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Abstract

If kis a field and Q' is a finite connected quiver without oriented cycles,
its k - proper web module is the representation with a k at each vertex and
an identity map at each arrow. Given a k-algebra A of the form kQ/], the
A-web modules are the ones induced by proper web modules and certain
functors [7: kQ' — A (which we call gfaithful). One of the main results is
that web modules are indecomposable. An application is given to show that
all indecomposable modules of certain biserial algebras are web modules.

1 Introduction and notations.

This paper is contributed as an homage to Prof. lans Zassenhaus. We
have tried Lo choose our contents in a way that avoids as much as possible

"This work was mostly done while the author was visiting the Syracuse University of
Syracuse, NY, receiving support fromn Fundagio de Amparo & Pesquisa do Estado de Sio
Paulo (FAPESP). Brazil.



technical developments, staying close to combinatorics, and to write it fol-
lowing the elementary algorithmic lines that our dear professor would have

liked.

1.1

Let A be a k-category of the form 5-19* where Q is a quiver and I an admis-
sible ideal of £Q.

In general, if Q is a quiver, let us denote by Q de graph subjacent to
Q. Given a €Q, (a is an arrow of Q) and ¢+ €Qp (7 is a vertex of Q), we
say they are incident if 7 is one of a endpoints (i € {o(a),e(a)}).

A representation M of A is a functor of A into the category mod k of
finite-dimensional k-vector spaces, or, equivalently, a (right) A-module. It
is defined by associating a finite-dimensional k-veclor space M(z) Lo each
vertex i of Q and a k-linear map M(a) : M (i) = M(j) to each arrow i = j
of Q, in such a way that all maps corresponding as a result to elements of
the relations ideal I be equal to 0.

The quiver support, qgsup(M), of such a representation M is the sub-
quiver of Q whose vertices are those i such that M (i) # 0 and whose arrows
are those a for which M(a) # 0. The graph support, gsup(M) of M is the
graph that is subjacent to gsup(AM), in other words, gsup(M) = qsup(M).

Let us now fix a subquiver Q' of Q. Lel us denote. for the moment, by I”
the ideal of kQ that is generated by the arrows which do not belong to Qj.
Next, let us consider the set I' of all elements ¢’ (that is, linear combinations
of paths) in kQ’, such that there is some ¢” € I” with the property that
o'+ 0" € 1. It is easy to see that in this way we have constructed the least
possible ideal I' [ £Q’ whose corresponding quotient category A’ = % has
the following property.

Every A’-module A, if “extended” Lo Q by associaling the 0 space to
each vertex not in Qg and the 0 map to each arrow not in Qj, delines a
A module; and, conversely, any A module with quiver support contained
in Q' defines a A’-module. In fact, this correspondence comes from a fully
faithful functor from A’-mod to A-mod which defines an equivalence between
A’-mod and the full subcategory of A-mod defined by the representations
with support contained in Q'.



We will use the following notations. The ideal I just defined above will
be denoted by Iq. and will be called the restriction of I to Q'; and the
corresponding k-category A’ will be denoted by Aq: and will be called the
restriction of A to Q'.

Also, given a A-module M with qsup(M) = Q’, the notations Ips, Ay
may be used in place of Iq., Aq., respectively.

The following definition will facilitate our exposition in later sections.

Definition 1 Keeping the above notations, let F: A’ — A be a (k-linear)
functor of k-categories. F is said to be qfaithful (for quiver-faithful) if it is
induced by a morphism of quivers (which will be denoted by the same symbol
F) Q' — Q that is surjective on the arrows and that is locally injective in
the following sense:

If a,B € Q) have o(a) = o(B) or e(a) = e(B) (are incident)
then F(a) = F(B) implies a = f.

1.2

Let us recall now the concept of an induced representation (or induced mod-
ule). Let F: A’ = A be a (k-linear) functor between two k-categories.

By definition, if M is a A-module, the corresponding A'-module coin-
duced by F, denoted by Mg or by My, is M o I, and, if M’ is a A™-module,
the corresponding A-module induced by F, denoted by M'F or by M'A | is
M’ ®a A, where here, to be short, we denote again by A the left A’-module
corresponding to the left A-module A coinduced by F: Ao F. (Needless
to say that, by definition, a left module over a calegory is a (right) module
over the opposite category.)

Remark 1 On induced modules.

As it is well known, an induced module MF may be characterized also as
the solution of an universal problem.

Let ¢ : M' — M'F be the A-morphism (i. ¢. it is implicitly assumed
there that M'F denotes actually the coinduced module (MF)g) defined nat-
urally by ¢ : m’ — m’® 1. Then ¢ is the (unique, up to isomorfismo) solution
of the following.



Given a A-module N, for each A’-morphism 8 : M’ — Np, there
exists a unique A-morphism 0 : MF — N satisfying & =0 o..

The proof is direct and is left to the reader.
Example 1 Modules induced by qfaithful functors.

We show a particular situation where the induced module M'F is easily
constructed. Let us keep our notations for A’, A as defined by quivers with
relations and let us be given a qfaithful functor ' : A’ = A and a A’-module
M.

First we construct a kQ-module M in the following way. On the one
hand, to each vertex i € Qq, we associate the vector space M (i) which is
the direct sum of the spaces (M(i'))F(in=i (it should be noted that the fact
that F is qfaithful implies that it is surjective on vertices). On the other
hand, to each arrow : 5 j € Q; we define the corresponding linear map

M(a) FBpin=iM (1)) = Bpn=;M(7'))

by saying that, if there is an arrow #' L j', then the (#',j')-component
of M(a) is precisely M’(e’), and, if there is no such arrow a’, then that
component is equal to (.

At this moment, it is convenient to introduce also z, the family of lin-
ear applications (#:)y € Qg where iy @ M'(2') — M(F(:')) is the natural
inclusion. As it is easily seen, i is a A-morphism from M’ to M

Next, we define naturally M as the A-module induced by M, i e

M= %, and ¢ as the passage of ¢ to the quotient, i. ¢. as the composition

of i with the canonical map M — M.
Lemma 1 Kecping the preceeding notations, M = M'F = M’ 6o A.

PROOF. It is enough to show that (M, ) is a solution of the induced module
universal problem for M’. Let 0' : M’ — N be a A'-morphisin, where N is
an arbitrary A-module. In case 0 : M — N is a A-morphism with & = 0o,
then, for each ' € Qp, we would have 0, = O0p(y 0 tir, so that @ is uniquely
determined. On the other hand, these equalities, as it is easily verifieed,
may be used to define a morphism 0 satialying the desired condition. O



2 Webs.

Definition 2 1. We say that a representation M’ of a connected quiver Q'
with no oriented cycles is a proper web (or that M' is a proper web module)
if the following are satisfied.

Vi' e Qp, M'(i') = k;
Vo' € Q}, M'(a') = 4.

(Notice that a proper web module is determined by its support, and con-
versely.)

2. Given the k-calegory A = 5?, we say that a faithful A-module M is a
web if there is a proper web module M’ (as above) and a gfaithful functor
F: kQ' = Agupp) such that

M= MF,

and where we require also that, for all paths v° of Q', the map of M corre-
sponding to 7' does not kill its source web point (in other words: M(F(7°))
(lo(ry) # 0, sece Remark 2 below).

3. Given the k-category A = 5{‘1, we say that a A-module M is a web if it
is a web as a A/N-module, where N denotes the anihilator of M in A.

(Notice that, obviously, the concept of a web module is defined only up to
isomorphism.) Sometimes in what follows, to simplify our exposition, we
will call web quivers the quivers which are the support of a proper web, i.
e. those which are connected and have no oriented cycles.

Example 2 For any algebra all the indecomposable projective and all the
indecomposable injective modules are web modules.

Example 3 Lel us consider a quiver Q' such that Q' is a Dynkin diagram
of type A,,, with such an orientation that there are no oriented paths with
length greater than 1, and let A be the algebra

k kak
0 k !

<2}



the path algebra of the Kronecker quiver
o
LA

Ed

B

Let us assume that n is odd: n = 2t + 1 and that the extremal points of
Q' are terminal points of the corresponding arrows. Next, let us fix the
notations in such a way that Qf = {l,...,2t 4+ 1}, the arrow from 2s — 1
to 2s is o) (s = 1,...,) and the arrow from 2s + 1 to 2s is §; (s = 1,...,1).
Then, clearly, the functor F sending the o’ arrows to a and the ' arrows
to A is qfaithful. The web A-module M defined by these data has at o the
vector space k'*! and at w the vector space k'. The matrices M(a), M(f)
are, respectively, the following.

10...00 010 . 0
o1 ...00 001 . 0
0oo0...10 ooo0 .. .1

These are exactly the indecomposable preinjective A-modules (see [Ri, 3.2,
p- 122]). It is easy to see that all the indecomposable preprojective and
some of the indecomposable rcgular Kronecker modules are also webs.

Remark 2 Let us introduce some vocabulary which will simplify our writ-
ing. Keeping our previous general notations the vectors of the form ¢;:(1) €
M(i) (where i = F(i')) (see Example 1) will be called (web) points of the
web M. On the other hand, the sequences which correspond to maximal
paths of M’ (in a sense that we will proceed right away to characterize
properly) will be called threads of the web M.

Let (iy|a)ad...aifi}) be a maximal path v’ of Q', () = o(a)), (A =
0,1,...,1); i, = e(a})). According to the definitions, each M'(i}) is equal to
k, so that it is convenient to distinguish all these “equal” spaces by calling,
say, =y € M’(i\) the 1 of k laying in that vector space. Next, let us denote
zy € M(iy) the image ¢; (2}), where we assume that iy = F(#}). The thus
obtained sequences of web points (zoz,...r,) are, by definition, the threads
of M (so that, also. the (z{x}...z¢{)'s are Lhe threads of M’). If we denote



ay = F(a)), then (iglayag...aefiy) is the path support of our thread of M,
and it may be called a threadpath of M.

It is clear that if : = j € Q, is not a loop, then there are bases
of M(3), M(3), formed by web points with respect to which M(a) has a
matrix in the canonical form

= (3 2)

(where 1, 0 denote, respectively, identity and zero blocks of convenient
size).

The following result must be well known but we give a proof of it for
lack of easy reference. In the statement, the notation Q \ {i} (where Q is
a quiver and 2 € Qg) denotes the full subquiver determined by the vertices

Qo \ {7}

Lemma 2 Let Q be a web quiver (i. e. Q is connected and has no oriented
cycles) with at least two vertices. Then, there ezist ig, jo € Qoq, to # Jjo, that
are either sink or sources of Q, such that Q\ {ip} and Q\ {jo} are also
web quivers.

ProoF. The result is clear if Q has exactly two vertices because they
have to be sinks or sources. Hence, we proceed by induction on n = |Qo|
assuming that n > 3 and that the result is true for web quivers with less
than n vertices. It is well known that Q must have a sink and a source. If
they are not the desired vertices, we can assume that there exists a sink w
such that

Q\{w}=QuUQu..UQ, (s>1)

(decomposition into connected components), and it is clear then that all the
subquivers Q3 of Q defined by sets of vertices of the form (Q,)oU {w} (A =
1,2,..., ), are connected. Hence, if {3, 71} and {2, j2} solve our question
for Q3, Q; respectively, then, picking in each pair one vertex different from
w, we get the vertices we were looking for. O

The following is one of the main results in this paper.

T



Proposition 1 If M is a web A-module, then M is indecomposable.

Proor. We keep our above notations. By the lemma and by an obvious
duality argument, we can assume that Q has a sink w’ such that Q'\ {w’}
is also a web quiver. Let us denote w the image of w' under the gfaithful
functor F that defines our web module. We proceed by induction on |Qp]
and divide the argument in the following two cases.

T, is a linear combination of the other web points z; in M(w). In this
case, the same family of vector spaces M(i); is obtained as the web module
defined through F for the web quiver Q'\ {w'} which is indecomposable by
the induction hypothesis.

T, is linearly independent of the remaining web points in M(w). Let us
suppose, by contradiction, that M = M, @ M, is a proper decomposition of
M and let us assume, for example, that the projection x4 of z,. into M, is
linearly independent of the remaining web points. Then we can see that M
can be redefined as a web module M* by changing only the web point x,.
for zy;. In fact, let us consider the linear k-isomorphism that takes z, into
z.,,n and leaves all other web points fixed. Then, remembering the condition
that F satisfies for being gfaithful (see Def. 1), we easily deduce that our
two web modules are isomorphic. Now, this leads to a contradiction to the
induction hypothesis and, so, the proof is complete.0

3 Applications.

One interesting question is Lo study, for some types of algebras, different
ways of obtaining some or all the indecomposable modules starting from web
modules. In particular, it would be interesting to know for which algebras
it happens that all the indecomposable modules are webs. These and other
relevant subjects require much more technical aproaches and are left to be
developed in a forthcoming paper. .

It is clear that the above mentioned properly is very especial. For
instance, let A be the hereditary algebra of type E; corresponding to the
following orientation.
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Then A has indecomposable modules (as the one whose dimension vector is
given below) that are not webs. On the other hand, if one introduces, for
example, a relation saying that the path from 4 to § is zero, then all the
indecomposables are webs.

We will consider here only two particular situations. First, we will study
algebras of biserial kind and of finite representation type and, secondly, a
very interesting class of algebras of infinite representation type with just
one indecomposable projective.

3.1

Let us assume here that, keeping our general notations, A = ’—'? has the
following properties.

A is of finite representation type;

for each i € Qg there are at most two arrows, a, A with e(a) = e(8) =
i, and at most two arrows, ay, §; with o{a) = o(f1) =1;

for each a € Q, there is at most one arrow, o' with e(a’) = o(a) and
at most one arrow a” with e(a) = o(a”) satisfying ac’ ¢ I and
a’adgl

Algebras with these properties are biserial in the sense that every inde-
compesable projective P is either uniserial, or radP is the direct sum of two
uniserial submodules or socP is simple and radP/socP is the direct sum of
two uniserial modules, with the dual versions of these properties holding for
every indecomposable injective module.

These algebras have been studied for several researchers. of whom we
mention, for example, [P-S], [S-W] and [E].

9



Definition 3 We say that a proper web module M’ is a proper zig-zag if
gsup(M ) is a Dynkin diagram of type A,.. A web module M is a zig-zag if
the proper web defining it, M', is a proper zig-zag (cf. Definition 2).

A proper zig-zag has possible three kinds of web points. There are
terminal points, characterized as corresponding to vertices that are incident
with exactly one arrow; hat points, which correspond to vertices that are
the origin of two arrows and the wedge points, associated to vertices that
are the end points of two arrows. These denominations are also used for the
corresponding points of a zig-zag module defined by a given proper zig-zag.
It is easy to see that hats are at the top and wedges at the socle of the
zig-zag module. Also, a terminal point from which an arrow goes out, is at
the top, and one where an arrow ends is at the socle.

Remark 3 It is easy to see thal, for algebras with the properties listed
above, all web modules are necessarily zig-zag modules. Let M be such a
module and let z,y € M(7) be two web points which correspond respectively
to, say, web points z' € M'(z}),y’' € M'(i}). Since gsup(M’) is connected,
there is a (non necessarily oriented) walk from #] to 2}, so that there is also
a walk in Q beginning and ending at :. Since this walk supports threads
of our zig-zag, and since A is of finite representation type, we deduce that
either z, y are linearly dependent vectors, and the walk consists of two
parallel threadpaths which are linearly dependent modulo I, or the walk is
just an oriented cycle. In fact, otherwise we would have as A-modules all
representations of some algebra of type A,,, which has an infinite number
of indecomposables.

Lemma 3 Let .
0SS M-—-aM-—=0

be a non split ezact sequence of A- modules with S simple and M a zig-zag
module. Then either M is a zig-zag module again or il is the dzrect sum of
two zig-zag modules.

PROOF. Let us show that, when M is indecomposable, the only possible
“link” between S and M is through a terminal point of the latter. We
fix notations assuming that § = kz C M(i), that the two possible arrows
ending up al z are «, B, with origins, resp., at j, h and that the two possible

10



arrows starting at i are aq, 81, with end points, resp., at j;, k. Let us assume
also that the paths #;a,a1 8 are in the relations ideal I. The hypothesis
allows us to suppose that M(u) = M(u) @ k.z, so that we can fix a k-basis
3, T2, ..., of M(u) composed by web points of M. As for the arrows, we
have, for instance, that, if = is the projection of M(u) onto M(u), M(a) =
7o M(a).

Some of the points z) may be terminal, others may be hats and others,
wedges. But it is easy to see from Remark 3 that there is at most one socle
point (terminal or wedge) and at most one top point (terminal or hat). We
can assume that, for example, the first ¢ of them are images of web points
in M(3) = M(7) which we will denote by y, keeping the same index for
correspoqding points. Hence we have, for example, for A < t and for some
ay € k, M(e)(yy) = za + arz, M(a)(ys) = z».

Also, if the arrow § does exist, we can enumerate the z,’s in such a way
that from, say, A = ¢+ 1 up to some value. they correspond to non-wedge
points linked to M(h) by means of M(/3). If there is a wedge, it would be
the point z,. The remaining points are a hat or terminal points. In doing
this, we denote in general by z) a web point of M (k) which M(3) applies
onto some I,. . .

If there is no wedge, or there is one but we have M (a)(y:) = M(B)(z),
then M is isomorphic to the representation that changes each M(a)(y,),
M (B)(z5) for the corresponding image under the M map. Hence, if this is a
submodule of M, M decomposes into the direct sum of it plus S. Otherwise,
there is a terminal point of M which goes into an element of S, and in this
case M is again a web module.

On the other hand, if there is a wedge point but M(y,) # M(z), since
these vectors are linearly independent, we see that M decomposes as the
direct sum of two zig-zags, one with a terminal point at M(y,) and the other
with a terminal point at M(z,). D

Lemma 4 Let
02 S— Z M,
P

be an ezact sequence where S is a simple A-module, where each M, is a
zig-zag module and where, for each p, M, N Tyx, My C S, Let S bi
concentrated at the vertez 1 and let us call o and, if it exzists, O the arrows
ending al 1. Let us assume further thal each M, has a socle terminal web

11




point z, € S, so that we will say that it is of “typc” a (resp. B) if the
corresponding threadpath ends with a (resp. ) (it follows from Remark 3
that each M, is of type a or of type B but not both). Then, if there are more
than one zig-zag modules M, of one type, say, a, ¥, M, is a decomposable
module.

In other words, if there are more than two summands, the sum decomposes.

PROOF. Let us call M, a M, of type a whose threadpath ending at S
has minimum length. Let us denote then by M’ the sum of all other zig-
zag modules. Let ay,..., a1, @ be the sequence of arrows that defines the
threadpath of M, ending up at a point of S, and let us call y,, ..., y1, the
corresponding poits of this thread. Hence, let us choose a corresponding
sequence of vectors in M’, yi,...,y},z' in such a way that ¥’ = M'(aoa, 0
...oay)(y!) € S. It should be observed that all vectors y,,y},z,z’' with A #
are anihilated by any arrow different from a and from the a,’s.

We now define an isomorphism from the direct sum of M, /kz and M’ into
M, + M', whose existence gives the desired proof. This isomorphism will
have the identity map at any vertex differente from the e(a,), A = 1,...,¢,
and an automorphism o, at e(e,). If, say, r = az’, for some a € k,a #
0, we define a5(yx) = y» — a.y), stipulating that it is the identity in a
basis complement of y, containing y}. The representation from which this
isomorphism starts is the one that has the same arrow maps as M, + M’,
except for o and the a,’s, where the map is obtained by composing with
the apropriate oy. The remaining details are straightforward and are left
to the reader. D

As an easy consequence of these lemmas we have the lollowing proposition
which is the main result of this subsection.

Proposition 2 If A is a k-algebra with the properties listed at the beginning
of this subsection, then all indccomposable A-modules are zig-zags.

ProoF. We proceed by induction on the dimension of the indecomposable
module M. Let S by a simple submodule of M and let M = @, M, be
the corresponding quotient, already decomposed as a direct sum of web
modules. Then, by Lemma 3, each preimage M,, of M, is a direct sum of

12
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zig-zag modules, so that M is as in Lemma 4. It follows then that it is
also a zig-zag module. O

3.2

Let us consider now a biserial type algebra A = kQ/I where Q has only
one vertex with two loops, a, 8 and where the admissible ideal I is defined

by the relations
a" =ﬂm — aﬁ= ﬁ“= 0.

Then A is an algebra of infinite representation type.

These algebras are being or have been studied by Raymundo Bautista and
his student Maria Alicia Avifi, who have proven that all indecomposable
modules are zig-zags or certain close generalizations of them which are
called closed zig-zags (see [Ba)).
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