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ABSTRACT 

Here we are dealing with the linear Volterra-Stieltjes integraJ equation on 
B-spaces of type (K) with kernel /( and resolvent R, which encloses a 
large doss of evolutive systems 88 the PDE, NFDE and impulsive action 
equations. If the uniform semivariation of /( is 0,5 at monl, then there 
exists an operator B, with R = e8

. 

It is exhaustively well known the importance in to get the operator-solution 

of an evolutive system having the exponential form. 

In the frame of the linear integral equations of type (K) we have, until now, 

results yielding the resolvent in the exponential form only in the case in wich 

special kernels appear, e.g., when the equation (K) is a Stielt;jes equation - (see 

remark 2.3 below). Here we will be giving more general conditions enlarging in 

this way our options. 

In the following section 1 we will point genera.I results on the theory of the 

linear integral equations of type (K). In the section 2 we will give the results 

concerning the exponential expression of the resolvent R. 

A.M.S. classification: 45N05, 45D05, 45199, 47B38 
Keywords and phrases: Integral equations of type (K), solution-operator in the 
exponential form, semivariation. 
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1. Volterra-Stieltjes integral equations of type (K). 

The Volterra-Stieltjes linear integral equation of type, (K) deals with the 

forcing and state variables being regulated mappings and is considered in many 

works. The main events in the development of the theory are due to D.B. 

Hinton, who originated it in 1966, and C.S. Honig and S. Schwabik (1974), and 

others. For historical remarks and references, see Honig (6). Here we work in 

the context by Honig. 

This type of equation encompasses very general classes of evolutive systems, 

as the linear ODE, PDE, Neutral Functional Differential Equations, controlled 

equations with impulsive action and the Stieltjes equatioills 

y(t) - z + l dA(s)y(s) = f(t), (1.1) 

as one can see in (5, pp. 82-94), (11), and in (7) and in (1) - (3). 

Given (a, b) C Ill and a Banach space X, we define the semi-variation of 

g: (a,b) ➔ L(X) as 

SV[g) = sup sup II L(g(ti) - g(t;_i))z; II E X, II Zi II ~ 1 , 
{ 

fdf } 

dED i : l 

where D is the set of all finite partitions of the interval, (a, b), d : to = 

a < t1 < ... < tn = b, and ldl = n. Sometimes we will denote SV[g) by 

S\,'[a,oJ(g). If SV[g] < oo, we say that g is of bounded semivariation, and we will 

declare this fact by writing g E SV((a, bl, L(X)). Note that SV is a seminorm. 

The following properties on the semi-variation of o will be useful: 

Proposition 1.1 (4; I.1.2, 1.3.1, 1.3.3.] If o E SV((a, b], L(X)), then: 

(i) if (c, d] C (a, b), we have o E SV([c, d), L(X)) and S\,'[c,,~(o) ~ S\,'[a,o](o] 

(ii) the function t E (a, b] ➔ S\,'[a,t) (o] is increasing, 

(iii) if c E (a, b) then S\,'[a,b][a] ~ S\.'[a,c)(o) + S\.'[c,o](a), 

(iv) o is bounded and II o(t) II ~ II o(a) II + S\.'[a,1](0]. 
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We say that / : [a, b] ➔ X is regulated, and write f E G([a, b], X) if / 

bas only discontinuities of the first kind. G([a, b], X) is a Banach space when 

endowed with the sup norm. 

For o-, /3 E SV([a,b],L(X)) and f E G([a,b],X), there exists the interior 

(or Dushnik-type) integral 

where s; E (t;_1 , t;), 0 ~ i ~ ldl and d = {to, ti, ... , tldl} E D (see [6, Theorem 

1.11]). In a connected way we define 

Actually the interior integral is an extension of the usual Riema.nn-Stielljes 

integral. 

Given Ix the identity mapping of L(X) and the set 

Q = {(t,s) E [a,b) x [a,b];a ~ s ~ t ~ b} C Ill2 , 

and a. mapping T : Q ➔ L(X), with T'(s) = T,(t) = T(t, s), we write 

T E GA . svu(Q, L(X)) or shortly T E GA . svu if T satisfies a.II the three 

properties: 

(A): the mapping t ➔ T(t, t) is regulated ; 

(G") : T,x E G([a, bl, L(X)) , 

where T,x(t) = T(t, s)x, for every t E [a, b) and x E X, and 

(SVU): 
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If, moreover, TE G6 • svu has the property 

T(t, t) = 0, 

then we write TE Gg · svu(Q, L(X)) or shortly TE G~ . svu. 
If, instead of(~0 ), TE G6 • svu satisfies 

T(t,t) = Ix 

we write T E er · SV" ( Q, L(X)), or shortly T E Gf · SV"'. Note that svu is a 

seminorm, and that (see e.g. (7)): 

b . 

111 ·d,T(t, s)f(s) II $ svu(T]- II 'II for every f E G((a, b], X) (1.2) 

The operators in Gg • svu represent in the sense of the classical Riesz rep­

resentation theorem - using by now the interior integral (see (6, Th. 2.10)) -

exactly the non-antecipative (or causal] operators acting c>n the left continuous 

elements of G((a, bl, X). The equation (K) which we will be dealing with is 

(K) : z(t) - z(a) + l ·d,K(t, s) • x(s) = u(t) - u(a) (a $ t $ b) (1.3) 

with z, u E G((a, b] , X) and KEG~· S'V". 

In the following proposition we will define the resolvernt R, associated to K : 

Proposition 1.2 ((6, Th. 3.4)) Suppose (1.3) and that there exists one and 

only one mapping RE Gf · svu(Q, L(X)) satisfying 

R(t, s)x - x + J.1 

·drK(t, r) · R(r, s)x == 0 (1.4) 
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for every :r: E X and a ~ s ~ t ~ b. Then the solution of (1.3) forced by u, is 

given by 

x(t) = u(t) + R(t, a)[:r:(a) - u(a)) - l ·d,R(t, s) • u(s). 

In the next proposition we will give necessary and sufficient conditions on 

I(, with the sake of to have the existence and unicity of such R . We will need 

the following definitions before: 

Definition 1.3 For K E cg • svu and d E D let 

Definition 1.4 If K E cg · svu we define J<- E Cg · svu as 

(a< s ~ t ~ b). 

Note that the existence of such operator is released in a straightforward way 

by the Banach-Steinhaus theorem. 

A result allowing the existence and unicity of the resolv•~nt R is done by the 

Proposition 1.5 (7; Th. 3.8) Let be K E Cg • svu, satisfying: there exists a 

division d ED with c(J<-, d) < 1. 

Then there exists an unique R fulfilling (1.4) if and only if for every t E (a, I>), 

we have (ix - K(t+, t))-1 E L(X). Moreover the resolvent R associated to J( 

it is done by the Neumann series: 

00 

R(t,s) =Ix+ L(-WK(n>(t,s) {1.5) 
n=l 

with J<(nl(n ~ 1) being J((l) = K and 
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J{(n+l)(t, s) = [ ·d.,K(nl(t, o-) o K(o-, s) 

for every s, t E (a, b), s $ t. 

After those preliminary results, we present in the next section the main 

result in this work. 

2. Exponential representation of the resolvent 

The next theorem will be pointing about the possibility in to have R = eB 

for some operator B, on Q. Before, however, we need a result done in the next 

proposition. 

Proposition 2.1 Let be KEG~· SV"(Q, L(X)). Then 

sup II f 1 ·duK(t, o-) · [K(o-, s)x] 11:S (S"'[~,b)[K))2 . 
11=11:51 , 

for every s, t E (a, b]. 

Proof: According the inequality (1.2) we have for every x EX, 

II [ ·d.,I<(t, o-) · (K" (s)x] II $ S"'[~.11[K]· II K, (o-)x 11:S 

(2.2) 

$ SVi~,b)(/()· II K,(o-)x II$ S'i!,b](K] · sup II K,(o-)x 11 . 
ue(a,b] 

with /(., E G([s, t], L(X)) C G([a, b], L(X)). The second inequality in (2.2) can 

be achieved with the use of the Proposition 1.1 (i) 

But, for a fixed o- E (a, b] we have 

sup 11 /((o-, s)x 11 $ SV[,,.,1(K"] , 
11=11$1 

(2.3) 

and then taking the supremum on o- E (a, b] in both the sides in (2.3), we have: 
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sup sup II K(u, s)z II$ Sl'(:,b1(K) . 
ll.rll$1 aE[a,b] 

Comparing (2 .2) and (2.4) we get the result. □ 

(2.4) 

Theorem 2.2 Suppose K E Gg • svu. If svu (K] < ½ then there exists an 

operator BE Gg • svu such that for every (t , s) E Q : 

R(t, s) = eB(c,,) (2 .5) 

Proof: First of all we prove the existence of the resolvent R. Following the 

definitions we have c(K-, d) < SV"[K-J < SV"[J() < ½-
This implies (Prop. 1.5), that R can be done by the Neumann series (1.5). 

According a result by Nagumo within Banach algebra ([9, Th. 1.4.12]) and 

using straightforward arguments (see for example (10; Lemma]) we get (2 .5) if, 

for instance, we have for all nonnegative real r : 

[R(t, s) + rlx t 1 E L(X) . 

Using (1.4), the expression in (2.6) is true provide 

for all real >. ~ 1. 

Otherwise we have (see [8]) : if 

II [ ·daK(t , u) o R(u,s) 11< 1 

then (2. 7) is true. 

Using (1.4) and the Prop. 1.5 again, we get 

(2 .6) 

(2.7) 

(2.8) 

f)-1)"+ 1 K("l(t,s) = [ ·d17 K(t,u) o R(u,s). (2.9) 
n:1 1 
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Gathering the result in (2.9) with the one in the Prop. 2.1, we obtain: 

II [ ·K(t,u)oR(u,s) II$ f)svu[K]t . 
1 n=l 

Because svu[K] $ 1/2 we get (2.8), and so the theorem. □ 

The next remark shows the unique result in the present framework telling 

actually about exponential representation of the resolvent. It will help us in to 

look at the results of this section from an exterior point of view. 

Remark 2.3 Consider the Stieltjes equation (1.l). If A E SV((a,b], L(X)) we 

get 

R(t, s) = e[A(t)-A(•ll 

if and only if A is continuous ((7; Remark p. 37]). The result, essentially, 

is obtained because in this case we have at (1.1) (R(t, O))e~ .. satisfying the, 

semigroup properties. But this situation is no longer true for general (K) - in 

(1.3) - at all. 
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