RAM GPU. We imple-
mented the deep learning and machine learning models using
Keras with TensorFlow on a Linux Pop!OS 22.04 LTS.

C. Experimental comparison

We compare our work with three approaches: a baseline,
in-domain pre-trained models, and a variation of our own
methodology.

Baseline

The baseline proposed by Castro and Alvarez [5], as intro-
duced in Section II, involves conducting four processes of
feature extraction from satellite imagery: extracting features
from nighttime images, extracting basic color-related features
from daytime images, extracting features from daytime im-
ages using a pre-trained VGG16 model with ImageNet, and
extracting additional features from daytime images using a
CNN model specifically developed by the authors.

We reproduce the entire baseline work and apply their
method over our image dataset. This way, we ensure an exact
comparison in terms of prediction performance. Similarly
to our work, the resulting features are used as input for a
Regularized Linear Regression model. The best performance
was obtained using L1 regularization.

In-Domain pre-trained models

In addition, we use Transfer Learning without fine-tuning. The
goal is to demonstrate the importance of our intermediary fine-
tuning step, which is based on radiance prediction. We used a
collection with 5 pre-trained ResNet50 models with ImageNet
and In-Domain benchmark datasets, namely:

• BigEarthNet
• EuroSat
• RESISC-45
• So2Sat
• UC Merced
These models1 were proposed by Neumann et al [15]. The

5 models can extract generic representations from remote
sensing data. In our experiments, we kept their convolutional
layers frozen, adding a new block of classification layers.

Comparing architectures VGG16 and ResNet50

We also compare our methodology configured with architec-
tures VGG16 and ResNet50. Since we verified that VGG16
works only slightly better in the preliminary step of predicting
the radiance class (Section III-C), we still experiment with
ResNet50.

1https://tfhub.dev/google/collections/remote sensing/1



Fig. 4: Distribution of population size in Brazil for cities up to 500,000 inhabitants. Cities above that represent less than 1%
of the number of cities and were not plotted for better visualization of the histogram. In orange, the range that contains the
selected cities.

TABLE III: Metric comparison to competitor methods Baseline, In-domain, Our Methodology (VGG16) and Our Methodology
(ResNet50). Best results in bold.

Validation Test

Extraction
Method

Pre-Training Dataset Fine-tuning MAE RMSE R2 MAE RMSE R2

Baseline Multi-Feature
Process

- - 129,19 182,21 0,67

In-domain ResNet50 ImageNet, BigEarthNet ✕ 173.97 231.16 0.057 186.32 277.43 0.36

ResNet50 ImageNet, EuroSat ✕ 167.86 224.35 0.13 192.80 282.06 0.34

ResNet50 ImageNet, RESISC-45 ✕ 167.90 224.30 0.13 192.58 281.70 0.34

ResNet50 ImageNet, So2Sat ✕ 160.25 207.93 0.17 222.12 310.58 0.20

ResNet50 ImageNet, UC Merced ✕ 163.01 214.89 0.15 180.12 268.08 0.41

Our
methodology

VGG16 ImageNet ✓ 127.89 183.98 0.44 198.61 303.35 0.24

ResNet50 ImageNet ✓ 119.80 165.72 0.48 173.35 242.15 0.51

D. Results

We extracted features from the 14,000 images in our dataset.
Using VGG16, each image yielded a feature tensor of size
7x7x512, while ResNet50 produced a feature tensor of size

7x7x2048. Since we had 100 images per city, the features were
grouped by average to form a feature vector representing each
city. With 140 feature vectors, we used ElasticNet regressor,
combining penalty indices L1 and L2. The feature vectors
worked as inputs to the model; the task was to predict the



TABLE IV: Metrics obtained for each set of ElasticNet hy-
perparameters. Best results in bold.

Alpha L1 Ratio Mean RMSE Mean MAE Mean R2

0.1 0.0 169.43635832 122.93069492 0.45513856

0.1 0.05 165.72463176 119.80087859 0.48877279

0.1 0.5 174.09002162 123.46320746 0.43509703

0.1 0.7 176.7737528 127.35984324 0.42881993

0.1 0.9 177.63336194 127.28701723 0.39309232

0.1 1.0 171.63107498 126.10964626 0.45020572

1.0 0.0 172.40698062 130.90810401 0.42109313

1.0 0.05 169.77596639 124.92073417 0.46785733

1.0 0.5 171.27794511 124.55082129 0.49029491

1.0 0.7 174.1916442 126.11727016 0.47533054

1.0 0.9 174.81568303 124.58423506 0.47663267

1.0 1.0 186.18446589 134.00251887 0.39630227

10.0 0.0 166.92212153 123.07594144 0.47916583

10.0 0.05 167.78712859 124.32568897 0.49089806

10.0 0.5 173.0992524 125.57343898 0.47858027

10.0 0.7 175.85295585 126.95128614 0.46143682

10.0 0.9 177.82726307 126.94112396 0.45366119

10.0 1.0 191.21809159 137.90622246 0.34511397

100.0 0.0 167.86667061 125.93733564 0.4817452

100.0 0.05 170.29064729 126.75586143 0.48456854

100.0 0.5 204.21454958 149.51259664 0.24532264

100.0 0.7 217.30147028 159.93083819 0.13205345

100.0 0.9 228.06798478 169.77264318 0.03324379

100.0 1.0 238.54644352 178.5990335 -0.02512721

average monthly income for each city.
We split the feature vectors into training and testing sets,

with 85% of the data used for training and 15% for testing.
The testing set was not used during the training process, but
only for evaluating the final performance. Fitting used cross-
validation with 10 folds, dividing the dataset into 10 equal
parts (folds), using 9 folds for training and the remaining fold
for validation. The performance metrics corresponded to the
average across the 10 folds. We tested multiple hyperparame-
ters for ElasticNet, with values of alpha: 0.1, 1, 10, and 100;
and of L1 ratio: 0, 0.05, 0.5, 0.7, 0.9, and 1 – the best ones
were alpha 0.1 and L1 ratio 0.05, as presented in Table IV.

Table III presents our main results. We present metrics:
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and R2 obtained for each of the comparison settings.
In the table, in bold, the best results correspond to our

methodology using the fine-tuned ResNet50 architecture.
By implementing the fine-tuning methodology in a

ResNet50 architecture, we observed improvements in the MAE
(Mean Absolute Error) and RMSE (Root Mean Squared Error)
metrics compared to the baseline methodology, the fine-tuned
VGG16 model, and all the non-fine-tunned models. Specifi-
cally, with ResNet50, we obtained a MAE of 119.80 and an
RMSE of 165.72.

MAE measures the average absolute difference between the
predicted values and the actual values. A MAE of 119.80
indicates that the predicted values differ from the actual values
by approximately R$ 119.80 (∼U$ 24.00). A lower MAE
signifies a better fit of the regression model, as it suggests
that the model’s predictions are closer to the actual values.

RMSE, on the other hand, measures the standard devia-
tion of the residuals, which are the differences between the
predicted and actual values. An RMSE of 165.72 indicates
that the predicted values deviate from the actual values by
approximately R$ 165.72 (∼U$ 33.00). Similar to MAE,
a lower RMSE indicates a better fit of the model, with
predictions that are closer to the actual values.

Although ResNet50 had slightly lower results than VGG16
for predicting radiance levels (Section III-C), the features
extracted by ResNet50 from the daytime images yielded
pronouncedly better results for predicting the average monthly
income of cities.

Discussion

Our methodology not only surpasses the performance of the
baseline work of Castro and Alvarez [5], but it also introduces
a simpler methodology that is less computationally-expensive.
While Castro and Alvarez propose a complex methodology,
containing 4 feature extraction processes, our work uses a
single fine-tuned CNN that is straight to build, train, and
employ.

V. CONCLUSIONS

This article presents a proposal for predicting the average
monthly income of Brazilian cities using features extracted
from satellite imagery through Machine Learning. Our dataset
consists of 140 small cities distributed throughout Brazil,
labeled according to three levels of nighttime light radiance
(low, medium, and high). We use this data to fine-tune CNN
models that, in turn, became adjusted to extract features that
reflect the urban characteristics of satellite imagery.

By employing these features into a Regularized Linear
Regression model, we demonstrated that such features have
the potential to predict socioeconomic metrics from satellite
imagery. This finding is evidence of our hypothesis that such
imagery captures human-built structures that, accordingly,
correlate to socioeconomic indicators.

Using a ResNet50 model fine-tuned over NTL radiance, we
extracted features that supported the prediction of the average
monthly income of Brazilian cities with Mean Absolute Error
(MAE) of R$ 119.80 (∼U$ 24.00), which deviates 65.71%
from the mean of the data.



By leveraging the power of machine learning and satel-
lite imagery, we accurately predicted socioeconomic factors,
paving the way for informed decision-making and targeted
interventions. In particular, our methodology can be employed
to regions of the world in which census data is not available,
leaving them less sensitive to public politics and philanthropic
endeavors. Future directions include medium and large cities,
the prediction of other indicators, and the exploration of other
Machine Learning models.
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indicators using transfer learning on imagery data: an application in
brazil. Geojournal, 88(1):1081–1102, 2023.

[6] Satellite Imaging Corporation. Quickbird satellite sensor.
https://www.satimagingcorp.com/satellite-sensors/quickbird/. Accessed:
2023-06-24.

[7] Juan C Duque, Jorge E Patino, Luis A Ruiz, and Josep E Pardo-Pascual.
Measuring intra-urban poverty using land cover and texture metrics
derived from remote sensing data. Landscape and Urban Planning,
135:11–21, 2015.

[8] Christopher D Elvidge, Kimberley E Baugh, Eric A Kihn, Herbert W
Kroehl, Ethan R Davis, and Chris W Davis. Relation between satellite
observed visible-near infrared emissions, population, economic activity
and electric power consumption. International Journal of Remote
Sensing, 18(6):1373–1379, 1997.

[9] Christopher D Elvidge, Jeffrey Safran, Benjamin Tuttle, Paul Sutton,
Pierantonio Cinzano, Donald Pettit, John Arvesen, and Christopher
Small. Potential for global mapping of development via a nightsat
mission. GeoJournal, 69:45–53, 2007.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[11] Neal Jean, Marshall Burke, Michael Xie, W Matthew Davis, David B
Lobell, and Stefano Ermon. Combining satellite imagery and machine
learning to predict poverty. Science, 353(6301):790–794, 2016.
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