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Abstract

Clinical pathways are chronological event series that happen throughout a patient’s treatment. They can be extracted from the
Electronic Health Record medical information and this can be used to correlate the pathway to possible healthcare outcomes. This
can be applied to a wide variety of diseases to point pathways related to bad outcomes. These pathways can be audited and patients
that start to follow such patterns can be put in special observation and care. Tuberculosis (TB) is one of the leading causes of death
through infectious disease and its control is based on search for cases, accurate and premature identification, and treatment. The
use of the aforementioned method can help in disease control and premature identifications of bad outcomes for ongoing treatments.
Therefore, the current study goals are: 1) identify the existing clinical pathways; 2) group these pathways using hierarchical
clustering; 3) create a classification model based on the generated clusters to predict bad outcomes. The dataset used consisted of
277,870 TB treatment cases from the state of Sao Paulo collected through TBWEB, a information system for monitoring and
follow-up of TB cases. All cases with ongoing treatment were excluded from the study and the resulting dataset was splitted in
training and test samples. To reduce bias due to imbalance the undersampling technique was applied to the training dataset resulting
in a final sample size of 90,184. The test dataset had a size of 52,639 cases. Both datasets had 16 attributes describing the patient
diagnosis and drug scheme evolution through the treatment. All attributes unique values were mapped and a representation
character was assigned to each one. Later, these representation characters were concatenated in the chronological order of the
events and diagnosis creating a representational string for the clinical pathway. The resulting pathways of the training dataset were
used to build the clusters which were later used to build the classifier to predict the treatment outcome based on the test dataset
clinical pathways. The final model overall accuracy is at 0.829. The model showed a significant improvement of accuracy from
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previous studies and had similar or better performance than others in the literature. We believe this model can be implemented to
a informational system to further improve treatments management and tuberculosis control.
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1. Introduction

Clinical pathways describe a series of clinical events that occur throughout a patient's treatment in a timely manner.
These clinical interventions are decided by a medical staff and have specific goals. They are initialized at patient
admission and end at patient discharge [1]. Clinical pathways can be designed to deliver a straight and structured
healthcare to patients that reduces clinical variation and enhances operational execution and healthcare results [2].
Also, they serve as documentation which can improve overall teamwork and communication [3].

However, to ascertain which clinical pathways relate to a specific outcome, different permutations must be
evaluated by a clinical team. This imposes a challenge due to the number of possible permutations in a clinical
pathway. Therefore, the clinical pathway design would benefit from a more explicit design based on informational
systems [4] using data mining and pattern recognition methods to speed up the process and clinical staff to determine
possible pathways.

Clinical pathways can be extracted from the patient's Electronic Health Record (EHR) through the use of data
mining methods [5]. EHRs have miscellaneous medical information about the patient profile and clinical events that
happened throughout the patient's care. This clinical information can be used to correlate these events to possible
healthcare outcomes [6].

The clinical pathway extraction process relies on determining the chronological events and attributing them to a
single character which results in a representational string with all the events. These pathways can be visualized as
flowchart or Petri's networks [7]. Their visualization provides an overview of most common pathways and enables the
risk assessment and prediction through machine learning methods. Pathways that are mostly related to negative
outcomes can be audited to verify if the clinical events follow the recommended guidelines and healthcare protocols.

Tuberculosis (TB) is one of the main leading causes of infectious disease death worldwide [8]. This disease control
is based on search for cases, accurate and premature identification, and treatment [9]. Therefore, the use of clinical
pathways for TB treatment can point pathways related to bad outcomes. These pathways can be audited and patients
that start to follow such patterns can be put in special observation and care [10].

The current study goal is to develop a model for multi label classification using clinical pathways to predict the TB
outcome. This model will use all clinical events recorded in the patient's EHR throughout the TB treatment. Also, the
proposed model uses unsupervised hierarchical clustering for predicting a treatment outcome. The records have all
health related events and information about the patient's diagnosis and medication through the treatment.

2. Materials and methods
2.1. Dataset and Software

The initial dataset had 277,870 TB treatment cases from the state of Sdo Paulo. Data was collected through the
TBWEB system between 2006 and 2019. TBWEB [11] is a system for notification and tuberculosis treatment follow-
up in the state of Sdo Paulo which belongs to the State Health Secretariat of Sdo Paulo. It performs the role of a
centralized database for all TB treatments. All data and information used in this study was previously anonymized.
The state of Sdo Paulo is one of 27 federal states of Brazil and is located in the southeast region of the country. It has
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645 cities and an area of 248,219,491 km? [12]. It has the greatest population in the country, with around 45.9 million
inhabitants [12]. All code implemented and used in this study was developed in Python 3.9.10.

2.2. Study and Preparation of the Data

The first step in this study was to analyze the dataset to understand its structure and variables. The dataset was
prepared by selecting the variables of interest and defining the exclusion and inclusion criteria. The inclusion criteria
considered treatment only with either a good or bad outcome. Therefore, excluding any ongoing treatment (14,677),
which totaled in 263,193 cases. Later, the dataset was split in test (52,639) and training (210,554) sets. To avoid bias
from class imbalance we applied the undersampling method to balance good and bad outcomes in the training dataset
to 1-1 ratio. The original training dataset had only 21.4% of bad outcomes. The final training set had 90,184 instances.

The initial dataset consisted of 115 attributes which described the patient’s demographic information, medication,
interventions and clinical diagnosis throughout the treatment. The final dataset used only 16 attributes that described
the diagnosis and drug scheme evolution through the patient's treatment. These attributes had been used in a previous
study [10]. The order of these attributes is relevant for evaluating the patient treatment evolution in chronological order
and is later used to assemble the string that will represent the clinical pathway.

2.3. Setup and Filtering of the Clinical Pathways

In order to determine the clinical pathway for a patient all attributes unique values were mapped and a representation
character was assigned to each one. Later, these representation characters were concatenated in the chronological order
of the events and diagnosis creating a representational string for the clinical pathway. For this study we considered all
clinical pathways that had a good (Cure) or bad outcome (Death, Loss to follow up or Drug resistance). Pathways for
ongoing treatments or with a different outcome were filtered and removed.

2.4. Hierarchical clustering

After pathways were identified for the training set, the distance matrix was calculated using the Levenshtein
distance [13]. The Levenshtein distance is a relevant string metric for measuring the difference between two-character
sequences and is used in various domains such as information retrieval, pattern recognition, error correction, and
molecular genetics [14].

The generated distance matrix was used to apply the Weighted Pair Group Method with Arithmetic Mean
(WPGMA) [15] clustering hierarchical algorithm and generating a dendrogram from the training set. The cutoff point
of the dendrogram was determined by measuring the clusters mean sum of squared distances to their centers using the
Elbow-curve method. Fig. 1 shows the Elbow curve on which the optimal k is 7.
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Fig. 1. Elbow curve for clusters between 2 to 14.

2.5. Model classification and performance evaluation

Once all clusters were built, we used the test instance to measure the model performance. Each cluster is evaluated
and related to the outcome with the highest probability of the instances that belong to it. The test instances are
compared to the clusters by calculating distance to cluster centroid. To simulate a real-world scenario all instances
from the test dataset had the representational letter for the treatment outcome removed. Then, for each test instance
the closest cluster gives a predicted outcome. To evaluate the model performance, we considered the average Precision,
Recall and F1-score.

3. Results

The generated model produced k=7 hierarchical clusters. The uncut dendrogram for the hierarchical clustering is
displayed in Fig. 2 in which the different colors denote the similarity between the nodes. Table 1 shows the clusters
most related outcomes where it is observable their even distribution among good and bad outcomes. We stress that
this even distribution among clusters is due to the undersampling applied to the dataset. Otherwise, we expected to see
most clusters representing good outcomes.
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Fig. 2. Uncut dendrogram generated from the hierarchical clustering applied to the training dataset.

After the clusters were generated, we used them as a model for predicting each instance outcome in the test dataset.
To predict an outcome for an instance we calculated the closest cluster to that instance pathway and defined the
predicted outcome as the cluster most related outcome. Table 2 shows the Precision, Recall and F1-score for good and
bad outcomes. We can observe that the model is precise to describe good outcomes rather than bad outcomes showing
a precision of 0.883, recall of 0.866 and f1-score of 0.875. The model displays a weighted average precision of 0.832,
recall of 0.748, and f1-score of 0.830. The overall model accuracy is at 0.829.

Table 1. Most representative outcome per cluster.

Clusters ~ Outcome
Cluster 1 Bad
Cluster 2 Good
Cluster 3 Good
Cluster 4 Bad
Cluster 5 Good
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Cluster 6 Bad
Cluster 7 Bad

Table 2. Model accuracy per outcome.

Outcome  Precision  Recall F1-Score
Bad 0.717 0.748 0.732
Good 0.883 0.866 0.875

4. Discussion

The produced clusters allow the prediction of an on-going treatment outcome. If incorporated into a health system
this can provide means to alert health care professionals to perform additional actions and efforts to prevent bad
outcomes. Additionally, this study enables us to evaluate the most common pathways for good and bad outcomes by
analyzing the most representative pathway for each cluster.

Through this study the main problem faced for the prediction of TB treatments was the class imbalance in favor of
good outcomes present in the dataset. This imbalance is mostly due to the National Tuberculosis Control Plan enforced
by the Brazilian Health Ministry which among other policies implements the Directly Observed Therapy (DOT) which
assists the country reducing the number of deaths due to TB and treatment loss to follow-up. In order to reduce this
bias, we opted for the undersampling method instead of others because we would still have a significant sample even
after applying the undersampling technique.

In general, the present model has improved the accuracy of previous studies [16,17,18] done using a similar dataset.
Also, it shows better accuracy when compared to a logistic regression model for TB prediction [19]. We believe this
improvement has come due to the temporal analysis provided by the clinical pathways. This allows the model to
identify temporal patterns that affect the treatment outcome, something the previous model disregards. Additionally,
it provides a more intuitive approach than other predicting models in the literature [20] due to the fact that the generated
clusters can be defined according to their more representative clinical pathways. This gives to the involved healthcare
professionals a guide to better understand problematic clinical pathways and identifies bad patterns through the patient
care.

5. Conclusion

It was possible to build a predictive model of TB treatment outcome through an unsupervised learning model. The
generated clusters of the unsupervised model can be used for prediction by calculating the closest cluster for an on-
going treatment clinical pathway. Also, the clusters can be used to determine their most common pathway and this can
be used to establish a guideline for healthcare professionals [10]. The model presented a significant improvement of
accuracy from previous studies and had similar or better performance than others in the literature [19,20]. We aim in
future studies to implement the model in an informational system for tuberculosis [21,22,23] treatment and
management to help healthcare professionals to manage and monitor TB treatment.
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