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Abstract 

The Hamiltonian decomposition of a hypercube or binary n-cube is the partitioning 
of its edge set into Hamiltonian cycles. It is known that there are l n/2J disjoint 
Hamiltonian cycles on a binary n-cube. The proof of this result, however, does not 
give rise to any simple construction algorithm of such cycles. In a previous work Song 
presents ideas towards a simple and interesting method to this problem. Two phases 
are involved. First decompose the binary n-cube into cycles of length 16, C16 , and 
then apply a merge operator to join the C1s cycles into larger Hamiltonian cycles. 
The case of dimension n = 6 (a 64-node hypercube) is illustrated. He conjectures the 
method can be generalized for any even n. In this paper, we generalize the first phase 
of that method for any even n and prove its correctness. Also we show four possible 
merge operators for the case of n = 8 (a 256-node hypercube). This result can be 
viewed as a step toward the general merge operator, thus proving the conjecture. 

1 Introduction 

Many results on the existence of Hamiltonian cycles in graphs are known [2, 3, 4, 5, 6). 

In particular the existence of Hamiltonian cycles on the hypercube is important for fault­

tolerant distributed computing based on this structure. When an application uses proces­

sors joined as a cycle, it is important to know alternative cycles in case of communication 

failure in one cycle [1] . The mere knowledge ofits existence, however, may not be sufficient. 

It is desirable to have a simple algorithm to construct the alternative cycles. 

It is known that there are ln/2J disjoint Hamiltonian cycles on a hypercube of dimen­

sion n [2]. The proof of this result, however, does not give rise to any simple construction 

algorithm of such cycles. In [7] Song presents ideas towards a simple and interesting 

method to this problem. Two phases are involved. (1) Decompose the hypercube into C1s 

(cycles of length 16) and then (2) apply a merge operator to join the obtained C1s cycles 

into larger cycles. An illustration for the case of dimension n = 6 (a 64-node hypercube) 

is given. He conjectures this method can be generalized for any even n. 

In this paper, we generalize the first phase of that method for any even n and prove its 

correctness. Also we show a merge operator for the case of n = 8 (a 256-node hypercube). 
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This result can be viewed as a step toward the general merge operator, thus proving the 
conjecture. 

In Section 2 we discuss Hamiltonian decomposition of the hypercube and present Song's 
method. In Section 3 we formalize phase 1 for the general case and prove the correctness. 
In Section 4 we show a merge operator to decompose the hypercube of dimension 8 into 
Hamiltonian cycles. Section 5 contains the conclusion. 

2 Previous works 

2.1 Hamiltonian decomposition 

The Hamiltonian decomposition of a graph is the partitioning of its edge set into Hamilto­
nian cydes. Obviously in order for this partition to exist, the graph must be regular and 
have even degree. A more general definition of Hamiltonian decomposition is given in [2} 
to include the case of odd degree. This work considers the Hamiltonian decomposition of 
the binary n-cube or hypercube of dimension n. 

For simplicity and without Joss of generality, we consider n to be even. (If n is odd, 
the edge set can be partitioned into (n - 1)/2 Hamiltonian cycles and a perfect matching 
[2}.) Observe first that the binary n-cube is equiva.lent to a 4-ary n/2-cu be, · that is the 
Cartesian product of n/2 cycles of length 4: Ct. xC4 x • • -xC4 • We start with the following 
theorem (see [2] for details and proof). 

Theorem 1 The binary n-cube with even n, or equivalently the product of n/2 cycles, 
C4 x C4 x • • · x Ct., can be partitioned into n/2 Hamiltonian cycles. 

Song [7] presents ideas and that may give rise to a very simple method to construct 
the disjoint Hamiltonian cycle of a binary n-cube. He illustrated the method for the case 
of n = 6. It consists of two phases. 

1. partition the edge set into cycles of length 16 or C1e• 

2. merge the resulting cycles into larger cycles to get the desired Hamiltonian cycles. 

This second phase is realized by using a merge operator to be seen later. 

2.2 Phase 1 - decomposition into C16 

Phase 1 decomposes then-cube into cycles oflength 16, or C16- Foregger [5] gave a solution 
for the case of n = 4, i.e. C4 x C4 is decomposed into two C1s-

For the case n = 6, phase 1 consists of decomposing C, x C4 x C4 into 12 C16• We 
repeat here how this decomposition is done. 

We divide the 12 cycles into three groups: 

• 4 cycles of color 0 
• 4 cycles of color 1 
• 4 cycles of color 2 
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Figure 1: Cycles of color 0 

In the next section the cycles C16 of same color will be merged to form a Hamiltonian 
cycle. 

In Figure 1 we illustrate the 4 cycles of color 0. Notice that the cycles are situated 
on planes parallel to the plane defined by the axes eo and e1 • This observation will be 
formalized in the next section. In Figure 2 we have the cycles of color 1 and color 2. Notice 
the symmetries between cycles of this figure and those of Figure 1. 

The edge set of the product C4 X C4 X • • • x C 4 (n/2 times) can be partitioned into 
n2" /32 disjoint cycles of length 16, 2" /16 cycles of the same color. 

2.3 Phase 2 - the merge operator 

We show how the 12 cycles of length 16 of the previous section can be merged into 
3 Hamiltonian cycles. Cycles of the same color will be merged together to form one 
Hamiltonian cycle. 

Consider a vertex and the edges incident with it. An edge permutation operator is 
an operator that permutes the colors of the edges. We use a set of edge permutation 
operators to merge cycles of a given color to form a large cycle of the same color. 

Definition 1 A set of edge permutation opemtors is a (cycle) merge opemtor if it tmn.,­
forms a partition of the edge set of r cycles to a partition of the edge set of s cyclea 
(s < r). 

Consider the partition of the edges of C4 x C4 x C,t into C1s as before. Figure 3 shows 
a merge operator that joins two cycles of each color into a large cycle of the same color. 
Point A is a reference point for the application of the merge operator. Figure 4 shows the 
effect of applying the merge operator. For each color the curves (i.e. the additional part 
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Figure 2: Cycles of color 1 (left) and of color 2 (right) 

--· --• 
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⇒ 

Figure 3: Merge operator 

not present in Figure 3) indicate the remaining of the C16 cycle. On the left of Figure 5 
we have the positions (indica.ted by Iaeger circles) of possible reference points A to apply 
the merge operator, according to Figure 3. On the right of the same figure we have the 
three points chosen in [7] resulting in 3 Hamiltonian cycles of length 64, one for ea.ch color 
O, 1 and 2. 

3 Generalization of phase 1 

In the following we formalize phase 1, the decomposition of the edge set of a binary n-cube, 
for any even n, into cycles C16• Let n = 2m and H,,. a binary n-cube. 

H,,. = C• X C• X • • • X C,.. 
m time• 

Consider a vertex z of H,,.. Let z = (zo, :i:1, • • •, Zm-1), where :Z:i E {O, 1, 2, 3} for 
O:$;i:$;m-l. 
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Figure 4: The effect of the merge operator on colors 0, 1 and 2 

Figure 5: Candidate points to apply the merge operator (left) and the three chosen points 
(right) 
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Figure 6: The shift operator for the case n = 6 
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Figure 7: The 12 H2's for H3 

Denote by z(i) theedgejoiningz = (zo,z1, • ·• ,z;,·· ·,Zm-1) and z' = (zo,zi,· · •,z;+ 
1 (mod4),, .. ,zm-d• 

Definition 2 The initial coloring of the edge set of a binary n-cube is defined as follows. 
Color each edge z(i) 'With color i, Vz E Hm and O $ i $ m - 1. 

Thus each edge parallel to axis e; is colored by color i with the initial coloring. 

Definition 3 The shift opemtor is an opemtor that, applied to a vertex x E Hm, defines 
the colors of half of the edges incident with z in the following manner: each z(i) is colored 
with color (i - 1) (mod m), for O $ i ~ m - 1. 

The above operator is named shift operator because, given a vertex :,; and an initial 
coloring of the edges, the application of the shift operator to z has the effect of shifting the 
colors. See Figure 6 for n = 6. (Note however that the shift operator does not really shift 
the edge colors but always gives the same coloring as defined, independent of the initial 
colors before its application.) 

Thus, given an initial coloring of the edges, by applying the shift operator at some 
points, say z, of H,,., edges z{i + 1 (mod m)) parallel to axis e,+1 (mod m) will have color 
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Figure 8: Illustration of Lemma 1 

i but a.11 the other edges also with color i are parallel to e;. Furthermore, after applying 
shift, any path formed by edges of color i only lies within a H2 = C4 x C 4 parallel to 
the plane defined by axes e; and e;+i (mod m)· This observation takes us to the following 
definition. 

Definition 4 For each O :5 i $ m - 1, H2(i) is a H2 parallel to the plane defined by axes 
e; and e;+l (mod m). 

For example, for n = 6, H3 = C4 x C4 x C4 has 12 H2(i)'s, with 4 H2(i)'s for each 
i = 0, 1,2 (see Figure 7). 

A vertex x = (xo, x1, · · ·, x;, x;+l (mod m), • • ·, Xm-d of H2(i) have constant coordinates 
except x; and x;+l (mod m)· It is therefore of the following type: 

x =(constant, •••,constant, x;, X;+i (mod m), constant, ···,constant) 

To simplify the notation, we omit the (m - 2) constant coordinates of H2(i) and write 
X =(x;, X;+l (mod m))· 

The following lemma will be used in the proof of Theorem 2. 

Lemma 1 Consider a H2 (i), for a fixed i, 0 $ i $ m - 1, a fixed k E {O, 1, 2,3}, 
and an initial coloring. Apply shift in this H2(i) to all x = (x;,x;+i (mod m)) such that 
x; + X;+1 (mod m) = k (mod 4). Then the edges of color i in this H2(i) form a Gia-
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Figure 9; Points to apply the shift operator for H4 

Proof. The proof is straightforward. We consider all possible cases for k (k = 0, 1, 2, 3) 
and obtain Figure 8. The lemma holds. D 

The next theorem generalizes the decomposition in cycles C16 needed in phase 1 of the 
• method of [7). 

Theorem 2 Consider a binary n-cube Hm (n = 2m}, with the initial coloring of its edges, 
and a fixed KE {O, 1, 2, 3}. Apply the shift opemtor to all vertices z = (xo, xi,···, Zm-il 
such that xo + z1 + · · · + Xm-1 = K (mod 4). Then Hm is decomposed into cycles Cui, 
i.e., any edge is part of a cycle C1s-

Proof. Consider any edge of color i, 0 ~ i ~ m - 1. It belongs to some Hi(i). In this 
H2(i), consider the vertices at which the shift operator ha.s been applied. As the (m - 2) 
vertex coordinates of this H2(i) are constant, the difference between K and the sum of 
these constants will also be constant. Call this difference d. Then the shift operator was 
applied at vertices z such that z;+z,+1 (mod m) = d (mod 4) in this H3(i). This is exactly 
the situation described in Lemma 1. Therefore in this H1 (i) this edge must be part of the 
cycle C1s of color i. □ 

Note that the decomposition in cycles C1s for n = 6 pr~nted in (1] is a special case 
of this theorem with K = 3. 
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Figure 10: 16 cycles C16 of color 0 

4 Hamiltonian decomposition for n = 8 

We now present a Hamiltonian decomposition of the binary n-cube for n = 8. 

4.1 Phase 1: decomposing H4 into 64 cycles C16 

Apply Theorem 2 for H4 with K = 3. (The choice of K = 3 is that applying the theorem 
for H3 with this K would produce the same results and illustrations as in [7] for H3.) In 
Figure 9 the dark points a.re those to apply the shift operator. For clarity of illustration, 
some of the edges are omitted in the figure (most of the edges of type x(3) and all edges of 
type x(i), x = (xo, xi, x2, ,1:3), with x; = 3). H~ is decomposed into 64 cycles C16, with 16 
C16 of color i for each i = 0, 1, 2, 3. In Figure 10 the 16 cycles C16 of color O are illustrated. 
In this figure we omit more edges than we did in the previous figure, for the sake of clarity. 
Compare this figure with Figure 8 to verify the omitted edges of color O that are part of 
the cycle. 

4.2 Phase 2: obtaining a merge operator 

We found 4 merge operators (see Figure 11 and Figure 12). A small example is given in 
Figure 13 to illustrate the effect of applying the merge operator. We choose the merge 
operator 1 and use color 0. On the left of this figure, the large black point is the point 
where the shift operator has been applied and the bold curves indicate the remaining of 
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Figure 11: Before applying the merge operator 
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Figure 12: After applying each of the 4 merge operators for n = 8 
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Figure 13: Effect of the merge operator 1 on color 0 

the cycle C15 of color 0 in H2(0). We can observe four cycles of color 0. On the right we 
notice that the merge operator (merge 1) joins the four cycles of color O into one sole cycle. 
The same effect can be observed for colors 1, 2, and 3, that is, four cycles of each color 
are joined by applying merge 1. The same is valid for the other merge operators (merge 2, 
merge 3 a.nd merge 4). We apply the merge operator at the following five reference points: 
(3, 0, 0, 0), (1, 0, 2, 0), (0, 1, 1, 1), (3, 2, 0, 2), (1, 2, 2, 2) and we join the 16 cycles of each color 
i = 0, 1, 2, 3 into one cycle only obtaining four cycles C256• 

5 Conclusion 

We continue the work initiated by Song[7] of finding a simple constructive algorithm to 
obtain the disjoint Hamiltonian cycles of a binary n-cube. The previous work consisted of 
the following. First decompose the binary n-cube into cycles of length 16, C16, and then 
apply a merge operator to join the C1a cycles into larger Hamiltonian cycles. The case 
of dimension n = 6 (a 64-node hypercube) was illustrated. The conjectures was that the 
method can be generalized for any even n. 

In this pa.per we generalize the first phase of that method for any even n and prove its 
correctness. Also we show four possible merge operators for the case of n = 8 (a. 256-node 
hypercube). This result can be viewed as a step toward the general merge opera.tor, thus 
proving the conjecture. 
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