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The surface proteomic profile of serum  
extracellular vesicles as a diagnostic and prognostic  
tool in breast cancer 
Giada Corti1, Rene Buchet2, Andrea Magrini3,  
Pietro Ciancaglini4, Saida Mebarek2 and Massimo Bottini1,5   

The diagnosis of breast cancer in the early stage is essential for 
a favorable prognosis. Extracellular vesicles isolated from body 
fluids have a central role in breast cancer development due to 
their biochemical components. Among the biochemical 
components, surface proteins mediate vesicle interactions with 
elements of the extracellular milieu, the extracellular matrix, and 
neighboring cells. The identification of specific surface 
proteomic profile has been regarded as an easy and 
reproducible means to define cancer parameters, identify 
markers for a diagnosis, and determine targets for therapeutical 
treatments. In this review, we will focus on annexins, 
tetraspanins, integrins, immune checkpoint proteins, and 
growth factor receptors that have been identified on the surface 
of extracellular vesicles isolated from the serum of patients with 
breast cancer and that have been found to be relevant 
diagnostic and prognostic biomarkers. 
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Introduction 
Breast cancer is the most diagnosed cancer in females 
across the globe [1]. Even though breast cancer mortality 
has been steadily reducing in recent years, there is still a 
wide disparity between the prognosis of women diag
nosed with early-stage breast cancer compared with 
those diagnosed with metastatic breast cancer [1]. 

Extracellular vesicles are lipid bilayer-delimited particles 
released by all cell types to carry out diverse functions, 
including remove unnecessary molecules from the cells’ 
cytosol and plasma membrane, deliver information car
goes into target cells, and initiate biomineralization 
(Figure 1) [2,4,5]. Different classes of extracellular ve
sicles (e.g. exosomes, microvesicles, and apoptotic 
bodies) can be detected in cancer patients’ tissues and 
body fluids (e.g. blood, urine, saliva, and lymphatic 
drainage fluid) where some of them are a source of 
biomarkers clinically valuable in providing insight into 
patients’ diagnosis, prognosis, and treatment response  
[6]. The secretion of extracellular vesicles from breast 
cancer cells can trigger metastasis, and/or stimulate the 
tumoral activity by the transfer of nucleic acids and 
proteins from the extracellular vesicles’ lumen to healthy 
cells [5] (Figure 1). The interactions between extra
cellular vesicles and their target cells are triggered by 
their external membrane components [5]. The extra
cellular vesicles’ membrane proteins can be potential 
biomarkers, aiming to achieve benefits in breast cancer 
diagnosis, prognosis, monitoring, and treatment [7]. In 
this review, we will focus on annexins, tetraspanins, in
tegrins, immune checkpoint proteins, and growth factor 
receptors that have been recently identified on the sur
face of extracellular vesicles isolated from the serum of 
breast cancer patients and that have been found to be 
relevant diagnostic and prognostic biomarkers. 

Surface proteins of serum extracellular 
vesicles as breast cancer biomarkers 
Tetraspanins 
Tetraspanins are type-III transmembrane proteins ex
pressed on both the plasma and intracellular membranes 
where they form microdomains involved in membrane 
trafficking and fusion, as well as cell motility and sig
naling [8,9]. Tetraspanins are also distributed on the 
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extracellular vesicles’ membrane where they initiate 
vesicle docking and uptake [10]. Proteomics indicates 
that cluster of differentiation 82 (CD82) [11] and Raph 
blood group (CD151) [12] were significantly enriched on 
the surface of extracellular vesicles derived from the 
serum of breast cancer patients than that of healthy in
dividuals, suggesting possible diagnostic biomarkers 
(Table 1). Serum level of extracellular vesicle CD82 
increased with breast cancer malignancy [11]. The 
treatment of MDA-MB-231 (highly invasive) and MDA- 
MB-468 cells (scarcely invasive) with CD151-devoid 
extracellular vesicles decreased cell motility, suggesting 
that CD151-expressing extracellular vesicles promoted 
the migration of breast cancer cells. regardless of their 
invasiveness, and might be used as a therapeutic target 
(Table 1) [12]. 

Annexins 
Annexins are Ca2+/phospholipid-binding proteins 
that are involved in exocytosis, membrane repair, and 
apoptosis [13]. In cells, annexins are mostly cytosolic, 
but they were also found inside organelles as well as on 
the plasma membrane’s leaflets [14,15]. Similarly, an
nexins were found simultaneously in different locations 
in extracellular vesicles [16]. 

Extracellular vesicles from breast cancer cell lines con
tain annexin A2 (AnxA2) [17]. The AnxA2 amount in 
extracellular vesicles correlated positively with cell in
vasiveness in vitro, and AnxA2-positive extracellular 
vesicles induced angiogenesis and promoted metastasis 
in vivo [17]. A study based on race-derived patient co
horts found that the serum level of extracellular vesicle 
AnxA2 was significantly higher in breast cancer patients 

than in healthy individuals and was associated with 
tumor grade and poor overall survival (Table 1) [18]. 
The serum level of extracellular vesicle AnxA2 was also 
higher in triple-negative breast cancer (TNBC) than in 
other cancer subtypes (human epidermal growth factor 
receptor 2 [HER2+] and estrogen receptor [ER+]), and it 
was higher in African-American than in Caucasian–A
merican patients with TNBC and correlated with tumor 
grade [18]. Thus, extracellular vesicle AnxA2 could be 
exploited as a diagnostic and prognostic marker of 
TNBC in African-descent women. Studies to assess the 
relationship of extracellular vesicle AnxA2 with other 
ethnicities and breast cancer subtypes are warranted. 

Extracellular vesicle annexin A6 (AnxA6) mediated the 
prometastatic capacity of neoadjuvant chemotherapy  
[19]. The effects of neoadjuvant chemotherapy on the 
plasma level of extracellular vesicle AnxA6 were as
sessed in a small cohort (n = 6 including IA, IIB, and IIIA 
stages) of breast cancer patients undergoing neoadjuvant 
therapy (Table 1). The plasma level of extracellular 
vesicle AnxA6 increased at mid-treatment compared 
with pretreatment levels [19]. Notably, at the end of the 
therapy, and before curative operation, the level of ex
tracellular vesicle AnxA6 decreased in the patients 
(n = 5) who achieved a complete or partial response, 
while it increased in one patient with no response. Thus, 
extracellular vesicle AnxA6 could be exploited as a 
predictive marker of metastasis and an outcome marker 
after neoadjuvant chemotherapy. 

Integrins 
Integrins are type-I transmembrane proteins mediating sev
eral key processes, including cell–cell and cell–extracellular 

Figure 1  
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The extracellular vesicles’ surface proteins as diagnostic and prognostic biomarkers in breast cancer. (a) Extracellular vesicles have been divided into 
three major classes (e.g. exosomes, microvesicles, and apoptotic bodies) based on their biogenesis process and size [2]. (b) Extracellular vesicles 
harbor the complete set of biochemical components needed to carry out their functions [2]. Surface proteins enable extracellular vesicles to interact 
with elements of the extracellular matrix, the extracellular milieu, and neighboring cells [3]. By doing so, surface proteins mediate physiologic and 
pathologic processes, and have been regarded as clinically valuable biomarkers [4].   
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Table 1 

Surface protein markers found in extracellular vesicles extracted from fluids of human patients or from cancer cells.        

Isolation method Fluid Patients Breast cancer cell lines Markers Ref.   

- ExoQuick kit  
- UC (1500g, 30 min)  
- UC (1500g, 5 min) 

Serum Breast cancer patients (80) 
Patients with benign breast 
diseases (80) 
Healthy individuals (80)  

CD82 
diagnostic 

[11]  

- UF (0,22 µm)  
- UC [150,000g, 3 h (×2)] 

Serum TNBC patients (30) 
Healthy individuals (37)  

CD151 
diagnostic, potentially 
therapeutic 

[12]  

- UC (1000g, 10 min)  
- UC (10,000g, 30 min)  
- UF (0,22 µm)  
- UC (100,000g, 2 h)   

MDA-MB-468 MDA- 
MD-231  

- UC (300g, 10 min)  
- UC (16,500g, 20 min)  
- UF (0,2 µm)  
- UC (120,000g, 70 min)   

MDA-MD-231 AnxA2 
diagnostic, prognostic 

[17]  

- UC (2000g, 30 min)  
- Incubation with total exosome 

isolation reagent  
- UC (10,000g, 10 min) 

Serum Breast cancer patients [TNBC (58),  
ER+ (50), HER2+ (59)] 
Healthy individuals (68)  

[18]  

- UC 134,000g, 70 min (×2) Plasma Breast cancer patients (6)  AnxA6 
prognostic 

[19]  

- UC (1600g, 15 min)  
- UC (100,000g, 70 min) 

Blood Breast cancer patients (128)  Integrins αV, β1 

prognostic 
[25]  

- UC (355g, 10 min)  
- UC (1422g, 15 min)  
- UC (7199g, 15 min)  
- UF (0,45 µm)  
- UC (100,00g, 90 min) in sucrose  
- UC (110,00g, 12 h) in sucrose  
- SEC   

MDA-MB-231 
MCF10CA1a 
4T1 
4T07  

- UC (500g, 10 min)  
- UC (12,000g, 20 min)  
- UC (100,000g, 70 min)  

Breast cancer patients (22) 
Healthy individuals (6) 

MDA-MB-231 
organotropic lines 

Integrins α1, α2, α3, α6, β1, 
β3, β4 

prognostic 

[26]  

- UC (300g)  
- UC (3000g)  
- UF (0,45 µm)  
- UC (110,000g, 80 min) 

Plasma Breast cancer patients (18 +48)  Integrins β3, β4, αVβ5 

prognostic 
[27]  

- UF (0,2 µm)  
- UC (110,000g, 75 min) 

Serum Breast cancer patients (30)  PD-L1 
diagnostic, treatment 
response 

[34]  

- UC (300g,10 min)  
- UC (2000g, 10 min)  
- UC (10,000g, 30 min)  
- UC [100,000g, 70 min (×2)]  
- UF (0,22 µm)   

T cells 
MDA-MB-231 

PD-1 
potentially prognostic 

[35]  

- UC (1500g, 20 min)  
- UC (16,000g, 45 min)  
- UC (100,000g, 2 h)  
- UF (0,22 µm) 

Blood Breast cancer patients (46) 
Healthy individuals (20)  

TGFβR2 
diagnostic (early), 
prognostic 

[39]  

- UC (300g, 5 min)  
- UC (2000g, 15 min)  
- UC (16,000g, 45 min)  
- UC (100,000g, 2 h)  
- UF (0,22 µm)   

MDA-MB-231 
MCF7 
4T07 
4T1  

- UC (3000g, 10 min)  
- UC (15,000g, 35 min)  
- UF (100 kDa) (can be omitted)  
- UC [100,000g (×2)] 
Alternatively  
- UC (3000g, 10 min)  
- ExoQuick kit   

MDA-MB-231 
MCF7 

ADAM10 
GLUT1 
GPC1 
potentially prognostic 

[42] 

Abbreviations: SEC = size-exclusion chromatography; UC = ultrafiltration; UF = ultrafiltration.  
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matrix interactions and signal transduction [20]. They are 
heterodimers composed of an α- and a β-subunit [20]. In
tegrins on both the plasma membrane and extracellular ve
sicles’ membrane actively contribute to several steps of cancer 
development [21–23]. 

A large-scale proteomic study showed that extracellular 
vesicles released from breast cancer cells expressed in
tegrins α1, α2, α3, α5, α6, αV, β1, β4, and β5, and the level of 
integrins α1, α6, αV, and β1 in extracellular vesicles cor
related with cancer stage [24]. The level of integrins α2, 
α3, αV, and β1 in extracellular vesicles correlated with the 
cell metastatic potential [25]. Additionally, the expres
sion of integrin αV in plasma CD63-expressing extra
cellular vesicles correlated with cancer stage in both 
breast cancer patients and xenografted mice bearing 
metastatic tumors (Table 1) [25]. These findings sug
gested that the extracellular vesicles’ integrin profile 
may be exploited as a prognostic biomarker. 

A landmark study showed that the extracellular vesicles’ 
integrin profile can be used as an organotropic biomarker 
to predict the metastasis site [26]. Organotropic cancer 
cells release extracellular vesicles with a unique integrin 
profile such that, when the extracellular vesicles were 
injected in nude mice, they exploited their integrin 
profile as an ‘address code’ to accumulate in the meta
static organ as their cells of origin and prepare pre
metastatic niches by targeting specific resident cells [26]. 
Extracellular vesicles expressing integrins α6β4 and α6β1 
targeted fibroblasts and epithelial cells in the lungs, 
while extracellular vesicles expressing integrin αVβ5 
targeted Kupffer cells in the liver in vivo [26]. The ex
pression of integrin β4 was higher in extracellular ve
sicles from a small cohort (n = 2) of breast cancer patients 
that developed lung metastasis [27]. The association of 
the extracellular-vesicle expression of integrin β4 with 
lung metastasis was also confirmed in two cohorts of 
breast cancer patients in a recent study [27]. While 
several pieces of evidence indicate that breast cancer 
cells secrete extracellular vesicles with one or several 
integrins, the mechanisms to secrete exosomes with a 
specific integrin and how their relative proportions could 
direct exosomes toward a specific tissue or cells remain 
unclear. 

Immune checkpoint proteins 
Immune checkpoint proteins are signaling pathway 
molecules expressed by immune cells to modulate im
mune responses while preserving self-tolerance [28]. 
Immune checkpoint proteins are either inhibitory or 
stimulatory [29]. Inhibitory immune checkpoint proteins 
have been detected in tumor cell-derived exosomes and 
it has been suggested that they are exploited by tumor 
cells to promote tumor progression and metastasis by 
inactivating cytotoxic T cells [30–32]. 

To date, only the level of the inhibitory immune 
checkpoint programmed death ligand 1 (PD-L1) from 
extracellular vesicles has been evaluated as a diagnostic 
tool in breast cancer. A positive correlation of serum 
level of extracellular vesicle PD-L1 with the stage of 
breast cancer was found by an electrochemical sensor  
[33]. HER2 is overexpressed in ∼25% of breast cancers 
and is associated with poorest prognosis [34]. HER2- 
targeted drug resistance in HER2-positive breast cancer 
cells correlates with increased levels of the im
munosuppressive molecules transforming growth factor 
β1 (TGFβ1) and PD-L1 [34]. However, the serum level 
of extracellular vesicle PD-L1 did not significantly as
sociate with the response to HER2-targeted neoadjuvant 
therapy (trastuzumab with or without lapatinib) in a 
small cohort (n = 30) of HER2+ breast cancer patients  
[34]. Conversely, extracellular vesicle TGFβ1 — a mo
lecule that regulates the expression of immune check
point proteins and co-expressed with PD-L1 on 
extracellular vesicles [32] — was significantly higher in 
patients who did not respond to the therapy compared 
with those who exhibited partial or complete response  
[34]. This would suggest that extracellular vesicle 
TGFβ1 might be a better outcome marker than extra
cellular vesicle PD-L1. 

Activated cytotoxic T cells release extracellular vesicles 
expressing programmed cell death protein-1 (PD-1) 
(Table 1) that can restore immune surveillance in a breast 
cancer mouse model by PD-L1 internalization via cla
thrin-mediated endocytosis, and thereby prevent sub
sequent cellular PD-L1:PD-1 interaction [35]. Thus, the 
serum level of extracellular vesicle PD-1 secreted by T 
cells could be exploited as a tumor prognostic marker. It 
is worth noting that, unlike the continuous release of 
extracellular vesicles from cancer cells, the release of 
extracellular vesicles from T cells is triggered by rapid 
immune synapse during activation, which may make T- 
cell-derived extracellular vesicles difficult to detect and 
unreliable as prognostic tools [36–38]. A possible solution 
of this problem would be to detect extracellular vesicle 
PD-1 along with other immune checkpoint receptors. 

Growth factor receptors 
A seminal report has shown that metastatic breast cancer 
cells release transforming growth factor-β receptor-2 
(TGFβR2)-positive extracellular vesicles that promote 
tumor metastatic outgrowth and cytotoxic T-cell ex
haustion in vivo [39]. The diagnostic and prognostic 
usefulness was also assessed on breast cancer patients 
(n = 46). Patients with TNBC exhibited higher serum 
level of extracellular vesicle TGFβR2 than both HER2+ 

and luminal patients [39]. Additionally, the level of ex
tracellular vesicle TGFβR2 can be used as a biomarker 
for the early detection of metastasis with high sensitivity 
and specificity and predicts the overall and metastasis- 
free survival. 
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Other surface proteins of serum extracellular vesicles 
An in vitro study showed that the transmembrane pro
teins glucose transporter 1 (GLUT1), glypican 1 
(GPC1), and a disintegrin and metalloproteinase do
main-containing protein 10 (ADAM10) were expressed 
in the extracellular vesicles released by MDA-MB-231, a 
metastatic breast cancer cell line, but not MCF-10A, a 
noncancerous epithelial breast cell line, suggesting their 
potential diagnostic use as extracellular-vesicle bio
markers [40]. 

Concluding remarks 
There is solid scientific evidence to suggest that the 
surface proteomic profile of the extracellular vesicles 
isolated from the breast cancer patients’ serum can be 
exploited to achieve information about, for instance, 
the cancer stage and malignant parameters as well as 
the outcome after neoadjuvant chemotherapy. The 
surface proteomic profile might be also exploited to 
achieve information about the parent cells and design 
novel cell-specific therapies, also with the aid of na
nomedicine approaches [41,42]. However, many pieces 
of the puzzle are still missing to fully understand how 
to exploit the extracellular vesicles’ surface proteomic 
profile as diagnostic, prognostic, and therapeutic bio
markers in breast cancer. One key point would be to 
understand how the body fluid from which the vesicles 
are isolated affects their surface proteomic profile. 
Currently, extracellular vesicles are described as re
leased by parent cells equipped with the complete set 
of surface proteins (native surface proteins). However, 
numerous pieces of evidence have led to formulate the 
model that soluble proteins are added to the extra
cellular vesicles’ surface from the extracellular milieu 
(acquired surface proteins or protein corona) (Figure 1)  
[3,43–47]. This would suggest that the body fluid, along 
with parent cells, can modulate the vesicles’ surface 
proteomic landscape and, in turn, its use as a biomarker. 
However, the validation of this paradigm is currently 
hampered by the difficulty to preserve the protein 
corona during the isolation of extracellular vesicles [3]. 
An additional limitation derives from the fact that 
several distinct heterogeneous populations of extra
cellular vesicles are isolated by the different isolation 
methods [3]. The comparison of the biochemical 
properties of the extracellular vesicles obtained from 
different body fluids by using different isolation 
methods shall contribute to achieve the total retrieval 
of acquired surface proteins and support their use as 
biomarker tools in breast cancer. 
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