
c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Mapping Estimator for OpenCL
Heterogeneous Accelerators

André Bannwart Perina and Vanderlei Bonato
Institute of Mathematics and Computer Sciences, University of São Paulo

São Carlos - SP - Brazil
Email: abperina@usp.br, vbonato@usp.br

Abstract—To increase computing performance while keeping
energy consumption to an acceptable budget, heterogeneous
systems are currently investigated. By using dedicated compute
units as accelerators to speedup specific parts of an application,
hardware resources are better utilised resulting in a more energy
efficient computing system. However, the task of performing such
application mapping to accelerators is still a challenge, requiring
knowledge beyond software domain in order to understand which
part of the code fits better to the capability of the hardware avail-
able. Currently, there are tools supporting unified frontends and
languages to simplify the programming of such heterogeneous
systems, however there is still a high dependency of the user to
manually perform the final mapping process. This work exposes
a machine learning framework used to automatically infer the
most suitable accelerator (between FPGA and GPU) for a given
code by statically estimating energy efficiency. This framework
can be used to assist the developer in deciding the best mapping
for its application with an average hit-rate of 85 percent.

I. INTRODUCTION

Since the traditional von Neumann architecture proposal in
1945, improvements were mainly dictated by modifications
such as increasing the operational frequency. This trend was
maintained until the first years of the new millenium where
a power limitation was reached [1]. Trends since then di-
rected to increasing the parallel capability of the available
architectures while maintaining the operational frequency and
power budget to feasible levels. In this scenario, alternate
architectures such as the Graphics Processing Unit (GPU) and
Field-Programmable Gate Array (FPGA) became popular as
they can be used to speedup specific portions of an application.
However, it is not trivial to efficiently partition a sequential
software to a parallel model suitable to GPUs. Even worse,
FPGAs are mainly programmed using Register-Transfer Level
(RTL) languages where applications are mapped in terms of
combinational circuits and registers. To alleviate the program-
ming burden of FPGAs, High-Level Synthesis (HLS) tools
convert high level software codes to RTL codes.

To assist the programming of heterogeneous systems,
OpenCL was created [2] as a framework composed by a
unified frontend where kernel functions (with resemblance
to C) are programmed in different accelerators with vendor-
specific backends. In the FPGA case, HLS tools were created
to enable OpenCL support converting from kernel code to
RTL, such as Xilinx SDAccel or Intel FPGA (former Altera)
SDK for OpenCL. However, the task of choosing where to

Input kernel

Extracted
code features

Feature
Extraction

Output metric

Estimator

Reference
(training) set

Fig. 1. Proposed framework flow.

execute a kernel is still left to the developer. Also, accelerator-
specific optimisations are necessary to obtain speedup or
energy efficiency [3] and compilation for FPGAs requires
circuit synthesis and place/route, which is a process that may
take several hours. Therefore, manually exploring all different
types of optimisations in FPGAs is unfeasible.

This paper exposes a purely-static machine learning frame-
work used to automatically decide the most suitable platform
for an input OpenCL kernel among GPU and FPGA with
suitability based on energy efficiency. Such analysis can give
a quick mapping estimation avoiding the time-consuming
synthesis. The main contribution is a framework capable of
deciding the most suitable accelerator without actually syn-
thesising the code or profiling it (i.e. no input data is needed).
Results have shown that even though for some estimation
metrics error is still significant, this framework was able to
infer the most suitable accelerator for 85% of the cases in
average.

The remainder of the paper is organised as follows: Sec-
tion II formulates the problem and proposes the methodology.
Experimental results are exposed and discussed in Section III.
Related works are presented in Section IV. At last, the paper
is concluded in Section V.

II. FORMULATION AND METHODOLOGY

The main objective is to infer the most suitable OpenCL
accelerator between FPGA and GPU considering energy effi-
ciency for a given kernel. Kernels are usually coded with a
specific platform in mind, requiring several structural modifi-
cations for proper platform migration, which is out of scope
for this paper. Instead, this work focuses on giving a fast
estimation on how well existing OpenCL codes would perform
on each platform. Static analysis is performed to extract
numerical values that describe several properties of the code,
which are fed to a trained machine learning tool for estimation
of metrics. Figure 1 presents the developed framework flow.



TABLE I
EXTRACTED CODE FEATURES

Feature code Feature name Longest path criterion

lp Longest path # of instructions
noi Naive operational intensity # of instructions
nmi Naive memory intensity # of bytes transferred

fpops Floating-point operations # of FP ops
bars Number of barriers # of barriers
tc Maximum trip count N/A

ldep Deepest loop depth N/A

1

3

5

24 4

3

Longest path:
4 + 50 * (1 + 5 + 2) + 3 + 4

50x

Fig. 2. Example of control-flow graph and its longest path in thicker edges.
The weight of a node describes the amount of contained instructions. As an
example, it is assumed a loop trip count of 50.

A. Features Extraction

The OpenCL kernel code features are extracted using Op-
Count1, an analysis pass implemented using the LLVM com-
piler framework [4] based on its Intermediate Representation
(IR) language. Table I presents the extractable code features.

The lp counts the number of IR instructions along the
longest path of the control-flow graph (CFG) for the OpenCL
code. Since finding the longest path for cyclic graphs is
NP-hard, the loop back-edges are removed from the CFG
making it acyclic. To compensate such removal, the number
of instructions of all nodes inside loops are multiplied by the
loops trip counts (i.e. how many times a loop executes). If
loops trip counts are not statically inferrable, a default trip
count is used (currently an arbitrary fixed value). Figure 2
presents an example of a CFG and its longest path. This metric
can be interpreted as the worst case of execution, where loops
are fully executed and the longest blocks are always taken
from conditionals.

Both noi and nmi metrics are composed by counting the
number of bytes transferred by loads and stores instructions
and dividing by the longest path of the CFG. In the first metric,
bytes are counted in the same path as the lp metric while
the latter considers the longest path where the most amount
of bytes has been transferred. Both metrics are based on the
operational intensity concept used in the roofline model [5].
The naive characteristic comes from the fact that no input data
is used to infer the code’s execution path. For the description of
the other code features, please refer to the OpCount repository.

Although static analysis may eventually not capture the
precise execution profile for a code, it has the advantage of
not needing any input data or profiling/simulation, nor any
analysis on how well such execution reflects real-world usage
of the code.

1This LLVM pass is available at https://github.com/comododragon/opcount

B. OpenCL Kernel Set

To train the machine learning tool, a set of 30 OpenCL
kernels2 was collected and adapted from three OpenCL bench-
marks: Rodinia [6], SHOC [7] and CHO [8]. There were also
5 personal kernels added based on a Reed-Solomon Decoder
implementation of Agarwal [9]. The known execution times,
energy consumption and extracted code features were used to
form the training database.

The following accelerators were used for execution time and
energy consumption measurements:

• GPU: NVIDIA Quadro K620 (TDP: 41W);
• FPGA: Bittware S5PH-Q with an Intel FPGA Stratix V

(TDP: 25W).

C. Output Metrics

The following metrics are proposed as outputs for the
machine learning tool:

• Energy Consumption: the amount of energy consumed
by a kernel. Currently this value is acquired by multi-
plying the execution time by the architecture’s Thermal
Design Power (TDP);

• Class: after calculating energy consumption, the kernel
can be assigned to a class (i.e. FPGA or GPU) by
considering the smallest consumption.

D. Machine Learning Tool

Since OpenCL performance estimation is non-trivial due to
several subtleties such as memory access patterns or the HLS
capability of extracting parallelism, it is suitable for machine
learning exploration. Using MathWorks MATLAB R2015a,
the following neural networks were used: learning vector
quantisation (lvq), multi-layer perceptron (mlp) and radial
basis function (rbf). In each network, several parameters
were varied in order to explore different topologies and their
performances. A single combination of such parameters is
henceforth called setup.

To acquire a perspective on how well different combinations
of input variables can contribute to the class assignment, lvq
was explored before mlp or rbf since it has a faster training.
However, the lvq network only estimates class assignment
due to its discrete-only nature.

The cross-validation method with random subset sampling
was used on all networks, where 100 trainings were performed
for each possible setup. Each training/validation phase pro-
duces results that are analysed by a performance metric. For
the continuous energy consumption, Root-Mean-Squared Error
(RMSE) was used based on the Mean-Squared Error (MSE),
which can be interpreted as the average squared difference
between expected and estimated outputs (less is better). For
the discrete class assignment metric, hit-rate was used, being a
value between 0 and 1 (more is better). For example, a network

2Rodinia: kmeans, nn, nw1, nw2, srad, backprop1, backprop2, lud1, lud2,
leukocyte1, leukocyte2, hotspot3D, hybridsort1, hybridsort2, hybridsort3,
streamcluster, cfd. SHOC: md, md5hash, reduction. CHO: aes enc, aes dec,
gsm, adpcm, mips. Personal: rsd1, rsd2, rsd3, rsd4, rsdfull.



TABLE II
SETUP PARAMETERS

Parameter Possible values

LVQ

No. of neurons 2, 4 and 8
Input variables sets All features, (lp), (lp, noi), (lp, nmi),

(lp, fpops, bars),
(lp, noi, nmi, fpops, bars),
(lp, noi, nmi, fpops, bars, ldep),
(noi, nmi, fpops, bars, ldep),
(fpops, bars)

Output metric Class assignment

MLP

Number of hidden layers 1, 2 and 3
Hidden layers topology (5), (10), (50), (5, 5), (5, 10), (5, 50),

(10, 10), (10, 50), (50, 50), (5, 5, 5),
(5, 5, 10), (5, 5, 50), (5, 10, 10), (5, 10, 50),
(5, 50, 50), (10, 10, 10), (10, 10, 50),
(10, 50, 50), (50, 50, 50)

Input variables sets All features and also the most accurate
combinations from lvq

Output metric Energy consumption and class assignment

RBF

Spread 0.02, 0.03, 0.04, 0.05, 0.06 and 0.07
Input variables sets All features and also the most accurate

combinations from lvq

Output metric Energy consumption and class assignment

with hit-rate of 0.9 implies that it was able to correctly infer
the most suitable accelerator for 90% of the validation subset.

After all 100 trainings, the best, worst and average perfor-
mance metrics were calculated for each possible setup. All
input variables and output metrics were normalised prior to
training and validation.

Table II presents the explored setup parameters for all
networks.

III. EXPERIMENTAL RESULTS

Table III presents performance results for all networks. In
lvq, results for all extracted features and two other setups
with the best average performance are presented, while for
mlp and rbf only the best setup is presented.

For lvq, the best average performance was for the setup
(lp, nmi) with 4 neurons, reaching almost 85%. For mlp,
the estimation error for energy is significant as pointed by
the RMSE: the best setup has an average error of 16563.9
and 5362.9 for GPU and FPGA respectively for an unnor-
malised interval of [2.0; 62507.4] for GPU and [1.7; 20239.1]
for FPGA, all in kilojoules (kJ). For rbf, interestingly the
best performance was found when using all input variables,
though several other setups for this network had almost the
same performance. Considering energy consumption, not only
did rbf perform slightly better (average error of 14376.2kJ
and 4654.6kJ for GPU and FPGA respectively) but the worst
RMSE was also smaller.

TABLE III
PERFORMANCE RESULTS

LVQ

Hit-rate
Output Input variables Neurons Worst Best Avg.

All 4 0.400 1.000 0.764
Class (lp, nmi) 4 0.400 1.000 0.849

(lp, noi, nmi, 8 0.400 1.000 0.826
fpops, bars)

MLP

RMSE / Hit-rate
Output Input variables Neurons Worst Best Avg.

Energy (lp, nmi) (5, 5) 0.664 0.063 0.265
Class (lp, noi, nmi, (5) 0.200 1.000 0.798

fpops, bars)

RBF

RMSE / Hit-rate
Output Input variables Spread Worst Best Avg.

Energy All 0.03 0.385 0.032 0.230
Class (lp, noi, nmi, 0.07 0.400 1.000 0.716

fpops, bars)

For both lvq and mlp, the input variables combination
(lp, nmi) was present in almost all best results. For class
assignment in mlp and rbf, the combination (lp, noi, nmi,
fpops, bars) performed better.

An likely cause for energy estimation underperformance is
the size of training and cross-validation subsets, not having
sufficient coverage for an ideal estimation. However, the
lvq network was able to correctly infer the most suitable
platform for an average of almost 85%, outperforming all
other approaches. Such result may be even further improved by
increasing the number of samples for training and validation.

IV. RELATED WORKS

There are many works where kernel mapping is performed
at runtime [10][11][12]. This is not suitable to FPGAs due to
its time-consuming compilation (synthesis). Therefore, only
works with compile-time decision making are presented.

Grewe [13] presents a framework to map OpenCL work-
loads to CPU-GPU heterogeneous environment, where code
features are statically extracted from the kernel source and
analysed by a machine learning technique. Their estimator was
able to infer the correct workload mapping for 52% of the
cases. It must be noted however that their estimator not only
infers the best accelerator but also a workload proportion in
each.

In Aladdin [14], estimation is inferred from high-level
representations of sequential codes such as the Dynamic Data
Dependence Graphs (DDDGs). With these graphs, they can
generate more accurate estimations than the HLS tools, since
a less conservative data dependency analysis is made. Average
errors on power, performance and area when compared to
actual synthesis are 0.9%, 4.9% and 6.5% respectively. As
a limitation, estimations are totally dependent on input data,



therefore data which may excite all parts of the code must be
provided.

Similar to Aladdin, Lin-Analyzer [15] also uses DDDGs.
Since no HLS tool is used on each iteration of the DSE,
estimations are ready in seconds. Differently from Aladdin,
only part of the input code traces are analysed in the DDDG,
reducing DSE time. Estimation error for 10 applications is
below 6%.

FlexCL [16] is an analytical model is used to estimate
performance of an OpenCL kernel on FPGAs through a
computation model coupled to a global memory model with
different data access patterns, having an accuracy of more than
90%.

Choi [17] presents HLScope+, where performance is esti-
mated on codes for HLS tools such as Vivado or SDAccel.
They present an analytical model to analyse memory latency,
including resource contention when multiple functional units
are requesting data. Results show that estimation errors are
1.1% and 5.0% for compute-bound and memory-bound appli-
cations respectively.

A. Comparison

The work here presented follows a similar tactic as proposed
by Grewe, where code features are used as inputs for a
machine learning framework. Although their work performs
more complex partitioning by considering workload propor-
tions, it focuses only on GPU and CPU. Adding FPGA as an
accelerator would potentially require further analysis on how
code features and FPGA performance are related.

Although Aladdin and Lin-analyzer provide good estima-
tions, they are dependent of input data for generating the
DDDGs, differently from the work here presented where no
input data is required. Moreover, both are focused in C-based
HLS, requiring adaptations for OpenCL estimation.

FlexCL and HLScope+ estimate only for FPGA. Further-
more, these works are focused on estimating the cycle count
using a fixed frequency to estimate execution time and energy
consumption, while the work here presented assumes that the
operational frequency is optimised by the HLS tool.

V. CONCLUSION

This paper presented a machine learning framework com-
posed of a neural network for statically inferring consumed
energy and the most suitable accelerator among FPGA and
GPU for an OpenCL kernel code using numerical features
extracted from the code.

Several parameters for different neural networks were ex-
plored and validated through cross-validation. It was noted that
although the estimated energy consumption have significant
errors for all continuous networks, the lvq network was able
to correctly infer the most suitable accelerator in almost 85%
of the cases in average. It was also noted that the longest
path and naive memory intensity code features were the most
present in the best explorations. This work’s result may be
improved by using larger training and cross-validation sets,
which could also contribute on reducing the estimation errors

for the continuous metrics. Future work includes adding more
kernels to the training set, exploring other code features and
also adding estimation for FPGA resources.

ACKNOWLEDGMENT

The authors would like to thank FAPESP (Sao Paulo Re-
search Foundation, grant no. 2016/18937-7) for the financial
support given to this research project.

REFERENCES

[1] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli, “State-of-the-art in Heterogeneous Computing,” Scientific Pro-
gramming, vol. 18, no. 1, pp. 1–33, 2010.

[2] Khronos Group, “OpenCL - The open standard for parallel
programming of heterogeneous systems,” 2018, available at
https://www.khronos.org/opencl/, accessed 9th feb. 2018.

[3] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka,
“Evaluating and optimizing OpenCL kernels for high performance
computing with FPGAs,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 2016, p. 35.

[4] C. Lattner, “The LLVM Compiler Infrastructure,” 2018, available at
http://llvm.org/, accessed 15th feb. 2018.

[5] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Communica-
tions of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on. IEEE, 2009, pp. 44–54.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous
Computing (SHOC) Benchmark Suite,” in Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units. ACM, 2010, pp. 63–74.

[8] G. Ndu, J. Navaridas, and M. Luján, “CHO: towards a benchmark suite
for OpenCL FPGA accelerators,” in Proceedings of the 3rd International
Workshop on OpenCL. ACM, 2015, p. 10.

[9] A. Agarwal, M. C. Ng et al., “A Comparative Evaluation of High-Level
Hardware Synthesis Using Reed–Solomon Decoder,” IEEE Embedded
Systems Letters, vol. 2, no. 3, pp. 72–76, 2010.

[10] O. Souissi, R. B. Atitallah, D. Duvivier, and A. Artiba, “Optimization Of
Matching and Scheduling On Heterogeneous CPU/FPGA Architectures,”
IFAC Proceedings Volumes, vol. 46, no. 9, pp. 1678–1683, 2013.

[11] A. M. Aji, A. J. Pena, P. Balaji, and W.-c. Feng, “Automatic command
queue scheduling for task-parallel workloads in opencl,” in Cluster Com-
puting (CLUSTER), 2015 IEEE International Conference on. IEEE,
2015, pp. 42–51.

[12] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and C. Silvano,
“Customization of opencl applications for efficient task mapping under
heterogeneous platform constraints,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2015. IEEE, 2015, pp. 736–
741.

[13] D. Grewe and M. F. O’Boyle, “A Static Task Partitioning Approach for
Heterogeneous Systems using OpenCL,” in International Conference on
Compiler Construction. Springer, 2011, pp. 286–305.

[14] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in ACM SIGARCH Computer
Architecture News, vol. 42, no. 3. IEEE Press, 2014, pp. 97–108.

[15] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: a
high-level performance analysis tool for FPGA-based accelerators,” in
Proceedings of the 53rd Annual Design Automation Conference. ACM,
2016, p. 136.

[16] S. Wang, Y. Liang, and W. Zhang, “Flexcl: An analytical performance
model for opencl workloads on flexible fpgas,” in Design Automation
Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.

[17] Y.-k. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+: Fast and accurate
performance estimation for FPGA HLS,” in Computer-Aided Design
(ICCAD), 2017 IEEE/ACM International Conference on. IEEE, 2017,
pp. 691–698.


