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ABSTRACT

(a) Let X: R? — R? be a differentiable map (not necessarily C') and let
Spec(X) be the set of (complex) eigenvalues of the derivative DX, when p
varies in R2. If, for some ¢ > 0, Spec(X) N[0, €) = @ then X is injective.

(b) Let X : R? — R? be a differentiable vector field such that X(0) = 0 and
Spec(X) C {z € C: R(z) < 0}. Then, for all p € R?, there is a unique positive
trajectory starting at p; moreover the w—limit set of p is equal to {0}. 2003
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2 C. GUTIERREZ AND R. RABANAL

RESUMO

Seja X : R?2 — R? uma aplicagdo diferencidvel (nio necessariamente C1) e
Spec(X) o conjunto dos autovalores (complexos) da derivada DX, quando p
percorre todo o R2. Se, para algum ¢ > 0, Spec(X) N [0,¢) = @ entdo X é
injetivo.

(b) Seja X : R? — R? um campo de vetores diferencidvel tal que X (0) =0
e Spec(X) C {z € C: R(z) < 0}. Entdo, para todo p € R?, existe uma unica
trajetéria positiva partindo de p; além disso o conjunto w—limite de p é igual
a {0}. 2003 ICMC-USP
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 3

INTRODUCTION

The main results of this article are the following theorems:
Theorem 2.2.1.  Let X: R?* — R? be a differentiable map (not necessarily of class C*)
If, for some e > 0, Spec(X) N [0,¢e) = 0, then X is injective.

Theorem 3.3.1. Let X: R? — R? be a differentiable vector field such that X(0) = 0
and Spec(X) C {z € C : R(z) < 0}. Then, for all p € R?, there is a unique positive
trajectory starting at p; moreover, the w—Ilimit set of p is equal to {0}.

These results are relevant with respect to the following conjectures as it will be explained
in the comments below. Let F': R™ — R"™ be a differentiable map. We denote by Spec(F")
the set of (complex) eigenvalues of the derivative DF),, as p varies in R™. One of the
several equivalent formulations of the famous KELLER JACOBIAN CONJECTURE states
that if F: R® — R™ is a polynomial map having constant non-zero Jacobian, then F is
injective. The MARKUS-YAMABE CONJECTURE states that if F/: R® — R" is a C'! Vector
field such that X (0) = 0 and Spec(F) C {z € C: R(z) < 0}, then the origin 0 is a global
attractor. The CHAMBERLAND CONJECTURE [7] states that if F' : R® — R" is a map of
class C! such that, for some € > 0, Spec(F) N {z € C: |z| < €} = 0, then F is injective.
It has already been proved that the Chamberland Conjecture implies the Weak Markus-
Yamabe one [12]. In this respect, V. A. Alexandrov stated in [1] a conjecture which is close
to that of Chamberlain.

Comments:

(1) Theorem 2.2.1. is optimal in the following sense. If the assumptions are relaxed to
0 ¢ Spec(X), then the conclusion, even for polynomials maps X, need no longer be true,
as shown by Pinchuck’s counterexample [25]. Also B. Smith and F. Xavier ([30], Theorem
4) proved that there exist integers n > 2 and non-injective polynomial maps P : R™ — R™
with Spec(P) N [0, 00) = 0.

(2) Theorem 2.2.1. extends the A. Fernandes and C. Gutierrez injectivity result, which
requires X be of class C1. In the same way, Theorem 3.1 improves the solution of the
bidimensional Markus-Yamabe Conjecture given by R. Fessler and C. Gutierrez for C?!
vector fields [13], [14] (see also [20] and [23]). It has already been proved that the Markus-
Yamabe Conjecture is false for dimensions greater than two ([9]).

(3) Theorem 2.2.1. confirms, in a stronger way, the Chamberland and Alexandrov con-

jectures in dimension 2.
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4 C. GUTIERREZ AND R. RABANAL

(4) Theorem 2.2.1. does not imply the bidimensional real Keller Jacobian Conjecture,
since given an even natural n, the polynomial map X(z,y) = (—y,z+y") has constant
Jacobian equal to one and satisfies Spec(X) = S' U (R \ {0})

(5) Campbell [4] classified the two-dimensional C' maps whose eigenvalues are both 1.
All such maps have an explicit inverse. The class of functions considered in Theorem 2.2.1.
is much broader, but no explicit inverse is given. Also, the surjectivity of the maps studied
by Campbell remains as an open problem for the case of differentiable maps. The articles
[8] and [10] are related to [4].

This paper is organized as follows. The first section is devoted to prove Theorem 2.2.1.
under a stronger assumption. The proof of Theorem 2.2.1. is completed in section 2.
Section 3 is devoted to the proof of Theorem 3.3.1.

1. A PARTIAL INJECTIVITY RESULT

In this section we prove the following result

THEOREM 1.1.1. Let X = (f,g): R? — R? be a differentiable map. If, for some € > 0,
Spec(X) N (—e¢,€) =0, then X 1is injective.

To this end we shall use the following A. V. Cernavskii’s Theorem [5], [6] ( see also [31]
and [27]).

THEOREM 1.1.2. Let U be an open subset of R? and X = (f,g) : U — R? be a differ-
entiable map such that, for allp € U, DX (p) is non-singular. Then, for all p € U, there

ezist a neighborhood V = V(p) and € = €(p) > 0 such that X|v:V — (f(p) — €, f(p) +
e) X (g(p) —€,9(p) +¢€) is a homeomorphism.

As a direct consequence of this result we obtain.

COROLLARY 1.1.3. Let X = (f,9) : R? — R? be a differentiable map such that, for
all p € R2, DX (p) is non-singular. Then the level curves {f = constant} (resp. {g =
constant}) make up a C°-foliation F(f) (resp. F(g)) on R?, without singularities, such
that if L is a leaf of F(f) (resp. F(g)) then g|r (resp. flr) is strictly monotone; in
particular F(f) and F(g) are transversal to each other.

Orient F(f) (resp. F(g)) so that if L is an oriented leaf of F(f) (resp.F(g)) then g[.
(resp. f|z) is increasing in conformity with the orientation of L.
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 5

Let a > 0 and 0,7 : [~a,a) — R? be injective C°-curves such that o(0) = v(0) = 0.
We say that « is transversal (resp. tangent) to o at v(0) = o(0), if there exist € > 0.
neighborhoods V' of v(0) and U of (0,0), in R? and a homeomorphism H : V — U such
that for all |t| < e, Hoo(t) = (¢,0) and H o(t) = (t,t) (resp H o(t) = (¢, ¢(t)), where
#(t) > 0 and ¢(0) = 0). If v is tangent to o at y(0) = o(0), we say that the tangency is
generic if H and ¢ (as right above) can be taken so that ¢(t) = [¢].

c, /o

tangent

transversal

FIG. 1.

Let hg(z,y) = zy and consider the set
B={(z,y)€[0,2] x[0,2):0<z+y <2} .

Definition 1. Let X = (f,g): R> — R? be as in Theorem 1.1.1. Given h € {f,g}, we
will say that A C R? is a half-Reeb component for F(h) (or simply a hRc for F(h)) if there
is a homeomorphism H : B — A which is a topological equivalence between F(h)| 4 and
F(ho)|p and such that

(1) The segment {(z,y) € B : © +y = 2} is sent by H onto a transversal section for the
foliation (k) in the complement of H(1,1); this section is called the compact edge of A.

(2) Both segments {(z,y) € B :z =0} and {(z,y) € B :y = 0} are sent by H onto full
half-trajectories of F(h). These two semi-trajectories of 7 (h) are called the non-compact
edges of A.
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6 C. GUTIERREZ AND R. RABANAL

H/)

FIG. 2. A half-Reeb component.

The connection between half-Reeb components and injectivity is given by the following
result.

PROPOSITION 1.1.4. Suppose that X = (f,g) : R? — R? is a differentiable map such
that 0 ¢ Spec(X). If X is not injective, then both F(f) and F(g) have hRc’s.

Proof: Suppose by contradiction that F(f) has no half-Reeb components. As the foliation
F(f) has no singularities and is topologically equivalent to a smooth foliation [15], by
Kaplan’s classification of planar foliations [18], [19],(see [2] for a more recent exposition)
we obtain that J(f) is topologically equivalent to the horizontal foliation of R?. Since F(f)
is made up of level curves of f and f is strictly monotone along leaves of F(g), we obtain
that each level curve of f must be connected. As g restricted to each level curve of f is

strictly monotone, we arrive to the contradiction that X is injective.

As we want to give a self-contained exposition, we shall provide a proof of Proposi-
tion 1.1.4 independent on Kaplan’s result ([18], [19]).

We again start supposing, by contradiction, that F(f) has no half-Reeb components.
Without lost of generality we may assume that there are p;,p2 € R? such that X (p1) =
X (pz) = (0,0). For i = 1,2, let a; be the trajectory of F(f) passing through p;. As gla, is
strictly monotone and g(p1) = g(p2) = 0, we obtain a; Nas = (. Let Q(p1, p2) be the set
of compact arcs of R? whose endpoints are p; and ps and which meet transversally F(f)

a't {p17p2}'
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 7

(a) Among all elements of (p1, p2) take I' € Q(p1, p2) which minimizes the number of
tangencies with F(f).

We claim that:
(b) a; NT ={p;}, for i=1,2.

If we assume, by contradiction, that a; N I' contains properly {p;}, we may find ¢ €
'\ {p1,p2} and a closed subinterval a of a1, with endpoint p;, ¢, such that aNT’ = {p1, ¢}.
We may assume that [ is transversal to a at ¢. Let v denote the connected component of
'\ {q} containing {p2}. We can see that «a U+ is an arc connecting p; and pz and also
that F(f) is tangent to I' at some point of I\ (YU {p1} U{q}). Under these conditions, we
may approximate a U~ by an arc of Q(p;,p2) which has less number of tangencies with
F(f) than T. This contradiction with (a) proves (b).

As f(p1) = f(p2) = 0, F(f) is tangent to I at some point ¢ ¢ {p1,p2}. By using (a)
that all tangencies of F(f) with I' are generic. Therefore, by looking at the trajectories
of F(f) around ¢, we may see that there exist closed subintervals [p,q], (¢, Tp] of I" with
[p,q) N g, Tp] = {q}, and a homeomorphism T : [p,q] — [¢, T'p] such that,

(cl) Tq = q and, for every z € (p,q|, there is an arc of trajectory [z, Tz|; of F(f),
starting at z, ending at Tz and meeting [’ exactly and transversally at {z, Tz},

(c2) the family {[z,Tz]; : € (p,q]} depends continuously on z and tends to {q} as
T —q.

From now on, suppose that
(d) [p, q] is maximal with respect to properties (c1)-(c2) above

Then, using (b) and the fact that F(f) has no Reeb components, we obtain {p,T’p} N
{p1,p2} = 0. We claim that

(e) there is no arc of trajectory [p, T'p]s of F(f) connecting p and T'p such that the family
{[z,T=]s : = € (p,q]} approaches continuously to [p, T'p]s as = goes to p.

In fact, suppose that (e) is false. Then, by using (d) and the fact that F(f) has no Reeb
components, we conclude [p, T'p; is tangent to I" at least at one of the points of {p,T'p}.
Under these circumstances, it is not difficult to approximate the curve, which is the union
of [p, Tp); with T'\ ((p,q] U [q,Tp)), by a curve I'1 € Q(p1,p2) which has less tangencies
with F(f) than T. This contradiction with (a) proves (e). Therefore, the sub-interval
[p, q) U [q, Tp] is the compact edge of a half-Reeb component of 7(f) made up of two half
trajectories of F(f) starting at p and T'p, respectively, together with the union of the arcs
[z, Tx]f, with z € (p, q]. This finishes the proof. il
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8 C. GUTIERREZ AND R. RABANAL

For each 0 € R let Ry denote the linear rotation
cosf —sinf
sinf  cosf
The following proposition will be useful. Its proof is contained in [14, Lemma 2.5].

PrOPOSITION 1.1.5. Let X = (f,g): R? — R? be a non-injective, differentiable map
such that 0 ¢ Spec(X). Let A be a hRc of F(f) and let (fo,90) = Rgo X o R_g, 0 € R.
If TI(A) is bounded, where I : R? — R is given by II(z,y) = =z, then there is an € > 0
such that, for all 8 € (—¢,0) U (0,€), F(fo) has a hRc Ag such that TI(Ag) is an interval
of infinite length.

Proof:

(a) Let 6 € R be such that, for allm € Z, 6 # &E. Then F(fg) and F(go) are transversal
to both Rg(F(f)) and Rg(F(g))

In fact, we shall only prove that F(fp) is transversal to Ro(F(f)). If o : (a,b) — R? is an
injective curve contained in a leaf of F(f), then fpoRpoa(t) = (cos @) f(c(t))—(sin0)g(a(t))
which is strictly monotone, because f(a(t)) = constant, g(a(t)) is strictly monotone and
sin@ # 0. Without lost of generality, we may assume that nearby its endpoints, the
compact edge of A is made up of arcs of F(g). In this way there exist a > 0 and an

injective, continuous curve v : (—a, 1+ a) such that

(bl) ~[0,1] is a compact edge of A.
(b2) V|(=a,a) and 7|(1-a,1+a) are contained in leaves of F(g).
)

(b3) for some 0 < § < a there exists an orientation reversing, injective function o :

(=6,6] — (1—a, 1-+a), such that £(7(s)) = /(¥(o(s))), also, if s € (0,5), wo(s) € (1—a,1)
and there exist an arc of trajectory Tp(s) C A connecting y(s) with y(¢o(s))

If ¢ > 0 is small enough, than for each |#| < e, there exist an orientation reversing

continuous injective function g : [—6,8] — (1 —€,1 + €) such that

(c1) fo(v(s)) = fo(v(va(s)))).

(c2) for all s € [4, 2] there is an arc of trajectory Ty(s) C Rg(A) of F(fp) containing
v(s) with v(pa(s)),

(c3) T(s) meets 4(—0,1 + &) exactly at {¥(s),7(va(s))}
(cd) po(—0) > 1
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 9

FIG. 3.

The continuous family {Tp(s) : § < s < £} extends to a maximal continuous family
{Ty(s) : 0 < s < 3}, with ¢ > —6 and satisfying (c2) and (c3) above.

The family {Tp(s)} cannot be extended to s = —J because p(—9) > 1 and, as we can
easily see,

such an arc Tp(—3d) would have a tangency with Ry(F(f)) at a point of Ry(.A).

Therefore the set m contains a half-Reeb Component B of F(fy). Also we
may easily se that one of the compact edges of B must be contained in Ry(.A). This implies

that II(B) is an infinite length interval. [ |

The proof of the following lemma can be found in [28] (see also 3] and [16]). The proof
below, due to C. G. T. A. Moreira (Gugu), is included for completeness.

LEMMA 1.1.6. Let I be a bounded interval of R and H: I — R be a bounded measurable
function. If A denote the set of x € I such that
|H(z +h) — H(h)|

li L8
P A .

Then A is a (Lebesgue) measure set zero.

Proof: Suppose, by contradiction, that A has positive measure. Then there exist a positive
measure compact subset K C A such that f|x : K — R is continuous.

Then, for all y € f(K), (flx)"'(y) is a discrete set and so (f|x)~!(y) is a finite set.
Given positive integers n,r, let C(n,r) be the set of x € K such that for some points
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10 C. GUTIERREZ AND R. RABANAL

Ty <2y < -+ < Ty in K with zj41 —z; > % for 1 <j<mnand f(z1) = f(z2) =+ =
f(z,) = f(z). By the continuity of f and by the compactness of K, C(n,r), is closed. It
follows that the set

An) = {z € K : #(flk) (=) 2 n} = | JC(n,7)

r>1

is borelian. Hence,

B(n) = A(n)\ A(n+1) = {z € K : #(f|x) ™' (2)) = n}

is also a borelian.

As K = Z B(n) has positive measure, some B(m) has positive measure. As
n>1

B(m) = UB(m) nC(m,r)

r>1

there is some positive integer 7 such that B(m)NC(m,7) has positive measure. By writings
this last set as a finite union of sets having diameter less than %, we have that one of
these sets has positive measure and the restriction of f to this set is injective (by the
definitions of B(m) and C(m,T)). This set contains a positive measure compact set L
such that f|: L — f(L) is continuous injective and so a homeomorphism. We obtain a
contradiction by applying the Sard’s Theorem [21] to (f|z)™!: f(L) — L which has zero
derivative everywhere and so L should be a measure zero set. |

Proof of Theorem 1.1.1

Suppose by contradiction that X = (f, g) is not injective. By Proposition 1.1.4, F(f) has
a half-Reeb component A. Let II: R> — R be the orthogonal projection onto the first
coordinate. By composing with a rotation if necessary (see Proposition 1.1.5) we may
assume that TI(A) is an unbounded interval. To simplify matters, let us suppose that
[b,00) C II(A). Then, if a > b is enough large,

(a) For any z > a, the vertical line II™!(z) intersects exactly one trajectory oz C A of
F(f)|a such that II(az) N (z,00) = 0. In other words, z is the maximum for the restriction
Hlis. s

As a; is a continuous curve, it follows that
(b) If z > a, az NII7%(z) is a compact subset of A.
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 11

Let H : (a,00) — R be defined by
H(z) =sup{y : (z,9) € ax NI} (2)}

As F(f) is a foliation, we may obtain that the function

(c) ¢(z) = f(z, H(zx)) is a strictly monotone continuous function which, when restricted
to any interval (a,b], is bounded; in particular, ¢ is differentiable a.e.

We claim that
(d) H is upper semicontinuous; thus, H is a measurable function.

In Fact, suppose by contradiction that H is not upper semicontinuous at zg > a. As H
restricted to (a,zo + 1) is bounded there exist ¢ € R and a sequence z, — xg such that
H(zp) < c and H(z,) — c. However, ¢ is continuous. Hence,

(zo,¢) = lim (zp, H(z,) = lim @(z,) = ¢(z0) = (zo, H(z0))-

n—00 n—0o0

This contradiction proves (d).
By (d) above and lemma 1.1.6 if a > 0 is large enough, there exists a full measure subset
M of (a,o0) such that

(e) If z € M, then ¢ is differentiable at = and

liminf [z 3:) — () <
h—0 Ihl

To proceed we shall only consider the case in which ¢ is strictly increasing. We claim
that

(f) If zx € M, then ¢'(z) = fi(z,H(z)) > €
k
In fact, if £ € M, there exists a sequence h,, — 0 such that lim h—" = o € R where

n
kn = H(z+h,)—H(z). Also, by the structure of the level curves of f| 4 and the assumptions
that ¢ is increasing,

f(z,H(z)) = inf {f(m,y) cy el Yz)N A}

This implies that fy(z, H(z)) = 0. Hence, as f is differentiable at (z, H(z)), there are real
valued functions €1, €3 defined in a neighborhood of (0,0) such that

f(IL‘ +hn,y + kn) = f(a:,y) + fx(I,H(I))hn il El(hna kn)hn NE EE(hn, kn)kn
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12 C. GUTIERREZ AND R. RABANAL

and nlin;o €1(hn, k) = lim eg(hy, kn) = 0. Therefore, for n large enough,

L h,i;) =~ _ e, H @) + 1 k) + €2l ’Wﬁ—”

which implies that

n—00 hn

= f:l:(x! H(CE))
Therefore
¢ (x) 0
DX (z,H(z)) =
9:(z, H(z)) gy(z, H(z))
i. e. ¢'(z) is an eigenvalue of DX (z, H(z)). By the assumption of the theorem and the
assumptions that ¢ is strictly increasing, (f) is proved.

As f|a is bounded, ¢ is bounded. Hence, there is a constant K > 0 such that for all
z > a, p(a) < p(x) < K. Take ¢ > a so that (c — a)e > K. Then we have that

c c

K > ¢(c) — p(a) > / ¢ (z)dz > / edz = (c—a)e > K

a a

This contradiction proves the theorem. [ |

2. INJECTIVITY RESULT

This section is devoted to the proof of the following

THEOREM 2.2.1. Let X: R?> — R? be a a differentiable map. If, for some ¢ > 0,
Spec(X) N [0,€) = 0, then X is injective.

We shall need the following

LEMMA 2.2.2. Let F : R® — R™ be a differentiable map such that det(F'(z)) # 0 for all
z in R*. Given t € R, let Fy: R® — R™ denote the map Fy(z) = F(z) — tz. If there exists
a sequence {tm} of real numbers converging to 0 such that every map Fi, : R™ — R™ is

injective, then F' is injective.
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 13

Proof: Choose z1,22 € R" such that F(z1) = y = F(x2). We will prove z1 = z3. By
the Inverse Mapping Theorem 1.1.2, we may find neighborhoods Uj,Us,V of z1,s,v,
respectively, such that, for i = 1,2, F|y, : U; — V is a homeomorphism and U; N Uy = 0.
If m is large enough, then F; (U;) N Fi, (Us) will contain a neighborhood W of y. In this
way, for all w € W, #(Ft;1 (w)) > 2. This contradiction with the assumptions, proves the
lemma. |

REMARK 2.2.3. Even if n =1 and the maps Fy,, in Lemma 2.2.2 are smooth diffeomor-
phisms, we cannot conclude that F' is a diffeomorphism. For instance, if F': R — (0, 1)
is an orientation reversing diffeomorphism, then for every t > 0, the map F; : R — R
(defined by Fi(xz) = F(z) — tz) will be an orientation reversing global diffeomorphism.

Proof of Theorem 2.2.1

We claim that for each 0 < t < ¢, the map F;: R?> — R?, given by Fy(v) = F(z) — tz, is
injective.

In fact, As D(F;)(z) = DF(z) — tI, (where I is the Identity map), we obtain that if
0 < a < min{¢, e —t}, then Spec(F;) N (—a,a) = 0. This theorem follows immediately from
Lemma 2.2.2 and Theorem 1.1.1. [ |

3. GLOBAL ASYMPTOTIC STABILITY

This section is devoted to the proof of the following

THEOREM 3.3.1. Let X = (f,g): R? — R? be a differentiable vector field such that
Spec(X) C {z € C: R(z) < 0}. Then, for all p € R?, there is a unique positive trajectory
starting at p; moreover, the w—limit set of p is equal to {0}.

Let X* = (—g,f) : R2 — R2. Observe that X* is orthogonal to X = (f,g). In the
following, the same notation as that for intervals of R will be used for oriented arcs of
trajectory [p,ql,[p,q), -+ (resp. [p,q]*,[p,q)*,---), connecting the points p and g, of X
(resp. of X*.) The orientacion of these arcs is that induced by X (resp. by X*). For any
arc of trajectory [p,q]* we have the function L(p, q), given by

Lpyd)= / 1 |ds
[p,q)*

where ds denotes the arc length element.
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14 C. GUTIERREZ AND R. RABANAL

LEmMA 3.3.2. Let A be a compact rectangle the boundary of which is made up of the

following (oriented) arcs of trajectory: [pi1,q],[p2,q2) of X and [p1,pe)*,[q1,q2]* of X*.
Then

L(q1,q2) — L(p1,p2) <0 (1)

Proof: It follows from the Green’s Formula, as presented in [24] (corollary 5.7) and the
assumptions that Trace(DX) < 0 everywhere in A, that Trace(DX) is Lebesgue integrable
in A and that

L(q1,q2) — L(p1,p2) = / Trace(DX)dxAdy < 0
A

This finishes the proof. | |

LEMMA 3.3.3. For every p € R?, there is only one positive half-trajectory of X starting
at p.

Proof: Suppose, by contradiction, that there are two positive half-trajectories fy;‘ and
o starting at p. As X(p) # 0, we may take a triangle (i.e. a degenerate rectangle) the
boundary of which is made up of two arcs of trajectory [p,q1] C 7, [p,q2] C o;f of X and
one arc of trajectory [¢1,ge2]* of X*. By applying (1) of Lemma 3.3.2 we will obtain

L(qlqu) < 0.

This contradiction proves the lemma. [ |

In next lemma we shall need to what extent flow behavior persist when uniqueness fails.
This has been studied, for instance, in [17], [26] and [29]. Given the arcs (p,q), [p,q), -
(resp. (p,q)*, [p,q)*, ) of X (resp. of X*), their arc length will be denoted by let £(p, q)
(resp. £(p,q)*).

LEMMA 3.3.4. Let W be a relatively compact open neighborhood of 0 € R? and p; €
R2\ W. Ife > 0 is small enough, there exists § > 0 such that if [p1,q1] is an arc of
trajectory of X, with [p1,q1) "W =0 and [p1,p2]* (resp. [p2,p1]) is an arc of trajectory of
X*, with £(p1,p2)* < 6, then there are arcs of trajectory [p2,q2] of X and [q1,q2]* of X*
(resp. [qa,q1]* of X*), such that £(q1,q2)* < €.
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A SOLUTION TO THE MARKUS-YAMABE CONJECTURE 15

Proof: Let U C R?\ W be an open disc centered at p;. Let V be an open neighborhood
of 0 such that V. V ¢ W. As X(0) = 0 and X is injective (see Theorem 2.2.1. ), there
exists p > 0 such that for all p € R*\ V, || X (p)|| > p. Let A = sup{||X(p)|| : p € U}. Take
€ > 0 smaller than the distance between V' and R? \ W and take § > 0 smaller than both
(ep)/A and the radius of U.

Observe first that if such a rectangle R(p1,q1;q2)

(ma'de up of [plv ql]v [phpZ]*v [an (I2]1 [QI, Q2]*) eXiStS, then

pl(q1,q2)" < L(q1,92) < L(p1,p2) < Al(p1,p2)”

and so

2(q1,q2)" < — L(p1,p2)".

© >

which, by the assumptions above, imply that £(q1,¢2)* < e.

Let m be the supremum of all z € [p1, q1] such that , for all y € [p1,z), R(p1, y; ¢2) exists.
By using Proposition 2.1 and Corollary 2.2 of [26], it follows from the remarks above and
that m = q;. This proves the lemma. @

Let W* denote the set of points in R? whose w-limit set is the origin:
W = {p e R* : w(p) = {0}}

From our assumption the origin is a local sink, so it follows from lemma right above that

COROLLARY 3.3.5. W? s a non-empty open set.

LEMMA 3.3.6. The vector field X has no closed trajectories; moreover, given p € R? the
w—Ilimit set of p, denoted by w(p), is either {0} or the empty set.

Proof: It follows directly from the Greens Formula that X has no closed orbits. Then by
using arguments of the classical Poincaré Bendixson Theorem, we may easily obtain the
conclusions of the lemma. |

Proof of Theorem 3.3.1

By using Corollary 3.3.5, W* is a non-empty open set. By Lemma 3.3.4 it can be obtained
that R2\ W* is an open set. By the connectedness of R? we conclude that W* =R?
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