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If k is a field and Q' is a finite connected quiver without oriented cycles, 
its k - 7n·opc1· web module is tlw representation ·with a k at each vertex and 
an identity map a t each a rrow. Given a k-algebra /\ of the form kQ/ I, the 
A-web modules are the ones induced by proper web modules and certain 
functors F : kQ' -1 J\ ( which we call qfaithfu0 . One of the main results is 
that web modules are indecomposable. An application is given to show that 
all indecomposable modules of certain biserial algebras are weh modules. 

1 Introduction and notations. 

This paper is contriliut(·cl as an homage to l'rof. llans Za .. <;s1·nh,ws. \Ve 
have tric-,d lo choC1se our contents in a way lh,,t avoids as much as possible 

1This work was mos t.l_v donr while th,• author w,L5 visiting the Syracusr University of 
Syracuse. NY, ren•iving support from funda~iio de Alllparo a Pesquisa do Estado de Siio 
Paulo (FAPESP). Brazil. 



technical developments, staying close to combinatorics, and to write it fol­

lowing the elementary algorithmic lines that our dear professor would have 

liked. 

1.1 

Let A be a k-category of the form !f where Q is a quiver and I an admis­

sible ideal of kQ. 
In general, if Q is a quiver, let us denote by Q de graph subjacenl to 

Q. Given o EQ1 (o is an arrow of Q) and i EQo (i is a vertex of Q), we 

say they are i11cidcnt if i is one of o endpoints (i E {o(o), e(o)} ). 
A represe11tatio11 M of /\ is a functor of /\ into the category mod k of 

finite-dimensional k-vector spact~s, or, equivalently, a (ri_qht} /\-module. It 

is defined by associating a finite-dimension/LI /.:-vector spiLce M ( i) Lo each 

vertex i of Q and a k-linear map M(o): M(i)-+ M(j) lo each arrow i .!:. j 
of Q, in such a way that all maps corresponding as a result lo elements of 

the relations ideal I be equal to 0. 
The quiver support, qsup(M), of such a representation M is the sub­

quiver of Q whose vertices are those i such that M(i) =f O and whose arrows 

are those o for which M(o) =f 0. The graph support, gsup(M) of M is the 

graph that is subjacent to qsu,,(M), in other words, gsu]J(M) = qsup(M). 

Let us now fix a subquiver Q' of Q. Let us denote. for the moment, by I" 
the ideal of kQ that is generated by the arrows which do not belong to Q;. 
Next, let us consider the set I' of all elements a' (that is, linear combinations 

of paths) in kQ', such that there is some a" E I" with the property that 

a'+ a" E I . It is easy to see that in this way we have constructed the least 

possible ideal I' f kQ' whose corresponding quotient category ,\' = ~ has 

the following property. 
Every /\'-module M', if "ext.1~ncled" to Q by associating tlw O space to 

each vertex not in Q~ and tlw O map to each arrow nut in Q\, defines a 

A moduhi; and, conversely, an~· /\ module> with q11ivn support ront,tined 

in Q' defi11es a /\'-module. In f,tcl, this correspondence comes from a fully 

faithful functor from /\'-mod to /\ -mod which defines /Lil equivalence between 

A'-mod and the full subcategory of A-mod defined by the representations 

with support contained in Q'. 
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We will use the following notations. The ideal I' just defined above will 

be denoted by IQ, and will be called the restriction of I to Q'; and the 

corresponding k-category A' will be denoted by AQ, and will be called the 

restriction of A to Q'. 
Also, given a A-module M with qsup(M) = Q', the notations IM, AM 

may be used in place of IQ,, AQ,, respectively. 
The following definition will facilitate our exposition in later sections. 

Definition 1 Keeping the above notatio11s, let F : A' -> A be a (k-li11ear} 
functor of k-categories. F is said to be qfaithful {for quiver-faithful) if it is 
induced by a morphism of quivers (which will be denoted by the same symbol 
F) Q' -> Q that is surjectivc 011 the m-rows a11d that is locally i11jcclive i11 
the followi119 sense: 

1.2 

If et,/3 E Q; have o(et) = o(,B) 01· e(et) = e(,B) (a1·c incident} 

thr.n F( c,) = F(/j) implies c, = /3 . 

Let us recall now the concept of an induced representation ( or induced mod­

ule) . Let F : A'-> A be a (k-linear) functor between two k-categories. 

By definition, if M is a A-module, the corresponding /\'-module coi11-
duced by F, denoted by MF or by M,.,, is Mo F, and, if M' is a A'-module, 

the corresponding A-module i11d11ccd by F, denoted by M'F or by M'", is 

M' ®"' A, where here, to be short, we denote again by A the left A'-module 

corresponding to the left A-module A coinduced by F: Ao F. (Needless 

lo say that, by definition, a left module over a category is a ( right) module 

over the opposite category.) 

Remark I 011 induce,/ modules. 

As it is well known, an induced module MF may be characterized also as 

the solution of an universal problem. 
Let 1. : M' -> M'F be the A'-morphism (i. r. it is implicitly assumed 

there that M1F denotes actua lly the coinduced module ( M F)F) defined nat­

urally by 1. : m' >-+ m' ® I. Then tis the (unique, up lo isomorfismo) solution 

of the following. 
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Given a A-module N, for each A'-morphism 8' : M' - NF, there 
exists a unique A-morphism O: MF - N satisfying 8' = 8 o ,. 

The proof is direct and is left to the reader. 

Example 1 Modules induced by qfaithjul functors. 

We show a particular situation where the induced module M'F is easily 
constructed. Let us keep our notations for A', A as defined by quivers with 
relations and let us be given a qfaithful functor F: A' -4 A and a A'-module 
M'. 

First we construct a kQ-module /11 in the following way. On the one 
hand, to each vertex i E Q0 , we associate the vector space /11(i) which is 
the direct sum of the spaces (M(i'))F(i')=i (it should be noted that the fact 
that F is qfaithful implies that it is surjective on vertices) . On the other 
hand, to each arrow i ~ j E Q 1 we define the corresponding linear map 

by saying that, if there is an arrow i' ~ j', then the (i',j')-component 
of /11 ( o) is precise?ly M'( n'), and, if there is no such arrow o', then that 
compo11e11t is equal to 0. 

At this moment, it is convenient to introduce also i:, the family of lin­
ear applications (i;, );• E Q~ where i;, : M'(i') _, M( F(i')) is the natural 
inclusion. As it is easily seen, i. is a /\'-morphism from M' to /1:/ 

Next, we define naturally M as the A-module induced by /11, i. c. 
M = t}

1
, and , as the passage of i to the quotient, i. r.. as the composition 

of i. with the ca11011ical map /1:/ _, M . 

Lemma 1 l\'r.cping the 11rececding notation.~, M ~ M'F = M' ~ A' A. 

PROOF. It is enough to show that ( M, t) is a solution of the induced module 
universal problem for M'. Let 0': M' _, NA' be a /\'-morphism, where N is 
an arbitrary A-module. In ca~e O : M _, N is a A-morphism with 0' = 0 o 1., 
then, for each i' E Q~, we would have o;. = OF(i') o t;•, so that O is uniquely 
determined. On the other hand, these equalitie,s , as it is easily verifieed, 
may be used to define a morphism O satiafying the desin~d condition . D 
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2 Webs. 

Definition 2 I. We say that a representation M' of a connected quiver Q' 
with no oriented cycles is a proper web (or that M' is a proper web module) 
if the following are satisfied. 

Vi' E Q~, M'(i') = k; 
Vo' E Q;, .M'(o') = IA: . 

(Notice that a proper web module is determined by its support, and con­
versely.) 
2. Given the k-category A= ~, we say that a faithful A-module M is a 
web if there is a proper web module M' (as above) a11d a qfaithful fu11ctor 
F : kQ' -+ Aq,up(M) such that 

and where we 1·eq11irti also that, for all paths r' of Q', the map of A-I corTf­
sponding tor' docs not kill its source web point (in other words: M(F(r')) 
(io(T•)) /; 0, see Remark 2 below). 

3. Given the k-catcgory A = ~, we say that a /\-mod11le M is a web if it 
is a web as a A/N-modulc, where N denotes the anihilator of M in /\ . 

(Notice that, obviously, the concept of a web module is defined crnly up to 
isomorphism.) Sometimes in what follows, to simplify our exposition, we 
will call web quivers the quivers which are the support of a proper web, i. 
c. those which are connected and have no oriented cycles. 

Example 2 For any algebra all the indecomposable projective and all the 
indecomposable injective modules are web modules. 

Example 3 Let us consider a quiver Q' such that Q' is ,L Dynkin diagram 
of type A,., with such an orientation th,Lt there are no oriented paths with 
length greater than I, and let A be the algebra 

(
k k(flk) 
0 k ' 
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the path algebra of the Kronecker quiver 

0 
-+ 

0 W 

f3 

Let us assume that n is odd: n = 2t + 1 and that the extremal points of 
Q' are terminal points of the corresponding arrows. Next, let us fix the 
notations in such a way that Q~ = {l, ... ,2t + l}, the arrow from 2s - 1 
to 2s is o: ( s = 1, ... , t) and the arrow from 2s + 1 to 2s is {3~ ( s = 1, ... , t). 
Then, clearly, the functor F sending the o' arrows to o and the /3' arrows 
to f3 is qfaithful. The web A-module M defined by these data has at o the 
vector space k1+ 1 and at w the vector space k'. The matrices M ( o ), M (/3) 
are, respectively, the following. 

(

10 ... 00) 
0 l . . . 0 0 

' . . . . . . . 
0 0 . . . l 0 

(
0 1 0 ... 0) 
0 0 l . . . 0 
. . . . . . . 
0 0 0 .. . 1 

These are exactly the indecomposable preinjective A-modules (see jRi, 3.2, 
p. 122]). It is easy to see that all the indecomposable preprojcctivc and 
some of the indecomposable regular· Kronecker modules are also webs. 

Remark 2 Let us introduce some vocabulary which will simplify our writ­
ing. Keeping our previous general notations the vectors of the form t;, ( 1) E 
M(i) (where i = F(i')) (sec Example 1) will b'"' called (web) 71oi11t.~of the 
web M. On the other hand, the sequences which correspond to maximal 
paths of M' (in a sense that we will proceed right away to characterize 
properly) will be called threads of the web M . 

Let ( i~lo; o; ... o;li:) be a maximal path T
1 of Q', ( i~ = o( o~), ( -A = 

0, 1, ... , t); i; = e(o:)). According to the definitions, each M'(i~) is equal to 
k, so that it is convenient to distinguish all thes<> ''equal" spaces by calling, 
say, x~ E M'(i\) the 1 of k laying in that vector space. Next, let us denote 
x,. E .M(i,.) the image t;Jx~), where we assume that i.\ = F(i~)- The thus 
obtained sequences of web points (x0 x 1 ••• x,) are, by definition, the lh1·cads 
of M (so that, also. the (x~x; ... x;)'s an~ the threads of /\1'). If we denoti> 
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O,\ = F(o~), then (iolo102 ... 01lii) is the path support of our thread of M, 
and it may be called a threadpath of M. 

It is clear that if i ~ j E Q1 is not a loop, then there are bases 
of M(i), M(j), formed by web points with respect to which M(o) has a 
matrix in the canonical form 

(where 1, 0 denote, respectively, identity and zero blocks of convenient 
size). 

The following result must be well known but we give a proof of it for 
lack of easy reference. In the statement, the notation Q \ {i} (where Q is 
a quiver and i E Q0 ) denotes the full subquiver determined by the vertices 
Qo \ {i} . 

Lemma 2 let Q be a web quiver (i. e. Q is connected and has no oriented 
cycles} with at least two vertices. Then, there exist io,io E Q0 , i0 # j 0 , that 
are eithr.r sink or sources of Q, such that Q \ {i0 } and Q \ {j0 } arr. also 
web quivers. 

PROOF. The result is clear if Q has exactly two vertices because they 
have to be sinks or sources. Hence, we proceed by induction on n = IQol 
assuming that n ~ 3 and that the result is true for web quivers with less 
than n vertices. It is well known that Q must have a sink and a source. If 
they are not the desired vertices, we can assume that there exists a sink w 
such that 

( decomposition into connected components), and it is clear then that all the 
subquiv.ers Q:;_ of Q defined by sets of vertices of the form ( QA )0 U {tu} ( A = 
1,2, ... ,s), are connected. Hence, if {ii, ji} and {i2 , h} solve our question 
for Qj, Q; respectively, then, picking in each pair one vertex different from 
w, we get the vertices we were looking for. D 

The following is one of the main results in this paper. 
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Proposition 1 // M is a web A-module, then M is indecomposable. 

PROOF. We keep our above notations. By the lemma and by an obvious 
duality argument, we can assume that Q' has a sink w' such that Q' \ { w'} 
is also a web quiver. Let us denote w the image of w' under the qfaithful 
functor F that defines our web module. We proceed by induction on IQ~I 
and divide the argument in the following two cases. 

x..,, is a linear combination of the other web points x;, in M(w) . In this 
case, the same family of vector spaces M(i); is obtained as the web module 
defined through F for the web quiver Q' \ { w'} which is indecomposable by 
the induction hypothesis. 

x..,, is linearly independent of the remaining web points in M(w). Let us 
suppose, by contradiction, that M = M1 EB M2 is a proper decomposition of 
M and let us assume, for example, that the projection x..,,1 of x,,., into M1 is 
linearly independent of the remaining web points. Then we can see that M 
can be redefined as a web module M• by changing only the web point x..,, 
for x..,,1 • In fact, let us consider the linear k-isomorphism that takes x..,, into 
x..,,1 and leaves all other web points fixed. Then, remembering the condition 
that F satisfies for being qfaithful (see Def. 1), we easily deduce that our 
two web modules are isomorphic. Now, this leads to a contradiction to the 
induction hypothesis and, so, the proof is complete. D · 

3 Applications. 

One interesting question is to study, for some types of algebras, different 
ways of obtaining some or all the indecomposable modules starting from web 
modules. In particular, it would be interesting to know for which algebras 
it happens that all the indecomposable modules are webs. These and other 
relevant subjects require much more technical aproaches and are left to be 
developed in a forthcoming paper. 

It is clear that the above mentioned property is very especial. For 
instance, let A be the hereditary algebra of type EG corresponding to the 
following orientation. 
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! 

1 - 2 - 3 - 5 - 6 

Then A has indecomposable modules (as the one whose dimension vector is 
given below) that are not webs. On the other hand, if one introduces, for 
example, a relation saying that the path from 4 to 5 is zero, then all the 
indecomposables are webs. 

2 
1 2 3 2 1 

We will consider here only two particular situations. First, we will study 
algebras of biserial kind and of finite representation type and, secondly, a 
very interesting class of algebras of infinite representation type with just 
one indecomposable projective. 

3.1 

Let us assume here that, keeping our general notations, A = ~ has the 
following properties. 

A is of finite representation type; 
for each i E Q0 there are at most two arrows, o:, f3 with e(o:) = e(fJ) = 

i, and at most two arrows, cr1, /31 with o(o:i) = o(fJi) = ·i; 
for each o: E Q 1 there is at most one arrow, o:' with e(o:') = o(o:) and 

at most one arrow ct'' with e( o) = o( er") satisfying crcr' f/. I and 
o"o: ff, I. 

Algebras with these properties are biserial in the sense that every inde­
compesable projective P is either uniserial, or radP is the direct sum of two 
uniserial submodules or socP is simple and radP /socP is the direct sum of 
two uniserial modules, with the dual versions of these properties holding for 
every indecomposable injective module. 

These algebras have been studied for several researchers. of whom we 
mention, for example, [P-S], [S-W] and [E]. 
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Definition 3 We say that a proper web module M' is a proper zig-zag if 
gsup(M) is a Dynkin diagram of type An• A web module M is a zig-zag if 
the proper web defining it, M', is a proper zig-zag (cf. Definition 2). 

A proper zig-zag has possible three kinds of web points. There are 
terminal points, characterized as corresponding to vertices that are incident 
with exactly one arrow; hat points, which correspond to vertices that are 
the origin of two arrows and the wedge points, associated to vertices that 
are the end points of two arrows. These denominations are also used for the 
corresponding points of a zig-zag module defined by a given proper zig-zag. 
It is easy to see that hats are at the top and wedges at the socle of the 
zig-zag module. Also, a terminal point from which an arrow goes out, is at 
the top, and one where an arrow ends is at the socle. 

Remark 3 It is easy to see that, for algebras with the properties listed 
above, all web modules are necessarily zig-zag modules. Let M be such a 
module and let x, y E M(i) be two web points which correspond respectively 
to, say, web points x' E M'(i~),y' E M'(i;). Since gsup(M') is connected, 
there is a (non necessarily oriented) walk from i\ to i2, so that there is also 
a walk in Q beginning and ending at i. Since this walk supports threads 
of our zig-zag, and since A is of finite representation type, we deduce that 
either x, y are linearly dependent vectors, and the walk consists of two 
parallel threadpaths which are linearly dependent modulo I, or the walk is 
just an oriented cycle. In fact , otherwise we would have as A-modules all 
representations of some algebra of type A,., which has an infinite number 
of indecomposables. 

Lemma 3 Let 
0-+S<--+M-+M-+O 

be a non split exact sequence of 11.-modulrs with S simple a11d M a zig-zag 

module. Then either M is a zig-zag module again or it is the direct sum of 
two zig-zag modules. 

PROOF. Let us show that, when M is indecomposable, the only possible 
"link" between S and M is through a terminal point of the latter. We 
fix notations assuming that 8 = kx C M(i), that the two possible arrows 
ending up at i are o, /3, with origins, resp., at j, hand that the two possible 



arrows starting at i are a 1 , /31, with end points, resp., at j 1 , h1. Let us assume 
also that the paths /31a, ai/3 are in the relations idea.I I. The hypothesis 
allows us to suppose that M(u) = M(u) EB k.x, so that we can fix a k-basis 
x1,x2 , ••• ,x1 of M(u) composed by web points of M. As for the arrows, we 
have, for instance, that, if ,r is the projection of M(u) onto M(u), M(o) = 
""o M(a). 

Some of the points X,\ may be terminal, others may be hats and others, 
wedges. But it is easy to see from Remark 3 that there is at most one socle 
point (terminal or wedge) and at most one top point (terminal or hat). We 
can assume that, for example, the first t of them a.re images of web points 
in M(j) = M(j) which we will denote by Y.\ keeping the same index for 
corresponding points. Hence we have, for example, for A ~ t and for some 
a.\ Ek, .i\1(o)(y.\) = X,\ + a.\x, M(o-)(y.\) = X,\. 

Also, if the arrow f3 does exist, we r.an enumerate the X,\ 's in such a way 
that from, say, A = t + l up to some value. they correspond to non-wedge 
points linked to M(h) by means of M(/3). If there is a wedge, it would be 
the point x 1• The remaining points are a hat or terminal points. In doing 
this, we denote in general by Z,\ a web point of M(h.) which M(/3) applies 
onto some X,\-

lf there is no wedge, or there is one but we have .M(a)(yi) = .M(/3)(z1), 

then M is isomorphic to the representation that changes each M(a)(y.\), 
M(/3)(z.\) for the corresponding image under the M map. Hence, if this is a 
submodule of M, A1 decomposes into the direct sum of it plus S . Otherwise, 
there is a terminal point of M which goes into an element of S, and in this 
case M is again a web module. 

On the other hand, if there is a wedge point but M(yi) -:/ M(zi), since 
these vectors are linearly independent, we see that M decomposes as the 
direct sum of two zig-zags, one with a terminal point at M (yt) and the other 
with a terminal point at M(zi) . D 

Lemma 4 Let 

be an exact sequence where S is a simple !\-module, where. each Mp is a 
zig-zag module and where, for each p, Mp n L,p''FP Mp' C S . Let S bi 
concentrated at the vertex i and let us call C\' and, if it exists, /3 the arrows 
ertding at i . let 11s ass11mr. f11rt.hcr I.hat mch MP ha$ a soclc tenninal web 
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point Xp E S, so that we will say that it is of "type" o (resp. f3) if the 
corTesponding threadpath ends with o (resp. f3} (it follows from Remark 3 
that each MP is of type o or of type f3 but not both). Then, if there are more 
than one zig-zag modules Mp of one type, say, o, Lp MP is a decomposable 
module. 

In other words, if there are more than two summands, the sum decomposes. 

PROOF. Let us call M 1 a MP of type o whose threadpath ending al S 
has minimum length. Let us denote then by M' the sum of all other zig­
zag modules. Let o 1, ... , o 1, o be the sequence of arrows that defines the 
threadpath of M1 ending up at a point of S, and let us call y,, ... , yi, x the 
corresponding poits of this thread. Hence, let us choose a corresponding 
sequence of vectors in M', y:, ... ,y\,x' in such a way that :r.' = M'(ao 01 o 
... oo1)(y;) E S. It should be observed that all vectors yA, y~, x, x' with A 'ft 
are anihilated by any arrow different from o and from the o/s. 

We now define an isomorphism from the direct sum of M1 / kx and M' into 
M1 + M', whose existence gives the desired proof. This isomorphism will 
have the identity map at any vertex differente from the e(crA), A = 1, ... , t , 
and an automorphism (TA at e(oA). If, say, x = ax' , for some a E k,a 'f 
0, we define uA(yA) = YA - a.y; , stipulating that it is the identity in a 
basis complement of YA containing y~. The representation from which this 
isomorphism starts is the one that has the same arrow maps as M1 + M', 
except for er and the oA 's, where the map is obtained by composing with 
the apropriate O'A . The remaining details are straightforward and are left 
to the reader. D 

As an easy consequence of these lemmas we have the following proposition 
which is the main result of this subsection. 

Proposition 2 If A is a k-algcbr-a with the properlics lislccl at the begi1111i119 
of this subscctio11, the11 all i11decomposablc A-modules arc zig-zags. 

PROOF. We proceed by induction on the dimension of the indecomposable 
module A1. Let S by a simple submodule of M and let M = ffipMp be 
the corresponding quotient, already decomposed as a direct sum of web 
modules. Then, by Lemma 3 , each preimage MP of M" is a direct sum of 
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zig-zag modules, so that M is as in Lemma 4. It follows then that it is 

also a zig-zag module. D 

3.2 

Let us consider now a biserial type algebra /1. = kQ/1 where Q has only 

one vertex with two loops, o , /3 and where the admissible ideal I is defined 

by the relations 
o" = /3"' = o/3 = /30 = 0. 

Then /1. is an algebra of infinite representation type. 

These algebras are being or have been studied by Raymundo Bautista and 

his student Maria Alicia Avi1i6, who have proven that all indecomposable 

modules are zig-zags or certain close generalizations of them which are 

called closed zig-zags ( see [Ba]). 
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