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Abstract
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder with complex progression.
This study aims to analyze electroencephalography (EEG) connectivity patterns to better
understand PD progression and stage of the disease using machine learning. Resting-state,
eyes-closed EEG recordings were acquired from 31 individuals: 16 healthy controls (HCs) and 15
PD patients. The PD group was stratified by disease duration into early-stage (1–3 years, n= 9) and
advanced-stage (6–12 years, n= 6). EEG was recorded using a 32-channel Biosemi Active-Two
system (512Hz), with signals segmented into non-overlapping 10 s windows. Functional
connectivity matrices were constructed using multiple metrics, including coherence, Pearson,
Spearman, canonical correlation, and Ledoit–Wolf shrinkage. Machine learning models were
applied for both binary (PD vs HC) and multiclass (HC vs early vs advanced PD) classification.
Interpretability was achieved using Shapley Additive Explanations (PD) methodology , and the
most discriminative neural connections were statistically validated using the Wilcoxon test with
Bonferroni correction. Our approach achieved high accuracy in classifying PD stages, with
coherence emerging as the optimal metric for capturing synchronized neural activity. SHAP values
revealed critical brain regions and connectivity patterns associated with disease progression.
Statistical validation confirmed the significance of these connections across disease stages.
Early-stage PD exhibited neural connectivity patterns similar to HCs, while advanced stages
showed distinct connectivity changes. The findings highlight the utility of EEG connectivity and
machine learning in staging PD, offering insights into PD pathogenesis and progression.
SHAP-enhanced model interpretability ensures reliable identification of key neural connections,
supporting personalized diagnostics and therapeutic strategies.

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuron loss in
the substantia nigra pars compacta, leading to motor symptoms like bradykinesia, tremors, rigidity, and
postural instability [15, 76, 82]. Non-motor symptoms, such as cognitive impairment, depression, and
autonomic dysfunction, also significantly affect patients’ quality of life [87, 101]. While PD’s exact etiology
remains elusive, evidence suggests a complex interaction of genetic susceptibility, environmental factors, and
aging [46, 69].

On the other hand, electroencephalography (EEG)-based connectivity measures enable the
characterization of functional brain network disruptions in neuropsychiatric and neurodegenerative
conditions [2, 31, 107]. These approaches model the brain as a complex system by computing statistical or
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Table 1. Overview of PD binary classification research using the same publicly accessible PD dataset as this study. ‘Not reported’
indicates that the corresponding information was not explicitly provided in the referenced study. Most of these studies rely on direct
time-series input rather than on derived connectivity matrices, which explains the absence of correlation metric information.

Authors Correlation metric ML method AUC Accuracy Recall Precision

[79] Phase locking value Deep learning (Multiscale CNN) 88.7 88.7 86.7 Not reported
[48] Not reported Least squares SVM Not reported 97.65 96.67 98.76
[61] Not reported Deep learning (2D-CNN) Not reported 99.46 99.46 99.48
[3] Not reported KNN Not reported 99.89 99.87 Not reported
[84] Not reported Deep learning (CNN) 98.96 97.90 97.87 98.0

spectral associations between EEG signals from different regions, producing functional connectivity matrices
that can reveal altered communication pathways [108]. For example, EEG-based connectivity characterizes
altered network segregation in Alzheimer’s disease [13] and atypical integration patterns in attention-deficit/
hyperactivity disorder [14], highlighting its potential as a non-invasive diagnostic support tool.

Various studies employ machine learning (ML) and deep learning algorithms to differentiate between
individuals with PD and healthy control (HC), as evidenced in table 1. The predominant dataset utilized
across these studies is the San Diego dataset, which we used in our analysis. PD presents significant challenges
across its various duration and stage of the condition, highlighting a critical gap in current diagnostic
methodologies [49, 77, 95]. Although considerable efforts have been made to discern patterns and markers
indicative of PD, the complexities inherent in the disease’s progression still need to be addressed [10].

Our methodology extends beyond conventional approaches by delving into the nuances of PD
progression through a refined segmentation of the patient cohort. Unlike previous studies that commonly
compare PD patients with medication, without medication, and controls, we adopt a novel stratification
strategy based on disease duration. Specifically, we categorize individuals into two distinct groups: those with
a disease duration of 1–3 years and those with a 6–12 years duration. This tailored segmentation offers a
more nuanced perspective on PD progression by capturing potential variations in EEG signals that
correspond to different durations and stages of the disease.

Importantly, functional brain connectivity patterns also change across the lifespan, even in healthy
individuals [19, 27, 30]. For example, aging is associated reduced synchronization in resting-state EEG
networks [26, 92]. Therefore, when comparing patient and control groups using EEG-based connectivity, it
is crucial to control for age effects. In this study, we ensured that age ranges of the PD and HC cohorts were
largely overlapping, with statistical confirmation of age comparability across groups (see figure 2(b)).

In addition to activity pattern analysis, we use pairwise statistical metrics to construct connectivity
matrices, based on techniques proven effective for preprocessing EEG time series data [8]. In particular, we
explore the efficacy of these metrics in binary classification tasks to distinguish PD patients from controls,
along with their utility in multiclass classification to differentiate between subgroups within the PD cohort
based on disease duration. Furthermore, similar to our previous work [4, 6–9], we enhance the
interpretability of our ML models using Shapley Additive Explanations (SHAP) values [64]. The SHAP
framework identifies which features–in this context, specific neural connections–contribute most to the
model’s decision-making process [64]. By elucidating the most influential connectivity patterns, this
approach provides a deeper understanding of the underlying neural dynamics of PD. The integration of this
explanatory framework with our high-performing classifier not only refines current diagnostic approaches,
as proven in previous research [1, 6, 7], but also establishes a basis for developing personalized therapeutic
interventions that account for PD patients with different durations and disease progression.

2. Methods

Figure 1 summarizes the methodology used in the present work. The python code with the methodology
used in this work is available at: https://github.com/Carol180619/paper-temporal-Parkinson.git.

2.1. Data and EEG preprocessing
EEG signals were recorded with a 32-channel Biosemi Active-Two system at a sampling rate of 512Hz, using
the international 10–20 electrode placement re-referenced to the common average, and a high–pass filter at
0.5Hz was applied during acquisition to suppress slow drifts to enhance signal clarity [85]. Furthermore,
summary statistics of participants’ age, MMSE scores, and gender distribution are provided in figure 2.

Here, offline preprocessing was conducted using MNE-Python [38]. We applied a band-pass finite
impulse response filter (0.5–50Hz, Hamming window) to retain neurophysiologically relevant delta to
low-gamma activity while reducing noise [72, 91]. Independent component analysis was employed to
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Figure 1. Summary of the methodology. In (A), which corresponds to the EEG preprocessing described in section 2.1, the EEG
time series passed for a band-pass filter and to an independent component analysis. The Figure illustrates, as an example, a
decomposition of the EEG signal of a PD patient into five components. In the Figure, as an example, the last component with
higher frontal activity, indicating blink eye, was removed, and this process was made for all PD and control individuals. After
preprocessing, we did 10 s of slicing windows as a data augmentation technique. In (B), which corresponds to the binary
classification described in section 2.2, the cleaned and sliced EEG time series were used to compute various connectivity matrices
with different correlation metrics. Using a support vector machine (SVM), the best correlation metric to distinguish PD from HC
was found. Also, in (B), many ML algorithms were tested, and the best was selected. The results for part (B) can be found in
section 3.1. With the best correlation metrics connectivity matrices and the best ML algorithm from part (B) used in a multiclass
way to the connectivity matrices, the PD group was decomposed into two other groups according to the stage of the disease,
depicted in part (C) and described in section 2.2. Further, in (C), the SHAP values methodology was used to find the best
connections. The results of the part (C) are in the section 3.2.

identify and remove ocular and other artifacts [103], with each component visually inspected and excluded
for each participant (see section 3.2(A)).

To ensure methodological rigor and avoid information leakage during classification, the raw EEG
recordings were first split split into training (75%) and test (25%). Further, data were segmented into
non-overlapping 10 s epochs to enhance our dataset’s size and facilitate comprehensive analysis of EEG
signals. This technique involves partitioning EEG signals into smaller time windows [56], typically lasting
10 s [43, 66, 70], which effectively increases the number of instances available for analysis. We acknowledge
that the small number of patients may impose limitations on the generalizability of our findings.

All processed segments were then used to compute connectivity matrices with Pearson correlation (PC)
[16], Spearman correlation (SC) [63], Sparse canonical correlation analysis (CCA) [42], and Ledoit–Wolf
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Figure 2. Demographic characteristics of the dataset. (a) Violin and strip plot of MMSE scores showing cognitive performance
distribution across groups. (b) Violin and strip plot of participant age by group. (c) Gender distribution per group. Statistical
comparisons for panels (a) and (b) were performed using the two-sided Mann–Whitney U test with Bonferroni correction for
multiple comparisons. No significant differences were found between groups in MMSE (p= 0.658, ns) or age (p= 1.000, ns).
Note: PD= Parkinson’s disease, HC= healthy controls; ns= not significant.

shrinkage (LW) [57]. We emphasize coherence (Sync) [23, 33] for its unique ability to measure
synchronization in pairwise EEG signals, enhances the dataset analysis, providing a nuanced exploration of
EEG signals that were previously unexplored in our prior work [4, 6–9].

The Sync. measure between signals i and j, denoted as Sync[i, j], is computed using the average coherence
across all frequency points, as defined by equation (1):

Sync [i, j] =
1

N

N∑
k=1

|Pij ( fk)|2

Pii ( fk) · Pjj ( fk)
(1)

where:

• Sync[i, j] is the synchronization between signals i and j,
• N is the number of frequency points,
• Pij( fk) is the cross-spectral density between signals i and j at frequency fk,
• Pii( fk) is the auto-spectral density of signal i at frequency fk,
• Pjj( fk) is the auto-spectral density of signal j at frequency fk,
• fk represents the set of sampled points with a constant sampling frequency, assumed to be 50Hz.

2.2. Binary andmulticlass classification
To prepare the data for model training and evaluation, we applied standardization and cross-validation
procedures aimed at improving model generalizability and avoiding data leakage. Feature standardization
was performed using the function StandScaler from the Scikit-learn library python package [75], which
transforms features to have zero mean and unit variance [99]. This step ensures consistent scaling across all
features and enhances the robustness of the classifiers to varying feature magnitudes and outliers [36, 80].

For model evaluation, we employed stratified 10-fold cross-validation with shuffling [25, 55, 65] in the
training set. This approach preserves class proportions (PD and HC) across folds and provides a robust
estimate of model performance by ensuring that each observation is used for both training and validation
[18, 53]. The use of shuffling within each fold further mitigates the effects of temporal dependencies
introduced by sliding window segmentation [22, 102].

By combining feature standardization, stratification, and data shuffling, we minimize the risk of
information leakage and improve the fairness of evaluation [12, 21, 25, 36, 50, 55, 62, 65, 80, 89, 94]. This
methodology enables the model to be tested on unseen data, thereby strengthening the validity and
reproducibility of our findings [47, 88].

To classify PD patients and HCs (HC, with 16 individuals), we used a multiclass ML framework. The PD
group was segmented based on disease duration into two subgroups: 1–3 years (PD 1–3, 9 individuals) and
6–12 years (PD 6–12, 6 individuals), as shown in figure 3(a). This division was chosen primarily to achieve a
more balanced class distribution, given the limited sample size, and to allow meaningful training and
evaluation of the classification models.

Furthermore, in order to assess not only the temporal changes attributable to PD but also its stage, we
stratified the PD EEG dataset based on the Unified Parkinson’s Disease Rating Scale (UPDRS). The UPDRS is
a widely used clinical rating scale that evaluates the severity of PD symptoms and functional impairment.
Detailed information on UPDRS and the present dataset can be found in C. We divided the dataset into two
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Figure 3. Distribution of the disease duration and UPDRS in PD group. In (a) the blue line is split according to the labels used for
the multiclass classifier: those with a disease duration of 1–3 years (PD 1–3) and those with a disease duration of 6–12 years (PD
6–12). In (b) the blue line is split according to the labels used for the multiclass classifier: those with a disease stage of 20–40
(UPDRS1) and those with a disease stage of 43–75 (UPDRS2).

groups based on the UPDRS scores: 20–40 (UPDRS1), comprising eight individuals, and 43–75 (UPDRS2),
comprising six individuals. This segmentation mirrors the distribution of UPDRS scores illustrated in
figure 3(b). UPDRS1 typically represents milder stages of PD, while UPDRS2 indicates the more advanced
stages, reflecting the progression of the disease severity between participants.

The current work builds upon our previous research, which have established a foundation for employing
ML techniques in the classification of PD and HC groups [4–9]. Initially, we utilize the support vector
machine (SVM) to select connectivity metrics, leveraging its lower computational cost and effectiveness in
binary classification [8]. Afterwards, various ML algorithms, including logistic regression, random forest,
multilayer perceptron (MLP), long short-term memory neural networks, and convolutional neural networks
(CNN), are tested with the selected connectivity metric, as detailed in the section 3.1. Noteworthy, leveraging
10 s slicing windows data augmentations, a total dataset of 400 connectivity matrices is used, comprised of
200 datapoints representing HC, 100 PD in an early stage, and 100 PD in an progressed stage.

Hyperparameter optimization techniques, such as grid search and random search, are further employed
to fine-tune the ML algorithms for optimal performance, with evaluation metrics including accuracy,
precision, recall, receiver operating characteristic (ROC) curves, and area under the ROC curve (AUC) [6–9,
11, 20, 24, 29, 32, 44, 51, 54, 58, 59, 67, 73, 74, 81, 86, 100, 106, 109]. Additionally, the SHAP value technique
is employed for medical interpretation, providing insights into the predictive importance of specific traits in
the multiclass classification setting, as discussed in section 3.2.

Further, we conducted comprehensive statistical analyses on these connections to further validate the ML
findings, particularly the most significant cortical connections identified through the SHAP values
methodology. Specifically, we selected the connection strength values between pertinent cortical regions and
evaluated them across three distinct groups: HC, PD 1–3, and PD 6–12.

We employed the Wilcoxon rank-sum test for each connection to compare the distributions between
groups. The Bonferroni correction was applied to account for multiple comparisons and control the
family-wise error rate. The following symbols denote the levels of statistical significance:

• ns: 5.00e− 02< p⩽ 1.00e+ 00
• ∗: 1.00e− 02< p⩽ 5.00e− 02
• ∗∗: 1.00e− 03< p⩽ 1.00e− 02
• ∗∗∗: 1.00e− 04< p⩽ 1.00e− 03
• ∗∗∗∗: p⩽ 1.00e− 04.

This rigorous statistical approach ensures that the observed differences in connection strengths are not
attributed to random chance, thereby reinforcing the validity of the ML-derived insights.

3. Results

3.1. Binary classification
Considering the AUC metric, the performance of each connectivity metric is illustrated in figure 4. The Sync
measure has the best performance for the test set, equal to 0.980 for the mean AUC, 0.981 for precision, 0.979
for recall, and 0.980 for accuracy.
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Figure 4. Selection of optimal correlation metrics with SVM. In blue is the AUC of the train set; in green is the AUC of the test set.
The best performance was the Sync.

Figure 5. Results for method selection: best performance by MLP. In (a) the results refer to the train set with the error bar due to
the 10-fold stratified cross-validation and (b) the results of the test set.

Then, we tested all ML algorithms that resulted in figure 5; the best classifiers were CNN and MLP. CNN
performance for the test set was equal to 0.999 for the mean AUC, 0.990 for precision, 0.990 for recall, and
0.990 for accuracy. MLP performance for the test set was equal to 0.990 for the AUC, 0.989 for the precision,
0.991 for the recall, and 0.990 for the accuracy. Considering the performance and the computational cost, we
selected the MLP classifier for use in the next section.

To optimize model performance, we performed feature selection using recursive feature elimination
(RFE), an iterative method designed to identify the subset of features that maximizes classification accuracy.
RFE is well-established in medical data analysis [34, 83, 104, 105] and works by progressively removing the
least important features and reevaluating the model. Here, the RFE analysis was implemented with the
Yellowbrick library [17] and revealed that peak performance was achieved with a subset of 136 features
(figure 6). Consequently, this optimized feature set was used for all subsequent modeling, as the analysis
confirmed that the complete feature set was unnecessary for achieving maximal efficacy.

3.2. Multiclass classification
Regarding the temporal changes due to PD, the general performance for the MLP in a multiclass classifier for
the test set was equal to 0.983 for the mean AUC, 0.989 for precision, 0.977 for recall, and 0.983 for accuracy.
Figure 7 displays the learning curve (figure 7(a)) and the confusion matrix (7(c)), respectively. From
figures 7(a), the confusion matrix showed that the group most difficult to distinguish was the PD 6–12
(in the confusion matrix, the PD 6–12 group has some mistaken classification with the group HC).

The visual representation of the learning curve illustrates the impact of varying the number of training
instances on the model’s predictive accuracy [78]. Figure 7(c) shows that all the data was required to
converge the model.

For the interpretability of the model and the decision-making process, we performed a SHAP analysis.
Although RFE identified 136 features as optimal for predictive performance, we intentionally used a broader
set of the top 300 features for the SHAP analysis. This expanded set, chosen despite its high computational
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Figure 6. Recursive feature elimination (RFE). The optimal performance is attained with 136 features, so utilizing the entire
comprehensive feature set is unnecessary.

Figure 7. The test sample ML results from connectivity matrices using disease duration and UPDRS. (a), (b) Learning curves for
disease duration and UPDRS, showing training (purple) and test (blue) accuracies. (c), (d) Confusion matrices for disease
duration and UPDRS, where diagonal elements represent true positives (TP), highlighting the classification performance for
different classes.

cost, allows for a more comprehensive and robust investigation of the features ranked by their global
contribution. The analysis identified distinct connectivity patterns driving the classification of early-stage
versus late-stage PD (figure 8). In these plots, the feature value represents the connectivity strength, where
red indicates high synchronization and blue indicates low synchronization. For the PD 1–3 group, model
predictions were most influenced by decreased synchronization between the FP2-FC5 and O2–T7 electrode
pairs. Conversely, for the PD 6–12 group, the most decisive features were increased synchronization between
F8–AF3 and FC6–Fp1.

SHAP value matrices for each class are concatenated into a single array, with rows representing samples
and columns representing features. We averaged SHAP values across instances within each class for clarity. A
cluster map, shown in figure 9, was generated using hierarchical clustering with cosine similarity as the
distance metric, which captures the orientation of feature importance patterns rather than their magnitude
differences [93]. The resulting dendrogram groups rows and columns with similar SHAP patterns, with
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Figure 8. Feature importance ranking using the SHAP values methodology for the MLP classifier with brain EEG channels in
descending order. The y-axis represents the most important EEG connections, ranked by mean absolute SHAP value. The x-axis
represents the SHAP value, indicating the magnitude and direction of a feature’s impact on the model’s prediction for that class.
The feature value represents the connectivity strength (red= high synchronization, blue= low synchronization).(a) Feature
importance ranking regarding PD 1–3 class. (b) Feature importance ranking regarding PD 6–12 class.

heatmap colors indicating SHAP value magnitudes (blue color scale for negative, red color scale for positive,
and white for values near zero).

The dendogram clearly shows that the PD 1–3 group clusters most closely with the HC group. This
proximity indicates that the model identifies significant similarities in the neural connectivity patterns of
early-stage PD and healthy individuals. More importantly, this combined group is directly linked to the
late-stage PD group based on their Shap values. This indicates a potential continuum or progression of the
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Figure 9. Cluster map generated through hierarchical clustering of SHAP values. The dendrogram of the superior part
corresponds to the hierarchy clustering for each of the 300 features used in the SHAP value methodology. The heatmap colors
represent SHAP value magnitudes (blue color scale for negative, red color scale for positive, and white for values near zero). The
left side of the plot corresponds to the resulting clustering regarding the dendrogram SHAP values features wherein the groups
PD 1–3, PD 6–12, and HC.

features, reflecting a gradual transition between the groups. In essence, the model has identified a measurable
path of change as the disease progresses.

Further, as a complement to the temporal changes results due to PD, the differentiates changes were
evaluated using the UPDRS scores; the general performance for the MLP in a multiclass classifier for the test
set was equal to 0.969 for the mean AUC, 0.963 for precision, 0.955 for recall, and 0.967 for accuracy.
Figure 7 displays the learning curve (figure 7(b)) and the confusion matrix (7(d)), respectively. From
figure 7(d), the confusion matrix, respectively, showed that the group most difficult to distinguish was the
UPDRS1 (in the confusion matrix, the UPDRS1 group has some mistaken classification with the group HC).
This difficulty likely stems from the lower UPDRS scores associated with the UPDRS1 group, implying an
earlier stage of PD progression.

We employed the MLP along with SHAP values to identify the five most significant connections for each
correlation metric in the PD 1–3 and PD 6–12 classes (tables 2 and 3). This was done to assess the impact of
the metrics, as their mathematical differences make them sensitive to distinct connectivity structures. For
example, they capture different aspects of the signal, including linear (Pearson), rank-based (Spearman),
frequency-domain (Synchronization), shrinkage-based (LW), and multivariate dependencies (CCA), which
in turn leads to the identification of different sets of dominant connections.

Figure 10 illustrates the main EEG connectivity patterns identified for both PD 1–3 and PD 6–12 classes,
based on the data from tables 2 and 3. In both classes, there is a concentration of significant connections in
the frontal and prefrontal regions across multiple correlation metrics (Sync, SC, and CCA). Further, figure 10
shows that ongoing disease progression and the correlation of the frontal region (F7 and Fp2) with other
areas is reduced.

In addition to the ML validation using SHAP values, we conducted rigorous statistical tests on the
connectivity metrics, mainly focusing on the most significant connections identified through the SHAP
values methodology. The results, depicted in figures 11 and 12, confirm that all connections found were
statistically significant in at least one of the group comparisons (HC vs PD 1–3, HC vs PD 6–12, or PD 1–3 vs
PD 6–12). These figures illustrate the strength of each connection across the groups, with significance levels
indicated by the symbols described in the corresponding figure captions.
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Table 2. Table depicting the most significant connections identified through the SHAP value methodology and MLP classifier for each
correlation metric and the class PD 1–3. Connection importance is denoted by the intensity of red shading. In bold are the main
connections that appear in both classes, PD 1–3 and PD 6–12.

Connections Sync. SC PC CCA LW

Fp2–FC5
O2–T7
Cp1–Fp1
Fc6–Fp1
Fp2–Fc1
T7–Af3
Cp1–F7
F3–Fp1
F8–Fp1
Fc1–Fp1
Fc5–Fp1
T7–F7
Fp2–Fp1
Pz–Af3
Fp2–F7
Fc2–Fp1

Table 3. Table depicting the most significant connections identified through the SHAP value methodology and MLP classifier for each
correlation metric and the class PD 6–12.Connection importance is denoted by the intensity of red shading. In bold are the main
connections that appear in both classes, PD 1–3 and PD 6–12.

Connections Sync. SC PC CCA LW

F8–Af3
Fc6–Fp1
P7–T7
Af3–F7
Fc1–Af3
Cp5–Af3
Cp5–Fp1
Fp2–F7
Cp2–Fp1
Fp1–Af3
Po3–Fp1
P7–Af3
Cp6–Fp1

4. Discussion

4.1. Binary classification
Among the evaluated connectivity metrics, coherence (Sync) yielded the best performance in the binary
classification task. As defined by Bowyer [23], coherence captures both amplitude and phase coupling across
a range of frequencies, providing a more comprehensive measure of signal synchronization. This makes it
particularly suitable for analyzing brain connectivity in PD, a condition known to alter both spectral power
and synchrony in multiple brain regions. The emphasis on interregional signal coupling aligns with the
underlying pathophysiology of PD, where disruptions in neural signaling and coordination are hallmark
features [28, 96–98]. Therefore, coherence emerges not only as a theoretically appropriate metric but also as
an empirically superior one, offering unique insights and enhanced discriminatory power within our ML
framework to distinguish PD patients from HCs.

Further, the best ML algorithms were the MLP classifier and CNN, which tested the AUC metric of 0.990
and 0.999, respectively. These performances are higher compared to the literature, according to table 1, which
studies using the same dataset of this study also in a binary approach comparing PD patients from HC.

4.2. Multiclass classification
Regarding the temporal changes due to PD, using the MLP, the obtained accuracies of 0.933 for PD 6–12 and
1.000 for both PD 1–3 (depicted in figure 7(c)) and HC suggest a promising discrimination capability of the
ML model in distinguishing between different groups based on connectivity matrices. The perfect
classification for PD 1–3 and HC groups could indicate distinct patterns of brain connectivity in these
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Figure 10.Main EEG connections identified through SHAP value methodology and MLP classifier for each correlation metric in
PD 1–3 (a) and PD 6–12 (b) classes. The color scheme denotes different metrics: Sync (blue), SC (red), PC (purple), CCA
(orange), and LW (green).

cohorts, reflecting the early duration of PD progression and healthy brain function, respectively. The slightly
lower accuracy for PD 6–12 implies greater heterogeneity or subtler differences in connectivity patterns that
become more complex or less distinct as the disease progresses among patients with longer disease duration
despite medication intake. Nonetheless, the model can still distinguish between the two groups with high
metric performance.

After employing the SHAP value methodology, we identified the most influential connections for the PD
1–3 group. Notably, lower synchronization values in regions such as FP2 and FC5 were found. The
frontopolar cortex (FP2) is implicated in various higher-order cognitive processes, including
decision-making, executive function, and social cognition [37, 52]. On the other hand, the left frontal cortex
(FC5) plays a crucial role in motor planning and execution, as well as language processing [39, 60]. Thus,
alterations in synchronization patterns within these regions may signify underlying deficits in both cognitive
processing and motor coordination [45, 90]. Additionally, decreased synchronization in regions like O2 and
T7 suggests possible impairment in sensory processing and attention, which are commonly affected in the
early duration of PD [41]. Conversely, for the PD 6–12 group, heightened synchronization in regions like F8
and AF3 emerged as significant contributors, possibly reflecting potential compensatory mechanisms or
adaptations occurring in response to disease progression and stage-related changes in neural circuitry [71].

Furthermore, our investigation unveiled a significant association between the FC6 and FP1 electrodes in
both PD 1–3 and PD 6–12 cohorts, showcasing diminished synchrony in the former and amplified
synchrony in the latter. This observed increase in synchronization within frontal brain areas regarding PD is
consistent with findings from other studies [40, 68].

These findings underscore the complex interplay between neural connectivity patterns, disease
progression, and stage-related changes in PD.

Our analysis revealed intriguing clustering behavior that sheds light on the underlying patterns of feature
importance across different disease duration. Specifically, the SHAP values associated with PD 1–3
demonstrated a notable proximity to those of the HC class, forming a distinct cluster. This clustering suggests
that the features contributing to the ML model’s predictions for early-duration PD share similarities with
those of healthy brain function. Moreover, we observed a connection between this cluster and the SHAP
values corresponding to PD duration 6–12. This linkage implies a potential continuum or progression in the
underlying neural connectivity patterns captured by the model, spanning from the early to later duration of
PD. The hierarchical clustering highlights the distinctiveness of brain connectivity patterns in early-duration
PD and healthy brains. It suggests a gradual shift towards features more characteristic of advanced PD as the
disease progresses.

Regarding the results of PD stages, using the MLP in a multiclass classifier for the test set was equal to
0.969 for the mean AUC, 0.963 for precision, 0.955 for recall, and 0.967 for accuracy. Therefore, it was
possible to distinguish PD patients from the temporal and stage degree of the disease. Further, figure 7(a)
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Figure 11. Statitical test of SHAP value methodology’s main connection found for PD 1–3. Statistical analysis of the most
significant connections identified through the SHAP values methodology for the PD 1–3 group. Each subplot shows the
distribution of connection strengths between specific cortical regions for HC, PD 1–3, and PD 6–12. The following symbols
indicate the statistical significance between the groups: ns (5.00e− 02< p ⩽ 1.00e+ 00), ∗ (1.00e− 02< p ⩽ 5.00e− 02), ∗∗

(1.00e− 03< p ⩽ 1.00e− 02), ∗∗∗ (1.00e− 04< p ⩽ 1.00e− 03), and ∗∗∗∗ (p ⩽ 1.00e− 04).

demonstrates that the model achieved convergence without necessitating the entirety of the dataset. This
suggests that distinguishing between PD patients and HC subjects based on disease stage was relatively
straightforward compared to predicting disease duration. Consequently, to accurately model disease
duration, it was imperative to utilize the entire dataset for convergence
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Figure 12. Statitical test of SHAP value methodology’s main connection found for PD 6–12. Statistical analysis of the most
significant connections identified through the SHAP values methodology for the PD 6–12 group. Each subplot shows the
distribution of connection strengths between specific cortical regions for the groups HC, PD 1–3, and PD 6–12. The statistical
significance between the groups is indicated by the following symbols: ns (5.00e− 02< p ⩽ 1.00e+ 00), ∗

(1.00e− 02< p ⩽ 5.00e− 02), ∗∗ (1.00e− 03< p ⩽ 1.00e− 02), ∗∗∗ (1.00e− 04< p ⩽ 1.00e− 03), and ∗∗∗∗

(p ⩽ 1.00e− 04).

Our analysis regarding correlation metrics’ influence on the SHAP values results, as illustrated in figures 2
and 3, uncovered consistent patterns across various correlation metrics, notably in characteristic regions
such as Fp1. However, distinct correlations emerged as significant within specific groups of metrics. Notably,
linear correlation metrics like SC and PC clustered together, while CCA and LW formed another cohesive
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group. Additionally, Sync. stood out as an independent correlation metric. Importantly, these findings
represent novel results that have not been evaluated in the existing literature to the best of our knowledge.

Further, the connections FC6–Fp1 and Fp2–F7 appear for both classes (highlighted in bold in
tables 2 and 3).

Finally, validation of the ML findings was conducted through rigorous statistical tests on the connectivity
metrics, mainly focusing on the most significant connections identified using the SHAP values methodology.
These analyses revealed that all identified connections were statistically significant in at least one of the group
comparisons (HC vs PD 1–3, HC vs PD 6–12, or PD 1–3 vs PD 6–12). This statistical significance across
comparisons underscores the robustness of the connections identified by the ML model, further validating
their importance in distinguishing between different stages of PD. This further validates the importance of
these connections in distinguishing between different stages of PD.

5. Conclusions and future work

In conclusion, our study presents a novel approach to understanding PD progression through refined
segmentation and advanced analysis of EEG signals. By stratifying patients based on disease duration, we
reveal distinct neural connectivity patterns corresponding to different disease trajectory duration. Our
findings underscore the critical role of coherence in capturing the synchronized behavior of signals, which
scontributes to distinguishing PD patients from controls. Moreover, employing ML algorithms such as the
MLP classifier and CNN, we achieved high accuracy rates compared to those reported in the literature,
particularly in binary classification tasks. This indicates the robustness of our methodology in identifying
subtle differences in connectivity patterns associated with PD progression and stage.

Furthermore, leveraging SHAP values enhances the interpretability of our models, revealing relevant
connectivity patterns implicated in PD pathophysiology. An intriguing finding was the reduction of
synchronization between EEG channels and the progression of the disease.

To ensure the robustness of our findings, we further validated the most significant connections using
statistical tests. This validation confirmed that all identified connections were statistically significant in at
least one group comparison.

Our analysis suggests changes in neural connectivity patterns across different disease stages. Notably,
early-duration PD exhibits similarities with healthy brain function, while later stages manifest distinctive
features indicative of disease progression.

However, it is essential to acknowledge the limitations of our methodology, particularly its reliance on
small data. Furthermore, the San Diego dataset lacks detail regarding UPDRS assessments, such as whether
they were conducted in ON or OFF medication states and the use of non-specialist raters. These factors may
affect the reliability of disease staging. Future research should ensure clinically rigorous evaluations by
trained professionals and include a broader range of disease durations to understand the impact of these
interventions better.

Overall, our study contributes valuable insights into the complex interplay between neural dynamics,
disease progression, and stage-related changes in PD, offering new avenues for further research and clinical
application.
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