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ABSTRACT

Making use of theoretical approximations for the computa-
tion of the wave-induced slow-drift forces is a common procedure
in the early stages of design of a new floating unit. They can help
reducing the computational burden in two different fronts: for
generating the QTFs in a frequency domain analysis, and during
the subsequent execution of time-domain simulations. In a previ-
ous paper, we have discussed a simple procedure for making use
of the white-noise approximation in FAST, without the need for
any modification of the software. The proposal only requires re-
stricting the computation of the QTF's to pairs of frequencies that
are indeed essential to the slow-drift dynamics. For this, how-
ever, an additional assumption is made, considering that each
motion is decoupled from those in the other dofs. In the present
paper, a more detailed analysis of the subject is made, in order to
clarify the theoretical aspects of the procedure and supplement
the previous analysis. Once again, the results are based on the
data available for the OC4 FOWT. The accuracy obtained with
the procedure is discussed not only in terms of the resulting mo-
tions, but also comparing its effects on the second-order force
spectra. A more detailed evaluation of the dynamic couplings is
presented, and comparisons with the results obtained with New-
man’s approximation are made in simulations involving waves
only.

INTRODUCTION

One of the key elements of the design of floating units is
the specification of the mooring system, which is responsible for
keeping the floating structure in position against waves, wind and
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current. The mooring lines must be designed carefully in order
to achieve a solution with minimum weight/cost that is still able
to prevent large excursions and to resist extreme environmental
conditions. This is no different for Floating Offshore Wind Tur-
bines (FOWT).

Numerical tools for simulating the dynamics of the whole
system (floater, turbine and moorings) play an important role
in attaining an efficient design. Among these tools, the most
widespread are time-domain software that rely on hydrody-
namic coefficients pre-calculated in frequency domain by a ra-
diation/diffraction code. These include the difference-frequency
force Quadratic Transfer Function (QTF) matrices, which model
the second order wave forces responsible for the mean and slow
drift of the floating system and, therefore, of great importance
for the mooring system design.

Regarding FOWTs, Coulling et al. [1] discussed the rel-
evance of low frequency second order wave forces on the
DeepCwind semi-submersible FOWT using Newman’s approxi-
mation, indicating that they are indeed important in parked/idling
turbine scenarios. Roald et al. [2] conducted a similar evaluation
for a spar and a tension-leg platform (TLP) in frequency domain,
including an analysis of sum-frequency effects on the dynamics
of the TLP. Jiawen Li et al. [3] studied the slow-drift of a new
hybrid floater FOWT, while Bayati et al. [4] focused on the ef-
fects of water depth on the potential flow computations for the
OC4 semi-submersible.

In most of these works, the QTF matrices were calculated by
a frequency-domain code (WAMIT, WADAM) for a large range
of wave frequency pairs (@;, ®;) and imported by the software
FAST to conduct time domain analyses [5] [6]. However, this ap-

Copyright © 2018 by ASME



proach is significantly expensive in terms of computational time.
Besides, if the second-order potential is included in the analysis,
the need for meshing the free-surface largely increases the com-
plexity of calculating the QTFs in frequency domain, and usually
makes the analysis of numerical convergence harder.

In order to simplify the computation of the slow-drift forces,
some approximations have been proposed. The most well-known
is Newman'’s approximation [7], which considers that the whole
difference-frequency QTF matrix can be approximated based on
its main diagonal. Besides reducing the computer time consider-
ably, this approximation eliminates the need to obtain the second-
order velocity potential, since the main diagonal (responsible for
the mean drift) depends exclusively on the first-order solution.

Although widely used for calculating the slow-drifts of off-
shore systems, it is worth mentioning that the error made in New-
man’s approximation is of the order of Aw?, and it is valid only
for deep water problems (see, for instance, [8]). Since FOWT are
designed for shallower waters than traditional offshore systems,
the natural periods induced by the mooring system in surge, sway
and yaw are expected to be much lower than those for deep-water
systems. Due to the fact that slow-drift is a resonant problem, the
most relevant difference frequencies are those close to the natu-
ral frequency of motion (A®w = ®,), indicating that lower natural
periods lead to larger errors in Newman’s approximation. Lopez-
Pavon et al. [9] and Simos et al. [10] studied the slow-drifts of a
semi-submersible FOWT in 100 m water-depth with a resonance
period of 75s, showing that, in this test case, Newman’s approx-
imation considerably underestimated the slow-drift motions of
the system.

Another option for calculating the slow-drift forces is the
white-noise approximation, a classical approach in the field of
system dynamics for analyzing weakly damped systems, which
have a narrow banded response (see, for example, the classical
book of Crandall & Mark [11]; the same idea is also discussed
in Faltinsen’s book [12]). Under these circumstances, the power
spectrum of the exciting force can be considered constant with
a value equal to the one for the resonance frequency, producing
excellent results.

As offshore systems are typically weakly damped, they fall
into the category of systems for which the white-noise approxi-
mation is suited. Indeed, Simos et al. [13] and Matos et al. [14]
obtained an excellent agreement between the white-noise ap-
proximation and experimental results for a large oil & gas semi-
submersible, while Lopez-Pavon et al. [9] and Simos et al. [10]
showed that the same is true for a semi-submersible FOWT.

When applied to the computation of slow-drift forces, it
is important to highlight that the white-noise approximation is
not an approximation on the QTF itself. It just indicates the
portion of the QTF matrices that contribute the most to the
slow-drift dynamics, that is to say the frequencies for which
Aw = w; — w; ~ ®,. However, all the aforementioned works
employed the white-noise approximation in frequency domain,

which is natural, since it is an approximation on the force spec-
trum. Moreover, if the motions can be considered decoupled, the
slow-drift motion can be calculated by simply crossing the con-
stant force spectrum with the motion transfer function for unitary
force.

In a previous work [15], our group proposed a simple ap-
proach for exploiting the white-noise approximation in time do-
main analyses. The procedure is simply to disregard the diago-
nals that are far from the most relevant one (A®w = @,), i.e. only
the diagonals of the QTF matrices close to the resonance fre-
quency are considered. Strictly speaking, the original assump-
tion of the white-noise approximation is breached, for the force
spectrum is no longer constant. Nevertheless, the original idea
that the most important QTF terms are those next to the reso-
nance frequency is preserved, and the computer time can be re-
duced significantly.

In order to verify this approach, the OC4 platform was an-
alyzed with FAST in waves only, employing three different sets
of QTF matrices: the full matrices provided with FAST; one ma-
trix in which only the main diagonal and the resonance diagonal
are considered; and a third one with only the main diagonal and
a “strip” around the resonance diagonal (details are given in the
following sections). The results showed a good agreement, espe-
cially for the QTF matrices with the strip around the resonance
diagonal.

However, some questions persisted. Firstly, some large rel-
ative discrepancies arose for the motions in pitch, and although
small in absolute terms, it was important to clarify the source of
this inaccuracy. The main hypothesis was that it might be related
to coupling effects, and one of the goals of the present work was
to verify it. For doing so, the simulations performed in [15] were
repeated considering only the pitch motion, i.e. the calculation
of the other degrees of freedom was disabled in FAST. As the
results obtained with both the full and the simplified QTF matrix
were nearly identical, it was concluded that the differences were
indeed due to coupling effects. Another set of simulations was
conducted to verify whether the coupling was due to the moor-
ings, but this hypothesis was proven wrong. Hence, the coupling
is very probably due to inertial effects.

Moreover, as Newman’s approximation is widely used, it is
interesting to compare the slow drift it provides with the ones
calculated using the white-noise approximation. Although they
showed a good agreement for shorter waves, Newman’s approx-
imation underpredicted the motion for the longer ones.

Finally, the results are complemented by an analysis of the
second-order force spectra calculated for each set of QTF matri-
ces, in order to verify how they compare around the peak of the
motion transfer function for unitary force.

The next section brings a brief theoretical background on the
white-noise approximation, followed by a summary of the main
OC4 platform data and the environmental conditions employed
in the analyses. Next, the construction of the QTF matrices for
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the white-noise approximation is explained, and the second-order
force spectra obtained with each of them for a given sea state
are discussed. Then, the slow-drift motions calculated with the
white-noise approximation and with Newman’s approximation
are compared. At last, the results of a simulation considering
only the pitch motion is presented, indicating that the coupling
effects are indeed the source of the discrepancies observed in
pitch.

THEORETICAL BACKGROUND

This section briefly presents the application of the white-
noise approximation to the calculation of the slow-drift spectrum,
and readers interested in a more detailed discussion can refer to
[10]. In the following, it is supposed that the motion analysis
is conducted in frequency domain and that coupling effects are
negligible.!

Let Fa(_>(w,<, ®;) denote the frequency-difference QTF for
the motion a {&t = 1,...,6}. Let’s then consider the pair of fre-
quencies (@, + u), with g a small frequency difference. For
a given wave spectrum S(®), the low-frequency second-order
force spectrum can be calculated using the following relation:

oo

SO ):S/S(co)S(aH- Fl) “do
Fo (B n)|Fe (0,0+u)) do (1)
0

and the low frequency second order motion for the degree of free-
dom « is given by:

Se (1) = Sy (1) |He () 6

with Hy (1) the response function of the floating unit, defined
by:

Ho(p) =
1 3)
_.U2 [Ma(x +Aoa (/J)} +ip [Baa(,u) +Bext.a} + [Caa +Cext,tx]

where M is the system’s inertia matrix; A and B the added mass
and potential damping matrices; C is the hydrostatic restoring
matrix; and Bey; and Cex the linearized external damping and
restoring forces/moments that may be present.

Around the resonance frequency, i.e. U ~ O, q, the inertial
term in Hy (1) is nearly canceled by the restoring terms, and the
magnitude of the response function is inversely proportional to

'In some cases, coupling effects may be significant, and the test case analyzed
in this work is one of them. Nevertheless, in many situations an approximate
uncoupled model is acceptable, especially during preliminary stages of design.

FIGURE 1: Illustration of the white-noise approximation.

the damping. Moreover, the band-width around p = , o also
depends inversely on damping. Hence, weakly damped systems
have a narrow-banded response function with a very pronounced
peak at I = w, . Based on these characteristics, the white-noise
approximation states that:
1. The only significant contribution of the force spectrum § ;;)
to the motion spectrum S () is due to a small range of fre-
quencies close to the resonant frequency t = @, o + 0 ®;

2. Given that § ;;) is expected to be smooth in this range, it can

be approximated as a constant spectrum:
S(*) _ S(*) _ 4
F,o (ﬂ) =OFa (wma) = constant )

as illustrated in Figure 1. Given the considerations above, it is
evident why this approach is referred to as “white-noise”.

The benefits of applying this approximation to the computa-
tion of the slow-drift motions are clear: instead of having to com-
pute the full QTF matrix Fy(;, ;), it is only necessary to cal-
culate the terms at the diagonal corresponding to @; = @; + @, q,
thus saving considerable computational effort. Furthermore, it
highlights the part of the QTF matrix that contributes the most to
the slow-drift response, hence also making evident the parts that
do not. By our own experience, this is particularly important,
since the most troublesome frequency pairs for numerical con-
vergence are often outside the range that dominates the second-
order motions.

The white-noise approximation, as stated above, showed

Copyright © 2018 by ASME



good results in previous studies of the low-frequency wave
induced motions of large oil & gas semi-submersible
units [13][14]. In a more recent work, it also provided
good results in the analysis of a typical semi-submersible
FOWT [10].

As the accuracy of the white-noise approximation depends
on the narrowness of the response function, the motions must
be weakly damped. In the aforementioned works, the lin-
earized damping factors were between 3% and 15% of the crit-
ical damping for the respective motion, typical figures for semi-
submersible structures in a wide range of sea conditions.

Besides, the dynamic analysis conducted in these works was
linear and in frequency domain. As it is about the force spec-
trum, the application of the white-noise approximation in fre-
quency domain is straightforward, since the motion spectra can
be directly calculated with the white-noise force spectra and
Egs. 2 and 4.

However, common practice for the design of floating struc-
tures (including FOWTs) is to perform non-linear time-domain
simulations with software that import hydrodynamic coefficients
precomputed in frequency-domain, including the QTF matrices.
This is the approach adopted by FAST, the software employed
to conduct the simulations presented in this work. In this kind
of numerical method, the white-noise approximation can not be
applied as originally proposed. Nevertheless, an alternative ap-
proach can be adopted, following the same principles that guide
the original white-noise approximation, as explained below.

Application in Time-Domain

In order to extend the application of the white-noise approx-
imation to time-domain codes, our group suggested an alterna-
tive approach in a previous work [15]. Considering that the sec-
ond order force spectrum is significant only in a narrow range
of frequencies around the resonance frequency, it is reasonable
to think that only the QTF values around the resonance diagonal
(i.e. the diagonal for which u = @, ¢) are relevant for calculat-
ing the slow-drift motions. Hence, the proposal is to compute the
slow-drift motions considering QTF matrices without the diago-
nals that are far from the resonance diagonal. Alternatively, this
can be seen as setting to zero the elements outside the vicinity of
the referred diagonal. In the studied conducted in [15], QTF ma-
trices with only 4 diagonals (the main diagonal + the resonance
diagonal + the diagonals around the resonance diagonal) showed
very good results.

Adopting this approach, only a reduced number of QTF val-
ues need to be computed, saving considerable effort in obtaining
these matrices in frequency-domain. Besides, this approxima-
tion could reduce the time required for calculating the difference-
frequency wave forces in time-domain, since less frequency pairs
would need to be considered. It is worth mentioning that the orig-
inal assumption of the white-noise approximation is no longer

followed, as the force spectrum is no longer constant. However,
the main idea is preserved.

CASE-STUDY: THE OC4 MODEL

To test the approximation presented above, simulations with
the OC4 semi-submersible model were performed with the soft-
ware FAST (version 8) in time domain, considering different
wave conditions and waves only. The input files were the ones
provided with the software, and four different groups of simula-
tions were conducted:

1. A group in which the second-order motions are calculated
using the full difference-frequency QTF matrices, which is
one of the input files distributed with FAST;

2. Simulations using QTF matrices in which only the main di-
agonal and the resonance diagonal for the respective motions
are retained, while the other elements are set to zero. For
simplicity, these matrices will be referred to as “WN diago-
nal QTF”;

3. Another group employing QTF matrices with only the main
diagonal and a “strip” around the resonance diagonal, i.e.
the resonance diagonal, the diagonal immediately above
it (U =y, ¢+ Ow) and the diagonal immediately below it
(U = Wy, — ). These matrices will be referred to as “WN
strip QTF”; and

4. Simulations employing Newman’s approximation.

The three different sets of QTFs are presented in the next
section. The rest of this section presents the main character-
istic of the floater and the mooring system of the OC4 semi-
submersible, extracted from [16] (where further details can be
found), as well as the wave conditions analyzed.

Floater

The floater of the OC4 project is the same as the semi-
submersible tested in a wave basin in the DeepCwind project
[17]. It comprises a central column, for sustaining the turbine
tower, connected to three offset columns through an assemblage
of slender pontoons and cross braces. To help suppress vertical
motions, a larger cylinder is attached to the base of each offset
column. The main characteristics of the floater are provided in
Table 1, while Figure 2 gives an illustration.

Mooring

The mooring system comprises three catenary lines spread
symmetrically around the floater, so that each line is 120° apart
from the other two, as illustrated in Figure 3. The fairleads are
located at the top of each base column, 14 m below the waterline.
The anchors are situated at a water depth of 200m. The main
characteristics of the mooring system are given in Table 2
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Waves
Wind

FIGURE 2: Picture of the model-scale floater analyzed in the

TABLE 1: Main characteristics of the floater.
Data extracted from [16].

Total draft 20m
Total displacement 14265t
Vertical position of center of mass (CM) 20m
Roll/pitch inertia about CM 6.8-10% kg - m?
Spacing between offset columns 50m
Length of upper columns 26m
Length of base columns 6m
Diameter of main column 6.5m
Diameter of offset (upper) columns 12m
Diameter of base columns 24m
Diameter of pontoons and cross braces 1.6m

DeepCwind project. Extracted from [16].

B37TEm 4188 m

F254m

e

-

7254 nj

u

FIGURE 3: Mooring configuration. Extracted from [16].
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TABLE 2: Mooring properties. Data extracted from [16].

Number of mooring lines 3
Angle of adjacent lines 120°
Depth to anchors below SWL 200m
Depth to fairleads below SWL 14m
Radius to anchors from platform centerline 837.6m
Radius to fairleads from platform centerline 40.9m
Unstretched mooring line length 835.5m
Mooring line diameter 0.0766m
Equivalent mooring line mass density 113.35kg/m
Hydrodynamic drag coefficient 1.1
Hydrodynamic added-mass coefficient 1.0

Environmental conditions

As this work focuses on the second order wave induced
forces, all the simulations are performed with waves only, hence
neither current nor wind/air damping effects are considered. The
only FAST modules employed are HydroDyn, MoorDyn and
ElastoDyn. The sea state is represented by a JONSWAP spec-
trum, specified by a significant wave height H, and a peak period
T,.

Nine different sea states are considered, with peak periods
T, =4s, 65, 8s, 10s, 12s, 14s, 165, 18s, and 20s. Focus is
given to the effect of the wave period, hence the same wave
height is considered in all cases, H; = 2m. For all the sea states,
the wave direction is 0°, i.e. the waves propagate from -x to +x
(see Figure 3). Thus, the only degree of freedom that show sig-
nificant motions are surge, heave and pitch.

SIMPLIFYING THE ORIGINAL QTF MATRICES

As mentioned in the previous section, simulations are per-
formed with three different sets of QTF matrices: the original
full QTF matrices distributed with FAST and two other matrices
derived from the original one, denoted as “WN diagonal QTF”
and “WN strip QTF”.

The “WN diagonal QTF” is obtained simply by setting to
zero the elements outside the resonance diagonal, i.e. the diag-
onal where U = @; — ®; = @, ¢. For the “WN strip QTF”, the
elements in the diagonals immediately below and above the res-
onance diagonal are also retained, representing a strip of width
28 @ around U = @, . For both matrices, the main diagonal is
kept unchanged, since it is only responsible for the mean drift.

It must be mentioned that this approach does not reduce the
computer time required for each simulation, since the zero ele-
ments are still included in the computation, and it was chosen
only because FAST requires full QTF matrices as input. Never-
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FIGURE 4: QTF matrices (amplitude) originally distributed with FAST (left), the simplified “WN diagonal QTF” matrices (middle), and the
simplified “WN strip QTF” matrices (right).

theless, this procedure allows verifying the white-noise approxi-
mation, which could motivate the use of algorithms that support
the inclusion of only selected frequency pairs (@;, ®;).

Table 3 lists the resonance periods/frequencies of the sys-
tem. As the QTF matrices distributed with FAST have a dis-
cretization of 0.05rad/s, the diagonals for which the frequency
difference u is closest to the resonance frequencies in surge,
heave and pitch are, respectively, the first, the seventh, and the
fifth ones below/above the main diagonal (the matrices are sym-
metric).

The three different sets of QTF matrices in surge, heave and
pitch, the only degrees of freedom that show significant motion
(only following seas are considered), are illustrated in Figure 4.
The resonance diagonals are indicated by white dashed lines in
the left column of Figure 4, which corresponds to the full QTF
matrices distributed with FAST. It is important to mention that
the resonance diagonal in surge is the first one below the main
diagonal, hence one of the adjacent diagonals is the main diag-
onal itself. Thus, the surge “WN strip QTF” contains only five
diagonals, instead of the seven diagonals present in the heave and
pitch “WN strip QTFs” (if we consider that the matrix is symmet-
ric, the number reduces to three distinct diagonals in surge and

four in heave and pitch).

TABLE 3: Resonance period and frequency in surge, heave and pitch

Tn f;z wy
Surge 109s 0.0092Hz 0.058rad/s
Heave 17.5s 0.057Hz  0.36rad/s
Pitch 25.6s 0.039Hz  0.25rad/s

Figure 5 presents the low-frequency second-order force
spectra calculated for each of the QTF matrices using Equation 1
and considering a JONSWAP with Hy = 2m and 7,, = 8s. In the
same graphs, the response function of each of the considered de-
grees of freedom is also included. They were obtained using the
added mass and potential damping matrices provided with FAST,
with an additional damping of 5% of the critical damping to ac-
count for viscous effects, and neglecting any coupling effects.

It can be seen that the spectrum in surge is nearly flat around
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the resonance frequency, and the utilization of the simplified ma-
trices approaches the original white-noise approximation [10].
On the other hand, the spectra in heave and pitch show a more
pronounced variation around U = ®, o, but the peak of the re-
sponse function is so narrow that it should not make a difference.
More important, the force spectra make clear that most of the
QTF matrices do not make any difference for the resonant mo-
tions, and only a very small part of them is actually important.

x10° x10°®
—Full

~—WN - Diag
==WN - Strips{{ 1
4r —H2

SF - Surge (Nz.s)
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FIGURE 5: Second order force spectra calculated with the different
QTF matrices for Ty = 8.

In the procedure explained in this section, effects of dynamic
coupling among the different low-frequency motions were com-
pletely disregarded. However, it is known that they may play a
significant role on the rotational degrees of freedom, and cou-
pling effects are observed in the results discussed in the next
section. Nevertheless, they may often be neglected, specially in
early design stages.

RESULTS

The simulations conducted in this work were performed in
time domain with FAST for the nine different sea states (7, rang-
ing from 4s to 20s) for a duration of three hours, thus ensuring
statistical significance. In order to compare the results obtained
with the four different approaches (full QTF matrix, Newman’s
approximation, and the two white-noise QTF matrices), the am-
plitude of the slow motion for each degree of freedom « is cal-
culated as:

&)

with @ and b the frequencies that delimit the slow-motion peak

of the motion spectra S ) (), which is extracted from the time
series of motion using Welch’s overlapped segment averaging
estimator.

For illustration purposes, the time series and motion spectra
of surge, heave and pitch for 7, = 8s are provided in Figure 6,
while the amplitudes calculated for each sea state are compared
in Tables 4, 5 and 6. It is important to note that Newman’s ap-
proximation is not supposed to be applied to heave and pitch,
since the hypothesis that the resonance frequency is low does
not apply to these degrees of freedom, and the results obtained
are plotted in the heave and pitch graphs only to show that they
are indeed discrepant. For this reason, only the surge amplitudes
calculated with Newman’s approximation are compared in the
tables. It is worth mentioning that some results adhere so well
that they may be indistinguishable in Figure 6.

TABLE 4: Siow-drift surge motion amplitudes (in meters). Relative
differences larger than 5% are highlighted.

Ty (s) | Full QTF | Newm. Diff. WN - Diag. Diff. WN - Strip  Diff.
4 0.88 0.93 5.3% 0.71 -20.3% 0.88 -0.1%
6 0.75 0.77 2.5% 0.59 -21.0% 0.75 -0.4%
8 0.64 0.62 -3.9% 0.49 -23.8% 0.64 -0.3%
10 0.45 0.43 -4.9% 0.35 -23.6% 0.45 0.0%
12 0.29 0.28 -4.4% 0.23 -21.5% 0.29 0.0%
14 0.20 0.19 -6.3% 0.16 -17.0% 0.20 0.2%
16 0.16 013 -147% 0.14 -11.4% 0.16 0.6%
18 0.14 0.11 -22.4% 0.13 -7.6% 0.14 0.9%
20 0.12 0.09  -254% 0.12 -2.3% 0.13 1.1%
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TABLE 5: Slow-drift heave motion amplitudes (in meters). Relative
differences larger than 5% are highlighted.

7, | Full QTF | WN - Diag Diff. WN -Strip  Diff.
4 0.02 0.01 -39.3% 0.02 -3.1%
6 0.03 0.02 -42.9% 0.03 -3.9%
8 0.03 0.02 -38.6% 0.03 -2.4%
10 0.05 0.04 -17.6% 0.04 -1.0%
12 0.29% 0.29%* -0.1% 0.29%* 0.0%
14 0.63* 0.63* 0.0% 0.63* 0.0%
16 0.86* 0.86* 0.0% 0.86* 0.0%
18 0.97* 0.97* 0.0% 0.97* 0.0%
20 0.98%* 0.98%* 0.0% 0.98%* 0.0%

TABLE 6: Siow-drift pitch motion amplitudes (in meters). Relative
differences larger than 5% are highlighted.

Tp | Full QTF | WN Diag. Diff. WN Strip Diff.
4 0.12 0.13 4.6% 0.18 44.3%
6 0.27 0.25 -9.8% 0.35 26.4%
8 0.24 0.20 -16.2% 0.29 20.8%
10 0.20 0.16 -19.3% 0.24 20.0%
12 0.15 0.12 -23.2% 0.18 15.4%
14 0.13 0.10 -17.4% 0.14 7.9%
16 0.12 0.10 -11.4% 0.12 3.2%
18 0.11 0.10 -8.2% 0.11 1.3%
20 0.09 0.09 -6.4% 0.09 0.4%

In surge, the simulations using the “WN diagonal QTF” pro-
vided relative errors up to around 25%, which may be acceptable
depending on the application, specially if one considers all the
other inaccuracies and approximations present in the computa-
tion of the second order forces. Employing the “WN strip QTF”,
the motions are practically identical to the ones obtained with
the full QTF matrix, confirming that, at least in this test case,
the only significant part of the QTF is indeed the region around
the resonance diagonal. Finally, the calculation of the slow-drift
surge motion using Newman’s approximation showed errors of
the same order of magnitude as the “WN diagonal QTF”, but
once again, they may be acceptable depending on the applica-
tion. It is important to note that the surge resonance period is
large, Tn,1 = 109s, so it was expected that Newman’s approxi-
mation would provide fair results. However, this may not be the
case for FOWT with shorter resonance periods.

It is important to highlight that it was not possible to cal-
culate the amplitude of the low-frequency heave motion for the
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FIGURE 6: Time series and spectral density functions of surge, heave
and pitch obtained with the full QTF matrices (in blue), with the
simplified matrices (in red and black) and with Newman’s
approximation (in green) for T, = 8.

largest wave periods, since the resonant motion is mainly ex-
cited by the first order forces. Taking the spectrum illustrated
in Figure 6 as an example, the peak that corresponds to the first
order motion (the motion for higher frequencies appearing to the
right of the spectrum) gets closer to the slow-drift peak as the
wave period gets larger, and it becomes difficult to distinguish
the first from the second order motion. This behavior is relevant
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FIGURE 7: Amplitude of the slow motion obtained with the full QTF
matrices and using the different approximations.

for T, > 125, and explains why the heave amplitudes presented in
Table 5 are so large for these periods. The amplitudes calculated
for T, > 12s are marked with an asterisk, and the comparisons
among the different approximations should be disregarded. For
the other wave periods, the motion amplitude is so small that the
comparison is not relevant.

In pitch, the amplitudes computed with both the “WN diag
QTF” and the “WN strip QTF” showed significant discrepan-
cies. As noted in [15], the errors in pitch increase as the surge
slow-drift motion gets larger, indicating that they are related to

coupling effects between surge and pitch. These disparities are
due to the fact that the slow-drift surge force is not calculated
for the pitch resonance frequency, leading to an error in the surge
force that, through the dynamic coupling, results in an error in the
pitch motion. The first hypothesis was that the coupling could be
related to the mooring lines. But this hypothesis was discarded,
after the results from a set of simulations replacing the mooring
lines by an equivalent spring in surge produced errors of the same
magnitude.

Then, another group of simulations was conducted, this time
considering only the pitch motion, i.e. the calculation of the other
degrees of freedom was disabled in FAST. Only the full QTF and
the “WN strip QTF” were tested. Figure 8 presents the results
obtained for 7, = 4s, the one that originally showed the largest
errors, and one can see that they are nearly identical. Hence, it
can be concluded that the discrepancies observed in the adoption
of the white-noise approach are indeed due to coupling effects,
most probably related to inertial effects.

Alternatively, the coupling effects could be added in the
analysis, but this would require including additional QTF diago-
nals to account for the couplings among all the dofs. By doing
this, the approach that was supposed to be simple and straight-
forward would become somewhat cumbersome and complicated.
Therefore, it was chosen to keep the approach as initially pro-
posed, and one should keep in mind that coupling effects are
neglected when using it.
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FIGURE 8: Time series and spectral density functions of pitch
obtained with the full QTF matrix (in blue) and with the “WN strip
QTF” (in black) for a simulation with pitch only and Ty, = 4.

CONCLUSION

An approach for calculating the slow-drifts of a FOWT,
based on the white-noise approximation, was proposed in a pre-
vious work [15]. It states that, since the motions are weakly
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damped, the only elements of the QTF matrices that are rele-
vant for computing the slow-drift motions are the ones close to
the resonance diagonal, i.e. the diagonal in which the difference
frequency is equal to the natural frequency of motion for a given
degree of freedom. This approximation implies that QTF ma-
trices with only a reduced number of diagonals may be precise
enough. The objective is to save time in early design stages, since
time domain simulations would need to consider much less fre-
quency pairs. Besides, these QTF matrices would be much easier
to compute in frequency domain codes, as the convergence anal-
ysis would be simplified.

In order to verify the approach, two different sets of QTF
matrices were constructed, derived from the full QTF matrices of
the OC4 platform distributed with the software FAST. The first
one comprised only the main diagonal and the resonance diago-
nal, while the rest of the matrix was set to zero (“WN diagonal
QTF”). The other set consisted of matrices with the main diago-
nal and a strip around the resonance diagonal, i.e. the resonance
diagonal, the diagonal immediately above it, and the diagonal
immediately below it (“WN strip QTF”), while all the other el-
ements were set to zero. One should be aware that, by doing
this, the second order forces are not considered in the couplings
between different degrees of freedom.

The OC4 semi-submersible was taken as a case study and, as
the objective was to study the wave-induced slow-drift motions,
simulations were conducted with FAST considering waves only,
thus neither current nor wind effects were included. The second-
order force spectra calculated with these matrices were not con-
stant, disregarding what is proposed in the original white-noise
approximation; however, the peak of the response function is so
narrow that this is not important.

The results obtained with these two sets of QTFs were com-
pared with the ones calculated with the original full QTF matri-
ces and with Newman’s approximation (for surge only). In surge,
the simulations with the “WN strip QTF” showed an excellent
agreement with the ones employing the full QTF matrix, while
the “WN diagonal QTF” could be considered acceptable depend-
ing on the application. The results with Newman’s approxima-
tion showed errors of the same order as the “WN diagonal QTF”,
which could also be considered satisfactory. This was expected,
as the surge resonance period is large, which may not be the case
for other FOWTs, specially in shallower water.

In heave, the slow drift amplitudes calculated for the shortest
waves were very small, in such a way that the comparison is not
significant. For longer waves, it is difficult to distinguish the first
and second order motions, so these comparisons are discarded as
well.

For the second order pitch motion, both the “WN diag QTF”
and the “WN strip QTF” compared poorly with the results ob-
tained with the full matrix. This discrepancy is due to coupling
effects, as demonstrated by simulations performed considering
only the pitch motion (i.e. the calculation of the other degrees of

10

freedom was disabled), and it is related to neglecting the surge
QTF diagonal corresponding to the pitch resonance frequency.
Another group of simulations was conducted to verify whether
the coupling effects were due to the mooring system, but this was
not the case, meaning that the dynamic coupling is very proba-
bly due to inertial effects. As the inclusion of coupling effects
would complicate an approach that is intended to be simple, it
was chosen to keep it as initially proposed.

Therefore, it can be concluded that the elements of the QTF
matrices that contribute the most for the slow-drift motions are
indeed the ones close to the resonance diagonal, so they require
special attention when calculating the QTFs in frequency do-
main. Furthermore, if coupling effects can be neglected, good
results can be obtained considering only a narrow strip around
the resonance diagonal, which should allow faster simulations
and reduce computer time.
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