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Abstract

The Hamiltonian decomposition of a hypercube or binary n-cube is the partitioning
of its edge set into Hamiltonian cycles. It is known that there are |n/2] disjoint
Hamiltonian cycles on a binary n-cube. The proof of this result, however, does not
give rise to any simple construction algorithm of such cycles. In a previous work Song
presents ideas towards a simple and interesting method to this problem. Two phases
are involved. First decompose the binary n-cube into cycles of length 16, C1¢, and
then apply a merge operator to join the Cig cycles into larger Hamiltonian cycles.
The case of dimension n = 6 (a 64-node hypercube) is illustrated. He conjectures the
method can be generalized for any even n. In this paper, we generalize the first phase
of that method for any even n and prove its correctness. Also we show four possible
merge operators for the case of n = 8 (a 256-node hypercube). This result can be
viewed as a step toward the general merge operator, thus proving the conjecture.

1 Introduction

Many results on the existence of Hamiltonian cycles in graphs are known [2, 3, 4, 5, 6].
In particular the existence of Hamiltonian cycles on the hypercube is important for fault-
tolerant distributed computing based on this structure. When an application uses proces-
sors joined as a cycle, it is important to know alternative cycles in case of communication
failure in one cycle [1]. The mere knowledge of its existence, however, may not be sufficient.
It is desirable to have a simple algorithm to construct the alternative cycles.

It is known that there are {n/2] disjoint Hamiltonian cycles on a hypercube of dimen-
sion n [2). The proof of this result, however, does not give rise to any simple construction
algorithm of such cycles. In [7] Song presents ideas towards a simple and interesting
method to this problem. Two phases are involved. (1) Decompose the hypercube into Cis
(cycles of length 16) and then (2) apply a merge operator to join the obtained Cig cycles
into larger cycles. An illustration for the case of dimension n = 6 (a 64-node hypercube})
is given. He conjectures this method can be generalized for any even n.

In this paper, we generalize the first phase of that method for any even n and prove its
correctness. Also we show a merge operator for the case of n = 8 (a 256-node hypercube).



This result can be viewed as a step toward the general merge operator, thus proving the
conjecture.

In Section 2 we discuss Hamiltonian decomposition of the hypercube and present Song’s
method. In Section 3 we formalize phase 1 for the general case and prove the correctness.
In Section 4 we show a merge operator to decompose the hypercube of dimension 8 into
Hamiltonian cycles. Section 5 contains the conclusion.

2 Previous works

2.1 Hamiltonian decomposition

The Hamiltonian decomposition of a graph is the partitioning of its edge set into Hamilto-
nian cycles. Obviously in order for this partition to exist, the graph must be regular and
have even degree. A more general definition of Hamiltonian decomposition is given in (2}
to include the case of odd degree. This work considers the Hamiltonian decomposition of
the binary n-cube or hypercube of dimension n.

For simplicity and without loss of generality, we consider n to be even. (If n is odd,
the edge set can be partitioned into (n ~ 1)/2 Hamiltonian cycles and a perfect matching
[2].) Observe first that the binary n-cube is equivalent to a 4-ary n/2-cube, that is the
Cartesian product of n/2 cycles of length 4: Cy x Cy X - - - x Cy. We start with the following
theorem (see [2] for details and proof).

Theorem 1 The binary n-cube with even n, or equivalently the product of n/2 cycles,
Cy x Cy x -+ x Cy, can be partitioned into n/2 Hamiltonian cycles.

Song [7] presents ideas and that may give rise to a very simple method to construct
the disjoint Hamiltonian cycle of a binary n-cube. He illustrated the method for the case
of n = 6. It consists of two phases.

1. partition the edge set into cycles of length 16 or Cig.

2. merge the resulting cycles into larger cycles to get the desired Hamiltonian cycles.

This second phase is realized by using a merge operator to be seen later.

2.2 Phase 1 — decomposition into Cy¢

Phase 1 decomposes the n-cube into cycles of length 16, or C. Foregger [5] gave a solution
for the case of n = 4, i.e. Cy x C, is decomposed into two Cie.

For the case n = 6, phase 1 consists of decomposing Cy X Cg x Cy into 12 Cie. We
repeat here how this decomposition is done. :

We divide the 12 cycles into three groups:

® 4 cycles of color 0
e 4 cycles of color 1
@ 4 cycles of color 2
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Figure 1: Cycles of color

In the next section the cycles Cig of same color will be merged to form a Hamiltonian
cycle.

In Figure 1 we illustrate the 4 cycles of color 0. Notice that the cycles are situated
on planes parallel to the plane defined by the axes ey and e;. This observation will be
formalized in the next section. In Figure 2 we have the cycles of color 1 and color 2. Notice
the symmetries between cycles of this figure and those of Figure 1.

The edge set of the product Cy x C4 x -+« x C4 (n/2 times) can be partitioned into
n2" /32 disjoint cycles of length 16, 2" /16 cycles of the same color.

2.3 Phase 2 — the merge operator

We show how the 12 cycles of length 16 of the previous section can be merged into
3 Hamiltonian cycles. Cycles of the same color will be merged together to form one
Hamiltonian cycle.

Consider a vertex and the edges incident with it. An edge permutation operator is
an operator that permutes the colors of the edges. We use a set of edge permutation
operators to merge cycles of a given color to form a large cycle of the same color.

Definition 1 A set of edge permutation operators is a (cycle) merge operator if it trans-
forms a partition of the edge set of r cycles io a partition of the edge set of 8 cycles

(s<r).

Consider the partition of the edges of C4 X C4 X Cy into Cjg as before. Figure 3 shows
a merge operator that joins two cycles of each color into a large cycle of the same color.
Point A is a reference point for the application of the merge operator. Figure 4 shows the
effect of applying the merge operator. For each color the curves (i.e. the additional part
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Figure 3: Merge operator

not present in Figure 3) indicate the remaining of the Cj¢ cycle. On the left of Figure 5
we have the positions (indicated by larger circles) of possible reference points A to apply
the merge operator, according to Figure 3. On the right of the same figure we have the
three points chosen in [7] resulting in 3 Hamiltonian cycles of length 64, one for each color
0,1 and 2.

3 Generalization of phase 1

In the following we formalize phase 1, the decomposition of the edge set of a binary n-cube,
for any even n, into cycles Cig. Let n = 2m and H,, a binary n-cube.
Hyp=Cy xCyx -+ xCy.
——— e

m times

Consider a vertex z of Hy. Let z = (20,24, ++,2pn-1), where 2; € {0,1,2,3)} for
0<i<m-1. :
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Figure 5: Candidate points to apply the merge operator (left) and the three chosen points
(right)



4 H,0’s 4 H,(1)'s 4 H,(2’s

Figure 7: The 12 Hy’s for Hj

Denote by z(t) the edge joining = = (zo, 21, *, i, ** -, Zm—1) and 2’ = (zg, 21, -+, Z;+
1 (mod 4), ey 1.‘,,._1).

Definition 2 The initial coloring of the edge set of a binary n-cube is defined as follows.
Color each edge z(i) with colori,Vz € Hy, and0<i<m-— 1.

Thus each edge parallel to axis ¢; is colored by color i with the initial coloring.

Definition 3 The shift operator is an operator that, applied to a vertez = € H,,, defines
the colors of half of the edges incident with z in the following manner: each z(3) is colored
with color (i — 1) (mod m), for0<i<m-1.

The above operator is named shifi operator because, given a vertex z and an initial
coloring of the edges, the application of the shift operator to z has the effect of shifting the
colors. See Figure 6 for n = 6. (Note however that the shift operator does not really shift
the edge colors but always gives the same coloring as defined, independent of the initial
colors before its application.)

Thus, given an initial coloring of the edges, by applying the shift operator at some
points, say z, of Hy;, edges z(i + 1 (mod m)) parallel to axis e;, {mod m) Will have color
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Figure 8: Illustration of Lemma 1

i but all the other edges also with color i are parallel to e;. Furthermore, after applying
shift, any path formed by edges of color 7 only lies within a Hy = C; x C, parallel to
the plane defined by axes e; and €;1; (mos m)- This observation takes us to the following
definition.

Definition 4 For each 0 < i < m —1, Hy(¢) is a H; parallel to the plane defined by azes
& and €iy1 (mod m)-

For example, for n = 6, Hs = Cyq X Cyq x C4 has 12 Hy(i)’s, with 4 H(i)’s for each
i=0,1,2 (see Figure 7).

A vertex z = (20, 21, * *1 Tiy Ti41 (mod m): * * *» Tm—1) of Hz(7) have constant coordinates
except z; and Ziy) (mod m)- It is therefore of the following type:

z =(constant, - - -, constant, z;, Ti41 (mod m), cOnstant, - -+, constant)

To simplify the notation, we omit the (m — 2) constant coordinates of H;(3) and write
Z =(Zi, Tit1 (mod m))-

The following lemma will be used in the proof of Theorem 2.
Lemma 1 Consider a Hj(i), for a fized i, 0 < i < m -1, a fized k € {0,1,2,3},

and an initial coloring. Apply shift in this Hy(3) to all z = (2i,Zi41 (mod m)) Such that
Zi + Tiy1 (mod m) = k (mod 4). Then the edges of color i in this Ha(i) form a Cie.
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Figure 9: Points to apply the shift operator for Hy

Proof. The proof is straightforward. We consider all possible cases for k (k=0,1,2 3)
and obtain Figure 8. The lemma holds.

The next theorem generalizes the decomposition in cycles C¢ needed in phase 1 of the
method of [7].

Theorem 2 Consider a binary n-cube H,, (n = 2m), with the initial coloring of its edges,
and a firzed K € {0,1,2,3}. Apply the shift operator to all vertices T = (T, 21, ", Zm—1)
such that 2o+ z) + -+ -+ 2m_1 = K (mod 4). Then H,, is decomposed into cycles Cg,
i.e., any edge is part of a cycle Cyg.

Proof. Consider any edge of color ¢, 0 < i < m — 1. It belongs to some Hj(i). In this
H(3), consider the vertices at which the shift operator has been applied. As the (m-2)
vertex coordinates of this H,(i) are constant, the difference between K and the sum of
these constants will also be constant. Call this difference d. Then the shift operator was
applied at vertices z such that z; 4z, {mod m) = @ (mod 4) in this H5(¢). This is exactly
the situation described in Lemma 1. Therefore in this H;(i) this edge must be part of the
cycle Cg of color 4. I}

Note that the decomposition in cycles Cig for n = 6 presented in {7] is a special case
of this theorem with K = 3.



Figure 10: 16 cycles C)¢ of color 0

4 Hamiltonian decomposition for n = 8

We now present a Hamiltonian decomposition of the binary n-cube for n = 8.

4.1 Phase 1: decomposing H, into 64 cycles Cy

Apply Theorem 2 for Hy with K = 3. (The choice of K = 3 is that applying the theorem
for Hj with this K would produce the same results and illustrations as in [7] for H3.) In
Figure 9 the dark points are those to apply the shift operator. For clarity of illustration,
some of the edges are omitted in the figure (most of the edges of type z(3) and all edges of
type (i), z = (2o, 1, z2, T3), With z; = 3). H, is decomposed into 64 cycles Cjg, with 16
Ci6 of color 1 for each i = 0,1, 2,3. In Figure 10 the 16 cycles Cjg of color 0 are illustrated.
In this figure we omit more edges than we did in the previous figure, for the sake of clarity.
Compare this figure with Figure 8 to verify the omitted edges of color 0 that are part of
the cycle.

4.2 Phase 2: obtaining a merge operator

We found 4 merge operators (see Figure 11 and Figure 12). A small example is given in
Figure 13 to illustrate the effect of applying the merge operator. We choose the merge
operator 1 and use color 0. On the left of this figure, the large black point is the point
where the shift operator has been applied and the bold curves indicate the remaining of



Figure 12: After applying each of the 4 merge operators for n = 8
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Figure 13: Effect of the merge operator 1 on color 0

the cycle Cyg of color 0 in H3(0). We can observe four cycles of color 0. On the right we
notice that the merge operator (merge 1) joins the four cycles of color 0 into one sole cycle.
The same effect can be observed for colors 1, 2, and 3, that is, four cycles of each color
are joined by applying merge 1. The same is valid for the other merge operators (merge 2,
merge 3 and merge 4). We apply the merge operator at the following five reference points:
(3,0,0,0),(1,0,2,0),(0,1,1,1),(3,2,0,2), (1,2,2,2) and we join the 16 cycles of each color
i=0,1,2,3 into one cycle only obtaining four cycles Csz6.

5 Conclusion

We continue the work initiated by Song[7] of finding a simple constructive algorithm to
obtain the disjoint Hamiltonian cycles of a binary n-cube. The previous work consisted of
the following. First decompose the binary n-cube into cycles of length 16, C;g, and then
apply a merge operator to join the Cig cycles into larger Hamiltonian cycles. The case
of dimension n = 6 {a 64-node hypercube) was illustrated. The conjectures was that the
method can be generalized for any even n.

In this paper we generalize the first phase of that method for any even n and prove its
correctness. Also we show four possible merge operators tor the case of n = 8 (a 256-node
hypercube). This result can be viewed as a step toward the general merge operator, thus
proving the conjecture.
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