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Abstract
We propose a method to distinguish between trivial and topological, Majorana, zero-energy
states (ZESs) in both short and long superconductor-normal-superconductor junctions based on
Rashba nanowires using phase-biased equilibrium transport measurements. In particular, we
show how the sawtooth profile of the supercurrent, due to the Majorana oscillation suppression
in the topological phase for sufficiently long superconductor regions, leads to a strong signal in
its zero-frequency susceptibility for a phase difference of ϕ= π. This signal is notably
insensitive to the chemical potential in the normal region, while trivial ZESs only causes signals
in the susceptibility that is highly varying with the chemical potential, thus turning gating of the
normal region into a simple experimental control knob. Furthermore, we obtain that, by tuning
the junction transparency, critical currents in both short and long junctions undergo a reduction
in the number of oscillations as a function of magnetic field only in the topological phase, an
effect that find to be intimately linked to Majorana non-locality. Finally, we show that our
results also hold at finite temperatures, thus highlighting their potential measurability under
realistic experimental conditions.

Keywords: supercurrents, topological superconductivity, Majorana bound states,
trivial zero-energy states, supercurrent susceptibility, Josephson effect

(Some figures may appear in colour only in the online journal)

1. Introduction

Majorana bound states (MBSs) have drawn much attention
due to their non-locality and non-Abelian statistics [1, 2],
which holds prospects for application in topological quantum
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computation platforms. MBSs have been shown to emerge
in topological superconductors, a topological state of matter
that can e.g. be realized by proximity inducing conventional
s-wave superconductivity in semiconducting nanowires with
Rashba spin–orbit coupling (SOC) [3, 4]. In particular, in these
nanowires, the topological phase is achieved by driving an
external Zeeman field above a critical value, Bc, after which
MBSs appear as topologically protected zero-energy states
(ZESs) at the edges of the topological regions.

An important signature of MBSs is the zero-bias
conductance peak (ZBCP) of height 2e2/h, theoretically pre-
dicted in NS junctions [5–7] and at least partially consistent
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with existing experiments [8–15]. The main disagreement
stems from the fact that quantized ZBCPs can also be obtained
from topologically trivial zero-energy Andreev bound states
(ABSs) [16–51], implying that most of the reported experi-
ments do not necessarily guarantee the existence of MBSs.
These trivial ZESs can appear for fields well below Bc

in superconductor-normal-superconductor (SNS) junctions
simply due to unavoidable chemical potential inhomogeneit-
ies and can display similar properties to MBSs [34]. While
in SNS junctions with short N regions, trivial ZESs might
accidentally form and thus also be easily removed, in junc-
tions with long N regions, they can also emerge robust against
changes in the system parameters [34]. In the long junction
case, confinement and helicity play a crucial role for the form-
ation of stable but trivial ZESs [18], where the helical regime
is achieved when the chemical potential in the N region, µN ,
lies within the helical gap opened by the SOC and Zeeman
field B. Thus, the Zeeman field necessary to reach this helical
phase often occurs below Bc and can easily be mistaken for the
topological phase transition at Bc [42]. Unambiguous exper-
imental signatures distinguishing MBSs and trivial ZESs are
therefore still necessary.

A promising approach toward the detection of topological
ZESs is using equilibrium phase-biased transport, see e.g.
[52–65]. Here, due to a phase difference between two super-
conductors, a supercurrent flows across the junction, produ-
cing the Josephson effect [66]. The phase difference can be
controlled by a magnetic flux in a SQUID geometry, which
enables the determination of the phase-dependent supercur-
rent profile by sweeping the magnetic flux. In particular, it
has been shown that, in junctions of nanowires with Rashba
SOC, phase-dependent supercurrents in the topological phase
are characterized by a discontinuity at ϕ= π in the limit
of very long S regions, thus producing a characteristic saw-
tooth profile as a clear sign of the topological phase [55, 67].
This property was partially used when phase-biased super-
currents were very recently predicted to be a useful tool
for distinguishing between MBSs and trivial ZESs [42, 68],
but this approach is still in its infancy and requires further
analysis.

In this work, we exploit the phase-biased equilibrium trans-
port and investigate how the zero-frequency supercurrent sus-
ceptibility is affected by the sawtooth profile developed in the
topological phase in both short and long SNS nanowire junc-
tions. We show that the zero-frequency supercurrent suscept-
ibility develops distinct features that can be clearly related to
the emergence of trivial ZESs and MBSs, respectively. In par-
ticular, we demonstrate that the zero-frequency supercurrent
susceptibility is very sensitive to the chemical potential in the
N region, µN , when trivial ZESs are present but notably not
when MBSs emerge, thus allowing for identification of the
topological phase transition by simply gating the N region.
We are able to explain this behavior by finding that the onset
field for trivial ZESs depends on µN , while Bc does not, since
the topological phase and its MBSs emerge in the S regions.
This allows the zero-frequency supercurrent susceptibility to

provide an easily accessible signature of the topological phase
transition and thus become a tool for distinguishing trivial
ZESs and MBSs.

Having identified the topological phase transition, we also
exploit theMBSs energy oscillations as a function of magnetic
field to test the spatial non-locality in the topological phase. In
particular, we find a reduction in the number of oscillations
of the zero-frequency supercurrent susceptibility when tuning
the junction transmission, which allows us to identify the topo-
logical phase itself, beyond only finding the topological phase
transition point. This is similar to what has been observed with
critical currents in [69], but here we go one step further and
show that this effect also appears in the zero-frequency super-
current susceptibility for both short and long junctions. With
the supercurrent susceptibility being experimentally access-
ible and already studied both theoretically and experimentally
in similar systems [70–76], our results should be within exper-
imental reach.

The remaining of this work is organized in the following
way. In section 2 we detail how we model the system, while
in section 3 we present and discuss our results. In particular,
in section 3.1 we study the low-energy spectrum and explore
the formation of trivial and topological ZESs in both short and
long junctions. In section 3.2 we then use the energy spectrum
to investigate and understand the supercurrent and its zero-
frequency susceptibility in order to find signatures of ZESs
and identify the topological phase transition. In section 3.3 we
study the effects of lowering the junction transparency and
how it can be used to identify the topological phase itself.
Then, in section 3.4 we establish the robustness of our results
at finite but low temperatures. Finally, in section 4 we sum-
marize our results.

2. Method

We consider SNS junctions made out of a single nanowire
with Rashba SOC of which two superconducting regions (S)
are separated by a normal metallic region (N), as shown
schematically in figure 1. Superconductivity in the S regions
is assumed to be proximity-induced into the nanowire by
proximity to conventional s-wave superconductors. A finite
controllable superconducting phase difference ϕ is allowed
between the two S regions, thus creating a Josephson junction.

We model the nanowire as a single-channel one-
dimensional system with the following effective Hamiltonian
[3, 4]:

H=

(
p2x
2m

−µ(x)

)
τz+

αR

ℏ
pxσyτz+Bσxτz+∆(x)σyτy, (1)

where px is the electron momentum along the nanowire, m its
effective electron mass, αR is the Rashba SOC strength and
B is a Zeeman field, which comes from an external magnetic
field applied perpendicularly to the spin-orbit axis. The Pauli
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Figure 1. Schematic diagram of an SNS junction. The junction is
comprised of a single nanowire divided into three parts. In the outer
parts (S regions) the order parameter ∆ is taken to be finite, with its
phase given by ϕL/R, and the chemical potential is µS. In the N
region, the order parameter is zero and the chemical potential µN .
An external magnetic field B is applied perpendicularly to the axis
of the spin–orbit coupling of strength α.

matrices σi and τ i act on spin and particle-hole spaces, respect-
ively. The spatially dependent chemical potential µ and super-
conducting order parameter ∆ are defined piece-wise by

µ(x) =

{
µS for x ∈ SL,SR
µN for x ∈ N

(2)

and

∆(x) =


∆e−iϕ/2 for x ∈ SL
0 for x ∈ N
∆e+iϕ/2 for x ∈ SR

, (3)

where SL and SR represent the left and right S regions, respect-
ively. Here, ∆ corresponds to the proximity-induced super-
conducting order parameter in the nanowire.

We discretize the continuum model of equation (1) into a
tight-binding lattice with lattice constant a= 10 nm and set
t= 25.4 meV to be the nearest neighbor hopping, which cor-
responds to an effective mass m= 0.015me, in accordance
with experimental values for InSb [2, 77]. With this, we then
model an SNS junction with N (S) regions of finite length
LN(S), whose values are defined when presenting the respect-
ive junctions below. In order to control the junction transpar-
ency, we parametrize the hopping parameter at the NS inter-
faces, as tNS = τ t, where τ ≪ 1 characterizes the tunnel regime
and τ = 1 the full transparent regime. Experimentally this can
be achieved through gate-generated potential barriers at the
NS interfaces. Throughout this work, we use ∆= 0.25 meV
and αR = 20meVnm, compatible with experimental values
[2] and assumeµN is highly variable and controlled by external
gates.

Furthermore, we stress that here we focus on finite length
SNS junctions with both short and long N regions. The terms
short and long are not randomly chosen, but depends on the
comparison between the superconducting coherence length ξ
and the length of the N region [78], where ξ = ℏvF/(∆π)
with vF being the Fermi velocity [79]. Thus, short junctions
are defined by LN < ξ, while long junctions by LN > ξ. For

the parameters above we estimate ξ to be between ξ∼160–
200 nm for Zeeman field values between zero and 2Bc. Here
we present results for short junctions with LN = 40 nm, while
LN = 2000 nm for long junctions.

We are interested in trivial and topological ZESs in both
short and long junctions. As discussed in the introduction, a
very common mechanism for trivial ZESs, usually present in
experiments, is the presence of chemical potential inhomogen-
eities, e.g. by considering the chemical potential in N and S to
be different [18, 34]. This is the regime we will consider here
and under these conditions wewill explore first the low-energy
spectrum, and then the supercurrent and its zero-frequency
susceptibility.

3. Results and discussion

In this part we present the low-energy spectrum and super-
current and its susceptibility, obtained by using the model
introduced in previous section. Before going further, it is per-
haps important to point out the main features of Josephson
junctions with MBSs when the chemical potentials in the N
and S are the same, such that in the following sections we
contrast when they are distinct and ZESs emerge. First, the
model in equation (1) develops a topological phase transition

at Bc =
√
µ2
S+∆2, above whichMBSs emerge at the edges of

the S regions [3, 4]. In a Josephson junction, the S regions thus
become topological for B> Bc and MBSs emerge at the end
points of the S regions. At ϕ= 0 an MBS forms at each end
of the outer sides of the SNS junction, but the two S region
ends facing the N region do not host MBSs as they hybrid-
ize across the N region. However, at ϕ= π this hybridiza-
tion becomes forbidden and two additional MBSs emerge loc-
ated at these inner edges of the SNS junction, at the interfaces
between N and S regions [52, 55–57, 80]. For obvious reas-
ons, we call MBSs at ϕ= 0 outer MBSs, while we call the two
additional MBSs at ϕ= π inner MBSs. Below we explore sig-
natures of both these MBSs and trivial ZESs that enable their
distinguishability.

3.1. Low-energy spectrum

We start by presenting the low-energy spectrum based on the
model described in section 3.1 and identify the main features
related to each type of ZESs, both of which can present sim-
ilar experimental signatures, especially ZBCPs. Later, we use
the energy spectrum to calculate quantities that can distinguish
between trivial and topological ZESs.

Figure 2 shows the low-energy spectrum for both short (a),
(b) and long (c), (d) junctions, and for phase values fixed at
ϕ=0 (a), (c) and ϕ= π (b), (d) as a function of Zeeman field
B. We here set µN such that the system hosts trivial ZESs. For
both types of junctions, the system in the topological phase
hosts twoMBSs at ϕ= 0 (a), (c) while fourMBSs at ϕ= π (b),
(d), appearing past a critical field Bc, in a similar way as when
the chemical potentials in S and N are the same, see beginning
of this section. Interestingly, for both short and long junctions,
we observe the formation of trivial ZESs for fields well below
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Figure 2. Low-energy spectrum of short (a), (b) and long (c), (d)
junctions as a function of Zeeman field B. (a) and (b) show the
spectrum for a short junction with ϕ= 0, π, respectively. (c) and (d)
show the same for a long junction, where robust trivial ZESs appear,
for both zero and finite ϕ. Here µS = 0.5 meV, µN = 0.1 meV,
LS = 1000 nm.

Bc, evidenced by zero-energy crossings at low B. However,
in short junctions these crossings usually appear only around
ϕ= π, whereas long junctions host them at ϕ= 0 as well [18,
42]. The number of trivial ZESs varies with the value ofµN and
the length of the N region, with long junctions hostingmultiple
trivial ZESs and zero-energy crossings. This is due to con-
finement, since the N region is a metallic region between two
superconductors that can host subgap energy states, which is
also influenced by helicity effects in long junctions [18, 42]. In
addition, while the trivial ZESs of short junctions show a more
accidental nature, evidenced by single crossings, long junc-
tions can also host trivial ZESs that are robust for a range of
parameter values. In particular, they can show robustness with
respect to the Zeeman field, with multiple crossings before Bc,
and also with respect to the superconducting phase difference.

By looking at the phase dispersion of these low-energy
states we gain more insight into how trivial ZESs appear. In
figures 3(a)–(c) we present the low-energy spectrum as a func-
tion of phase difference for a short junctionwith fixed values of
the field just before, at, and after the trivial zero energy cross-
ingmarked in figure 2(b) by vertical, color-coded lines.We see
the zero-energy crossings occur as the ABSs of the junction
from both positive and negative energy sectors shift in energy
as the field increases until eventually they touch at ϕ= π and
cross each other. As an important consequence, this transition
causes a change in the sign of the curvature of the energy-phase
dispersion of the lowest energy state at ϕ= π. As we will later
show, this leaves a signature in the zero-frequency supercur-
rent susceptibility of the junction.

We have checked that, for a fixed value of the Zeeman field
B, a change in µN either moves the phase at which the short
junction trivial ZESs appear away from ϕ= π or removes

Figure 3. Low-energy spectrum of short (a)–(d) and long (e)–(h)
junctions as a function of superconducting phase difference ϕ. (a),
(b) and (c) show the spectrum for a short junction for magnetic
fields around the emergence of trivial ZESs, where it is clear they
emerge due to ABS crossings. (e) shows a similar field cut for a
long junction at the first zero-energy crossing. (f) and (g) show the
spectrum at a maximum energy split and a later zero-energy
crossing, respectively. (d) and (h) show the spectrum in the
topological regime. All field cuts are designated by colored lines in
figures 2(a)–(d), where the field values are B/Bc = 0.3,0.4,0.5,1.2
for short junctions and B/Bc = 0.16,0.35,0.44,1.2 for long
junctions. Other parameters same as in figure 2.

them altogether. This is in stark contrast with the behavior
of the topological MBSs, for which we show in figure 3(d)
the phase-dependent spectrum in a short junction. The almost
dispersion-less states close to zero energy are the MBSs local-
ized at the outer edges of the junction. Close to ϕ=π, another
pair of states also approaches zero energy, corresponding to
the MBSs of the inner edges of the S regions, and eventually
hybridizes with the outer pair. The hybridization energy oscil-
lates with Zeeman field, but decays when increasing LS. In
figures 2 and 3 we use LS = 1000 nm, such that this energy
split is visible at ϕ= π. As LS increases, the split diminishes,
becoming negligible for LS ≳ 3000 nm. This splitting is part
of an anti-crossing structure and for longer LS the dispersion
of the inner MBSs gains a linear character.

In order to describe the low-energy spectrum further, it
is instructive to consider the limit of semi-infinitely long
S regions. In this limit and in the topological regime, the
outer MBSs are not present and the low-energy spectrum is
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dominated by the inner MBSs. Their phase dispersion ϵ(S)± (ϕ)
in a short junction is then described by [81, 82]

ϵ
(S)
± (ϕ) =±ϵ

(S)
0 |cos(ϕ/2)|, (4)

where ϵ
(S)
0 depends on system parameters such as SOC

strength, Zeeman field, and junction transparency. For a topo-
logical junction with perfect transmission, the proportionality
constant takes the value of the induced gap ϵ(S)0 =∆ind, but in

general this state is a subgap state with ϵ
(S)
0 <∆ind. Since we

are interested in the low-energy behavior of the state around
ϕ= π, it is useful to expand the dispersion around this point
and we find, up to second order,

ϵ
(S)
± (ϕ)≈±1

2
ϵ
(S)
0 |ϕ−π|. (5)

As seen in figure 3(d), in a system with finite S regions this
linear dispersion gives way to an anti-crossing structure. By
increasing the length of the S regions the anti-crossing energy
splitting becomes suppressed and the dispersion becomes
more linear around ϕ= π. Since this splitting and the linear-
ity of the dispersion depend on the length of S regions, they
can be viewed as a direct signature of the non-locality of the
topological phase and its MBSs.

Next, we turn to long junctions. In a long junction, the
number of states introduced by the normal region greatly
increases, making the field evolution of the phase-dispersion
more complex. In the topological regime, we find that the
low-energy spectrum shows an oscillating hybridization of the
MBSs similar to a short junction, but with a different oscilla-
tion period, as can be seen e.g. comparing figures 2(a) and (b)
to figures 2(c) and (d). In figure 3(h) we show the phase disper-
sion in the topological regime at the same field value as for the
short junction in figure 3(d). By comparing the panels we see
that at this particular magnetic field the junctions have oppos-
ite hybridization behavior. While the short junction shows two
states degenerate at ϕ= π at a slightly larger energy, the long
junction shows two outer MBSs with a nearly flat dispersion.

Another important difference between the short and long
junctions is that for long junctions in the trivial regime,
although we do observe ABS crossings similar to short junc-
tions (figure 3(e)), it is also common for the ABSs to com-
pletely shift above or below zero energy for all values of ϕ,
especially when increasing B. They can then oscillate between
hybridizing with a higher energy state, such as in figure 3(f), or
having a flat dispersion, such as in figure 3(g), which is similar
to the behavior of the topological MBSs found in figures 3(d)
and (h). At ϕ= 0 this happens in the helical regime of the N
region (B> µN) [18] and it generates robust trivial ZESs that
experience multiple zero energy crossings in the trivial regime
when tuning B. We also calculate the spectrum for different µN
values and find that, as in the case of short junctions, the onset
of these crossings is dependent on µN , which enables differ-
entiation from the topological MBSs.

Finally, we also consider the semi-infinite LS limit of a long
junction in the topological regime, where the dispersion can be
approximated by [83]

ϵ
(L)
± (ϕ) =±ϵ

(L)
0 |ϕ−π|. (6)

Around ϕ= π this behaves similarly to the case of short junc-
tions. However, in the long junction case, a perfect transmis-
sion now leads to a proportionality constant ϵ(L)0 = ξ∆/(2LN)
[83]. Even though the expressions in equations (5) and (6)
are for ideal semi-infinite S regions, it helps understanding of
the MBSs in our system which is of finite size and thus more
complicated. Indeed, we find that a main qualitative feature
remains, which is that the dispersion becomes linear (ϵ(S/L)± ∝
±|ϕ−π|) around ϕ= π also for only moderately large LS.

In summary, we find that, although the emergence of topo-
logical MBSs, always occurs above Bc, trivial ZESs can eas-
ily emerge before this transition. These states have differ-
ent origins, as MBSs arise due to the topological phase,
while trivial ZESs emerge due to ABS zero-energy crossings
which strongly depend on the chemical potential of the nor-
mal region. Furthermore, the behavior of MBSs at ϕ= π for
both types of junctions induce a linear dispersion proportional
to±|ϕ−π|. This causes the derivative of the dispersions to be
discontinuous at ϕ= π and consequently the second derivat-
ive will diverge. It is this behavior that we will exploit in the
next subsection.

3.2. Supercurrent and zero-frequency susceptibility

In the previous subsection, we calculated the low-energy spec-
trum and showed that both short and long junctions can eas-
ily host accidental and robust trivial ZESs, respectively. These
states present an obstacle in the detection of MBSs and meth-
ods of differentiating these trivial states from the topological
MBSs are urgently needed. In order to propose a solution to
this issue, we next investigate the supercurrent of the junction
and also its susceptibility. The phase-dependent supercurrent
of a Josephson junction can be directly obtained from its spec-
trum as [55, 78]

I(ϕ) =− e
ℏ
∑
ϵp>0

tanh
( ϵp
2κBT

)dϵp
dϕ

, (7)

where κB is the Boltzmann constant, T the temperature and the
summation is performed over positive eigenvalues. Another
quantity we are interest in is the supercurrent susceptibility
[70–75], and in particular, the zero-frequency supercurrent
susceptibility

S(ϕ) =− dI
dϕ

. (8)

As it will be obvious later, we are here mostly focusing on the
value this quantity takes at ϕ= π, which we denote simply
by Sπ = S(ϕ= π). We investigate how the above quantities
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Figure 4. Supercurrent and zero-frequency susceptibility for short
junctions hosting trivial ZESs and MBSs. (a) and (c) Supercurrent I
as a function of phase difference ϕ for different values of the
Zeeman field B and S region lengths LS, respectively. In (c) we show
the topological regime at B= 1.2Bc. (b) and (d) Corresponding
zero-frequency supercurrent susceptibility. (e) and (f)
Zero-frequency supercurrent susceptibility at ϕ= π, Sπ , as a
function of Zeeman field B for different values of LS and µN ,
respectively. Here LS = 1000 nm in (a), (b) and LS = 3000 nm in (f),
while µN = 0.1 meV in (a)–(e). We also set µS = 0.5 meV.
Supercurrent and susceptibilities are in units of e/ℏmeV and
e/ℏmeV/rad, respectively.

depend on system parameters and begin by considering the
zero temperature case, while finite temperature effects are
covered in section 3.4.

3.2.1. Short junctions. In figure 4 we show results for a short
junction. In figure 4(a) we plot the supercurrent as a function
of the phase for different values of the Zeeman field, using
LS = 1000 nm, the same as in figures 2 and 3. At low fields,
the supercurrent shows the usual sinusoidal character [66].
At higher fields, but still in the trivial regime, the supercur-
rent develops a zigzag profile when trivial ZESs emerge. This
zigzag profile begins as a pair of discontinuities near ϕ= π,
which then move away from each other as the field increases
further, due to the ABS crossings moving away from ϕ= π.
Above Bc the supercurrent reverts back to the sinusoidal pro-
file, but with a smaller amplitude. This picture changes, how-
ever, if we consider junctions with longer S regions, as shown
in figure 4(c), where we show the supercurrent profile in the
topological regime for several different values of LS.

In order to better understand the change in supercurrent pro-
file induced by changing LS, we first point towards the ϵ

(S)
± ∝

±|ϕ−π| dispersion of junctions with infinitely long S regions
in the topological regime around ϕ= π, see equation (5). This
dispersion leads to the development of a sawtooth profile, with

the discontinuity pinned at ϕ= π. For any finite S regions,
however, the energy dispersion is never perfectly linear, such
that the sawtooth profile becomes smoothed out. We still find
that the sawtooth profile is prominent for LS ≳ 3000 nm, but
gives way to a sine-like curve for values below that.

The supercurrent behavior in figures 4(a) and (c) have cor-
responding features in its susceptibility profile (figures 4(b)
and (d)), as they are related by a derivative, see equations (7)
and (8). In fact, discontinuities in the supercurrent lead to
pronounce susceptibility peaks with important consequences.
In the trivial regime, the zigzag profile in the supercurrent
induced by the trivial ZESs leads to susceptibility peaks sym-
metrical around ϕ= π, which can form further away from
ϕ= π for a small variation of the system parameters. In the
topological regime, the reduced supercurrent amplitude leads
to a reduced susceptibility amplitude but the sawtooth pro-
file developing for larger LS leads to clear susceptibility peaks
pinned at ϕ= π. The height of these susceptibility peaks
increases with LS and in the limit of infinitely long S regions
they even diverge. With the underlying dispersion being a dir-
ect consequence of the MBSs and their separation across the
S regions, the developing supercurrent susceptibility peak at
ϕ= π is a consequence of the MBSs non-locality. The inter-
esting dependence on LS means that we can always design a
longer system to improve the visibility of the susceptibility sig-
nal from the topological phase, without affecting the response
of trivial ZESs.

Next, in figure 4(e) we study in more detail how Sπ var-
ies with the Zeeman field B for different values of LS. We
see that at low fields, Sπ takes on a finite, approximately con-
stant value. This is because in this regime the low-energy spec-
trum of the positive energy sector is dominated by two ABSs
with positive curvatures. As the field is increased, the ABSs
split in energy and the lowest-energy branch eventually crosses
zero, as seen in figures 3(a)–(c). This causes the lowest energy
state in the positive energy sector to get an opposite curvature,
which in turn leads to a sharp jump in the Sπ profile with
an accompanying change of sign. As the field is increased
further, the system eventually enters the topological regime,
where MBSs emerge. For systems with short S regions, the
MBSs from both edges of the same S region hybridize signi-
ficantly, leading to energy oscillations with the Zeeman field,
but this has very minor impact on the zero-frequency sus-
ceptibility at ϕ= π. For sufficiently long S regions the inner
MBSs acquire a linear dispersion around ϕ= π, leading to the
development of a strong peak signature in Sπ . Since this is a
consequence of the topological phase transition, this peak is
pinned to Bc. Deeper into the topological regime Sπ decays
with increasing B.

In order to further differentiate between signatures in Sπ
coming from trivial or topological ZESs, we exploit the fact
that the trivial ABS crossings are strongly influenced by µN ,
the chemical potential in the N region, while Bc depends only
on µS, as it is tied to the topological phase transition in the bulk
S region. This means that tuning µN should only affect features
the zero-frequency susceptibility coming from the emergence
of trivial ZESs, and not the topological MBSs. In figure 4(f)
we plot Sπ as a function of Zeeman field for a fixed value of
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LS = 3000 nm for varying values of µN . The value of LS is
chosen such that the junction display a sawtooth profile in the
supercurrent due to the MBSs. We observe that the step-like
features induced by trivial ZESs are present for all values of
µN , but notably the field values at which they occur always
differ. On the other hand, the peak induced by the topolo-
gical phase transition is always stuck at Bc. This means that by
simply gating the N region we can directly and clearly identify
which features in the Sπ profile have a topological nature and
which ones do not.

3.2.2. Long junctions. Next, we consider junctions with a
long N region. Figure 5 shows numerical results for the same
quantities depicted in figure 4, but for a long junction with
LN = 2000 nm. The first two panels, (a), (b), show how the
supercurrent and its zero-frequency susceptibility evolve for
different values of the magnetic field, for the same chemical
potential configuration as in figure 4. The trivial ZESs result
from ABS crossings, bringing the emergence of a zigzag pro-
file around this point in the supercurrent. However, the cross-
ing lasts only for a short interval of B values (within one per-
cent of Bc), which means this zigzag feature and their cor-
responding peaks in susceptibility disappear quickly as B is
increased. By further increasing the field, many other trivial
ZESs are formed as the lowest energy state oscillates between
having no phase dispersion and hybridizing at ϕ= π, as dis-
played in figures 3(f) and (g). As such, they do not contribute
significantly to Sπ.

In the topological regime, Sπ develops a strong dependence
on LS, as can be seen in figures 5(c) and (d). Similarly to the
case of short junctions, the origin of this dependence can be
understood from theMBSs phase dispersion for infinitely long
LS, ϵ

(L)
± ∝±|ϕ−π|, which leads to a sawtooth supercurrent

profile and also a diverging Sπ. We illustrate this in figure 5(e)
where we show how Sπ varies with the Zeeman field in a long
junction with varying LS and overall we observe a behavior
much similar to that of short junctions of figure 4(e). Finally, in
figure 5(f) we fix LS = 3000 nm and show trivial ZESs features
are highly dependent on µN in long junctions, but that peaks
associated with the topological phase transition and MBSs are
not sensitive toµN , just as in short junctions.We note that there
are more abrupt changes and a more irregular behavior for the
trivial ZESs in long junctions, as compared to a short junc-
tion. This can be attributed to the more complicated energy
spectrum in the former. Still, we observe a noticeable variation
of the profile of Sπ in the trivial regime as a function of µN ,
while the feature introduced by the topological phase trans-
ition remains unchanged. This means that Sπ , in conjunction
with varying the gating in the N region, can be used to clearly
identify the topological phase transition in both long and short
junctions.

For the parameters considered in this subsection, the short
junction hosts phase-induced (finite ϕ) trivial ZESs, and the
long junction hosts both zero-phase (ϕ= 0) and phase-induced
trivial ZESs. We have also checked that our overall conclu-
sions remain the same in chemical potential configurations

Figure 5. Similar as figure 4, but for long junctions. (a), (c) and (b),
(d) show the supercurrent and its zero frequency susceptibility,
respectively, as a function of the phase difference ϕ for different
Zeeman fields B and superconducting lengths LS. (e) and (f)
Zero-frequency supercurrent susceptibility at ϕ= π, Sπ , as a
function of Zeeman field B for different LS and µN , respectively.
Here same parameters as in figure 4 are used, except for
LN = 2000 nm and the field values in (a), (b), indicated in the figure.

where also zero-phase trivial ZESs are present in short junc-
tions, such as for the effective values reported in [68, 84].
We also remark that our conclusions depend on the phase
dispersion of the inner MBSs pair not being completely flat.
This may happen when the chemical potential configuration
is such that it does not allow hybridization of the inner MBSs
at ϕ= 0, leading to a vanishing proportionality factor in the
long S region limit dispersion, ϵ(S/L)± ∝±|ϕ−π|. We avoid
such pathological regimes in our calculations, but focus on
parameter regions where |µN|< |µS|, where we never found
such issues. In this work we also set µS = 0.5 meV, but we
checked that our conclusions hold for other values of µS for
long enough S regions. As a consequence, we find that gating
the N region andmeasuring Sπ can be used as an easy, distinct-
ive tool to differentiate trivial ZESs from MBSs appearing in
the topological regime, in both short and long junctions.

3.3. Transparency effects

In the previous subsection, we identified the topological phase
transition and differentiated it from features produced by
trivial ZESs in the zero-frequency supercurrent susceptibility
measured at ϕ=π. Here we show how changing the junction
transparency, which can be done by tuning localized gates at
the NS interfaces, allows us to additionally determine if the
junction is inside the topological phase or not, still using only
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Figure 6. Transparency dependence of Sπ . (a) and (b) show Sπ as a
function of Zeeman field B in the topological regime for different
transparency values τ in a short and long junction, respectively. An
approximate doubling of the oscillation period is observed as τ is
reduced from 1 to values in the tunneling regime. Inset in (b) shows
Sπ oscillations in the trivial regime present in long junctions. Here
LS = 3000 nm, µN = 0.1 meV and µS = 0.5 meV.

measurements of Sπ. As a consequence, Sπ can both determ-
ine the topological phase transition and the topological phase
itself. The latter is done by exploiting the energy oscillations
of the MBSs as a function of Zeeman field. We note that a
similar study has been done in [69], where oscillations in the
critical current of short junctions were found and then attrib-
uted to the MBSs. Here we investigate similar oscillations, but
in Sπ instead in order to show how Sπ only can be utilized
to unambiguously determine the topology. For this, we turn
our attention to the Sπ oscillations observed for both short and
long junctions at B> Bc in the previous figures. We thus fix
LS = 3000 nm, which we already showed is enough for a clear
signal of the topological phase transition in Sπ.

For a high transparency junction at ϕ=π in the topolo-
gical regime, the two pairs of MBSs oscillate out-of-phase
with respect to each other. This gives rise to periodic, intermit-
tent crossings at zero energy as the pairs switch ordering as the
pair closer or further apart from zero energy, see figure 2(d).
In short junctions, as the transparency is lowered, these energy
oscillations have been observed to align such that the zero-
energy crossings of MBSs happen at the same Zeeman fields
[69]. As a consequence, zero-energy crossings of MBSs in
short junctions were shown to happen at approximately double
the period compared to the high transparency case. This period
doubling effect is depicted in figure 6(a), where we let τ vary
from the ideal transparency limit (τ = 1) to the short junction
tunneling regime (τ ∼ 0.6). For long junctions in figure 6(b),
we observe a similar effect, but in this case, at the same lower
value of τ ∼ 0.6, a crossover regime between higher and lower
periodicity is still found. In contrast to short junctions, how-
ever, for τ ∼ 0.6 an extra oscillation with small amplitude
accompanies the pronounce peaks, leading to a deformation
in the oscillatory pattern of Sπ at intermediate values of τ .
This is a consequence of long junctions achieving the tunnel-
ing regime only at lower τ values. It is only by lowering the
transparency to τ ∼ 0.3 that the long junction finally arrives at
the tunneling regime and we are able observe a well-defined
larger period oscillation, similar to the period doubling effect
in short junctions (figure 6(a)).

Figure 7. Temperature effects on Sπ for short (a), (b) and long (c),
(d) junctions. (a) and (b) Sπ as a function of Zeeman field for
different temperatures, for LS = 3000 nm. (c) and (d) Sπ as a
function of Zeeman field for different values of LS and a fixed
temperature T = 20 mK. We use µS = 0.5 meV.

Wefinally note that in long junctions the robust trivial ZESs
can also show energy oscillations with the Zeeman field, which
lead to corresponding oscillations in Sπ . This is displayed in
the inset in figure 6(b). However, these oscillations have a
reduced amplitude and die out more quickly than their topolo-
gical counterparts as τ decreases and hence they do not show
the period doubling effect. Thus, we show that tuning the junc-
tion transparency can be used to identify the topological phase
through a period doubling effect of MBSs oscillations as a
function of magnetic field.

3.4. Temperature effects

The results we have presented so far were all calculated in
the zero-temperature limit. In order to showcase their experi-
mental relevance, we now consider finite temperature effects.
As a direct consequence of the hyperbolic tangent term in
equation (7), signatures in the supercurrent coming from low-
energy states are suppressed much more strongly for energies
below 2kBT. This means that at higher temperatures, near-
zero-energy states have their contribution to Sπ strongly sup-
pressed. In particular, the sawtooth profile in the supercurrent
is affected by this suppression, as well as signatures coming
from trivial ZESs. Figures 7(a) and (b) show how the effects
of a finite temperature also strongly affect Sπ in short and
long junctions, respectively. We observe that, for both short
and long junctions, at a temperature of a few hundred mK,
Sπ takes values much smaller than its zero temperature value
in the topological regime. For concreteness, at T∼ 200 mK
we observe that in short junctions the highest signal of Sπ
in the topological regime becomes more than one order of
magnitude smaller than its zero temperature value. In long
junctions the same ratio is over 50. Interestingly, in short
junctions the features introduced by trivial ZESs are much
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less suppressed by temperature. Still, as the temperature is
decreased, both the trivial and topological signatures appear
much more clearly, reaching the same order of magnitude as
their zero-temperature values for temperatures of ∼20 mK.
These are quite low temperatures, but are clearly within the
range of low temperatures achieved in similar setups in recent
experiments [36]. Combined with the fact that we use realistic
parameters throughout this work, we thus believe our results
can be experimentally realized.

Lastly, in figures 7(c) and (d) we show how the topological
features still remain enhanced at finite temperatures by using
longer S regions, here data taken at T = 20 mK. This means
that, for a fixed temperature, longer S regions can be chosen to
improve signal visibility. In figure 7 we also observe the oscil-
lations in Sπ in the topological regime discussed in section 3.3.
However, they are suppressed and, in the long junction case,
distorted, which might make the period doubling achieved by
lowering the transparency more difficult to observe.

3.5. Disorder effects

As a final note, we also briefly discuss the effect of disorder,
very likely present in hybrid semiconductor-superconductor
platforms with Rashba SOC such as the one studied here.
In particular, disorder is expected from scalar impurities or
charge inhomogeneities [29, 85–89] and the question is if it
will destroy the distinct signatures in the zero-frequency super-
current susceptibility. We have verified that the main find-
ings presented in this work remain robust against weak-to-
moderately strong Anderson disorder, modeled by random
site-dependent fluctuations in the chemical potentials of the
N and S regions [56, 90]. However, strong disorder softens the
topological features in the current susceptibility. Furthermore,
we stress that more elaborate disorder models, e.g. includ-
ing screening effects [85, 86], may be interesting to pursue
in order to provide a realistic description of semiconductor-
superconductor systems. For this reason, a detail account of
disorder effects on the supercurrent susceptibility will be pur-
sued elsewhere.

4. Conclusions

To conclude, we proposed a way to differentiate between
trivial and topological ZESs in Josephson junctions based on
nanowires with Rashba SOC using experimentally access-
ible phase-biased Josephson measurements. In particular,
we explored how the supercurrent and, especially, its zero-
frequency supercurrent susceptibility behave as a function of
Zeeman field and phase difference across the junction. In par-
ticular, we found that the sawtooth profile of the supercurrent
in the topological regime, due to the topological MBSs, can
be exploited as it produces a discontinuity at ϕ= π, which
generates a clear peak in the zero-frequency supercurrent sus-
ceptibility at ϕ= π, Sπ. This peak is also not sensitive to the
chemical potential in the N region µN as it is a property of the
S region. On the other hand, any trivial ZESs in the junction

have their origin in the N region and we found that they pro-
duce signatures in Sπ that are inherently sensitive to µN . As a
consequence, clear peak features in the Sπ profile as a function
of Zeeman field B can be clearly assigned to trivial and topo-
logical ZESs by just sweeping the gating in the N region. This
result holds for both short and long junctions, despite other-
wise quite different properties between them.

We additionally showed that the tuning of the junction
transparency can be used to further distinguish between the
topological and trivial phases by means of a reduction in
the number of MBSs oscillations in Sπ as transmission is
decreased. This happens when the oscillations seen in Sπ in
the topological regime have their period effectively increased,
doubled or more, as the MBSs pairs start to oscillate in-
phase as the tunneling regime is achieved in the junction. We
observed this phenomenon for both short and long junctions,
although the latter requires a lower transparency in order to
enter the appropriate regime. To support the robustness of our
findings, we verified that they hold at low finite temperatures
and for weak-to-moderate disorder, thus making our proposal
relevant for experimental implementation. Finally, we point
out that Josephson junctions similar to those studied here have
already been fabricated and phase-biased supercurrents have
even been measured [31, 54, 59, 60, 91], which highlights the
experimental relevance of the supercurrent susceptibility [70–
76] as an additional tool to distinguish trivial and topological
states in superconductor-semiconductor systems.
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