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The domestic buffalo (Bubalus bubalis), also known as water buffalo, comprises two sub-species the River
buffalo (B. bubalis ssp. bubalis; 50 chromosomes) and the Swamp buffalo (ssp. carabanensis; 48 chromo-
somes). Domestic buffaloes are a globally significant livestock species. In South Asia, the River buffalo is a
primary source of milk and meat and has a very important role in food security. The River buffalo also
supports high-value, differentiated food production in Europe and the Americas. The Swamp buffalo is
an important draft animal and a source of food in Southeast Asia and East Asia. The growing importance
of buffaloes requires that they undergo an accelerated rate of genetic gain for efficiency of production,
product quality, and sustainability. This will involve the increased use of assisted reproduction. The initial
application of reproductive technology in buffaloes had variable success as it relied on the adoption of
procedures developed for cattle. This included artificial insemination (AI), sperm cryopreservation, and
embryo technologies such as cloning and in vitro embryo production (IVEP). Reproductive technology
has been progressively refined in buffaloes, and today, the success of AI and IVEP is comparable to cattle.
Ovarian follicular superstimulation (superovulation) combined with in vivo embryo production results in
low embryo recovery in buffaloes and has limited practical application. The contribution of elite female
buffaloes to future genetic improvement will therefore rely mainly on oocyte pickup and IVEP. This will
include IVEP from females before puberty to reduce generation intervals. This review provides for the
first time a clear chronology on the development, adoption, and impact, of assisted reproduction in
domestic buffaloes.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Assisted reproduction has a very important role in the continu-
ous genetic improvement of domestic buffaloes in different envi-
ronments and production systems globally. In different parts of
the world, buffaloes are important either for food security or
high-value, differentiated food. Reproductive technology needs to
be practical and efficient and must help deliver the goals of both
small and large production systems. Artificial insemination and
the production of embryos in the laboratory have been identified
as the two current assisted reproductive technologies with the
greatest application to facilitate genetic improvement in buffaloes.
Introduction

Assisted reproduction can be considered an enabling technol-
ogy that allows the livestock industries to achieve faster rates of
genetic gain by making greater use of individual males and females
with commercially important traits (Ponsart et al., 2014; Granleese
et al., 2015; Kasinathan et al., 2015). Assisted reproduction can also
be used to manipulate reproduction in females. This includes syn-
chronization of the time of breeding, influencing the age at first
breeding, the interval between the calving and the first breeding,
and breeding during seasonal anestrus. While an enabling technol-
ogy, assisted reproduction itself is built on fundamental discovery
science that creates new knowledge on reproductive biology. For
example, oocyte pickup and in vitro fertilization were made possi-
ble because of basic studies on ovarian folliculogenesis, oocyte
maturation, and early embryonic development. It is common for

http://crossmark.crossref.org/dialog/?doi=10.1016/j.animal.2023.100764&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.animal.2023.100764
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:barusell@usp.br
https://doi.org/10.1016/j.animal.2023.100764
http://www.sciencedirect.com/science/journal/17517311


Table 1
Chronology of assisted reproduction in domestic buffaloes (Bubalus bubalis). Reports that could be considered relevant but are in difficult to source publications are not included.

Year Assisted breeding technology References

1939/1943 Artificial insemination Bhattacharya, 1962, 1968, and 1974; Lonergan, 2018; Vale et al., 2022
1956 Semen cryopreservation Bhattacharya and Srivastava, 1955; Roy et al., 1956; Lonergan, 2018;

Kumar et al., 2022; Vale et al., 2022
1964 Pregnancy with frozen-thawed sperm Basirov, 1964; Kumar et al., 2022
1979 Estrus synchronization Kamonpatana et al., 1979; de Rensis and López-Gatius, 2007
1983 In vivo embryo recovery and embryo

transfer, and ovarian follicular superstimulation
Drost et al., 1983; Karaivanov et al., 1987; Chantaraprateeep et al.,
1988; Misra et al., 1990

1989/91/92 In vitro fertilization (IVF) Singh et al., 1989; Totey et al., 1992; Suzuki et al., 1992; Madan et al.,
1994; Gasparrini et al., 2001

1994 Oocyte pickup (OPU) Boni et al., 1994; Konrad et al., 2017
1998 OPU + IVF Galli et al., 1998
2002/2003 Synchronization and fixed-time

artificial insemination
Berber et al., 2002; Baruselli et al., 2003; Neglia et al., 2003b;
Gutiérrez-Añez et al., 2022; Jeyakumar et al., 2022

2005 Sexed sperm Presicce et al., 2005; Presicce, 2013 and 2022
2007 Cloning Shi et al., 2007; Selokar et al., 2018
2017/18 Juvenile in vitro embryo transfer (JIVET) Baldassarre et al., 2017; Silva, 2017; Baldassarre and Bordignon, 2018;

Baruselli et al., 2018; Baldassarre, 2021
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assisted reproduction protocols that are developed in one species
to be translated to another species. An example is the adoption
in buffaloes of estrus synchronization protocols originally designed
for cattle (Berber et al., 2002; Baruselli et al., 2003; Neglia et al.,
2003a). Assisted reproduction is progressively refined to be
species-specific as new knowledge emerges on the reproductive
biology of different species. This has certainly been the case for
domestic buffaloes where initial studies on artificial insemination
(AI) through to cloning have relied on information gained from
work undertaken mainly in cattle, but also in small ruminants
including sheep and goats.

Domestic buffaloes (Bubalus bubalis), also known as water buf-
faloes, comprise two sub-species the River buffalo (B. bubalis ssp.
bubalis; 50 chromosomes) and the Swamp buffalo (ssp. carabanen-
sis; 48 chromosomes) (Colli et al., 2022). River buffaloes occur pre-
dominantly in South Asia, Europe, Middle-East and the Americas
while Swamp buffaloes are found mainly in Southeast and East
Asia (Borghese et al., 2022). Domestic buffaloes are a globally sig-
nificant livestock species. In South Asia, the larger River buffalo is a
primary source of milk and meat and has a very important role in
food security. The River buffalo is also an important source of high-
value, differentiated food such as mozzarella cheese in Europe,
Middle-East and the Americas. The Swamp buffalo is predomi-
nantly a draft animal in Southeast and East Asia (Borghese et al.,
2022). Assisted reproduction has a fundamental role in ensuring
there is continuing genetic improvement in domestic buffaloes,
and for the manipulation of reproduction generally. This review
provides for the first time a chronology of the development, adop-
tion, and impact of assisted reproduction in domestic buffaloes,
with a particular focus on water buffaloes where most develop-
ments in assisted reproduction have occurred for buffaloes. The
approach adopted is to present the first reported use of a particular
assisted reproduction technology in water buffaloes, followed by
discussion on refinements of the technology, adoption, and impact.
A series of comprehensive reviews on buffalo production, genetics,
and global distribution have recently been published, and these
areas are not covered in this review (Chauhan and Selokar, 2022).

Assisted reproduction in domestic buffaloes

The chronology of assisted reproduction in domestic buffaloes
is summarized in Table 1.

Artificial insemination and semen cryopreservation

Similar to cattle, the first assisted reproduction technology
applied in buffaloes was artificial insemination. The literature
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reports that the first buffalo calf born to AI was produced by Bhat-
tacharya and colleagues in 1943 (Bhattacharya, 1962, 1968; Vale
et al., 2022). Unfortunately, it is difficult to source literature on
methods used for the collection and processing of semen for the
first AI in buffaloes. In the absence of this information, it has been
assumed that egg yolk-based semen extenders, which were under-
going development in cattle, were also used in buffaloes (Phillips
and Lardy, 1940; Layek et al., 2016; Lonergan, 2018; Vale et al.,
2022). As with other livestock, fresh extended semen had limited
application in buffaloes and widespread adoption of AI only
became possible with sperm cryopreservation (Bhattacharya and
Srivastava, 1955; Roy et al., 1956; Roy and Ansari, 1973;
Lonergan, 2018; Kumar et al., 2022; Ohashi et al., 2022). Buffalo
sperm are more susceptible to damage when frozen-thawed and
considerable research has been undertaken on refining conditions
for optimizing sperm cryopreservation in buffaloes (Osorio-
Meléndez, 2013; Shah and Andrabi, 2021; Kumar et al., 2022;
Quintero-Moreno et al., 2022; Vale et al., 2022).

Advances in AI with both fresh and frozen sperm are a major
reason for the global increase in milk production in buffaloes from
about 20 million tons in 1950 to 180 million tons in 2019 (Gowane
and Vohra, 2022). A large part of this increase has occurred in India
where, as noted earlier, buffalo milk and meat are very important
in food security (Gowane and Vohra, 2022). Artificial insemination
has also made possible improvements in the quality of buffalo milk
in Asia, Europe, and the Americas (Neglia et al., 2020; Khetra et al.,
2022). It could be argued that the development and adoption of AI
have been a major factor in making buffaloes a globally important
livestock species.

Synchronization of estrus and ovulation, and fixed-time artificial
insemination

Artificial insemination in buffaloes initially relied on the detec-
tion of estrus (Vale et al., 1994; Baruselli, 1994). However, estrous
detection is problematic in buffaloes because of the low intensity
of estrus and the wide variation in estrous duration (4–64 hours)
(Zicarelli, 1997). For AI to be broadly adopted in buffaloes, it was
necessary to develop estrus synchronization protocols similar to
cattle (Pursley et al., 1995; Bó et al., 2003). Estrus synchronization
also synchronizes ovulation and permits the use of fixed-time AI
(FTAI) (Bó et al., 2003). The earliest attempt to control the estrous
cycle in buffaloes used PGF2a (Kamonpatana et al., 1979). It was
later shown that, as with cattle, combinations of GnRH, estradiol,
progestogens, and PGF2a can be used to control ovarian follicular
waves and the time of ovulation in buffaloes (Baruselli et al.,
2007; Neglia et al., 2016; de Carvalho et al., 2016). Equine chorionic
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gonadotropin (eCG) can be added at the end of a synchronization
protocol to facilitate the final stages of follicle/oocyte development,
tighten the time of ovulation, and increase fertility mainly in ane-
strous buffalo (Carvalho et al., 2013). Estrus synchronization proto-
cols and FTAI are now routinely used in the breeding and non-
breeding seasons in buffaloes (de Carvalho et al., 2016). Pregnancy
rates are, however, lower when estrus synchronization + FTAI are
used in the non-breeding season in buffaloes synchronized with
the GnRH + PGF2a + GnRH-based protocol Ovsynch (Pursley
et al., 1995; Baruselli et al., 1999). This is because of the higher
incidence of anestrous (Carvalho et al., 2021) and relatively high
embryonic mortality in buffaloes bred during the non-breeding
season (Campanile et al., 2016).

The development of estrus synchronization in combination
with AI has been a powerful assisted reproduction platform to
accelerate the dispersal of improved genetics in buffaloes. As noted
above, there have been major advances in both the quantity and
quality of milk in buffaloes, particularly in South Asia, Europe,
and the Americas.

Embryo transfer and ovarian follicular superstimulation

Embryo transfer from donor females to recipients allows indi-
vidual female buffaloes with commercially important traits to
make a greater contribution to genetic improvement (Baruselli
et al., 2020). The first successful embryo transfer in buffaloes
involved the non-surgical collection of a single 7-day blastocyst
from a donor and non-surgical transfer to a recipient (Drost
et al., 1983). The power of embryo transfer is greatly increased
by the collection of multiple embryos from elite donor females.
This requires ovarian follicular supertimulation, commonly
referred to as superovulation. Early attempts at superovulation in
buffaloes drew from experiences in cattle with FSH, PMSG and
GnRH in combination with PGF2a (Drost et al., 1983; Karaivanov
et al., 1987; Chantaraprateeep et al., 1988; Misra et al., 1990).
The number of embryos recovered in these early studies was
low, and this has remained a feature of superovulation in buffaloes.
Notwithstanding these challenges, first-lactation buffaloes gener-
ated by embryo transfer from elite donors had greater milk pro-
duction than buffaloes generated by AI (Castanheira et al., 2021).

Ultrasound monitoring during superovulation in buffaloes
shows the growth on average of around 10 follicles (>8 mm;
Baruselli et al., 2000). The ovulation rate after treatment averages
63% which is similar in cattle (Desaulniers et al., 1995;Shaw
et al., 1995; Stock et al., 1996). However, the main difference
between buffaloes and cattle is the low embryo recovery rate (em-
bryos and ova/corpus luteum) in buffaloes of 20–40% compared
with 60–80% in cattle (Vos et al., 1994; Shaw et al., 1995). The
low embryo recovery rate in buffaloes is thought to be due to fail-
ure of the fimbriae to capture oocytes and transfer them to the ovi-
ducts (Baruselli et al., 2000). It may also be partly due to follicle
rupture and formation of luteal tissue without ovulation. The inef-
ficient low embryo recovery in superovulated buffaloes has
restricted the widespread adoption of superovulation as an
assisted reproduction technology in buffaloes (Baruselli et al.,
2020).

In vitro fertilization

The failure of superovulation as a viable assisted reproduction
technology to exploit female genetics in buffaloes has directed
focus to in vitro fertilization (IVF) (Marin et al., 2019; Ohashi
et al., 2022). Indeed, oocyte pickup (OPU) and in vitro embryo pro-
duction (IVEP) are seen as important assisted reproduction tech-
nologies for producing a relatively large number of embryos in
buffaloes (Konrad et al., 2017; Sakaguchi et al., 2019). Hence, this
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area is reviewed in some detail given the importance of IVEP for
future genetic improvement in buffaloes. The present major con-
straint of OPU/IVEP in buffaloes is the relatively small number of
oocytes that can be recovered from donors. This is due to the small
follicular reserve in buffaloes (Danell 1987; Carvalho et al., 2007)
and modest response to follicular superstimulation treatment prior
to OPU (Petrovas et al., 2020). Another limiting factor is seasonality
in buffaloes that is associated with reduced oocyte competence
during the non-breeding season (di Francesco et al., 2011; 2012).
This restricts practical OPU/IVEP to the breeding season to opti-
mize the use of assisted reproduction in buffaloes. The low effi-
ciency of IVEP in buffaloes during the 1990s was essentially due
to the direct transfer of procedures developed in cattle to buffaloes.
The subsequent refinement of IVEP procedures has led to relatively
high rates of blastocyst development in buffaloes (Gasparrini et al.,
2006; 2008).

Oocyte maturation
Buffalo oocytes commonly undergo IVM in TCM199 supple-

mented with serum and hormones including gonadotrophins and
17b-estradiol (Totey et al., 1993; Chauhan et al., 1998; Samad
et al., 1998). Improved oocyte competence can be achieved by
enriching the maturation medium with IGF-l, IGF-2, EGF, FGF and
insulin (Nandi et al., 2003; Pandey et al., 2009). The length of
IVM is a critical factor for in vitro embryo production as it affects
chromatin anomalies (Dominko and First, 1997), oocyte aging
(Hunter and Greve, 1997) and development (Marston and Chang,
1964). Most buffalo oocytes attain metaphase II between 20 and
24 h of culture. Both cleavage rate and blastocyst rate progressively
decline when fertilization is carried out at increasing postmatura-
tion times from 18-30 h (Gasparrini et al., 2008). Hence, fertiliza-
tion should be performed as early as 18 h of IVM and not later
than 24 h. Delaying fertilization beyond 24 h is associated with a
higher proportion of degenerated oocytes and poorer developmen-
tal competence (Neglia et al., 2001). This indicates that buffalo
oocytes mature relatively early during IVM.

Buffalo oocytes have a high lipid content and are susceptible to
oxidative stress (Boni et al., 1992). The inclusion of antioxidants
during IVM has achieved a major improvement in blastocyst yield
in buffaloes. In an early study, the provision of a thiol compound
such as cysteamine during IVM increased blastocyst production
by stimulating glutathione (GSH) synthesis by oocytes
(Gasparrini et al., 2000; 2003). The enrichment of IVM medium
with cystine in the presence of cysteamine also increases the
intra-oocyte GSH reserve, resulting in improved fertilization, cleav-
age, and embryo yield (Gasparrini et al., 2006). Other antioxidants
including taurine and melatonin added to IVM medium improve
blastocyst development in buffaloes (Manjunatha et al., 2009).

In vitro fertilization
A low cleavage rate was initially the most inefficient step in

IVEP in buffaloes (Galli et al., 2001; Neglia et al., 2003a;
Gasparrini et al., 2004). The cleavage rate was higher with fresh
sperm compared with frozen-thawed sperm (Totey et al., 1992),
and this was consistent with the susceptibility of buffalo sperm
to cryopreservation damage (Muer et al., 1988). Cryopreservation
has improved in buffaloes and fertilization, and cleavage rates
are now similar for fresh and frozen sperm (Wilding et al., 2003).
However, variation among bulls to cryopreservation damage
remains an unresolved constraint in buffalo IVEP (Wilding et al.,
2003). The initial screening of bulls is recommended as bulls of
high genetic merit may not be suitable for IVEP in genetic improve-
ment programs.

The duration of sperm-oocyte co-incubation can be another
limiting factor in IVEP as the high sperm concentration in a small
volume of medium is associated with elevated amounts of hydro-



Fig. 1. Correlation between plasma anti-mullerian hormone (AMH) concentrations
and number of follicles aspirated (A), total COCs (cumulus-oocyte complexes)
retrieved (B) and number of blastocysts produced (C) per buffalo donor (n = 73).
Blood samples for plasma AMH determination were collected immediately before
the ovum pickup (OPU) session (source: Chello, 2020).
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lytic enzymes (Rehman et al., 1994) and reactive oxygen species
(Aitken and Fisher, 1994). An optimal co-incubation time in buf-
faloes appears to be 16 h (Gasparrini et al., 2008). However, this
varies among bulls (Rubessa et al., 2009) and requires the prelim-
inary assessment of individual bulls before large-scale use in
industry. With progressive refinements, the cleavage rate is at
75–80% which has helped to make IVEP a viable and practical
assisted reproduction technology in buffaloes.

Blastocyst/embryo culture
Buffalo embryos were first cultured in vivo in an intermediate

host such as the ligated oviducts of sheep (Galli et al., 1998). This
was followed by cell co-culture systems (Totey et al., 1992;
Madan et al., 1994) and then defined media including synthetic
oviduct fluid and potassium simplex optimized medium
(Caracciolo di Brienza et al., 2001). Major increases in blastocyst
yield in buffaloes have resulted from improvements in IVM
whereas advances in IVC have had a lesser impact. The refreshment
of IVC medium to remove reactive oxygen species, ammonia, and
waste products of metabolism does not impact embryo develop-
ment in buffaloes as occurs for other species (Boccia et al., 2006).
Indeed, buffalo embryos are more susceptible to changes in tem-
perature compared with other species and the fluctuation in tem-
perature that occurs during the refreshment of IVC culture can be
detrimental in buffaloes. Also, buffalo embryos require relatively
high concentrations (1.5 mM) of glucose during early embryonic
development (up to day 4) (Suárez et al., 2011) whereas sheep
and cattle embryos show increased glucose consumption during
late culture when compaction occurs (Thompson et al., 1991;
1996). The supplementation of IVC medium with hyaluronic acid
during late culture improves the cryotolerance of buffalo embryos
(Boccia et al., 2012).

Buffalo IVF embryos are advanced in development by 12–24 h
compared with cattle IVF embryos 12–24 h (Galli et al., 2001). Blas-
tocysts are observed at day 6 of IVC and most are embryos by day
7. Blastocysts that have a slower development and are embryos by
day 8 have a lower cryotolerance (Gasparrini et al., 2001) and are
associated with a lower pregnancy rate after transfer (Boccia
et al., 2013). Buffalo in vivo embryos recovered at day 6.5 after
estrus are mostly hatched blastocysts (Drost and Elsden, 1985).

Oocyte pickup

OPU combined with IVEP allows greater use in genetic improve-
ment programs of female buffaloes with high genetic merit (Boni
et al., 1994). The application of OPU in buffaloes is somewhat
restricted because of the low number of ovarian follicles and viable
oocytes recovered (Gasparrini, 2002; Campanile et al., 2010;
Gimenes et al., 2015) and a seasonal effect on oocyte quality
(Gasparrini, 2018). Also, buffaloes show large individual variation
in the number of antral follicles (AFCs) (Baruselli et al., 1997)
and this is associated with a large variation in the number of
oocytes recovered by OPU (range of 0–30; mean 8.9 ± 5.0 per
donor; Fig. 1; Baruselli et al., 2018). The AFC is, however, highly
repeatable within individual buffaloes which provides the oppor-
tunity to screen potential oocyte donors to optimize the efficiency
of IVEP (Ireland et al., 2007; Batista et al., 2014).

Circulating concentrations of Anti-Mullerian Hormone (AMH)
provide an endocrine marker of the AFC and can be used to screen
potential oocyte donors (Ireland et al., 2008; Monniaux et al.,
2012). In cattle, AMH is a marker for the AFC, the response to fol-
licular superstimulation (Rico et al., 2009), and the response to
OPU-IVEP (Guerreiro et al., 2014; Gamarra et al., 2015; Vernunft
et al., 2015). In a comparison of cattle and buffaloes, the AFC was
greater in Gir (Bos indicus) compared with both Holstein (Bos tau-
rus) and Murrah buffaloes (Baldrighi et al., 2014). In another study,
4

there was a positive association between AMH and AFC and AMH
and IVEP in buffaloes (Fig. 2; Chello, 2020). This finding showed
that AMH can be used as an endocrine marker for AFC and IVEP
to optimize the efficiency of this reproductive technology in
buffaloes.

Follicular superstimulation with FSH before OPU increases the
number of medium and large follicles in buffalo heifers, and prim-
iparous and multiparous cows (de Carvalho et al., 2019). This is
associated with a greater number of viable oocytes available for
OPU-IVEP which further optimizes the efficiency of this assisted
reproduction in buffaloes. At higher latitudes, the time of year
influences oocyte quality and the response to IVEP (Gasparrini,
2018). A greater number of embryos are produced by IVEP during
short days which coincides with the breeding season at higher



Fig. 2. Distribution of number of oocytes (COC) retrieved per ovum pickup (OPU) session in Murrah buffalo donors (n = 179; Source: Baruselli et al., 2020).
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latitudes (di Francesco et al., 2012). There is less evidence of sea-
sonal changes in oocyte quality and IVEP in tropical regions
(Macabelli et al., 2012); however, the relationship between time
of year and OPU/IVEP requires further research in buffaloes.

Sexed sperm

The history and development of sperm sexing technology, and
applications in livestock production including buffaloes, have been
thoroughly reviewed (Vishwanath and Moreno, 2018; (Presicce,
2022; Yata, 2022). In the first report on the use of sexed sperm
in buffaloes, sorted sperm were deposited at the utero-tubal junc-
tion in Ovsynch synchronized females which resulted in impres-
sive pregnancies of 43.3% (X-sperm) and 42.8% (Y-sperm)
(Presicce et al., 2005). This was equivalent to pregnancies with
standard frozen-thawed buffalo sperm and showed the potential
for applying sexed semen technology in buffaloes, both in vivo
(Lu et al., 2010; Presicce, 2022) and in vitro (Liang et al., 2008;
Presicce, 2022). The in vivo application was confirmed by studies
that reported similar pregnancy rates with sexed and conventional
buffalo sperm (sexed 49.3%; conventional 45.2%) (Campanile et al.,
2011; 2013). In the latter studies, higher pregnancy was achieved
with sexed sperm deposited in the body of the uterus compared
with the horn of the uterus (Campanile et al., 2011). A noteworthy
observation has been the difference between buffalo bulls in the
fertilizing ability of sperm following sex sorting (Lu et al., 2010).
The latter is an area that requires further research to optimize
the adoption and impact of sexed sperm in assisted reproduction
in buffalo production (Lu et al., 2015).

Cloning

This review only covers cloning in buffaloes that has resulted in
the birth of live calves and does not include laboratory experimen-
tation using different cloning methodologies to produce cloned
blastocysts (Pandey et al., 2010; Mohapatra et al., 2015). The first
live cloned buffalo calves resulted from established somatic cell
nuclear transfer using fetal fibroblasts and granulosa cells (Shi
et al., 2007). Subsequent reports of cloned calves in buffaloes are
summarized in earlier reviews and are not covered in detail here
5

(Selokar, 2018; Selokar et al., 2018). Cloning has been adopted in
India to clone bulls with elite genetics. The cloned bulls are used
to obtain semen that is cryopreserved and distributed for use in
national buffalo genetic improvement programs (Selokar, 2018;
Selokar et al., 2019). This should accelerate the genetic improve-
ment of buffaloes in India and is a good example of the impact-
assisted reproduction can have on livestock production resulting
in economic and social benefits. Notwithstanding the application
in India, technical challenges and inefficiencies have limited the
adoption of cloning for genetic improvement in buffaloes.

The emergence of CRISPR-Cas9 technology has provided the
opportunity to achieve targeted genetic change in livestock
(Komor et al., 2017; Lillico, 2019; Hansen, 2020; Whitelaw and
Lillico, 2022). CRIPR-Cas9 builds on established somatic cell
nuclear transfer and in vitro embryo procedures and shows the
potential to be a transformative assisted reproduction technology
for genetic improvement in livestock (Menchaca et al., 2020;
Jabbar et al., 2021; Perisse et al., 2021; Mehra and Kumar, 2021).

Juvenile in vitro embryo transfer

Juvenile in vitro embryo transfer (JIVET) is an assisted reproduc-
tion technology that provides the opportunity to significantly
reduce generation intervals and accelerate genetic improvement
in buffaloes. It involves the recovery of oocytes from prepubertal
buffalo heifers combined with IVF to produce transferable
embryos. The ovaries of prepubertal buffalo heifers were reported
to have 10 000–15 000 primordial follicles (Danell 1987; Carvalho
et al., 2007). Ovarian follicular waves are established in prepuber-
tal heifers, and follicles are responsive to follicular supertimulation
treatments (Baldassarre and Bordignon, 2018; Baldassarre, 2021).
Hence, it is possible to stimulate follicular growth in prepubertal
buffalo heifers and recover oocytes for IVF (Baldassarre and
Bordignon, 2018). In calves, oocytes are recovered using laparo-
scopic ovum pickup (LOPU) (Silva et al., 2017; Baldassarre and
Bordignon, 2018; Baruselli et al., 2018).

The first reports of JIVET births in buffaloes were in 2017/2018
(Baldassarre et al., 2017; Silva, 2017; Baldassarre and Bordignon,
2018; Baruselli et al., 2018). In one of our studies, embryo produc-
tion from buffalo calves (2–4 months of age) was compared with



Table 2
Number of oocytes retrieved and blastocysts (mean ± SEM) after laparoscopic ovum pickup and in vitro embryo production (LOPU-IVP) in buffalo donor calves and after ovum
pickup and in vitro embryo production (OPU-IVP) in buffalo prepubertal heifers and lactating cows (adapted from Silva et al., 2017).

Category

Item Calves Prepubertal heifers Lactating cows P-value

Number 8 10 10
Total oocytes retrieved, n 10.9 ± 3.3ab 15.5 ± 2.1a 5.8 ± 1.3b 0.007
Viable oocytes, n 7.63 ± 2.7 6.20 ± 1.6 3.20 ± 0.9 0.11
Viable oocytes rate, % 63.9a 39.3b 54.1a 0.01
Total oocytes cleaved, n 2.75 ± 0.9 3.10 ± 0.7 2.10 ± 0.4 0.52
Cleavage rate, % 30.3ab 20.8b 37.6a 0.04
Viable embryos, n 1.00 ± 0.57b 1.50 ± 0.34a 1.10 ± 0.38ab 0.02
Embryos rate, % 5.1b 9.3a 15.4a 0.05

a,b,c Values within a row with different superscripts differ significantly at the P-value presented.
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prepubertal heifers (13–15 months of age) and lactating buffalo
cows (Silva et al., 2017; Baruselli et al., 2018). Calves were treated
with a sheep intravaginal progestin device on day 0, and follicular
growth was stimulated with FSH (140 mg) in four decreasing doses
at 12-h intervals on days 5–6. Oocytes were recovered on day 7 by
LOPU in calves and by transvaginal follicular aspiration (OPU) on a
random day of the estrous cycle in prepubertal heifers and lactat-
ing cows. Both LOPU and OPU were carried out on the same day,
and semen from one bull was used for IVF. Calves had a lower blas-
tocyst production rate, but the number of embryos produced was
similar between calves and lactating cows (Table 2). Embryos pro-
duced from calves (n = 8) resulted in three pregnancies (38%; 3/8)
which progressed to the birth of three healthy calves (Silva et al.,
2017). This demonstrated the feasibility of JIVET to significantly
reduce generation interval and accelerate genetic progress in buf-
faloes. However, follicles and oocytes in calves are not exposed
to the normal cyclical patterns of gonadotropic stimulation that
occur after puberty, and calf oocytes have a lower efficiency of
embryo production (Baldassarre and Bordignon, 2018;
Baldassarre, 2021). Further research is required on the in vivo fol-
licular stimulation treatments, and the in vitro oocyte/embryo pro-
cedures, for JIVET to become a practical assisted reproduction
technology for broad adoption in buffaloes.

Summary

This review has provided for the first time a clear chronology on
the development, adoption, and impact, of assisted reproduction in
domestic buffaloes. The global significance of buffaloes as a live-
stock species is growing, especially throughout Asia where it is
particularly important for food security. Buffaloes are also growing
in importance for high-value, differentiated food production in
Europe and the Americas. The demand for continued genetic
improvement in buffaloes will only be met by increased utilization
of assisted reproduction. Artificial insemination and sperm cryop-
reservation are established and practical in buffaloes. Cloning
remains restricted notwithstanding the novel application in India
to multiple elite bulls for greater semen cryopreservation and dis-
tribution in national genetic improvement programs. In vivo
embryo production is inefficient in buffaloes. Hence, the contribu-
tion of elite females to genetic gain will increasingly involve the
harvesting of oocytes and IVEP. This will include gene marker-
assisted selection and IVEP from females before puberty to reduce
generation intervals. CRISPR-Cas9 technology complements gen-
ome mapping and IVEP, and the integration of these technologies
has the potential to transform the rate of genetic improvement
in buffaloes. The global sharing of buffalo germ plasm will be fun-
damental for buffaloes to achieve their full potential as a globally
significant livestock species. The scale-up of assisted reproduction
has been relatively recent in buffaloes but it is expected to have the
6

same cost-effectiveness and impact on production as achieved in
cattle (Baruselli et al., 2018).
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