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Abstract It is well established that land use change

(LUC) can impact soil organic carbon (SOC) in

tropical regions, but the long-term effects of LUC on

soil quality and C cycling remain unclear. Here, we

evaluated how LUC affects soil C cycling in the

Amazon region using a 100-year observational

chronosequence spanning primary forest-to-pasture

conversion and subsequent secondary forest succes-

sion. We found a surprising increase in topsoil SOC

concentrations 60 years following conversion, despite

major losses ([ 85%) of forest-derived SOC within

the first 25 years. Shifts in molecular composition of

SOC, identified with diffuse reflectance infrared

Fourier transform (DRIFT) spectroscopy, occurred in

tandem with a significant decline in permanganate-

oxidizable C (POXC) and b-glucosidase activity

(per unit SOC), interpreted as a deceleration of soil

C cycling after pasture grasses became the dominant

source of C inputs to soil. Secondary forest succession

caused rapid reversal to conditions observed under

primary forest for b-glucosidase activity but not for

SOC molecular composition (DRIFT spec-

troscopy), reflecting a long-lasting effect of LUC on

soil C cycling. Our results show that rapid changes in

the origin of SOC occur following deforestation with

legacy effects on some indicators of C cycling (e.g.

enzyme activity) but not others (e.g. molecular

composition). This approach offers mechanistic
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understanding of LUC in the Amazon basin and can be

used to help explain conflicting reports on how

deforestation impacts SOC in the region.

Keywords Soil organic carbon � Amazon � b-
glucosidase � Secondary forest �
Permanganateoxidizable Carbon (POXC)

Introduction

Land use change (LUC) is a key driver of biogeo-

chemical alterations across the planet (Houghton

1994; Klein Goldewijk et al. 2011; Sanderman et al.

2017). In the 21st century, primary forests in the

tropics have been converted to agricultural use at

unprecedented rates, with significant losses incurred

for C stored in soils as soil organic C (SOC)

(Berenguer et al. 2014; Sheil et al. 2016). An iconic

example is Amazonia, the largest evergreen forest in

the world with an estimated extent of 6.2 million km2

(Malhi et al. 2008). The Amazon forest is often

regarded as the largest remaining agricultural frontier

in the world, within which LUC is expected to drive

further anthropogenic C emissions (Galford et al.

2010). As of 2013, an estimated 750,000 km2 of

Amazon forest had been converted to agriculture,

entailing a loss of 11.2 Gt C (Nogueira et al. 2015).

The majority of these emissions (66–78%) are caused

by conversion of forest to pasture (Elizabeth et al.

2010; Stahl et al. 2016). Moreover, the removal of

forest cover causes rapid deterioration of soil quality,

leading to declines in pasture productivity and subse-

quent abandonment of nearly half of pastures within

5–15 years following forest-to-pasture conversion

(Aguiar et al. 2016) and the emergence of secondary

forests. Increasing rates of deforestation, therefore,

entail increasing rates of secondary forest succession.

For example, between 1978 and 2002, the extent of

secondary forest increased by more than five-fold to

approximately 161,000 km2 (Neeff et al. 2006).

Despite the growing importance of deforestation and

secondary forests in the tropics (FAO 2016), the

impact of this type of LUC on soil C cycling is poorly

understood (Aragão et al. 2014; Cook et al. 2014).

Impacts of LUC on SOC are ultimately mediated by

shifts in drivers of soil C cycling, which could help

explain conflicting consequences of LUC outcomes

for SOC. In the Amazon basin, forest-to-pasture

conversion has been variously reported to result in

SOC losses (Fearnside 1980; Buschbacher 1984;

Veldkamp 1994), increases (Trumbore et al. 1995;

de Moraes et al. 1996; Neill et al. 1997) or no changes

(Rittl et al. 2017). Crucially, those studies have not

examined the effect of secondary forest development

on soil C cycling, which would be necessary to assess

the anticipated legacy of pasture expansion effects on

SOC. Moreover, disparate site-specific changes in

SOC may be explained by shifts in SOC cycling

triggered by abrupt changes in the primary source and

lability of soil C cycling following deforestation

(Figueira et al. 2016; Navarrete et al. 2016).

To address this critical knowledge gap, we rely on a

spatially-explicit design that takes advantage of a well

documented and long-term forest-to-pasture and pas-

ture-to secondary forest conversion observational

chronosequence to characterize soil C cycling by

integrating d13C measurements with lability, molec-

ular composition, and C-mineralizing enzyme activ-

ities. This integrative approach reveals changes in C

cycling following LUC that would otherwise be

masked by measures of total SOC. Here, we tested

the hypothesis that LUC of primary forest conversion

to pasture eventually achieves a SOC concentration

equilibrium in which a relic fraction of forest-derived

SOC persists despite shifts in lability (POXC) and

composition (organic functional groups), and bio-

chemical drivers of SOC mineralization (b-glucosi-
dase activity). For the conversion of abandoned

pasture to secondary forest, we tested the hypothesis

that secondary forest SOC composition and lability

revert to those found in primary forests as a result of

natural succession. While observational, this well-

studied chronosequence of LUC nonetheless offers

unique insights to soil C cycling by virtue of its

duration. To integrate all LUC effects, we developed a
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mixed model to predict SOC turnover under different

land uses, which will be useful for estimating the

impact of LUC across the Amazon region.

Materials and methods

Site description

The study was conducted at the Amazon Rainforest

Microbial Observatory (ARMO), Fazenda Nova Vida

ranch (10o10050’S and 62o490270’W), in the State of

Rondônia, Brazil. This region experiences the highest

forest loss in the Amazon basin and the site represents

one of the longest studied chronosequences in the

Amazon region (Neil et al. 1997; Cerri et al. 2004).

The local climate is tropical humid with a mean annual

temperature of 25.5 �C and a historical mean annual

precipitation of 2200 mm distributed over a well-

defined wet season from September to May (Bastos

and Diniz 1982). The primary forest at the site is

classified as upland humid evergreen ombrophilous

(Pires and Prance 1985) supported by soils classified

as Kandiudults (USDA Soil Taxonomy) or red-yellow

podzolic Latosols (World Reference Base for Soil

Resources), with sandy loam texture (Feigl et al.

2006). The sampling site has a 30 year-history as a

model for forest-to-pasture conversion due to varying

times of primary forest conversion to pasture across

the last century, which provides the basis for charac-

terizating long-term changes in soil C cycling.

Pastures were developed by slash and burn practices,

in which trees are harvested for timber, the remaining

biomass is burned and seeded with Brachiaria

brizantha (Cerri et al. 2004). Pastures at and near the

study sites are typically grazed with a stocking density

of one cow per hectare. Pastures were burned every

4–10 years for weed control, did not recieve fertilizer

or other inputs, and were not subject to mechanical

disturbances such as tillage. At and near the study

sites, secondary forests were established when

7–10 year old pastures were abandoned due to insuf-

ficient grass regeneration and increasing weed inva-

sion (Paula et al. 2014), which is thought to reflect soil

degradation (Cerri et al. 2005). The secondary forests

at our study sites are comprised of * 63% herbaceous

species (including pasture grasses), 15–18% woody

tree species, and * 12% palm species (Feigl et al.

2006). As with any chronosequence study, we

assumed that sites differed only in age and that,

regardless of the spatial location, they began with

similar soil properties, including SOC concentration in

the sampled 0–10 cm depth (De Palma et al. 2018;

Miyanishi and Johnson 2007).

Soil sampling

For this study, soils were sampled at the end of the

austral summer (i.e., rainy season) in 2011 under

different land use types. Soils were collected from two

primary forests (FII and FIII) and four pastures

representing an observational chronosequence of

forest-to-pasture conversion from initial deforestation

in 1911 (P11), 1972 (P72I and P72III), 1987 (P87I and

P87II) and 2004 (P04); and two secondary forests

developed after pasture abandonment in 1993 (SF93)

and in 1998 (SF98) (Supporting Fig. 1) corresponding

to previous studies of LUC impacts on total SOC (de

Moraes et al. 1996; Neill et al. 1997; Cerri et al. 2004;

Paula et al. 2014). All the SF sites were under at least

10 years of pasture production before their respective

year of abandonment. For each site, soils were

sampled at 1, 10, and 100 m from an origin (plot

center) along north and east coordinates (Supporting

Fig. 2 and Supporting Table 1). After the removal of

the surface litter layer, we sampled soils to 0–10 cm

depth with a 5 cm diameter sterile PVC tube for a total

of seven samples for each site (Rodrigues et al. 2013;

Paula et al. 2014).

Soil analyses

Prior to analyses, all soils were air-dried at 25 �C and

sieved to pass\ 2 mm diameter. Elemental concen-

trations and soil physico-chemical parameters were

analyzed at the Laboratory of Soil Analysis at the

‘‘Luiz de Queiroz’’ College of Agriculture, University

of São Paulo, Piracicaba, Brazil (Supporting Table 1).

Total and labile C

We measured total SOC concentrations using a LECO

CN elemental analyzer (St. Joseph, MI, USA), and

labile C as permanganate-oxidizable C (POXC) in

soils (Culman et al. 2012). Briefly, we subjected

2.50 g of soil in triplicate to horizontal shaking at

240 rpm in 20 mL of 0.02 mol L-1 KMnO4 for 2 min

followed by 10 min incubation. We quantified
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permanganate remaining in the supernatant by col-

orimetry (550 nm) and calculated POXC (mg kg-1

soil) using Eq. 1 (Culman et al. 2012):

mgPOXC kg�1soil ¼ 0:02mol L�1 � aþ b� absð Þ
� �

� 9000mgCmol�1
� �

� 0:02L

kg soil

� �

ð1Þ

where 0.02 mol L-1 is the initial concentration of

permanganate (Mn7?), a is the intercept of the

standard curve, b is the slope of the standard curve,

abs is the sample absorbance, 9000 mg C mol-1 is the

assumed stoichiometry of C oxidation and reduction

of Mn7? to Mn2? (Gruver 2015), 0.02 L is the volume

of 0.2 mol L-1 KMnO4 solution, and kg soil is the

mass of air-dried soil.

b-Glucosidase activity

Given that SOC turnover and lability is strongly

influenced by and reflected in activities of soil

C-cycling enzymes such as glucosidases (Stege et al.

2010), assays of enzyme activities can help explain

changes in SOC cycling across LUC such as primary

forest to pasture conversion of neotropical forests

(Vallejo et al. 2010) or temperate forests (Scotti et al.

2015). b-Glucosidase catalyzes the hydrolysis of

oligosaccharides to glucose in the final step of

cellulose degradation (Turner et al. 2002) and is

therefore considered a key step in the degradation of

this major and plant-derived above-ground input to

soil (Alef and Nannipieri 1995). We quantified the

potential activity of b-glucosidase (Enzyme Commis-

sion 3.2.1.21) based on the method of Tabatabai

(2003) modified to reduce artifacts of assay termina-

tion (Margenot et al. 2018). Briefly, we incubated 1 g

soil for 1 h at 37 �C in 5 mL of Modified Universal

Buffer (pH 6.0) with a final substrate concentration of

0.010 mol L-1 para-nitrophenyl-b-D-glucopyra-
noside. As negative control, we included tripli-

cate soil-free assays with substrate. Assays were

terminated by adding 4 mL of 0.1 mol L-1 Tris (pH

12.0) and 1 mL of 2.0 mol L-1 CaCl2, and centrifuged

to remove sediment. para-Nitrophenol (pNP) in the

clear supernatant was quantified colorimetrically

using absorbance at 410 nm. We calculated b-glu-
cosidase activity on a soil mass basis (lmol substrate

g-1 soil h-1) and normalized to SOC content (lmol

substrate g-1 SOC h-1). The activity of this C-min-

eralizing enzyme normalized to total SOC concentra-

tion has been found to be sensitive to changes in SOC

accrual and loss (Stott et al. 2013).

d13C ratios and calculation of soil C source

We assessed the d13C signature of soils at the

University of California—Davis Stable Isotope Facil-

ity using a PDZ Europa ANCA-GSL elemental

analyzer interfaced to a PDZ Europa 20–20 isotope

ratio mass spectrometer (Sercon Ltd., Cheshire, UK).

Values of d13C were expressed relative to Vienna-Pee

Dee Belemnite (V-PDB) and used to identify contri-

butions of primary forest to SOC across the defor-

estation and reforestation observational

chronosequences. The amount of SOC derived from

pasture was determined by using a two-end-member

mixing model (i.e., d13C signature of primary forest

vegetation and isotopic signatures of grass) (Eq. 2)

(Silva et al. 2015). We estimated d13C values of both

end members using values for tree-derived litter in this

region of the Brazilian Amazon (- 28.5 ± 1.6 %)

and for the C4 pasture grass B. brizantha

(- 14.3 ± 0.6 %). These values were derived from

values for soil and plant 13C signatures at our study site

(Moraes et al. 1995; de Moraes et al. 1996; Cerri et al.

2004). The contribution of C3 species (described in

Sect. 2.1), which dominate primary productivity in

forests, but not in pastures, was then calculated as the

percent of total SOC using Eqs. 2 and 3:

Cp ¼ Ct

ds� dfð Þ
dp� dfð Þ ð2Þ

C %ð Þ derived from forest ¼ Cp

Ct

� 100 ð3Þ

where Cp is the amount of soil C derived from pasture

(mg g-1), Ct is total SOC, ds is the d
13C signature of

sampled soils, df is the d13C signature of primary

forest, and dp is the d13C signature of the seeded

pasture grass B. brizantha.

Diffuse reflectance infrared Fourier transform

spectroscopy

We used diffuse reflectance infrared Fourier transform

(DRIFT) spectroscopy to characterize organic
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functional groups (e.g., aliphatic C–H, aromatic C=C,

carbonyl C=O, amide C=O) that compose soil organic

matter (SOM) (Essington 2004) and influence its

decomposability (Calderón et al. 2011a; Erhagen et al.

2013). DRIFT spectra can provide semi-quantiative

information on mineral and organic functional groups

in soils (Parikh et al. 2014), which for similar soil

types enables relative differences to be enhanced

across samples (Calderón et al. 2011a; Demyan et al.

2012). SOM cycling entails the transformation of

organic C via processes of decomposition and miner-

alization that are manifested in functional group

chemistry (Hsu and Lo 1999; Calderón et al. 2011b;

Ernakovich et al. 2015). Limitations of DRIFT

spectroscopy include reduced sensitivity to organic

functional groups as a result of mineral dominance of

spectra (Parikh et al. 2014; Margenot et al. 2015).

DRIFT spectroscopy has shown sensitivity to small

changes in quality and quantity of labile organic

matter (Calderón et al. 2013) sufficient to help explain

SOM transformations and stabilization (Chefetz et al.

1998).

DRIFT spectra were collected on neat soil samples

(i.e., no KBr dilution) loaded into wells (10 mm

diameter, 2.3 mm depth) and surface smoothed.

Absorbance spectra were corrected against a solid

aluminum blank in ambient air as the background

using a Nicolet 6700 spectrometer (Thermo Scientific,

Waltham, MA) with a deuterated triglycine sulfate

(DTGS) detector diffuse reflectance accessory (Pike

AutoDIFF, Pike Technologies, Madison, WI). Spectra

were collected as the mean of 400 scans across

4000–650 cm-1 at 4 cm-1 resolution. Triplicate spec-

tra were collected on separate soil samples and

averaged into one final spectrum for each soil. Spectra

were corrected by calculating a linear tangential

baseline with zero points representing local absor-

bance minima (Capriel et al. 1995; Haberhauer et al.

1998; Smidt et al. 2002) using the OMNIC 7.0

software (Thermo Scientific, Waltham, MA).

Five DRIFT spectra absorbance bands were used to

assess relative differences in SOM composition. We

selected these bands because they have been shown to

reflect differences in soil C stabilization in weathered

soils (Lehmann et al. 2007; Verchot et al. 2011):

aliphatic C-H stretch at 2921 cm-1, carbonyl C=O

stretch at 1725 cm-1, ketone and/or quinone C=O and/

or aromatic C=C with possible amide C=O contribu-

tions at 1610 cm-1, carboxylate C–O symmetric

stretch and/or phenolic C–O stretch and/or aliphatic

C–H bend at 1369 cm-1, and polysaccharide C–O at

1020 cm-1 (Supporting. Figure 3). Absorbance for

these bands includes mineral contributions, but con-

stant mineralogy, similar soil texture, and relatively

high SOC content enable absorbance differences to be

attributed to organic functional groups (Verchot et al.

2011; Demyan et al. 2012; Parikh et al. 2014). To

assess relative changes in DRIFT spectroscopy

absorbance corresponding to organic functional

groups in soil, we normalized the absorbance intensity

of each of the five bands of a single spectrum as the

percent absorbance intensity of the sum of absorbance

intensities of the five bands (Haberhauer et al. 1998).

While there are other approaches to normalize

absorbance in soil spectra such as ratios of absor-

bances to a single absorbance band, the approach used

here and by others (Chefetz et al. 1998; Haberhauer

et al. 1998) enables comprehensive assessment of

relative shifts in absorbances corresponding to organic

functional groups.

Statistical analyses

We used Violin plot analysis, which combines a

boxplot and a double kernel density plot, to compare

the distribution of the variables measured among the

different sites, with an ANOVA followed by Tukey’s

tests at 95% of significance. To explain differences in

the ordination among soil variables of SOC, POXC

and b-glucosidase and the relative proportion of

organic functional groups derived from DRIFT spec-

tra, we performed principal component analysis

(PCA) using these variables. The Pearson’s correla-

tion coefficient was calculated to evaluate the rela-

tionship among soil physical properties and other

soil C-related variables measured in this study. All

procedures were performed in the R platform using the

packages Vioplot (Adler 2015), FactoMineR (Lê et al.

2008), coorplot (Wei 2017) and Hmisc (Harrell Jr

2017).

To improve future estimates of labile carbon and b-
glucosidase activity from the simple measurement

of total SOC content, we developed empirical models

to predict long-term (100 year) changes in soil C

cycling after deforestation. We further evaluated how

SOC changed over time since deforestation, and how

labile C and enzyme indicators of soil C cycling

shifted concurrently with changes in total SOC by
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fitting three mixed-effect models. To test whether

origin of SOC (i.e., forest-derived) helped predict and

b-glucosidase and labile C (POXC), we additionally

compared the effects of total SOC concentration and

forest-derived SOC in a mixed model. Before sub-

jecting the data to models, predicting variables were

standardized by centering and scaling the data to have

a mean of zero and a standard deviation of one (Eq. 4).

Data were log-transformed to meet assumptions of

normality and homogeneity of residuals (Zuur et al.

2011). Since log transformations used base 10, actual

values can be obtained by calculating 10x; where x is

the value generated by the fitted log-based model as in

Eq. 4 (Ramette 2007; Legendre and Legendre 2012):

S0k ¼ Sk �minð Þ= max�minð Þ ð4Þ

For the first model, we fitted a simple mixed-effects

model to test the fixed effects of time since conversion

and vegetation on log SOC and accounting for plot

variability. The conditional predicted plot shows

actual values versus values predicted by the model,

accounting for the effect of plot used as a random

factor (Zuur et al. 2011; Silva et al. 2016). Additional

modeling details are described in in the Supporting

Information.

Results

Changes in SOC cycling indicators associated

with LUC

Primary forest (PF) sites were distinct from the

secondary forests and pastures, according to PCA

(Fig. 1a). The recent conversions (SF and P04) were

more similar to the PF when compared with older

pastures (P11, P72, and P87) (Fig. 1a). Additionally,

certain soil C variables explained a greater proportion

of variation among sites (Fig. 1b). SOC, b-glucosidase
activity, POXC and DRIFT spectroscopy absorbance

at 2921 cm-1 (aliphatic C–H) were positively associ-

ated with age of pasture sites after 20 years of

conversion, whereas DRIFT spectroscopy absorbance

at 1020 cm-1 (polysaccharide C–O) and 1610 cm-1

(ketone, quionine, and/or amide C = O and/or aro-

matic C = C) were strongly associated with SF and

P04 sites (Supporting Table 2). Forest-derived SOC

was most strongly associated with PF, and inversely

with older (C 24 year) pasture sites (P11, P72, P87).

Complementing the PCA results, Pearson’s correla-

tions demonstrated that POXC (R = 0.91) and b-
glucosidase activity (R = 0.75) had the strongest

positive correlation with SOC, whereas POXC ratio

with SOC (R = - 0.62) and forest-derived SOC

(R = - 0.56) had the weakest negative correlations

(Supporting Fig. 4).

Total and labile SOC, and SOC origin

Total SOC and POXC were significantly higher with

time (P\ 0.05) following conversion of primary

forest (PF) to older pastures and lower in secondary

forest (SF) succession from pasture (P) (Fig. 2a, b).

Total SOCwas 10.2 (standard deviation ± 3.1) g kg-1

under PF and for older pastures (C 24 year) was

nearly 2- to threefold greater: 18.8 (± 2.5), 29.9

(± 1.4) and 25.9 (± 2.4) g kg-1 for pasture estab-

lished in 1987, 1972 and 1911, respectively (Fig. 2a).

Sites following recent LUC of young pasture (7 year)

P04 and SF exhibited similar total SOC as PF, with a

value of 12.5 (± 3.7) and 15.5 (± 1.6) g kg-1,

respectively. There were no detectable differences in

total SOC or POXC for SF93 and SF98. POXC values

showed a similar trend as total SOC across land uses,

with POXC being the greatest for P72 at 930 (± 263)

mg kg-1, followed by P87 at 720 (± 89), P11

(708, ± 47) and P04 (599, ± 141). Concentrations

of POXC in SF (450, ± 48) were similar to those in PF

(495, ± 108) and P04, but significantly lower from

those observed for other pastures (P\ 0.05).

As an indicator of SOC lability, the POXC demon-

strated a similar trend as SOC across the type and

duration of LUC (Fig. 2c). The conversion of forest to

pasture produced inconsistent changes in the propor-

tion of total SOC as POXC (i.e., POXC:SOC). In soils

under PF, 5.1% of total SOC was POXC, and

decreased with time in pasture from 4.9% in P04

to 3.8% for P87 to 3.4% for P72 and 3.3% for P11.

Mean POXC:SOC was significantly lower under SF

(3.9%) compared to the original forest.

Forest-derived SOC decreased rapidly after con-

version of PF to pasture, and this trend was reversed in

SF following pasture abandonment (Fig. 2d). In

pastures, the proportion of SOC derived from forest

was 53.1% (± 10.4) for P04, 27.1% (± 6.9) for P87,

21.8% (± 3.9) for P72 and 16.3% (± 2.0) for P11. For

SF, up to 97.0% (± 2.9) of SOC was forest-derived.

123

184 Biogeochemistry (2021) 152:179–194



Fig. 1 Principal components analysis of total SOC, forest-

derived SOC, POXC, b-glucosidase and organic functional

group relative abundance characterized by DRIFT spec-

troscopy. a Dots represent a sample, and the groups and ellipses

represent each site of the study. All the ellipses were done with

95% confidence. The group names are PF for Primary Forest,

P04 for Pasture 2004, P11 for Pasture 1911, P72 for Pasture

1972, P87 for Pasture 1987 and SF for Secondary Forest.

b Biplot of the variables as arrows, the color of which indicates

the relative contribution of each attribute

Fig. 2 Violin plot representing (a) total SOC, (b) POXC, (c) the
ratio of POXC:total SOC, and (d) percentage of forest-derived

SOC (derived from d13C in soils (0–10 cm depth) across

chronosequence of forest-pasture and pasture-secondary forest

land use change in the Brazilian Amazon, which combines a

boxplot represented by the bar and the lines, and a doubled

kernel density plot. Letters on the plot show the groups after the

ANOVA, followed by Tukey tests with a 95% of significance.

The land uses are primary forest (PF), Pasture 2004 (P04),

Pasture 1987 (P87), Pasture 1972 (P72), Pasture 1911 (P11) and

secondary forest (SF)
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b-Glucosidase activity

The response of soil b-glucosidase activity to LUC

was similar to that of SOC and POXC. Conversion of

primary forest to pasture significantly increased b-
glucosidase activity (P\ 0.05) in older pastures

(C 24 year) and decreased in secondary forest

(Fig. 3a). Primary forest, secondary forest and the

most recently established pasture (7 year) exhibited

similar b-glucosidase activities. When normalized to

total SOC, b-glucosidase activities were not signifi-

cantly different across all LUC sites (Fig. 3b).

Modeling SOC, POXC, b-glucosidase activity,
and 13C

A mixed-effects model showed significant differences

in SOC across land use type and time (i.e., years after

conversion) (Fig. 4). This analysis generated positive

coefficients for time (i.e., SOC increased over the

time) and higher concentrations of surficial SOC in

pasture and secondary forests than in primary forest.

Logistic equations used to characterize changes in

SOC over time and across land uses plateaued at

4.48 mg log OC kg-1 soil, which corresponds to an

actual value of 30.2 g kg-1 or * 3% SOC on a mass

basis. This asymptote, which is defined as the max-

imum level of SOC saturation or carrying capacity

across the successional gradient, is given by the first

term of the equation shown in Fig. 4a. The inflection

point of that samemodel, defined as the point of fastest

SOC accumulation following land use change, is given

by first term of the equation divided by two (i.e. half

way to the plateau) and corresponds to 2.24 mg log

OC kg-1 soil, or an actual value of 174 mg kg-1. This

model also shows that the vast majority of SOC gains

(* 93%) occurred within first 25 years of pasture

establishment, with 99% of SOC concentration

increases occurring within 60 years of pasture estab-

lishment (Supporting Table 3 and 4). Total SOC

concentration, but not SOC origin (i.e., forest-derived

C), was a direct predictor of soil b-glucosidase activity
and labile carbon (POXC) across the deforestation

Fig. 3 Violin plot, representing in (a) b-glucosidase activity

and (b) b-glucosidase activity normalized to total SOC. Letters

indicate significant differences among means (Tukey test,

p\ 0.05). The land uses are primary forest (PF), Pasture 2004

(P04), Pasture 1987 (P87), Pasture 1972 (P72), Pasture 1911

(P11) and secondary forest (SF)

Fig. 4 Logistic models of time series and land use change

depicting the log of total soil organic carbon (SOC) over *
100 years. Solid lines show predict values and points show

measured values. Black triangles represent primary forest, gray

squares represent secondary forest, and circles represent pasture.

The observed range of Log10 total SOC is consistent with typical

values found in native forests and savannas across the region

Wright et al. 2020 (e.g., * 3.8 to 4.5 Log10 mg/kg repre-

sents * 0.6 to 3.2% total SOC, respectively)
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chronosequence (Supporting Fig. 5–7; Supporting

Table 4).

Discussion

SOC dynamics under forest-pasture LUC

Our results reveal an impact of LUC on C cycling in

surface soils in this region of the Amazon beyond

changes in total SOC concentrations, in which forest-

to-pasture and pasture-to-forest conversions trigger

distinct shifts in biochemical drivers of the soil C

cycle. The observed higher SOC concentrations in the

first 40 years following pasture establishment is even

more remarkable since it coincided with a near-

complete replacement of primary forest SOC with C

derived from the pasture grass B. brizantha. Incre-

ments in total SOC concentrations occurred concur-

rently with (1) nonlinear increases in labile C (POXC),

(2) enrichment in organic functional groups associated

with organic matter chemical lability (i.e., aliphatic C–

H; Hsu and Lo 1999; Ait Baddi et al. 2004; Ali et al.

2012), and (3) for older pastures, a nonlinear increase

in the activity of b-glucosidase, a C-mineralizing

enzyme. Therefore, we propose that conversion of

primary forest to pasture results in a shift in soil C

cycling driven by the replacement of C inputs (roots,

litter) from tree forest species to pasture grasses.

Sustained elevated total SOC concentrations also

indicate that pasture establishment modified soil C

saturation in the studied surface horizons (0-10 cm)

(Six et al. 2002) compared to native vegetation. Net

increases in SOC following seeding of weathered soils

with improved pasture species (Andropogon gayanus,

Brachiaria humidocola) were also found in the

Colombian llanos, attributed in part to greater rooting

depth of the introduced grass species (Fisher et al.

1994).

Our measurements of higher C-mineralizing

enzyme activity under the first 40 years of pasture

establishment are consistent with an elevated turnover

of SOC, following the replacement of C inputs from

forest species to inputs from pasture grasses. This

finding is consistent with the hypothesized role of

microbial transformations of OM for the formation

and stabilization of SOC (Demyan et al. 2012;

Giacometti et al. 2013) and accelerated turnover of

SOC with elevated labile C concentrations in pastures.

Previous evaluations of soil microbial diversity in

the study region have demonstrated losses of micro-

bial diversity and functionality following forest-to-

pasture conversion (Rodrigues et al. 2013; Paula et al.

2014). These results corroborate our hypothesis that

despite SOC increase after forest-pasture LUC, the

conversion results in a shift in soil C cycling driven by

the replacement of C inputs (roots, litter) from tree

forest species to pasture.

Althrough the forest-derived SOC fraction in the

oldest pastures (\ 16%) indicates the potentially long-

term persistence of some components of the native

carbon pool, it also underscores the susceptibility of

the majority of the forest SOC to rapid loss under

LUC, even for a low-impact (e.g., no soil disturbance,

low stocking density) perennial agricultural system

(Solomon et al. 2007b). This rapid turnover of native

SOC may be related to changes in microbial commu-

nity following forest conversion to pasture. For

example, functional microbial diversity has been

shown to decrease in some areas where primary forest

was converted to pasture, with functional gene differ-

ences in the first 7 years being larger than differences

observed 38 years after conversion (Paula et al.

2014). The mechanisms driving such changes are

not well understood and should be investigated in

future studies.

SOC origin and quality

Previous studies have indicated decreases, increases,

or no change in total SOC concentrations and/or stocks

following pasture to forest conversion in Amazonia

and other tropical forests (Guo and Gifford 2002;

Murty et al. 2002; Fujisaki et al. 2015). While

generally native SOC is lost following deforestation

(Danuse et al. 2002), as we demonstrate here using 13C

measurements, interactions of drivers of SOC cycling

can lead to net increases or decreases in total SOC.

The persistence of forest-derived SOC (16%) in

surface soils over a century post-conversation likely

reflects its biochemical stabilization as pyrolyzed C or

via chemical and/or physical protection (e.g., mineral-

bound or intra-aggregate C) (Six et al. 2002; Schmidt

et al. 2011). Previous studies at these same sites (e.g.,

Cerri et al. 2004) found that after 80 years of

conversion to pasture the remaining forest-derived

SOC, as assessed using d13C ratios, was found largely

in the silt- and clay-sized fractions, which suggests
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chemical protection of forest-derived SOC via stabi-

lization with clay minerals (Feigl et al. 1995; Six and

Paustian 2014; Silva et al. 2015). It is also possible that

relic forest-derived SOC persists as a refractory pool

of pyrolyzed C generated by burning of forest biomass

during initial deforestation. Pyrolyzed C can have a

half-life 10- to 100-fold greater than native SOC

(Singh et al. 2014) with turnover rates estimated at the

centennial scale (Spokas 2010; Singh et al. 2012), and

is therefore considered a major contributor to long-

term SOC storage, including in the Amazon basin via

ancient natural fires (Silva et al. 2021), despite being a

minor fraction of total SOC in most ecosystems today

(Lehmann et al. 2008; Reichstein et al. 2013).

The change in C input source with conversion of

forest to pasture is expected to have implications for

SOC stabilization due to differences in degradability

and the route by which plant detritus enters soil (e.g.,

forest litter deposition on soil surface versus fine-root

turnover within the subsurface). Pasture grasses at our

sites may have provided greater subsurface inputs of

C, and with a different composition than inputs under

forest. The greater surface distribution and turnover

rates of Braccharia roots in Amazon pastures com-

pared to forest entail increased fine-root density in

surface soils of pastures (Trumbore et al. 1995,2006;

De Camargo et al. 1999). Distinct pathways of C entry

and thus stabilization as SOC under pasture grasses

could explain elevated SOC relative to forest. Brac-

charia-derived SOC has been found to be allocated in

finer soil fractions (silt- and clay-size) compared to

coarser fractions for primary forest-derived SOC,

which likely reflects direct addition of root-derived C

from grass species (Rasse et al. 2005). Root-derived C

(e.g., exudates, senesced roots) is thought to have

greater potential for stabilization and persistence as

SOC than shoot-derived C due to greater interaction

with soil minerals, in contrast to surface-deposition

litter in forest (Gale et al. 2000; Rasse et al. 2005;

Cotrufo et al. 2013).

Changes in SOM composition with LUC

The type of changes in SOM composition by LUC

type and duration identified by enzymatic and spec-

troscopic measurements are consistent with the

hypothesized impact of LUC on SOC cycling due to

shifts in C input type. Shifts in SOM composition were

consistent in the type of functional group (e.g.,

aliphatic C-H) and input source (forest litter versus

pasture grass) as well as the rate of this change (abrupt

forest-to-pasture vs gradual pasture-secondary forest).

Pronounced differences in aliphatic C-H and polysac-

charide C-O (bend) across sites is consistent with

previous reports of shifts in the relative abundance of

these organic functional groups with increasing time

post-deforestation (Solomon et al. 2007a), though at

our study sites we observed greatest aliphatic C-H

(stretch) for older pasture. Relative increases in

absorbance of methylene CH2 and methyl CH3

attributed to aliphatic compounds (Smidt and Meissl

2007) have been associated with greater chemical

lability (i.e., less decomposed state) across a variety of

organic matter samples (e.g., plant biomass, manure)

(Hsu and Lo 1999; Ait Baddi et al. 2004; Ali et al.

2012).

While the activity of b-glucosidase was greatest in
the oldest pastures, the activity of this enzyme per unit

of SOC was similar among sites, which we interpret to

imply little change in microbially-driven C turnover.

This may reflect stoichiometric scaling of enzyme

activities with SOC (Sinsabaugh et al. 2008, 2009).

Functional bacterial diversity was reduced at the

youngest pastures (7 years) at our site, and entailed an

increase in two genes families associated with hydrol-

ysis of labile carbon compounds (Paula et al. 2014).

Observing the bacterial composition in forest-pasture

LUC, occurred homogenization of bacterial diversity

due to an increased range of existing taxa and loss of

endemic forest taxa post-conversion (Rodrigues et al.

2013; Paula et al. 2014).

Potential impacts of fire used in Amazon LUC

The use of fire to establish pastures at our sites, a

standard practice throughout the Amazon basin and

other tropical forests globally (Boone et al. 2009), is

likely to have impacted post-conversion SOC response

(de Souza Braz et al. 2013; Navarrete et al. 2016). The

transient liming and fertilization effect of ash depo-

sition following burn-based conversion may have

stimulated SOC decomposition in the initial years of

pasture establishment (Paradelo et al. 2015). For

example, losses of forest-derived SOC were observed

within the first nine years of conversion to pasture

during which there were significantly elevated pH and

soil nutrient cations due to burn-mediated liming and

nutrient deposition (de Moraes et al. 1996). The
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relatively short-lived effect of liming (\ 10 years)

that is most acute immediately following burning

(\ 2–3 years) (de Moraes et al. 1996) may explain the

lack of significant changes in soil pH and nutrient

cations at our sites, even in the youngest pasture

(7 years). The intensity of selective logging and

subsequent burning may also entail site-specific

differences in the extent of the post-conversion burn

liming effect. Periodic burning of pastures for weed

management (estimated to occur once per 4–10 years)

could also contribute yield pasture-specific differences

in the fraction of SOC stabilized as pyrolyzed C.

Secondary forest: an emerging LUC

Our study addresses soil C cycling in response to the

emergent Amazon LUC of secondary forest succes-

sion. Whereas LUC of forest to pasture is abrupt and

entails a sudden change in C inputs due to logging and

fire, the reverse LUC is a gradual transition of

intrusion and establishment of early-stage forest plant

species in abandoned pastures. Similar to conflicting

observations of SOC response to LUC of primary

forest to pasture, varying relationships of SOC

between primary and secondary forests have also been

reported within and across studies (Fearnside and

Imbrozio Barbosa 1998; Berenguer et al. 2014), which

could depend on pasture management and edaphic

factors.

At our study site, we identified similar SOC

concentrations and source (13C signature) in sec-

ondary forests as in primary forest. The dominance of

forest-derived SOC (d13C) in less than 20 years of

reforestation (97%) demonstrates a relatively short

half-life of SOC derived from pasture compared to

forest, and further supports accelerated rates of SOC

cycling under pasture. The decrease in POXC and b-
glucosidase activity to values similar to primary forest

suggests a lowered rate of SOC turnover with

secondary forest succession. However, organic func-

tional groups composition of SOM was distinct from

that of primary forest, indicating an incomplete

turnover of SOM composition to the primary forest

patterns within the short-term (\ 20 years) of sec-

ondary forest development. Notably, polysaccharide

C-O enrichment in secondary forests also occurred in

the most recent reverse LUC of newly transitioned

pastures (7 years post-deforestation). Given decreased

b-glucosidase activity and the importance of this

C-mineralizing enzyme as the final step in cellulose

degradation (Stott et al. 2010), relative increases in

DRIFT spectroscopy absorbances indicating polysac-

charide C-O enrichment in secondary forest could

reflect disruption of an SOC decomposition equilib-

rium by microrganisms following the change in C

input. Greater inherent decomposability of litter from

early colonizer species that constitute secondary

forests in the Amazon (e.g., Vismia sp. and Bellu-

cia sp.) compared to primary forest species (e.g.,

Bertholettia excelsa) (Barlow et al. 2007) may explain

observed alteration of SOC composition at our

secondary forest sites. On the other hand, the gradual

nature of this LUC compared to the abrupt, fire-

mediated forest-to-pasture conversion would be

expected to enable greater microbial and thus enzy-

matic adaptation (Knight and Dick 2004).

Indicators of SOC cycling at secondary forests are

consistent with shifts in soil–plant nutrient allocation

that accompany forest development from abandoned

pastures (Bomfim et al. 2020a, b). Net transfer of

phosphorus (P), a key limiting nutrient in the Amazon

(Dalling et al. 2016), and base cations such as calcium

(Ca) and magnesium (Mg) from soil to above-ground

vegetation during secondary forest development have

been reported in tropical forests (Lawrence and

Schlesinger 2001; Markewitz et al. 2004) – the reverse

of primary forest conversion to pasture by burning –

may indirectly impact SOC cycling by limiting

primary productivity (Chelsea et al. 2017).

Implications for soil C across the Amazon basin

Changes in C input quantity and quality implicit in

tropical forest LUC may have pronounced impacts in

SOC cycling, as demonstrated in the quarter-century

following the currently dominant LUCs of primary

forest to pasture and pasture to secondary forest

(Bomfim et al. 2020a, b). Of the 750,000 km2 of

Amazon primary forest converted to agriculture by the

first decade of the twenty-first century (Nogueira et al.

2015), only 46% remained in pasture, and pastures in

varying stages of abandonment (8%) or secondary

forest succession (22%) were far greater than annual

crops (5%) (Ometto et al. 2016). Assuming the rapid

re-attainment of soil C cycling under secondary forest

succeeding pasture at this study site, a potential area

equivalent to one-fifth of agricultural land use

(161,000 km2) may be able to recuperate from this
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initial LUC within another two decades of pasture

abandonment (Neeff et al. 2006; Ometto et al. 2016).

As we demonstrate here, changes in the amount and

type of C inputs can be used to explain the impacts that

LUC may have on soil C cycling and thus total SOC

response (Rittl et al. 2017; Chelsea et al. 2018).

Repurposing pastures for annual agriculture, in par-

ticular by soybean (Macedo et al. 2012), means that

secondary forest succession from pasture may be a

diminishing LUC in the decades to come. On the other

hand, repurposing pastures to soybean (Eugenio et al.

2011; Richards et al. 2014) and sugarcane (Richards

et al. 2014) serves as an indirect driver of primary

forest conversion via new pasture establishment,

meaning that shifts in soil C cycling in the Amazon

basin are likely to persist with the expanding agricul-

tural frontier.

Conclusions

Scientists, land managers, and policy makers are

interested in predicting and mitigating the impacts of

deforestation on tropical soils. A major roadblock

hindering progress in this field is the lack of long-term

data showing how soil quality changes with land use.

Here we provide the first 100-year record of soil C

cycling after forest-to-pasture conversion in the

Amazon region. We show that forest-to-pasture con-

version, and subsequent secondary forest resurgence

in abandoned pastures, alters many aspects of soil C

cycling as reflected in isotopic ratios (d13C), SOC la-

bility (POXC), molecular composition and other

biochemical indicators of SOC turnover. Total and

labile SOC increased in surface soils (0–10 cm depth)

during a century of pasture, and replacement of the

majority of forest-derived SOC (85%) by SOC from

pasture grass species occurred rapidly with the first

quarter century. Following secondary forest succes-

sion, total and labile C concentrations rapidly reversed

to that of primary forest driven by a near-complete

(97%) return to forest-derived SOC sources within the

20 years after pasture abandonment. However, enrich-

ment of polysaccharide C-O in pastures and secondary

forest alike, compared to primary forests, suggests a

long-lasting alteration of SOM composition which

helps explain previous conflicting reports of total SOC

response to similar LUC elsewhere in the Amazon

basin. To improve future estimates of labile carbon

and b-glucosidase activity from basic measurements

of SOC content we propose empirical models to

predict long-term (100 years) changes in soil C

cycling after deforestation. Regardless of Amazon

LUC impacts on surface SOC concentrations or

stocks, impacts on the turnover and labiltiy of SOC

offers mechanisitc understanding of dynamic

responses of SOC in tropical forests to LUC globally.
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