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ABSTRACT
Measurement errors occur very commonly in practice. After fitting
the model, influence diagnostics is an important step in statistical
data analysis. The most frequently used diagnostic method for mea-
surement error models is the local influence. However, this method-
ology may fail to detect masked influential observations. To over-
come this limitation, we propose the use of the conformal normal
curvature with the forward search algorithm. The results are pre-
sented through easy to interpret plots considering different per-
turbation schemes. The proposed methodology is illustrated with
three real data sets and one simulated data set, two of which have
been previously analyzed in the literature. The third data set deals
with the stability of the hygroscopic solid dosage in pharmaceuti-
cal processes to ensure themaintenance of product safety quality. In
this application, the analytical mass balance is subject to measure-
ment errors, which require attention in the modeling process and
diagnostic analysis.
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1. Introduction

Measurement error models have been applied in many areas of science and received much
attention in the past decades (see Refs. [10,14] and references therein). There are plenty of
applications where the covariate is not measured precisely such as blood pressure, degree
of pest infestation, dental plaque index, intelligence quotient, temperature, mass of a sub-
stance and so forth. More recently, Carroll et al. [11] studied the prediction problem in
non-parametric measurement error models, whereas Zhang et al. [39] introduced the lin-
ear model selection when the covariates are measured with error. Hu and Wansbeek [21]
presented recent studies on measurement error models in the econometric literature.
When the covariate is measured with error, it is well known that the naive estimator of
the slope parameter obtained by fitting the usual regression model results in a inconsistent
estimator (see Ref. [14]).
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After fitting a model, the influence diagnostics is an important step in statistical data
analysis. The usual methodologies to assess the observations that are influential/outliers
are the global influence, where a case is removed tomeasure the effect of the deletion in the
parameter estimates, predictions or tests of interest (see, for example, Refs. [7,13,17,38]).
In the linear regression, it is well known that the presence of such observation(s) may alter
drastically the analyses of a regression model. The usual measurement error model esti-
mates can also behave very poorly in the presence of such observation(s) (see Ref. [14] and
references therein). ‘The parameter estimates for the measurement error model are even
less robust than the least-squares estimates are for the ordinary regression model, and the
latter are known to be quite nonrobust ’ [14]. Considering the measurement error models
and the influence diagnostics, Kelly [23] proposed an influence function for the structural
models, Zhong et al. [40] dealt with the assessment of local and global influence for lin-
ear measurement error models based upon the corrected likelihood of Nakamura [31],
and Rasekh and Fieller [36] derived an influence function in functional measurement
error models with replicated data. There is an extensive literature with applications of
the local influence of Cook [16] in measurement error models. See, for example, Refs.
[3,18,25–29,35].

Cook [16] introduced the local influence of minor perturbations in the data set or in
themodel to identify a group of observations that may exert an undue influence.When the
individual cases are deleted (global influence), it may not identify, for example, a group of
observations which are jointly influential but not individually influential (see Refs. [9,15]).
The local influence is a simple and powerful method, which is based on the normal cur-
vature to study the behavior of the likelihood displacement function. It was suggested to
analyze the direction with the largest normal curvature and the relative sizes of its compo-
nents to identify observations that are subject to maximal sensitivity to the perturbation.
However, there was no objective benchmark to judge largeness. To bypass this difficulty,
Poon and Poon [33] proposed the use of the conformal normal curvature and an objective
benchmark to judge largeness.

These methodologies start by fitting the model to the whole data set including the out-
liers, which may cause the masking effects, i.e. when an outlier is not detected because of
the presence of a cluster of outliers. To overcome this problem, Atkinson and Riani [5]
proposed the forward search in regression models that starts fitting the model to very few
observations in a robust way using least squares and residuals. Themethodology gradually
increments the number of observations used in the fit until all the observations are fitted.
The key concept of the forward search algorithm is the ordering of the data on the basis
of observational residuals to detect multiple masked outliers. In the forward search, the
evolution of residuals, parameter estimates and inferences is monitored as the subset size
increases [5].

Many articles have been published considering the forward search in different con-
texts of applications and theories. Mavridis and Moustaki [30] used the forward search
algorithm to identify atypical observations in factor analysis models, while Bellini [8]
extended the forward search in elliptical copulas and Atkinson et al. [6] extended the for-
ward search algorithm to multivariate data. Cerioli et al. [12] studied some asymptotic
properties of the forward search, Johansen and Nielsen [22] studied the asymptotic prop-
erties of the sequence of regression estimators and forward residuals and Grané et al. [19]
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combined forward search distance-based algorithm with robust clustering to visualize
mixed data.

While there aremanymethodologies to deal with diagnostic analysis in linear regression
models, see also Ref. [4], the same is not true with other models. The novelty in this work
is the development of a methodology to detect masked influential observations in mea-
surement error models, considering conformal normal curvature and forward search. As
previously stated, in measurement error models, it is very important to detect such obser-
vations as otherwise the estimates can behave very poorly. Moreover, once the usual local
influence analysis is performed, it is easy to perform the proposed methodology with little
extra effort and the procedure may reveal influential observation that was masked and not
identified during the local influence analyzes.

To show the versatility of the proposed methodology, we apply it to three real data sets
and a simulated data set.

The first and second data sets were previously analyzed in the literature and the third
data set is from a stability study of a hygroscopic solid dosage.

Aoki et al. [1] analyzed a study designed to test the efficacy of two types of toothbrushes
in removing dental plaque. In that study, 26 preschoolers were evaluated under these 2
experimental conditions. As null pretest dental plaque indices imply null expected posttest
values, the null intercept model was considered. Also, as the dental plaque indices are eval-
uated imprecisely, the pretest dental plaque indices, as well as the posttest dental plaque
indices (after the use of each toothbrush) must account for the measurement errors. Thus
the use of the measurement error model was proposed. Furthermore, the proposed model
allowed for correlated individual measurements since each preschooler used both of the
toothbrushes. We will refer to this data set as toothbrush data.

Considering the toothbrush data just described and a general setting with p treatments,
let zj denote the observed vector for the jth subject, given by

zj =
(

xj
yj

)
with xj = (x1j , . . . , xpj)

T and yj = (y1j , . . . , ypj)
T , j = 1, . . . , n.

Then, Aoki et al. [1] extended the classical measurement error model proposing the
following model:

yij = βiξij + eij ;

xij = ξij + δij ;

ξij = μ + aj; (1)

where aj
ind.∼ N(0, σ 2

x ), δij
ind.∼ N(0, σ 2

δ ), eij
ind.∼ N(0, λiσ 2

δ ), δij , eij and aj independent for
i = 1, . . . , p, j = 1, . . . , n. The term aj allows for a possible within subject correla-
tion structure, leading to the random effect model. Thus, the observed vector for
the jth subject zj ∼ N2p(m,V), j = 1, . . . , n, where m = μb, V = σ 2

δ A + σ 2
x bb

T with
b = (1Tp ,β

T)T ,

A =
(
IP 0P
0P D(λ)

)
,
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Figure 1. Toothbrush data: explanatory variable perturbation scheme. CNCFS forward plot (top) and
index plot ofm(q) (bottom) for the contribution of the eigenvector associated with the largest eigen-
value in the left-hand panels and the total contribution (q = 0) in the right-hand panels.

β = (β1, . . . ,βp)
T , λ = (λ1, . . . , λp)T , 1p denoting a vector composed by p 1’s, IP the iden-

tity matrix of order p, 0P a square matrix of order p composed by 0’s and D(λ) a diagonal
matrix with elements of the vector λ. Furthermore, the log likelihood function is given by

�(θ) = −np log(2π) − n
2
log |V| − 1

2

n∑
j=1

(zj − m)TV−1(zj − m) (2)

with θ (2p+3)×1 = (βT ,μ, σ 2
x , σ 2

δ ,λ
T)T .

In the case of the toothbrush data, we have p = 2 with i = 1 representing the experi-
mental toothbrush and i = 2 representing the conventional toothbrush. The number of
preschoolers in that study was n = 26. The Anderson–Darling (AD) and Cramér–von
Mises (CVM) tests were considered to test for normality (see Refs. [24,32]). The p-value
for the AD test was given by 0.837 and for the CVM test was given by 0.937. Consequently,
considering the significance level as 5%, we conclude that the toothbrush data follow a
multivariate normal distribution (see also the multivariate QQ-plot in the left-hand plot
of Figure 1 in the Supplemental Material).
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Figure 2. Toothbrushdata: explanatory variableperturbation scheme (left-handpanel) and caseweight
perturbation scheme (right-hand panel). Plot of LD(ω(a)) versus awithω(a) = ω0 + al.

The second data set, which will be referred to as mouth rinse data, was presented in
Ref. [20] and refers to a pretest/posttest study designed to compare three types of mouth
rinses with respect to their efficacy in removing dental plaque. In that study, 105 adults
were randomized to 2 experimental mouth rinses, A or B, or a control mouth rinse and the
plaque indices were taken at the beginning of the study, after 3 months and after 6 months
from the beginning of the study with the use of one of these mouth rinses. Thirty-six sub-
jects used the control mouth rinse, while 33 (36) individuals used the experimental mouth
rinse A (B). So, in this experiment, each subject used only one of the mouth rinses, but
the data were taken longitudinally as the dental plaque indices were measured at the base-
line, after three months and after six months from the baseline. For the same reasons that
were discussed earlier, the null intercept measurement error model was proposed by Aoki
et al. [2]. Also, as each subject was evaluated at baseline and two follow-up times, there is a
possible dependence on the outcome measurements. So the structural model was consid-
ered. For the mouth rinse A (B), the p-value for the AD test was 0.608 (0.417) and for the
CVM test was 0.582 (0.402) and for the control mouth rinse, these values were 0.140 (AD
test) and 0.103 (CVM test). So, considering the significance level as 5%, we conclude that
the data set referring to each of themouth rinses follows amultivariate normal distribution
(see also the multivariate QQ-plot in Figure 2 in the Supplemental Material).

Considering the mouth rinse data, let

zij =
⎛
⎝ xij

y1ij
y2ij

⎞
⎠

denote the observed vector for the jth individual that was subject to the ith treatment, j =
1, . . . , ni, i = 1, . . . , p. In the mouth rinse experiment, p = 3, with i = 1 representing the
control mouth rinse and i = 2 (i = 3) the experimental mouth rinse A (B), n1 = 36, n2 =
33 and n3 = 36. Let xi = (xi1 , . . . , xini )

T denote the observed vector at baseline for subjects
whoused the ithmouth rinse, yi = (yT1i, y

T
2i)

T the observed vector for subjectswhoused the
ith mouth rinse, with y1i = (y1i1 , . . . , y1ini )

T representing the dental plaque indices after
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three months from the baseline and y2i = (y2i1 , . . . , y2ini )
T the dental plaque indices after

six months from the baseline, while ξ i = (ξi1 , . . . , ξini )
T represents the unobserved true

value of the dental plaque index before the use of the ith mouth rinse, i = 1, 2, 3. Then, the
model can be written as [2]

xi = ξ i + δi,

yi = Xiβ i + ei, i = 1, . . . , p, (3)

where

Xi =
(

ξ i 0p
0p ξ i

)
,

β i = (β1i,β2i)
T , δi = (δi1 , . . . , δini )

T , ei = (eT1i, e
T
2i)

T , with 0p denoting a vector com-

posed by p 0’s, e1i = (e1i1 , . . . , e1ini )
T and e2i = (e2i1 , . . . , e2ini )

T , δij
ind.∼ N(0, σ 2

δ ), e1ij
ind.∼

N(0, σ 2
e1i), e2ij

ind.∼ N(0, σ 2
e2i), ξij

ind.∼ N(μ, σ 2
x ), δij , e1ij , e2ij and ξij independent, i = 1, . . . , p,

j = 1, . . . , ni. So that the observed vector zij ∼ N3(mi,V i), where mi = μai and V i =
Ai + σ 2

x aiaTi with ai = (1,βT
i )T , Ai = D(σ 2

δ , σ
2T
ei )T with σ 2

ei = (σ 2
e1i , σ

2
e2i)

T , i = 1, . . . , p,
j = 1, . . . , ni.

Then, the log likelihood function is given by

�(θ) = −3N
2

log(2π) − 1
2

p∑
i=1

ni log |V i| − 1
2

p∑
i=1

ni∑
j=1

(zij − mi)
TV−1

i (zij − mi) (4)

with θ (4p+3)×1 = (βT
1 , . . . ,β

T
p ,μ, σ 2

δ , σ
2
x , σ 2T

e1 , . . . , σ
2T
ep )T , N = ∑p

i=1 ni, |V i| = bi|Ai|,
V−1
i = A−1

i − σ 2
x b

−1
i Bi, where bi = 1 + σ 2

x aTi A
−1
i ai and Bi = A−1

i aiaTi A
−1
i .

The third data set refers to a hydroscopic solid dosage.
Based on a risk map related to the product under analysis, a series of attributes are

selected to be assessed during the stability study. The effects of variation in temperature,
time, humidity, physical and chemical characteristics of themixture and pH, among others,
must be evaluated during the stability investigation process.

In a solid dosage product, several physical characteristics such as hardness, weight,
thickness, disintegration, etc. can be evaluated during the stability analysis process. Among
the attributes of stability studies for a hydroscopic product is the absorption of moisture
over time. This study is important in order to choose the type of excipient mixture that
presents lower absorption rate, as the moisture can interfere in the physical characteris-
tics, in the analytical measurement of the content and in the dissolution behavior of the
product, among others.

In this study, twomixtures of excipient are compared considering three follow-up times.
The mixtures were kept in a laboratory environment, at 25◦C and 55% relative humidity,
during the 14 days of the experiment. The mass was weighted on an analytical balance in
the beginning of the study, after 7 days and after 14 days with the product fully exposed to
the condition of the laboratory environment. Furthermore, the balance induces ameasure-
ment error when measuring the mass of the oral solid drug product. Also, as the data were
collected longitudinally, there is a correlation between measurements taken over time, but
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not between different mixtures of excipient. So the model defined in (3) was considered.
The p-value for the AD test was 0.737 (0.678) and for the CVM test was 0.888 (0.508) for
the first mixture (solid dosage A) and the secondmixture (solid dosage B), respectively. So,
considering the significance level 5%, we conclude that the data set referring to each of the
mixtures follows a multivariate normal distribution (see also the multivariate QQ-plot in
Figure 1 in the Supplemental Material).

The proposedmethodology was applied to these three data sets and a simulated data set
to deal with masked influential observations in the multivariate measurement error model
setting, though it is important to emphasize that the proposedmethodologymay be applied
to any model where the local influence analysis is appropriate.

Section 2 gives a brief description of the two diagnostic measures, conformal normal
curvature and forward search algorithm that will be used in the proposed methodology.
Section 3 introduces the methodology. Applications with the real data sets just described
and the simulated data set will be presented in Section 4. Finally, in Section 5, we discuss
the obtained results.

2. Diagnostic analysis

In this section, we briefly describe the conformal normal curvature introduced by Poon
and Poon [33] and the forward search algorithm proposed by Atkinson and Riani [5].

2.1. Conformal normal curvature

Let LD(ω) = 2{�(̂θ) − �(̂θω)} denote the likelihood displacement function, where �(θ) =
log L(θ) and �(θ |ω) = log L(θ |ω) with L(θ) and L(θ |ω) representing the likelihood func-
tion and the perturbed likelihood function, θ̂ and θ̂ω the maximum likelihood estimates
(MLEs) of θ t×1 under the unperturbed and the perturbed models, respectively. ω =
(w1,w2, . . . ,wr)

� ∈ 	 is the vector of perturbations, restricted to some open subset 	 of
R
r. A vector of no perturbation ω0 is assumed, such that �(θ |ωo) = �(θ) and also �(θ |ω)

is twice continuously differentiable. The graph of α(ω) = (ω�, LD(ω))�, as ω vary in 	,
is called the influence graph.

One way to investigate the local behavior of an influence graph around ω0 is to select a
direction l in 	 passing through ω0.

Cook [16] showed that the normal curvature in the direction l can be written as

Cl = 2|lT	TL̈−1	l|,

where −L̈ is the observed information matrix, with L̈ = ∂2�(θ)/∂θ∂θT |θ=θ̂ , 	 =
∂2�(θ | ω)/∂θ∂ωT |θ=θ̂ ,ω=ω0

and ‖l‖ = 1.
Cook suggested the use of the maximum normal curvature, Cmax (which is the max-

imum absolute eigenvalue of 	TL̈−1	), and the associated eigenvector, lmax , to detect
influential observations, as this is the direction that gives the greatest local change in the
likelihood displacement.

Based on the work of Cook [16], Poon and Poon [33] proposed the use of the conformal
normal curvature and they proved that the conformal normal curvature at a point ω0 of



8 R. AOKI ET AL.

an influence graph in the direction l can be written as

Bl = − lT	TL̈−1	l√
tr(	TL̈−1	)2

∣∣∣∣∣
θ=θ̂ ,ω=ω0

.

Furthermore, the authors showed that 0 ≤| Bl |≤ 1 for any direction l. Let λh, h = 1, . . . , r,
be the absolute value of the normalized eigenvalue of the matrix

F̈ = 	TL̈−1	, (5)

such that

λmax = λ1 ≥ · · · ≥ λk ≥ q/
√
r > λk+1 ≥ · · · ≥ λr ≥ 0

and ahj the jth element of the normalized eigenvector corresponding to λh. Poon and
Poon [33] defined that an eigenvector l is q influential if | Bl |≥ q/

√
r and the aggregate

contribution of the jth basic perturbation vector (column vector in R
r with the jth entry

equal to 1 and all other entries equals to zero) to all q influential eigenvectors as

m(q)j =
√√√√ k∑

h=1

λha2hj. (6)

If we allow q to be sufficiently large such that λmax = λ1 ≥ q/
√
r ≥ λ2 ≥ · · · ≥ λr ≥ 0 ,

then only the direction corresponding to the largest eigenvalue is considered in the analy-
sis. Depending on the value of q, it is possible to consider the aggregate contribution of two
largest eigenvalues and the associated eigenvectors, three largest eigenvalues and the asso-
ciated eigenvectors and so on. If the value of q is small enough, the aggregate contribution
of all the eigenvalues and the associated eigenvectors is considered.

We definem(q)∗ as

m(q)∗ = (m(q)1, . . . ,m(q)r)T . (7)

So, if the contributions of all basic perturbation vectors are the same, each one would be

equal tom(q) =
√∑k

h=1 λh/r. Based on this result, Zhu and Lee [41] proposed some cri-
teria to decide about potentially influential observations. In this paper, the benchmark will
be considered as

m(q) + 2sd (8)

with sd denoting the standard deviation of the elements of the vectorm(q)∗.

2.2. Forward search

Atkinson and Riani [5] proposed the forward search algorithm to detect masked influen-
tial observations, considering regression models with the use of the least-squares methods
and residuals. It starts by fitting the model to a small robustly chosen subset, supposedly
free of outliers (basic set) and proceeds adding observations until all the observations are
included.
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Assume that we have a data set with n observations and let t denote the number of
parameters. Afterwards, the procedure starts by obtaining all possible subsets of size t
from n,

(n
t
)
, or if this number is too big, a large number of subsets as 1000 is suggested.

Subsequently, the least-squares estimate of the parameters for each subset of size s = t is
obtained. Moreover, for each subset, the residuals are calculated considering the parame-
ter estimate obtained using that subset, but with all the n observations. Therefore, for each
subset of size s = t, there will be a set of n residuals. The subset with least median square
of the observational residuals is chosen to be the initial subset, the basic set.

This procedure is repeated until all the observations are included into the basic set
(t ≤ s ≤ n), and the evolution of the quantities, such as parameter estimates, residuals and
inferences are monitored as a function of the subset size. The procedure avoids the inclu-
sion of outliers in the first steps, but the initial subsets does not affect the final steps where
the most important information is concentrated. In the last step, we have a set with the
whole observations and the estimation is obtained with the whole data set.

3. Conformal normal curvature with forward search

In Section 2, the conformal normal curvature introduced by Poon and Poon [33] and the
forward search proposed by Atkinson and Riani [5] were briefly described. In this section,
we introduce the proposedmethodology, conformal normal curvature with forward search
(CNCFS), to detect masked individually influential observations or groups of influential
observations.

Many of the methodologies developed to obtain masked outliers divide the data set
in a clean subset free of outliers, the basic set, and another data set composed by the
remaining observations with potential outliers. A criterion is defined by which new obser-
vations are introduced into the basic set and it is incremented until all the observations are
included. Therefore, in the last step, the parameter estimates are obtained and the analysis
considering the whole data set is developed.

Considering the proposedmethodology, first the perturbation scheme to be used is cho-
sen. Zhu et al. [42] addressed the appropriate choice of a perturbation vector and used
the first and second derivatives of the objective function to construct influence measures.
They concluded that, for example, in the location-scale model, the case weight pertur-
bation, the variance perturbation and the response variable perturbation are appropriate
perturbations. Other models and other perturbations were also considered.

The case weight perturbation scheme is one of the most commonly used perturbation
schemes. Another way to perturb the model is to consider heterogeneous variance by per-
turbing the variance terms. In addition, it is important that a small perturbation in the data
set does not change the inference results, which leads to the perturbation in the explanatory
variable and the response variable.

After defining the perturbation scheme to be used, the methodology starts at s = s0 in
the first step and it ends at s = n in the last step. So that

s = s0, s0 + 1, . . . , n − 1, n.

In each step, following Atkinson and Riani [5], either we sample all possible
(n
s
)
subsets

of size s or if
(n
s
) ≥ 1000, 1000 subsets are sampled. The size of the initial subset s0 can be
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chosen to be the number of parameters t or t+ 1, t+ 2 (see Ref. [5]). The choice of the ini-
tial subsets does not greatly influence the search and it does not affect the final steps where
the most important findings of the analysis are concentrated. Let us denote the number of
subsets in the sth iteration by bs. Therefore, in the first step, there are bs0 subsets of size s0
and in the last iteration there are bn subsets of size n (bn = 1).

In the first step, the algorithm starts by sampling bs0 samples of size s0. Thereafter, the
MLE of the parameters is obtained for each of the bs0 subsets. In addition, for each of the bs0
subsets, the value q is chosen, such that the aggregate contribution of the jth basic pertur-
bation vector (6) would include the k largest eigenvalues. Furthermore, for each subset it is
calculated them(q)∗ defined in (7) considering all the n observations (the whole data set),
but with the MLE obtained for that subset and will be denoted by m(q)∗c , c = 1, . . . , bs0 .
Subsequently, each of the bs0 vectors m(q)∗c are ordered and the least median vector is
chosen, which will be denoted bym(q)s0 .

The forward search moves to the next iteration with s = s0 + 1 and so forth, until all
the observations are included. In the end, it is obtained

m(q) = (m(q)s0 ,m(q)s0+1, . . . ,m(q)n)T ;

where m(q)n is the aggregate contribution obtained by considering the whole data set,
i.e. the usual aggregate contribution using the entire data set to obtain the MLE of the
parameters.

Other quantities of interest can be obtained, such as

θ̂ = (θ̂ s0 , . . . , θ̂n)
T ,

where θ̂ s, s = s0, . . . , n, represents the estimated parameters from the chosen set at each
iteration. These quantities can be summarized using the forward plot.

The proposed methodology is summarized in the Algorithm.
In order to develop the CNCFS for the multivariate null intercept measurement error

models defined in Section 1, four perturbation schemes were considered: explanatory vari-
able perturbation scheme, case weight perturbation scheme, variance perturbation scheme
and response variable perturbation scheme.

First, considering the model defined in (3) and (4), the necessary matrices to calculate
the aggregate contribution of the jth basic perturbation vector, j = 1, . . . , r, were obtained
in closed form expressions.

The elements of the observed information matrix

−L̈ = −∂2�(θ)

∂θ∂θT
with θ (4p+3)×1 = (βT

1 , . . . ,β
T
p ,μ, σ

2
δ , σ

2
x , σ

2T
e1 , . . . , σ

2T
ep )T

were calculated and are given in the Supplemental Material.
Moreover, let

	((4p+3)×N) = ∂2�(θ | ω)

∂θ∂ωT

∣∣∣∣
θ=θ̂ ,ω=ω0

= (	θ11 , . . . ,	θpnp )
∣∣∣
θ=θ̂ ,ω=ω0

,
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Algorithm

s = s0 (size of the initial subset)
• Step 1

if
(n
s
) ≥ 1000,

bs = 1000, else bs = (n
s
)
.

• Step 2
Sample bs subsets of size s from the data set.

• Step 3
For each of the bs subsets sampled in Step 2:

(a) obtain the MLEs of the parameters;
(b) obtain the normalized eigenvalue and the corresponding normalized eigenvec-

tor of F̈ (5) using the whole data set (n observations) but the MLEs obtained in
(a) using the subset;

(c) according to the number of eigenvalues and the corresponding eigenvectors to
be considered in the analysis, obtain the aggregate contribution according to
(6) and name the (7) obtained in this iteration by m(q)∗c , where the index c
corresponds to the subset (c = 1, . . . , bs).

(d) order the vectorm(q)∗c .
• Step 4:

Considering the bs vectorsm(q)∗c , c = 1, . . . , bs obtained in Step 3, choose the one
with the least median vector and denote it bym(q)s (in the first iteration s = s0 and
in the last iteration s = n).

• Step 5:
Go to the Step 1 with s = s0 + 1 until s = n.

In the end, we obtainm(q) = (m(q)s0 ,m(q)s0+1, . . . ,m(q)n)T . Plotm(q) vs s, with s =
(s0, s0 + 1, . . . , n − 1, n)T .

where 	θ ij = (	T
β1ij , . . . ,	

T
βpij ,	μij ,	σ 2

x ij ,	σ 2
δ ij
,	T

σ 2
e1 ij

, . . . ,	T
σ 2
ep ij

)T((4p+3)×1), i = 1,

. . . , p, j = 1, . . . , ni, and N = ∑p
i=1 ni.

After algebraic manipulations, the elements of the matrix 	 for each perturbation
scheme were obtained and are given in the Supplemental Material.

Next, to show the usefulness of the proposed methodology, we apply the CNCFS to
the three real data sets described in Section 1 and a simulated data set. The routines were
implemented in R Core Team [34].

4. Application

In this section, the proposed methodology is illustrated with three real applications and
the simulated data. The first data set to be examined is the toothbrush data as it is simpler
to analyze.



12 R. AOKI ET AL.

4.1. Toothbrush data

Aoki et al. [1] proposed the use of the measurement error model with null intercept to
compare the efficacy of two types of toothbrushes, the experimental toothbrush and the
regular toothbrush, described in Section 1. Considering the model defined in (1) and (2),
the CNCFS methodology was applied to the perturbation schemes defined in Section 3.

We considered two extremes in this methodology. The total contribution, i.e. we
assumed that q = 0 so that all the eigenvalues and the associated eigenvectors are included
in the analysis and then we allowed q to be sufficiently large so that only the contribution
of the largest eigenvalue and the associated eigenvector are considered, i.e. the direction
which causes the greatest local change in the likelihood displacement.

First, considering the explanatory variable perturbation scheme, the forward plot of
CNCFS and the index plot ofm(q) were obtained and are shown in Figure 1.

The forward plot of CNCFS (top panels of Figure 1) starts with a subset of size s = 10
and in each step of the algorithm, the sample size is incremented by 1, so that in the last step
the analysis and the estimation of the parameters are done with the whole sample of size
s = 26, which means that the points in the last iteration of the forward plot of CNCFS are
the same as the points in the usual index plot of the aggregate contribution (bottom panels
of Figure 1). In the index plots ofm(q) (bottom panels of Figure 1), the indices 1–26 in the
x axis refer to the data associated to the experimental toothbrush, while the indices 27–52
refer to the data corresponding to the conventional toothbrush for the same individuals in
the same order.

Considering the left-hand panel (top), which refers to the forward plot of CNCFSwith q
sufficiently large so that only the contribution of the eigenvector associated with the largest
eigenvalue is included, clearly observation 39 is above the benchmark for almost the entire
CNCFS evolution, however it is masked in the penultimate iteration and the observation
13 pops up.

According to the index plot of m(q) (left-hand bottom panel), which refers to the last
iteration of the forward plot of CNCFS and also is the usual index plot of the aggregate
contribution, the conclusion is that only the observation 13 is above the benchmark. But
with the use of the forward plot of CNCFS, it is possible to see that observation 39 was
masked in the final steps.

Next, the right-hand panels of Figure 1 show the forward plot of CNCFS and the index
plot of m(q) when q = 0, i.e. when all eigenvalues and the associated eigenvectors are
included in the analysis. In this case, observation 13 is above the benchmark from s = 16
to the end of CNCFS evolution, while observation 39 is mostly under the benchmark from
s = 16 to the end of the evolution, though very close to the benchmark.

The corresponding index plot of m(q) (right-hand bottom panel) shows that obser-
vation 13 is above the benchmark. However, with this plot, it is not possible to have an
overview of the evolution of the influence of this observation as the number of elements in
the subset increases.

Individual 13 corresponds to the preschoolerwith the second largest plaque index before
the use of the experimental toothbrush and the largest post-toothbrushing dental plaque
index among the individuals who used the experimental toothbrush. Observation 39 also
corresponds to the individual 13 but with the use of the conventional toothbrush and in
this case he is the child with the smallest pre-toothbrushing dental plaque index among
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the individuals who used the conventional treatment and also the only child that had no
reduction under the conventional treatment.

To analyze the influence of these observations in the likelihood displacement, the
left-hand panel of Figure 2 shows the plot of LD(ω0 + al) versus a ∈ [−1, 1] along the
directions l = lk, with k = 13, 39 and (13, 39), with lk denoting a null vector of size 26
with the kth element(s) replaced by 1. It can be seen that the influence of observations
13 and 39 are very close. Moreover, if we perturb together these two observations, they
become much more influential.

Next, we show the forward plot of CNCFS and the index plot ofm(q) for the contribu-
tion of the eigenvector associated with the largest eigenvalue, where no observation was
masked during the CNCFS evolution.

In the left-hand panels of Figure 3, the response variable perturbation scheme was con-
sidered. In the forward plot of CNCFS (left-hand top panel), observation 44 are above
the benchmark during the entire CNCFS evolution. Also, there was no masked influential
observations. Considering the index plot ofm(q) (left-hand bottompanel), the observation
44 is above the benchmark. Moreover, clearly small local changes in the response variables
associated with the conventional toothbrush have a larger effect on the parameter esti-
mates. Observation 44 corresponds to the preschooler 18 who had the greatest value of the
dental plaque index after the use of the conventional toothbrush.

The right-hand panels of Figure 3 show the forward plot of CNCFS (right-hand top
panel) and the index plot ofm(q) (right-hand bottom panel) where the indices 1–26 in the
x axis are the index of the observations considering the case weight perturbation scheme.
Observation 13 is above the benchmark during the entire CNCFS evolution. Both of the
plots (top and bottom) clearly show that observation 13 is influential. Considering the for-
ward plot os CNCFS observation 4 is detached from the rest of the observations, though
below the benchmark. The same happens with observations 21 and 19, but possibly less
influential.

Figure 2 (right-hand panel) shows the plot of the likelihood displacement along the
directions l = lk, with k = 13, 4, 21 and 19. Notice that the value of the likelihood dis-
placement increases quickly, when the perturbation ismade in the direction of observation
13 compared to the other observations. Comparing the rest of the observations, observa-
tion 4 is the most influential among the observations 4, 21 and 19, and it is followed by
observations 21 and 19.

4.2. Simulated data

Next, we generated a simulated data set considering the model defined in (1) and (2) for
the toothbrush data according to Figure 4, with 26 observations. Considering variance
perturbation scheme and the contribution of the eigenvector associated with the largest
eigenvalue, two largest eigenvalues, three largest eigenvalues and all the eigenvalues, the
forward plot of CNCFS was obtained in Figure 5. The top left panel shows the forward plot
of CNCFS for the contribution of the eigenvector associated with the largest eigenvalue,
the top right-hand panel shows the forward plot of CNCFS for aggregate contribution of
the two largest eigenvalues, the bottom left-hand panel shows the forward plot of CNCFS
for the aggregate contribution of the three largest eigenvalues and the right-hand bottom
panel shows the forward plot of CNCFS for the total contribution (q = 0).
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Figure 3. Toothbrush data: response variable perturbation scheme (left-hand panels) and case weight
perturbation scheme (right-hand panels). CNCFS forward plot (top) and index plot ofm(q) (bottom) for
the contribution of the eigenvector associated with the largest eigenvalue.

Figure 4. Scatter plot of the simulated data.

Notice that in all cases, although below the bench mark, observations 13 and 17 are
depicted from the rest of the observations.

So it was considered two scenarios to deliberately change the value of the observations.
In the first scenario, we modified observations 13 and 17, while in the second scenario

we considered three randomly chosen observations, 2, 12 and 26, to deliberately change.
These observations are depicted in Figures 4, 5, 6 and 7. Figure 6 shows the scatter plot
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Figure 5. Simulated data: variance perturbation scheme. CNCFS forward plot for the contribution of
the eigenvector associated with the largest eigenvalue (top left), aggregate contribution of the two
largest eigenvalues and the associated eigenvectors (top right), aggregate contribution of the three
largest eigenvalues and the associated eigenvectors (bottom left) and the total contribution (q = 0) in
the bottom right-hand panel.

of the observations after altering observations 13 and 17, whereas Figure 8 presents the
forward plot of CNCFS for the contribution of the eigenvector associated with the largest
eigenvalue (top left-hand panel), the two largest eigenvalues (top right-hand panel), the
three largest eigenvalues (bottom left-hand panel) and the total contribution (q = 0, right-
hand bottom panel).

First scenario:
Clearly, observation 13 appears as possibly influential observation in all the panels and

observation 17 is masked in the bottom panels, while in the top panels it is below the
benchmark although detached from the rest of the observations.

Figure 8 shows the plot of the likelihood displacement along the directions l = lk,
with k = 13 and 17 for the original data set (left-hand panel) and after changing the
observations 13 and 17 (right-hand panel).

Notice that the value of the likelihood displacement increases quickly after changing
observations 13 and 17. In the left-hand panel, the highest value of LD(ω(a)) at a = −1
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[!t]

Figure 6. Scatter plot of the simulated data, where observations 13 and 17 were deliberately changed.

Figure 7. Simulated data: variance perturbation scheme (left-hand panel) and variance perturbation
schemeafter changingobservations 13 and17 (right-handpanel). Plot of LD(ω(a)) versusawithω(a) =
ω0 + al.

for observation 17 is near 1.4 for the original data set, while for the data set after changing
observations 13 and 17, it is near 19 for observation 13.

Next, we consider the second scenario where three randomly chosen observations, 2,
12 and 26, were deliberately changed.

Second scenario:
In the second scenario, three randomly chosen observations, 2, 12 and 26, which can be

seen in Figures 4 and 5 were changed, giving rise to Figure 7.
The corresponding forward plot of CNCFS for the variance perturbation scheme was

obtained for the contribution of the eigenvector associated with the largest eigenvalue (top
left-hand panel), the two largest eigenvalues (top right-hand panel), the three largest eigen-
values (bottom left-hand panel) and for the total contribution (q = 0) in the right-hand
bottom panel of Figure 10.

Comparing Figures 5 and 10, observation 2 is on the bottom of the forward plot of
CNCFS during the entire CNCFS evolution algorithm for the original data set in all of the
four considered directions (Figure 5), while after deliberately changing the observations
2, 12 and 26 it becomes a possibly influential observation in all of the four considered
directions in Figure 10.

Moreover, to see how the influence of this observation changed aftermodifying the three
observations, the likelihood displacement of the three altered observations were obtained
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Figure 8. Simulated data after changing observations 13 and 17: variance perturbation scheme. CNCFS
forward plot for the contribution of the eigenvector associated with the largest eigenvalue (top left),
aggregate contributionof the two largest eigenvalues and theassociatedeigenvectors (top right), aggre-
gate contribution of the three largest eigenvalues and the associated eigenvectors (bottom left) and the
total contribution (q = 0) in the bottom right-hand panel.

before and after changing their values and they are shown in Figure 11. Observation 2 is the
least influential observation among the three observations considering the original data set
(left-hand panel of Figure 11), while after changing the value of the three observations, it
became the most influential observation among these observations (right-hand panel of
Figure 11). In addition, the highest value of LD(ω(a)) at a = −1 is near 0.03 for observa-
tion 2 considering the original data set, whereas for the modified data set, it is near 8 for
observation 2.

According to Figure 5, among observations 2, 12 and 26, observation 12 seems to be the
most influential, followed by the observations 26 and 2,which is confirmedon the left-hand
panel of Figure 11. After changing these observations, Figure 10 shows that observation 2
may be influential, observation 12 wasmasked and observation 26 is below the benchmark
during the whole CNCFS evolution, though detached from the rest of the observations. See
also the right-hand panel of Figure 11.

The third data set to be analyzed is the mouth rinse data set.
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Figure 9. Scatter plot of the simulateddata,whereobservations 2, 12 and26weredeliberately changed.

4.3. Mouth rinse data

Considering themouth rinse data set described in Section 1, the CNCFSmethodology was
applied to the four perturbation schemes described in Section 3.

In this case, we used the aggregate contribution of the two largest eigenvalues and the
associated eigenvectors and also q sufficiently large so that only the contribution of the
largest eigenvalue and its associated eigenvector are considered. The forward search started
with a subset of size s = 15 and in each step of the algorithm the sample size was incre-
mented by 1 until all the N = 105 observations were included in the last iteration, when
s = 105. As a consequence, the last iteration gives the usual index plot of m(q) consider-
ing the whole data set. The MLE of the parameters was obtained using the EM algorithm
described in Ref. [37].

Figure 12 shows the forward plot of aggregate contribution of the two largest eigen-
values and the associated eigenvectors considering the explanatory variables pertur-
bation scheme. Clearly, observation 80 must be influential as it is mostly above the
benchmark from iteration s = 39 until the penultimate iteration when it becomes
masked.

However, the usual index plot ofm(q) (Figure 13), which is the last iteration of the for-
ward plot, would lead to the conclusion that none of the observations are influential, as all
the observations are under the benchmark. The indices 1–36 in the x axis refer to the data
associated with the individuals who used the control mouth rinse while the indices 37–69
(70–105) refer to the observations corresponding to the subjects who used the experimen-
tal mouth rinse A (B). Observation 80 belongs to the group who used the experimental
mouth rinse B and among these individuals, he had the second highest value of the plaque
index in the beginning of the treatment and also the smallest reduction in the dental plaque
index from the beginning of the study to the end of the study.

Table 1 in the SupplementalMaterial shows that with significance level 10%, the removal
of observation 80 changes the conclusion of one of the hypotheses of interest (see Ref. [37]
for more details), i.e. the hypothesis that the dental plaque index reduction rate after six
months using the experimental mouth rinse A and B are the same is no longer rejected. On
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Figure 10. Simulated data after changing observations 2, 12 and 26: variance perturbation scheme.
CNCFS forward plot for the contribution of the eigenvector associated with the largest eigenvalue (top
left), aggregate contribution of the two largest eigenvalues and the associated eigenvectors (top right),
aggregate contribution of the three largest eigenvalues and the associated eigenvectors (bottom left)
and the total contribution (q = 0) in the bottom right-hand panel.

the other hand, the removal of this observation (global influence) gives a little change in
the parameter estimates (not shown here). As can be seen, the forward plot of CNCFS
is crucial to detect these kinds of observations that cannot be detected with the usual
analysis.

Furthermore, in the Supplemental Material, we present the variance perturbation
scheme, response variable perturbation scheme and case weight perturbation scheme, ana-
lyzing the influence of observations that were masked and observations that appear above
the benchmark.

Depending on the situation, we can have many observations above the benchmark. In
this case, one way to have an overview of the influence of each of the observations in each
iteration is the heatmap. In the Supplemental Material, we show the heat map relative to
the case weight perturbation scheme. It shows the degree of influence of each observation
in each iteration. See the Supplemental Material for more detail.
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Figure 11. Simulated data: variance perturbation scheme (left-hand panel) and variance perturbation
scheme after changing observations 2, 12 and 26 (right-hand panel). Plot of LD(ω(a)) versus a with
ω(a) = ω0 + al.

Figure 12. Mouth rinse data: CNCFS forward plot for explanatory variable perturbation scheme. Aggre-
gate contribution of the two largest eigenvalues and the associated eigenvectors.

4.4. Hygroscopic solid dosage data

Finally, the last data set is from a stability study of a hygroscopic solid dosage, where the
interest was to compare two mixtures of the excipient considering three follow-up times.
The mass was weighted in the beginning of the study, after 7 days and after 14 days with
the product fully exposed to the condition of the laboratory environment as described in
Section 1. The model defined in (3) and (4) and the aggregate contribution of the three
largest eigenvalues and the associated eigenvectors were considered.

The data set can be found in Online Resource.
First, considering the explanatory variable perturbation scheme, the forward plot of

CNCFS was obtained and is shown in Figure 14. The forward search started with a subset
of size s = 11 and in each step of the algorithm, the sample size was incremented by 1 until
all the N = 200 observations were included in the last iteration when s = 200, i.e. in the
last step, the analysis is done with the whole data set.
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Figure 13. Mouth rinse data: index plot ofm(q). Aggregate contribution of the two largest eigenvalues
and the associated eigenvectors, explanatory variable perturbation scheme.

Figure 14. Hygroscopic solid dosage data: CNCFS forward plot for explanatory variable perturbation
scheme. Aggregate contribution of the three largest eigenvalues and the associated eigenvectors.

Observation 127 is above the benchmark in most iterations from the beginning until
iteration s = 133 of CNCFS evolution and then it is masked, while observations 112 and
143 are above the benchmark from iteration s = 134 until the end of CNCFS evolution.
Observations 1–100 refer to the solid dosage with mixture of excipient A, while observa-
tions 101–200 refer to the solid dosage with mixture of excipient B. From now on they will
simply be referred to as solid dosages A and B.

Observation 127 along with observation 112 are the only solid dosages whose weights
decreased from the beginning of the study to after 7 days. Observation 57 also appears as
influential in the middle part of CNCFS evolution, but with less intensity. Observation 57
is the solid dosage A with the highest weight at the beginning of the study and also after 7
and 14 days from the beginning of the study. In addition, it is the observation that absorbed
the least moisture from the environment from the beginning of the study to the end of the
study among the solid dosage A.
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Figure 15. Hygroscopic solid dosage data: explanatory variable perturbation scheme. Index plot of
m(q) for the aggregate contribution of the three largest eigenvalues and the associated eigenvectors
(left-hand panel) and plot of LD(ω(a)) versus awithω(a) = ωo + al (right-hand panel).

To see the influence of perturbing these observations in the likelihood displacement
function, the plot of LD(ω0 + al) versus a ∈ [−1, 1] along the directions l = lk, with
k = 57, 112, 127 and 143, was obtained and it is shown in the right-hand panel of Figure 15.
For positive values of a, observation 112 and 127 (which was masked) appear as the most
influential ones among observations 57, 112, 127 and 143, followed by observations 57 that
was masked. In the direction of negative values of a, observation 143 appears as the most
influential observation among the considered observations. The usual index plot ofm(q),
left-hand panel of Figure 15, which refers to the last iteration of CNCFS, only shows that
observations 112 and 143 may be influential as they are above the benchmark.

The variance perturbation scheme and the case weight perturbation scheme were also
considered. The analysis can be found in the Supplemental Material.

5. Conclusion

It is well known that the influence analysis is an important step in the data analysis. As
commented in Section 1, the analyzes of usual linear regression and linear measurement
error models can be drastically altered by the presence of influential/outlier observations.
The usual methodologies used to identify influential observations may be affected by the
own observations that should be detected and fail to detect these influential observations.
Also, if there is a group of observations that are jointly influential, but not individually
influential, the global influence where a case is deleted one at a time will fail to detect these
observations. In order to detect masked observations, Atkinson and Riani [5] proposed
the use of the forward search in regression models based on the least-squares estimates
and the associated residuals. On the other hand, Poon and Poon [33] introduced the use
of conformal normal curvature with a benchmark to assess the local influence of minor
perturbations in the data set or in the model. This methodology can identify groups of
observations that may be jointly influential. Nevertheless, the local influence analysis can
fail to detect masked influential observations as can be clearly seen in Section 4 and in the
Supplemental Material.
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In this paper, to overcome these shortcomings, we proposed the CNCFS methodology
based on the forward search algorithmand the conformal normal curvature. An interesting
point in the methodology is that even when there are no masked observations, it is pos-
sible to have an overview of the evolution of each observation in each step of the CNCFS
(see Figure 3 (top)), giving an extra information, and also if there are masked influential
observations, it is possible to see in which iterations the observations were above the bench
mark (see Figures 12 and 3 of Supplemental Material, for instance).

In Section 4, where the proposed methodology were applied to real data sets, many
masked observations were successfully detected, of which many of them changed the
results of the inference as discussed in the Application Section and in the Supplemental
Material. The forward plot of CNCFS was crucial to detect observations that could not be
detected with the usual local influence analysis.

Hence, the contribution of this paper is to provide a graphical methodology based on
easy to interpret plots to detect observations that are individually influential or a group of
observations that are jointly influential.

The methodology were considered in measurement error models, however it is impor-
tant to observe that it can easily be used in any statistical model where the local influence
analysis [16] can be performed.
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