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Abstract

In this work a planning methodology for deep water anchor deployment in offshore plat-
forms and floating production systems aiming at operational resources optimization is explored,
by minimizing a multi criteria objective function. As an additional advantage provided by the
proposed methodology, planning automation is achieved. Planning automation overcomes the
traditional way, using a trial error basis. With it, an engineer, using an anchoring software,
decides how much work wire and anchoring line must be paid out from both the floating
system and the tug boat. Additionally, he decides which horizontal force must be applied to
the line, trying to settle the anchor on a previously defined target on the ocean floor.
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1. Introduction

A very common operation for the groups that anchor and up anchor drilling plat-
forms, as well as other equipment concerning oil prospection in the sea, consists in
deploying anchors and anchoring lines.

This operation occurs very frequently. However, little attention has been given to
developing simulators and applications to help engineers calculate the paying out
stages and the resources to be used for such operations. The process consists of
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Nomenclature

X design variables vector

r fair lead distance to a point of the line
fi(X)  jth objective function

Z catenary point depth

gi(X) jth inequality constraint function

W linear weight of a line segment

hi(X)  jth homogeneous constraint function

Gi force concentrated in the ith segment

by jth objective function goal

Pres seabed reference point

d* deviation from the jth objective function

o seabed slope angle
wi* associated weight to deviation of jth god
UV  segment forces vertical components

o) priority of jth objective function

EA homogeneous segment axia stiffness
Y multiple criteria objective function

0 slope angle at a line point

TDP  touch down point

L length (work wire, segment, etc)

having a tugboat or supply boat to hoist an anchor and an anchoring line from the
platform or ship. It uses a supporting cable, work wire and, during the hoisting, the
winches, both on the platform side. On the supporting vessel side, limited lengths
of lines are released until the anchor reaches the floor, according to a previous plan.
This defines how many steps should be performed and how much line should be
released in each step, as shown in Fig. 1.

Nowadays, there are systems to calculate the catenary lines for planning these
steps. The person in charge must decide how much line should be released from
each vessel involved in the operation and what distance one should be from the
other, during the attempt to make the anchor go towards the desired target. Otherwise,
new values must be tried until the goa is attained. This procedure is not very pro-
ductive and, although the desired condition may be attained, there is no reliability
concerning the optimality of the solution found in relation to the necessary resources
to actually carry out the deployment operation.

In Figs. 14 there are different situations for the same anchor deployment oper-
ation. The intended target was hit; however, the final characteristics significantly
differ among themselves, as can be seen in Table 1.

Keeping only the ssimulations where the target is hit, as shown in Fig. 2, to hit
the target, the supply boat should pay out 2679.9 m of work wire and impose a
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Fig. 1. Simulation of the anchor casting operation.

Fig. 2. Simulation. Anchor reaches the target. Horizontal force 798.6 kN, work wire: 2679.9 m.

L

Fig. 3. Simulation. Anchor reaches the target. Horizontal force 266.2 kN; work wire: 1761.6 m.
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Fig. 4. Simulation. Anchor hits the target. Horizontal force 306.2 kN; work wire: 1285.7 m.

Table 1
Performance of anchor casting procedures

Case Fig. Platform Supply boat Distance (m) Distance (m)

Length (m) Force H (kN) Length (m) Force H Plat. supply Flead-anc

(kN)
1 162.0 169.5 10713 18.9 1702.8 1337.7
2 1860.5 1212.8 2679.9 798.6 4068.4 1571.0
3 1761.6 266.2 1209.3 266.2 2373.7 1569.8
4 1682.9 306.2 1285.7 306.2 2490.7 1579.0

798.6 kN horizontal force. For the situation shown in Fig. 3, 1209.3 m work wire
should be paid out and a 266.2 kN horizontal force should be imposed. Finaly, in
Fig. 4, the target is hit with the supply boat paying out 1285.7 m and exerting a
306.2 kN horizontal force on the work wire.

It is evident that, besides being a costly procedure, as it demands a difficult iterat-
ive learning exercise from the technician, it is unreliable concerning the possibility
for success in the simulation. Even in cases in which the target is hit, there is no
guarantee to the optimization of the necessary resources for the anchor deployment
operation, the minimization of the line horizontal force being pointed out, which
alows for the allocation of a smaller supply boat with less bollard pull. Even in
other situations, when two supply boats are alocated but, for available thrust force
limitations, only one would be used in an optimized calculation.

With the production of Brazilian oil in increasingly deeper waters, there has been
a growing need to allocate supply boats with greater bollard pull, or even more than
one supply boat which, together, carry out an operation. Under these conditions, it
is paramount to have a tool, which, besides automating the process for calculating
the deployment steps, also finds solutions to minimize the necessary resources to
deploy anchors.
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Observing that the operational cost of a’500 kN bollard pull supply boat is approxi-
mately US$ 6000.00 per day; supposing that an up anchoring operation and anchor-
ing lasts from 7 to 15 days; supposing that, when deploying an anchor where only
one boat would be necessary for the operation and, due to a non-optimized calculus
situation, two were alocated, the financial cost waste would be of about US$
90 000.00. Admitting that about a dozen non-optimized operations as the one men-
tioned occur within a one-year span, waste would amount to about US$ 1 000 000.00
a year.

Furthermore, process automation would generate other indirect incomes, such as
less time for technicians to perform this calculation task and, consequently, higher
productivity in the anchoring operations sectors.

2. Multiple criteria optimization

Using the technique called multiple criteria optimization or goal programming can
easily solve the problem described in the introduction. This may be considered as
a particular class of a more general mathematical programming problem.

Any mathematical programming problem may be formulated in a unique fashion,
that is standard, which, under an application point of view, is particularly desirable,
asits solution methods may be used for different problems without any modifications.

2.1. Design variables

Design variables or decision variables are those characterizing the problem and
must be defined by an engineer or designer. In the anchoring problem under study,
these include line lengths, positions of vessels, forces on lines, among others. In the
structural design of a ship, they may include the stringers section modulus, the shell
platting thickness, the frame spacing, etc.

They get grouped in a vector, formed by n independent variables, which may be
defined as

X = (Xg,Xo,Xar. X)) T 1

These variables are generally considered deterministic, that is, they are not sub-
jected to a probability distribution. They may have a continuous spectrum along an
interval, as in the case of a web height of a welded beam, or they may be restricted
to discrete values, as in the case of the number of stringers on a stiffened panel.
The usual procedure for treating discrete variables is to assume they are continuous,
in afirst approach, and later to research solutions with discrete values closer to the
continuous solution formerly found. However, there is a consensus among those
researching this subject that, in many cases, the discrete optimum may be far from
the continuous optimum rounded for the discrete, as seen in Fu et a. (1991).
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2.2. Objective function

The objective function, or cost function, or merit, is a defined scalar function of
the design variables generically defined as

f(X) = (X% X,-. %) @)

and is the function to be optimized.

The objective function may be a simple linear equation involving the x; decision
variables, or any other. For most practical problems, however, the objective function
is non linear and not explicit, since the design models involve not only equations,
but also tables or other implicit forms for systematization.

2.3. Constraint functions

Practical problems are generally subjected to a series of inequality constraints that
may be represented by

g;(X)=0 ©)

for j = 1,2,..ng. These constraints may be linear or non-linear in the x variables.
The tension levels in a structure, for example, functions of the geometric variables
defining this structure, must be restricted to a maximum admissible value.

2.4. Equality constraints

Practical problems may also be subject of a series of equality or homogeneous con-
straints

hi(X)=0 (4)

for j = 1,2,...n,. Analogously, such constraints may be linear or non-linear in X
variables. They may be used to eliminate one or more decision variables once the
X variables are no longer independent.

In some cases, when working with equality constraints is not desirable, the prob-
lem may be overcome by turning an equality constraint into two inequality con-
straints, that is, by imposing |h(X)|<e, where € is a small number.

The optimization problem may now be expressed as selecting the X, vector from
design variables, which will minimize f(X) subject to constraints, resulting in an
optimum value for the objective function, f(X,). Minimization is used as an optimum
for the merit as max(f) can always be treated as min(—f).

2.5. Local solutionsxglobal solutions

A minimum of function f(X) may be a global minimum, that is, the smallest value
of f(X) for any X satisfying the constraint functions, that is, which is feasible. A
minimum may also be a local minimum, that is, the smallest value of f(X) in some
feasible local region of X vectors.
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2.6. Classification of optimization methods

Some authors, Novaes (1978) and Parsons (1975), classify optimization methods
as direct or indirect. They are indirect, or gradient, if independent of direct compari-
son of numerical values of merit function calculated in two or more points. Indirect
methods make use of necessary conditions for a point to be either minimum or
maximum. These conditions are expressed by mathematical relations, which are
indirect by their own nature. The direct or search methods presuppose the determi-
nation and comparison of function values to be optimized in severa points located
within the dominion of independent variables.

Other authors, Gill et al. (1981) prefer to separate them as methods for treating
smooth functions and for treating non smooth functions.

Independently of classification, optimization methods may be free of constraints,
if there are no constraints in the process, or with constraints, if otherwise.

Some important features of this approach are:

(@) dl constraints are rigid and, therefore, of equal importance. There is no way to
consider a greater or smaller flexibility in approaching constraints;

(b) al constraints must be consistent; that is, the existence of a viable region for
solutions is aways admitted. It is not possible to consider the existence of mul-
tiple and conflicting requirements and goals.

These features evidently limit the application of this approach to several engineer-
ing problems. They invariably involve multiple and conflicting requirements and
goas which make the solution essentially a compromise solution, where such
requirements and goals are more or less attended, according to the relative impor-
tance given to each.

To overcome such limitations, some generalizations of the classical approach to
the optimization problem were developed, which allow the consideration of multiple
and conflicting requirements and goals. One of these approaches is Goal Program-
ming, which is an optimization model whose formulation guides the search for sol-
utions so that certain predefined goals are attained. These goals are associated to
requirements and attributes specified to assess the merit of solutions. Once goals are
set for the design, the aim of goal programming is to find solutions whose perform-
anceis as close as possible to the set goals. That is, the aim isto minimize deviations
or distances from goals. In this process, some goals, or even all of them, may not
be attained. The classical minimization (or maximization) goal may be introduced
in this model by defining goal values smaller than the smallest value that could be
expected to the attribute or requirement assessed.

The design solutions produced by the use of such a technique do not always
manage to satisfy all the conflicting requirements and goals. Therefore, they are
essentially compromise solutions, in which deviations or distances to the more
important goals are smaller than the ones to the less important ones. It is evident,
therefore, that these solutions do not carry the meaning of “optimum” according to
the conventional use of the term. In this approach, the mathematical representation
of the goals is as follows:
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f(X
% +d—d =1 5)

]

where: f;(X) = the jth goal function, function of the X design variables, with by
aspiration level; d-,d" = deviation variables, representing respectively sub or
super attainment to the by aspiration level, and always with values = 0.

bj:

aspiration value of the j goal.

The optimization problem thus constitutes in the following: if f;(X) has to be =
by , then di” is minimized; if f;(X) has to be = b;, then d* is minimized; if f;(X)
has to be = b, , then both d- and d* are minimized; d-d* = 0, since there
f;(X) can be no simultaneous sub and super attainment of the goal.

Now considering that with this new formulation goals and objectives start to define
an aspiration subspace which must be attained as much as possible, and that the
congtraints define a subspace within which solutions must necessarily be inserted to
satisfy feasibility requirements, the optimization problem may be expressed as a
generalized goa programming problem, in which the weighed sum of deviation vari-
ables must be minimized, considering the existence of goals and constraints. The
mathematical representation of this problem is the following: minimize

N
y= 2 pwd +wd) (6)
i=1
subject to:
fi(X
](bj) +d—d =1 j=12..n @)
g(X)=0, i=1.2..,n, ®
h(X) =0, i=12..n, ©

where: w,",w,* = weights associated to the jth goal deviations; p, = priority asso-
ciated to the jth goal.

The design problem is then to find the X vector of the decision variables so that
constraints g(X)=0e h(X) = 0 are satisfied and thef,(X) goals, or objectives,
attained, within the best approximation possible. Constraints must evidently be con-
sistent, as, otherwise, there will be no solution to the problem. Goals, however, do
not have to be, and generaly are not, consistent.

There are two typical approaches to define a v objective function in terms of
priority values and weights:

N
1. ifdl thep = 1and if 2 (w7 + w;") = 1, an objective function is called Archi-
j=1
medean;
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2. if dl weightsw =w* =1landif p,> >p,> >p;> > ..> > py the
objective function is called Preemptive.

The Archimedean form is used when the relative importance among goals is well
defined and it is of interest to have them interacted. The Preemptive formis employed
when only the order of importance of goals is available or when it is desired that
priority goas be fully attained before the others. Generally, the same problem
approached in the two forms will not present the same solution and the variation of
weight values or priorities will also lead to different solutions. This feature carries
the most interest in the problem formulation by means of goal programming tech-
nique, as it allows wider freedom for generating and comparing solutions than tra-
ditional optimization methods. Nevertheless, it also introduces difficulties associated
to defining weights and priorities.

3. Solution of the catenary problem with multiple segments and with the two
ends on the ocean surface

To model the physical problem of the line, with one end fixed on the vessel to
be anchored and the other on the tug boat, the methodology proposed by Oppenheim
and Wilson (1982) was used, where, for each segment of homogeneous material
integrating the anchoring line, the gravitational force may be admitted as being the
only field force present in the system, and thus, the classical catenary equation for
a homogeneous segment may be used.

Being:

® w; unit weight in the water for the ith homogeneous line segment (w; > 0 for
floating segments);

® G;, suspended concentrated weight in the upper end of the ith segment, (negative
represents a submersed buoy, positive, a clamp weight);

e |, length of the ith line homogeneous segment;

o fo(r,p.« ), the function that describes the ocean floor in the line plane, supposing
a straight line with a inclination.

The problem thus proposed is iteratively solved. Admitting T, the tension at the
top of the line to be known, the following steps are followed:

1. the line inclination angle at the top, 6,, close to the end that belongs to the vessel
to be anchored is admitted and, with this, the vertical projection of T, at the
upper end, U, as

U = T.cos(6,) (10
and
Hp = T+sin(6,) (11
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2. as from the top, the problem of a homogeneous catenary segment is solved by
calculating the geometry and the force at the lower end of the segment, V;,

Vi = 9(Giri, LW, EAY) + Liwi—U; (12)

where g; is the force concentrated at the upper end of the segment, generated by
the buoy or clamp weight, immersion function of the buoy, in case this is not
completely submersed, or the concentrated force generated by the clamp weight,
in case this is touching the floor; L, is the length of the pendant, admitted a single
homogeneous segment, with w,, submersed weight and EA, axia stiffness; r; is
the abscissa of the upper end of the ith segment. For a V; volume cylindrical
buoy, partially immersed, with draft,® h, one can obtain

_ nD%h
g = v,

3. by the balance of the point at the segment lower end, the projection of the
U, , , vertical force is calculated, acting on the next segment upper end; and thus
successively up to the last segment.

4. the vertical distance of the opposite end of the line—the one belonging to the tug
boat—is calculated on the surface of the sea. As this end must be on the surface,
the distance function must be zeroed.

0 =z (14)

5. by an iterative method, Newton for example,? the angle at the top, 6., is adjusted
until the function previously described is zeroed, that is, the function is minimized,

S = |z (15)

6. a this point, it must be observed whether some point of the line touches the
ocean floor.

7. in case the touch does not occur, the configuration of the line is determined.

8. otherwise, another procedure is started where stages 1, 2 and 3 are the same as
previously defined.

9. as the line is previously known to touch the floor, for a certain 6, top angle, the
point of the line whose tangent is identical to the floor inclination is searched.
Such a point is liable to be the contact point of the line with the floor, the TDP
(Touch Down Point).

10the distance from this point to the floor is verified. This is then the new distance
function for which the 6, angle is iteratively searched so that the distance is zero-
ed.

G (13)

1 The buoy draft will depend on the axial stiffness of the pendant, therefore, locally, thereis an iterative
process to define, as from the connection point of the pendant, which the buoy draft must be, its buoyancy
force, the pendant elongation, which in turn results in a new buoy draft. A successive approximations
method ensures a fast convergence in this process.

2 Asit is a search for the zero of a function, any optimization algorithm may alternatively be used to
solve the problem.
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Otop = Zrop—fa(rrop:Prent?) (16)

11when the 6, angle that zeroes this function is found, a new iterative process is
begun where the geometry of the suspended catenary on the side of the vessel to
be anchored is aready defined, from the fair lead up to the TDP. A certain length
of the line that lies at the floor,L;, is then arbitrated, as from the TDP, and the
second TDP, is defined.

12.as from the second TDP, TDP, , the geometry of the suspended catenary is set,
up to the end of the supporting vessel.

13the vertical distance of the opposite end of the line—the one belonging to the tug
boat — to the sea surface is calculated. As this end must be on the surface, the
distance function must be zeroed.

O = |zl (17)

14 by an iterative method, Newton for example, the length on the floor, L;, is adjusted
until the function previously described, eq. (17), is zeroed.

In several points of the algorithm for calculating the catenary, an iterative method
to calculate a root of an error function was suggested. Different methods may be
used for this end. In the work, the Newton Method was used, as it alows for the
convergence of the process in few iterations. The derivatives of the error functions,
however, had to be obtained through finite differences in the cases mentioned.

4. Optimization by multiple objectives for the anchor deployment problem
For an anchor deployment situation, decision variables can be defined as:

(a) the work wire length, L,,,, to be paid out by the tug boat;
(b) the line length, L, to be paid out by the vessel to be anchored; and
(c) the horizontal force, H,, to be exerted by the vessel to be anchored.

Once these variables are defined, the geometry of the line in catenary can be
found, which satisfies the established conditions. In this configuration, the anchor
reaches position Panc = Panc(faneZane), @ the floor or not, from which the distance
function, d,, can be defined between the target, Prage = Praget(M targets Zrarger), @nd
the anchor,

6a = dig(PAnc(HP:vav:LP)vaarga) (18)
the horizontal force in the tug boat or supply boat,
Hs = HyHp,LowLt) (29)

As objectives to be minimized, there should be:
Hs + dy—di; = Hgmin (20)
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Lyw + do—0diw = Lwmin (21)
Lp + d5—di = Lpmin (22)
6,+d; =0 (23)

It should be noted that the horizontal force to be applied to the ling, on the side
of the supply boat, may be different from the horizontal force applied to the side of
the vessel to be anchored in case the line, composed by the work wire and anchoring
line, touches the ocean floor and the friction between it and the floor is not null.

With this, the objective function to be minimized is obtained

min(dy + df + d;, + df, + ds + db + dy) (23)
AsH,, L, and Ly are to be minimized, the following values are adopted as target
Hgmin=0, L,mMn=0, Lemin=20 (24)

To solve the multiple objectives minimization problem, the direct method for opti-
mization, developed by Augusto and Kawano(1998), was used, believing that for
the anchoring problem, even with a small number of variables, the derivative func-
tions, be they from tensions, be they from displacements, are not trivially obtained.
Therefore, its calculation must be numerically processed by some finite difference
algorithm, which, per se, would harm the performance of the indirect optimization
methods.

5. Results

As an application of the proposed methodology, let it be taken as an example the
anchor deployment operation of an anchoring line from a FPSO (Floating Production,
Storage and Offloading) ship located at 200 m water depth, in a continental slope
with a’5° inclination, the line composed of 2 chain segments, their proprieties shown
in Table 2. By the design of the anchoring system, such line must have its anchor

Table 2
Proprieties of the line to be installed

Seg. Material Diameter Linear Length Axid Friction Break Anchor
(mm) weight (m) stiffness coefficient  strength
(KN/m) (kN) (kN)
Type Stevpris
MK 111
(kN)
1 Chain 76.0 107.66 100.0 372250,00 1.000 6001 Holding 3413

power
2 Chain 105.0 20549 1000.0 710468,00 1.000 10754 Weight 150.0
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Table 3
Results of the use of the optimization agorithm

Ship Supply Distance  Anchor coords
ship-sup
Length Traction Angle Tract Length Traction Angle Tract (m) R(m Z(m)

(m)  (N)  hor. () (kN) (m) (kN)  hor. (°) (kN)

1745 2721 015 203 791 268.9 -015 293 76.6 67.7 78.7

349.1 5395 015 587 1581  386.9 -0.14 587 1604 1354 1565
5236 594.7 015 880 2382 3371 -014 641 5729 5245 2326
698.1 5334 014 1173 3162 2764 -0.12  109.6 8111 671.3 2840

set at a 622 m anchoring radius, at the 142° azimuth, in relation to the north. For
the deployment operation, to this value a 50 m operational margin is added, so that,
when hoisted, the anchor line drags and penetrates on the floor in the desired position.
The target, for anchor deployment operation is thus modified to 672 m, with 1 m
tolerance. Supply boats with maximum bollard pull of 500 kN and 1000 m work
wire are available. It may be observed, through the results shown in Table 3, that
the objectives are fully attained.

6. Conclusions

This work presented a methodology for optimizing procedures for deploying drag
anchors for ocean equipment to explore and produce oil in the ocean. As decision
variables to be established by the technical body responsible for deploying the
anchor, there is an attempt to minimize the work wire length to be paid out by the
supporting vessedl, its horizontal force and, at the same time, to make the anchor hit a
pre-determined target for deployment. To deal with these distinct objectives, multiple
objectives optimization technique was used, where the merit function, due to decision
variables, was set with non dimensional deviations of the objectives previously
described. To solve the minimization problem of the merit function, without harming
the choice for any other, a sequential minimization algorithm was used with external
penalty, to deal with continuous and discrete variables. Besides optimizing resources
for the anchor deployment operation, as an additional result to the process, an auto-
mation of the calculation of all intermediary anchor deployment steps is obtained.
Such toal is believed to become a powerful ally to technicians in charge of anchoring
offshore equipment for the deep water oil production industry.
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