
Received: 10 June 2021 Revised: 11 October 2021 Accepted: 28 October 2021

DOI: 10.1002/mana.202100308

ORIG INAL ARTICLE

Multiple solutions for a Schrödinger–Bopp–Podolsky system
with positive potentials

Giovany M. Figueiredo1 Gaetano Siciliano2

1Departamento de Matemática,
Universidade de Brasília, Distrito Federal,
Brazil
2Departamento de Matemática,
Universidade de São Paulo, São Paulo,
Brazil

Correspondence
Gaetano Siciliano, Departamento de
Matemática, Universidade de São Paulo,
São Paulo, Brazil.
Email: sicilian@ime.usp.br

Funding information
Conselho Nacional de Desenvolvimento
Científico e Tecnológico; Coordenação de
Aperfeiçoamento de Pessoal de Nível
Superior; Fundação de Amparo à Pesquisa
do Estado de São Paulo; Fundação de
Apoio à Pesquisa do Distrito Federal

Abstract
In this paper, we prove existence of solutions for a Schrödinger–Bopp–Podolsky
system under positive potentials. We use the Ljusternick–Schnirelmann and
Morse Theories to getmultiple solutions with a priori given “interaction energy.”

KEYWORDS
Ljusternick–Schnirelmann category, Morse Theory, multiplicity of solutions, nonlocal
Schrödinger equation

MSC ( 2020 )
35A15, 58E05

1 INTRODUCTION

In this paper, we are concerned with existence and multiplicity results to the following system in ℝ3:{
−𝜀2Δ𝑢 + 𝑉𝑢 + 𝜆𝜙𝑢 + 𝑓(𝑢) = 0

−𝜀2Δ𝜙 + 𝜀4Δ2𝜙 = 𝑢2,
(𝑃𝜀)

where 𝜀 > 0 is a parameter,𝑉 ∶ ℝ3 → ℝ3 is a given external potential, and 𝑓 ∶ ℝ → ℝ is a nonlinearity satisfying suitable
assumptions that will be given below. The unknowns are

𝑢, 𝜙 ∶ ℝ3 → ℝ and 𝜆 ∈ ℝ.

Such a problem has been introduced in [13] and describes the physical interaction of a charged particle driven by the
Schrödinger equation in the Bopp–Podolsky generalized electrodynamics. In particular, one arrives to a system like (𝑃𝜀)
when looking at standing waves solutions in the purely electrostatic situation; indeed 𝑢 represents the modulus of the
wave function of the particle and 𝜙 is the electrostatic field. We refer the reader to [13] for more details and the physical
origin of the system.
Actually there are few papers on Schrödinger–Bopp–Podolsky systems. We cite also [9, 17] where the authors study the

critical case, [16]where the problemhas been studied in the Proca setting on 3 closedmanifolds, and [21]where the fibering
method of Pohozaev has been used to deduce existence of solutions (depending on a parameter) and even nonexistence.
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Coming back to our problem, we see that, for any fixed 𝜀 > 0, it is equivalent to the following one:{
−Δ𝑢 + 𝑉(𝜀𝑥)𝑢 + 𝜆𝜙𝑢 + 𝑓(𝑢) = 0

−Δ𝜙 + Δ2𝜙 = 𝑢2,
(𝑃𝜀)

in the sense that, once we find solutions (𝜆, 𝑢, 𝜙) for (𝑃𝜀), the triple

𝜆, 𝑢(⋅∕𝜀), 𝜙(⋅∕𝜀)

will be a solution of (𝑃𝜀). We give now a first set of assumptions.
On 𝑉, we start by assuming that

(V0) 𝑉 ∶ ℝ3 → ℝ is in 𝐿∞
𝑙𝑜𝑐
(ℝ3) and satisfies

0 < ess inf𝑥∈ℝ3𝑉(𝑥) =∶ 𝑉0.

The function 𝑓 ∶ ℝ → ℝ is continuous and

(f1) 𝑓(𝑢) ≥ 0 for 𝑢 ≥ 0 and 𝑓(𝑢) = 0 for 𝑢 ≤ 0
or alternatively

(f1)’ 𝑓(𝑢) ≥ 0 if 𝑢 ≥ 0 and 𝑓 is odd,
and moreover

(f2) ∃ 𝑞 ∈ (2, 6) such that lim𝑢→∞ 𝑓(𝑢)∕𝑢𝑞−1 = 0,
(f3) lim𝑢→0 𝑓(𝑢)∕𝑢 = 0.

As usual, we will denote with 𝐹 the primitive of 𝑓 such that 𝐹(0) = 0.
The natural functional spaces in which we find the solutions 𝑢, 𝜙 of (𝑃𝜀) are

𝑢 ∈ 𝑊𝜀 ∶=

{
𝑢 ∈ 𝐻1(ℝ3) ∶ ∫

ℝ3
𝑉(𝜀𝑥)𝑢2 < +∞

}
,

𝜙 ∈  ∶= {
𝜙 ∈ 𝐷1,2(ℝ3) ∶ Δ𝜙 ∈ 𝐿2(ℝ3)

}
= 𝐶∞0 (ℝ

3)
|∇⋅|2+|Δ⋅|2

.

The space𝑊𝜀 is an Hilbert space with (squared) norm

‖𝑢‖2𝑊𝜀 ∶= ∫
ℝ3

|∇𝑢|2 + ∫
ℝ3
𝑉(𝜀𝑥)𝑢2

and is continuously embedded into𝐻1(ℝ3).
The space has been introduced and deeply studied in [13], where it is proved that↪ 𝐿𝑝(ℝ3) for 𝑝 ∈ [6, +∞].
Actually problem (𝑃𝜀) can be simplified more. Indeed, as it is standard in these kind of systems (see [13] for details), a

usual reduction argument transforms (𝑃𝜀) into the following nonlocal equation:

−Δ𝑢 + 𝑉(𝜀𝑥)𝑢 + 𝜆𝜙𝑢𝑢 + 𝑓(𝑢) = 0 in ℝ3, (1.1)

where

𝜙𝑢(𝑥) = ∫
ℝ3

1 − 𝑒−|𝑥−𝑦||𝑥 − 𝑦| 𝑢2(𝑦)𝑑𝑦. (1.2)

Moreover, 𝜙𝑢 ∈  if 𝑢 ∈ 𝐻1(ℝ3). Hence, from now on, we will refer always to (1.1) in the only unknowns 𝑢 and 𝜆, since
𝜙𝑢 is determined by 𝑢 by the above formula.
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FIGUEIREDO and SICILIANO 3

Fixed 𝜀 > 0, by a solution of (1.1), we mean a pair (𝑢, 𝜆) ∈ 𝑊𝜀 × ℝ such that

∫
ℝ3
∇𝑢∇𝑣 + ∫

ℝ3
𝑉(𝜀𝑥)𝑢𝑣 + 𝜆 ∫

ℝ3
𝜙𝑢𝑢𝑣 + ∫

ℝ3
𝑓(𝑢)𝑣 = 0, ∀𝑣 ∈ 𝑊𝜀. (1.3)

Note that under our assumptions, all the integrals appearing in (1.3) are finite and the relation between 𝜆 and 𝑢 is given,
for 𝑢 ≢ 0, by

𝜆 = −

‖𝑢‖2𝑊𝜀 + ∫
ℝ3
𝑓(𝑢)𝑢

∫
ℝ3
𝜙𝑢𝑢

2

and so in particular 𝜆 is negative.
It is also clear that (0, 𝜆), 𝜆 ∈ ℝ, is a solution of (1.1), that we call trivial. Of course we are interested in nontrivial

solutions, namely, solutions with 𝑢 ≢ 0. See also Remark 3.1 where a simple bifurcation result is stated.
Our next assumption is as follows:

(C) 𝑊𝜀 ↪↪ 𝐿𝑝(ℝ3) for 𝑝 ∈ (2, 6).

The compact embedding can be achieved in various ways. For example,

(1) by imposing that 𝑉 is coercive—in this case it is known that𝑊𝜀 has compact embedding into 𝐿𝑝(ℝ3), 𝑝 ∈ [2, 6);
(2) by imposing that for any 𝑐, 𝑟 > 0

meas{𝑥 ∈ 𝐵𝑟(𝑦) ∶ 𝑉(𝑥) ≤ 𝑐} → 0 as |𝑦|→ +∞.
Hereafter, 𝐵𝑟(𝑦) is the ball in ℝ3 with radius 𝑟 > 0 centered in 𝑦. Also in this case, the embedding is compact into
𝐿𝑝(ℝ3), 𝑝 ∈ [2, 6), see [5, p. 553].

(3) By imposing that𝑉 is radial; in this case, the natural setting toworkwith is the radial framework, namely, the subspace
of radial functions in𝑊𝜀 (if 𝑢 is radial, also 𝜙𝑢 is), which has compact embedding into 𝐿𝑝(ℝ3), 𝑝 ∈ (2, 6). This setting
is justified by the Palais’ Principle of Symmetric Criticality and then the solutions found will satisfy (1.3) even when
tested on nonradial functions of𝑊𝜀. Then, if 𝑉 is radial, all the solutions 𝑢 found in the theorems below are radial
too.

In the following, we will simply speak of “negative, one sign or sign-changing solutions” to say that 𝑢 is negative, one
sign, or sign-changing.
The solutions (𝑢, 𝜆) of (1.1) will be found as critical points of a 𝐶1 energy functional 𝐼𝜀 restricted to the surface energy

(known in physics also as Fermi surface) {
𝑢 ∈ 𝑊𝜀 ∶ ∫

ℝ3
𝜙𝑢𝑢

2 = 1

}
and then 𝜆 will be the associated Lagrange multiplier. In this context, using a standard terminology, we mean by a ground
state solution a solution 𝑢 whose energy 𝐼𝜀(𝑢) is minimal (on the constraint) among all the solutions.
The results proved here are of two types, depending essentially if (f1) or (f1)’ is assumed.
We start with the assumption (f1)’. In this case, infinitely many solutions with divergent energy are found and they are

possible sign-changing.

Theorem 1.1. Assume (f1)’, (f2), (f3), (V0), and (C). Then, for any 𝜀 > 0, problem (1.1) possesses infinitely many solutions
(𝑢𝑛, 𝜆𝑛) with

‖𝑢𝑛‖𝑊𝜀 → +∞, 1

2
‖𝑢𝑛‖2𝑊𝜀 + ∫

ℝ3
𝐹(𝑢𝑛) → +∞,

𝜆𝑛 = −

(‖𝑢𝑛‖2𝑊𝜀 + ∫
ℝ3
𝑓(𝑢𝑛)𝑢𝑛

)
→ −∞.

The ground state solutions can be assumed of one sign.
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4 FIGUEIREDO and SICILIANO

The next three theorems deal with the existence of solutions (𝑢, 𝜆) under assumption (f1).
We state explicitly a first result on the existence of ground state.

Theorem 1.2. Assume (f1)–(f3), (V0), and (C). Then, for any 𝜀 > 0, problem (1.1) admits a ground state solution, which
is negative.

To getmultiplicity results, the smallness of 𝜀 and the topological properties of the set of minima of the potential𝑉, when
achieved, will be important. Then, our next assumption is stronger than (V0):

(V1) 𝑉 ∶ ℝ3 → ℝ is continuous and satisfies

0 < min
𝑥∈ℝ3

𝑉(𝑥) =∶ 𝑉0, with𝑀 ∶=
{
𝑥 ∈ ℝ3 ∶ 𝑉(𝑥) = 𝑉0

}

and 𝜕𝑀 is a smooth manifold.

Recall that cat𝑌(𝑋) denotes the Ljusternick–Schnirelmann category of the set 𝑋 in 𝑌; that is, it is the least number of
closed and contractible sets in 𝑌, which cover 𝑋. If 𝑋 = 𝑌, we just write cat(𝑋).

Theorem 1.3. Assume (f1)–(f3), (V1), and (C). Then, there exists 𝜀∗ > 0 such that for every 𝜀 ∈ (0, 𝜀∗], problem (1.1) has at
least cat(𝑀) negative solutions with low energy.
Moreover, if𝑀 is bounded and cat(𝑀) > 1, there is another negative solution with high energy.

The meaning of “low energy” or “high energy” will be clear during the proof.
A second multiplicity result of negative solutions is obtained by making use of the Morse Theory. In this case, we

introduce the next set of assumptions stronger than the previous one on 𝑓:

(f4) 𝑓 is 𝐶1, 𝑓(𝑢) ≥ 0 for 𝑢 ≥ 0, and 𝑓(𝑢) = 0 for 𝑢 ≤ 0;
(f5) ∃ 𝑞 ∈ (2, 6) such that lim𝑢→∞ 𝑓′(𝑢)∕𝑢𝑞−2 = 0;
(f6) lim𝑢→0 𝑓′(𝑢) = 0.

In the following, 𝑡(𝑀) is the Poincaré polynomial of𝑀.
Theorem 1.4. Assume (f4)–(f6), (V1), and (C). Then, there exists 𝜀∗ > 0 such that for every 𝜀 ∈ (0, 𝜀∗], problem (1.1) has at
least 21(𝑀) − 1 negative solutions, possibly counted with their multiplicity.
It is clear that in general, we get a better result using the Morse Theory. For example,

(1) if𝑀 is obtained by a contractible domain cutting off 𝑘 disjoint contractible sets, it is

cat(𝑀) = 2, and 1(𝑀) = 1 + 𝑘;
(2) if 𝑀 is obtained as a union of 𝑙 spheres {𝑆𝑖}𝑖=1,…𝑙 and 𝑚 anuli {𝐴𝑗}𝑗=1,…,𝑚 all pairwise disjoint, then, since cat(𝑆𝑖) =
cat(𝐴𝑗) = 1(𝑆𝑖) = 1(𝐴𝑗) = 2, we get

cat(𝑀) = 2(𝑙 + 𝑚) and 21(𝑀) − 1 = 2 ⋅ 2(𝑙 + 𝑚) − 1.
As we said above, our approach is variational. In particular, to prove Theorem 1.3 and Theorem 1.4, a fundamental role

is played by the autonomous problem

−Δ𝑢 + 𝑉0𝑢 + 𝜆𝜙𝑢𝑢 + 𝑓(𝑢) = 0 in ℝ3, (1.4)
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FIGUEIREDO and SICILIANO 5

and especially by its ground state solution 𝔲, that is, the minimum of the associated energy functional (denoted with 𝐸𝑉0)
on the functions 𝑢 ∈ 𝐻1(ℝ3) satisfying

∫
ℝ3
𝜙𝑢𝑢

2 = 1.

En passant, we then prove existence and multiplicity results for (1.4), see Theorem 4.2 and Theorem 4.3 in Section 4.

Remark 1.5. Observe finally that all the solutions we find satisfy

∫
ℝ3
𝜙𝑢𝑢

2 = 1

but indeed the results are evenly true if we consider solutions with

∫
ℝ3
𝜙𝑢𝑢

2 = 𝑐, 𝑐 > 0.

Remark 1.6. Our theorems are true also if the potential 𝑓 depends explicitly on 𝑥 ∈ ℝ3. In this case, the limits in (f2), (f3),
(f5), (f6) have to be uniform in 𝑥. In this case, some degeneracy in 𝑥 is also permitted, in the sense that 𝑓 can be zero for
𝑥 in some region of ℝ3. Physically speaking, it means that the potential 𝑓 is acting only on ℝ3 ⧵.
Let us briefly comment now on our assumptions and see the differences with the usual approach used in the literature

to prove existence of multiple solutions
First of all observe that, under (f1) or (f1)’, if 𝜆 ≥ 0 is given a priori, we do not have any nontrivial solution. Indeed if 𝑢 is

a solution of (1.1), just multiplying the equation by the same 𝑢 and integrating, we reach 𝑢 ≡ 0. Moreover, the positivity of
𝑓 in case (f1) will be important in proving that the ground state solution of the autonomous problem (1.4) is radial. Note
that the constraint on which we will restrict 𝐸𝑉0 is not closed under the radial decreasing rearrangements.
Assumptions (f2) and (f3) are standardwhen using variationalmethods: Theywill allow to define a𝐶1 energy functional

related to the problem. Analogously, the stronger assumptions (f4)–(f6) will be useful to deal with the second derivative
of the functional and in implementing the Morse Theory.
In particular, our assumptions on 𝑓 cover the case 𝑓 ≡ 0.
As we have seen, assumption (V0) is useful to define the right functional spaces and (V1) will be useful to deal with the

multiplicity result via the category of Ljusternick and Schnirelmann.
Finally, assumption (C) will be important in order to recover the compactness condition of Palais and Smale, recalled

in Section 2.
To prove the result, wewill bemainly inspired by the classical papers [6–8]where a generalmethod to obtainmultiplicity

of solutions depending on the topology of the “domain” has been developed. Later on, many other problems (involving
quasilinear or fractional equations, among many others) have been treated with the same ideas: We just recall here [1–4,
10–12, 14, 15, 19, 20, 23]. However, there are evident differences with our paper.
In these last cited papers, the functional is unbounded below on the space and the constraint is the well-known Nehari

manifold. The advantage of working on the Nehari manifold is that the functional becomes bounded below. Moreover,
this constraint is introduced as the set of zeroes of a function, which involves the same energy functional (actually its
derivative) and is a natural constraint. In this way, suitable conditions on the nonlinearity𝑓 (e.g., Ambrosetti–Rabinowitz–
type condition) permit to obtain the boundedness of the Palais–Smale sequence and then the compactness results. We
recall that in this cases, an additional assumption on 𝑉 is set at infinity:

𝑉0 < lim inf|𝑥|→+∞𝑉(𝑥) =∶ 𝑉∞ ≤ +∞,
which is useful to obtain compactness. Moreover, when dealing with the constraint of the Nehari manifold, a great help
is given by the fact that there is a minimax characterization of the projection of any nonzero element on the constraint.
In our case, the functional is positive on the whole space (hence interesting from a physical point of view since it

represents an energy) and the constraint has nothing to do with the functional. However, it is always possible to project
nonzero functions on the constraint, and this is done without using the assumption on 𝑓(𝑢)∕𝑢. Moreover, although we
have again the uniqueness of the projection, the minimax characterization is lost.
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6 FIGUEIREDO and SICILIANO

Observe finally that we do not need any Ambrosetti–Rabinowitz–type condition and even more, our nonlinearity can
vanish somewhere. For these reasons, although we follow the general strategy of the cited papers, many classical proofs
do not work and need to be readjusted. Another difference from the classical papers is that our solutions of Theorem 1.3
and Theorem 1.4 are negative.
Then, to the best of our knowledge, this is the first paper dealing with the “photographymethod” of Benci, Cerami, and

Passaseo with assumptions on the nonlinearity different from the usual ones and applied to a functional restricted to a
manifold, which is not the Nehari one.
We believe that an interesting problem will be the study of multiplicity of solutions in other cases in which 𝑓 is neg-

ative, as well as, remove assumption (𝐶) and address the problem with the approach of Lions by using concentration
compactness arguments.
The organization of the paper is the following.
In Section 2, we introduce the related variational setting, the constraint, and its fundamental properties, and we show

the compactness property of the functional.
In the brief Section 3, we prove Theorem 1.1 and Theorem 1.2.
In Section 4, we study the autonomous problem (1.4), with a general positive constant 𝜇 instead of𝑉0. We obtain multi-

plicity results of infinitely many solutions if (f1)’ holds (see Theorem 4.2). In case (f1) holds, we found the important result
concerning the ground state solution (see Theorem 4.3) that will be used later on to implement the barycenter machinery.
In the final Section 5, after defining the barycenter maps and its properties, we prove Theorem 1.3 and Theorem 1.4.
Notations.Here, we list few notations that will be used throughout the paper. Others will be introduced whenever we

need.

(1) | ⋅ |𝑝 is the 𝐿𝑝−norm;
(2) 𝐻1(ℝ3) is the usual Sobolev space with norm ‖ ⋅ ‖;
(3) the conjugate exponent of 𝑟 is denoted by 𝑟′;
(4) 𝑜𝑛(1) denotes a vanishing sequence;
(5) 𝐶, 𝐶′, … stand to denote suitable positive constants whose values may also change from line to line.

2 PRELIMINARIES AND VARIATIONAL SETTING

Let us start with few preliminaries and recalling some well-known facts.
It is standard that from the growth conditions on 𝑓 and 𝑓′ given in (f2), (f3), (f5), and (f6), it follows that for any 𝛿 > 0,

there exists 𝐶𝛿 > 0 such that for every 𝑣, 𝑤 ∈ 𝐻1(ℝ3),

∫
ℝ3

|𝑓(𝑢)𝑣| ≤ 𝛿 ∫
ℝ3

|𝑢𝑣| + 𝐶𝛿 ∫
ℝ3

|𝑢|𝑞−1|𝑣| ≤ 𝛿|𝑢|2|𝑣|2 + 𝐶𝛿|𝑢|𝑞−1𝑞 |𝑣|𝑞 (2.1)

and

∫
ℝ3

|𝑓′(𝑢)𝑣𝑤| ≤ 𝛿 ∫
ℝ3

|𝑣𝑤| + 𝐶𝛿 ∫
ℝ3

|𝑢|𝑞−2|𝑣||𝑤| ≤ 𝛿|𝑣|2|𝑤|2 + 𝐶𝛿|𝑢|𝑞−2𝑞 |𝑣|𝑞|𝑤|𝑞. (2.2)

For completeness, we recall the following properties of 𝜙𝑢 defined in (1.2). They are contained in [13, Lemma 3.4 and
Lemma 5.1].

Lemma 2.1. For every 𝑢 ∈ 𝐻1(ℝ3) we have the following:

(i) for every 𝑦 ∈ ℝ3, 𝜙𝑢(⋅+𝑦) = 𝜙𝑢(⋅ + 𝑦);
(ii) 𝜙𝑢 ≥ 0;
(iii) for every 𝑠 ∈ (3, +∞], 𝜙𝑢 ∈ 𝐿𝑠(ℝ3) ∩ 𝐶0(ℝ3);
(iv) for every 𝑠 ∈ (3∕2, +∞], ∇𝜙𝑢 ∈ 𝐿𝑠(ℝ3) ∩ 𝐶0(ℝ3);
(v) |𝜙𝑢|6 ≤ 𝐶‖𝑢‖2 for some constant 𝐶 > 0;
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FIGUEIREDO and SICILIANO 7

(vi) 𝜙𝑢 is the unique minimizer of the functional

𝐸(𝜙) =
1

2
|∇𝜙|22 + 12 |Δ𝜙|22 − ∫

ℝ3
𝜙𝑢2, 𝜙 ∈ .

Moreover if 𝑢 is radial also 𝜙𝑢 is, and if 𝑢𝑛 ⇀ 𝑢 in𝐻1𝑟𝑎𝑑(ℝ
3), then

(vii) 𝜙𝑢𝑛 → 𝜙𝑢 in;
(viii) ∫

ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 → ∫

ℝ3
𝜙𝑢𝑢

2;
(ix) ∫

ℝ3
𝜙𝑢𝑛𝑢𝑛𝑣 → ∫

ℝ3
𝜙𝑢𝑢𝑣 for any 𝑣 ∈ 𝐻1(ℝ3).

Let us recall finally the following Hardy–Littlewood–Sobolev inequality, see, for example, [18, Theorem 4.3].

Theorem 2.2. Assume that 1 < 𝑎, 𝑏 < ∞ satisfies

1

𝑎
+
1

𝑏
=
5

3
.

Then, there exists a constant𝐻 > 0 such that

|||||∫ℝ3 ∫ℝ3 𝑓(𝑥)𝑔(𝑦)|𝑥 − 𝑦| ||||| ≤ 𝐻|𝑓|𝑎|𝑔|𝑏, ∀𝑓 ∈ 𝐿𝑎(ℝ3), 𝑔 ∈ 𝐿𝑏(ℝ3).
As a consequence, we get the following:

Proposition 2.3. Under assumption (V0), if {𝑢𝑛, 𝑢} ⊂ 𝑊𝜀 is such that 𝑢𝑛 → 𝑢 in 𝐿12∕5(ℝ3), then

∫
ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 → ∫

ℝ3
𝜙𝑢𝑢

2.

Proof. Indeed, by the Hardy–Littlewood–Sobolev inequality,

∫
ℝ3

|||𝜙𝑢𝑛𝑢2𝑛 − 𝜙𝑢𝑢2||| = ∫
ℝ3

∫
ℝ3

1 − 𝑒−|𝑥−𝑦||𝑥 − 𝑦| |||𝑢2𝑛(𝑥)𝑢2𝑛(𝑦) − 𝑢2(𝑥)𝑢2(𝑦)|||
≤ ∫

ℝ3
∫
ℝ3

1|𝑥 − 𝑦| |||𝑢2𝑛(𝑥)𝑢2𝑛(𝑦) − 𝑢2(𝑥)𝑢2(𝑦)|||
≤ ∫

ℝ3
∫
ℝ3

|||𝑢2𝑛(𝑦) − 𝑢2(𝑦)||||𝑥 − 𝑦| 𝑢2𝑛(𝑥) + ∫
ℝ3

∫
ℝ3

|||𝑢2𝑛(𝑥) − 𝑢2(𝑥)||||𝑥 − 𝑦| 𝑢2(𝑦)

≤ 𝐻|||𝑢2𝑛 − 𝑢2|||6∕5(|𝑢2𝑛|6∕5 + |𝑢2|6∕5)
= 𝑜𝑛(1),

and the conclusion follows. □

The strategy to find solutions (𝑢𝜀, 𝜆𝜀) ∈ 𝑊𝜀 × ℝ for (1.1) will be to look at the critical points of the functional

𝐼𝜀(𝑢) =
1

2 ∫ℝ3 |∇𝑢|2 + ∫
ℝ3
𝑉(𝜀𝑥)𝑢2 + ∫

ℝ3
𝐹(𝑢) =

1

2
‖𝑢‖2𝑊𝜀 + ∫

ℝ3
𝐹(𝑢) (2.3)

restricted to the set

𝜀 = {𝑢 ∈ 𝑊𝜀 ∶ 𝐽(𝑢) = 0}, where 𝐽(𝑢) ∶= ∫
ℝ3
𝜙𝑢𝑢

2 − 1.
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8 FIGUEIREDO and SICILIANO

Observe that𝜀 ≠ ∅. Indeed, fix 𝑢 ≠ 0 and define
ℎ ∶ 𝑡 ∈ (0, +∞) → ℝ such that ℎ(𝑡) ∶= 𝑡4 ∫

ℝ3
𝜙𝑢𝑢.

Then, there is a unique positive value 𝑡𝜀(𝑢) > 0 such that

1 = 𝑡𝜀(𝑢)
4 ∫ 𝜙𝑢𝑢2 = ∫ 𝜙𝑡𝜀(𝑢)𝑢(𝑡𝜀(𝑢)𝑢)2, that is, 𝑡𝜀(𝑢)𝑢 ∈𝜀. (2.4)

Of course, the value 𝑡𝜀 does not have any minimax characterization as it happens with the Nehari constraint. Note that
𝑡𝜀(𝑢) = 𝑡𝜀(−𝑢) and it is clear that

∀𝜀1, 𝜀2 > 0 ∶ 𝜀1 =𝜀2 ,

𝑢 ∈𝜀 ⟹ ±|𝑢| ∈𝜀.

Moreover, we have immediately the following:

Lemma 2.4. If {𝑢𝑛} ⊂𝜀 is bounded in𝑊𝜀, then it cannot converge to zero in 𝐿12∕5(ℝ3).

Proof. Otherwise by (v) of Lemma 2.1, we would have

1 = ∫
ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 ≤ |𝜙𝑢𝑛 |6|𝑢𝑛|212∕5 ≤ 𝐶|𝑢𝑛|212∕5 = 𝑜𝑛(1),

which is a contradiction. □

The unknown 𝜆 will be deduced as the Lagrange multiplier associated to the critical point 𝑢 of 𝐼𝜀 on𝜀. Indeed this is
justified by the next result.

Lemma 2.5. Under assumptions (V0) and (C), the set𝜀 is bounded away from zero in the weak topology and is weakly
closed. Moreover, it is a 𝐶1 manifold of codimension 1 homeomorphic to the unit sphere 𝕊𝜀 of𝑊𝜀 .

Proof. If there is {𝑢𝑛} ⊂𝜀 weakly convergent to 0, then, due to condition (C), we get a contradiction with Lemma 2.4.
The fact that it is weakly closed follows again by condition (C) and Proposition 2.3.
Since (see [13])

𝐽′(𝑢)[𝑣] =
1

4 ∫ℝ3 𝜙𝑢𝑢𝑣, ∀𝑢, 𝑣 ∈ 𝑊𝜀,

we see that whenever 𝑢 ∈𝜀, the operator 𝐽′(𝑢) is not the trivial one (since on the same 𝑢 gives 1∕4). Hence,𝜀 is a 𝐶1
manifold of codimension 1.
To see that𝜀 is homeomorphic to the unit sphere, consider the projection map

𝜉𝜀 ∶ 𝕊𝜀 ↦𝜀, such that 𝜉𝜀(𝑢) = 𝑡𝜀(𝑢)𝑢,

where 𝑡𝜀(𝑢) is defined in (2.4). Note that 𝜉𝜀 is injective due to the unicity of 𝑡𝜀(𝑢) and it is easy to see that its inverse is the
continuous retraction map𝜉−1𝜀 (𝑢) = 𝑢∕‖𝑢‖𝑊𝜀 .
Moreover, 𝜉𝜀 is continuous. Actually we show that it is weakly continuous. Let {𝑢𝑛, 𝑢} ⊂ 𝕊𝜀 with 𝑢𝑛 ⇀ 𝑢 in 𝑊𝜀. In

particular, by condition (C) and Proposition 2.3, we infer

∫
ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 → ∫

ℝ3
𝜙𝑢𝑢

2. (2.5)

By using the Hölder inequality joint with (v) of Lemma 2.1, we have, for a suitable constant 𝐶 > 0,

1 = 𝑡𝜀(𝑢𝑛)
4 ∫
ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 ≤ 𝑡𝜀(𝑢𝑛)4‖𝑢𝑛‖4𝑊𝜀 ≤ 𝑡𝜀(𝑢𝑛)4𝐶, (2.6)

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100308 by U
niv of Sao Paulo - B

razil, W
iley O

nline L
ibrary on [27/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGUEIREDO and SICILIANO 9

and we infer that {𝑡𝜀(𝑢𝑛)} cannot tend to zero. On the other hand, if 𝑡𝜀(𝑢𝑛) → +∞, from the equality in (2.6), we deduce
that

∫
ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 → 0

and from (2.5), 𝑢 = 0, which is a contradiction.
As a consequence, 𝑡𝜀(𝑢𝑛) → 𝑡 ≠ 0 (up to subsequence). Passing to the limit in (2.6), we deduce that

1 = 𝑡4 ∫
ℝ3
𝜙𝑢𝑢

2,

which means that 𝑡 = 𝑡𝜀(𝑢) and implies that 𝜉𝜀(𝑢𝑛) → 𝜉𝜀(𝑢). This shows that 𝜉𝜀 is a homeomorphism, concluding the
proof. □

As by product of the proof of Lemma 2.5, we state explicitly the following result that will be useful later on.

Corollary 2.6. Under the assumptions and notation of Lemma 2.5, if {𝑢𝑛, 𝑢} ⊂ 𝑊𝜀 are such that 𝑢𝑛 ⇀ 𝑢 ≠ 0 in 𝐻1(ℝ3),
then 𝑡𝜀(𝑢𝑛) → 𝑡𝜀(𝑢). In particular, if 𝑢 ∈𝜀, then 𝑡𝜀(𝑢𝑛) → 1.

We know that the functional 𝐼𝜀 (under both assumptions (f1) or (f1)’) is positive and indeed we have the following:

Lemma 2.7. Assume (V0) and (C). Then,

𝔪𝜀 ∶= inf
𝑢∈𝜀

𝐼𝜀(𝑢) > 0.

Proof. If the infimum were zero, then there would exist {𝑢𝑛} ⊂𝜀 such that

∫
ℝ3
𝜙𝑢𝑛𝑢

2
𝑛 = 1, 𝐼𝜀(𝑢𝑛) =

1

2
‖𝑢𝑛‖2𝑊𝜀 + ∫

ℝ3
𝐹(𝑢𝑛) → 0.

In particular, |𝑢𝑛|12∕5 → 0 contradicting Lemma 2.4. □

Let us recall the notion of genus of Krasnoselsky. Given 𝐴 a closed and symmetric subset of some Banach space, with
0 ∉ 𝐴, the genus of 𝐴, denoted as 𝛾(𝐴), is defined as the least number 𝑘 ∈ ℕ such that there exists a continuous and even
map ℎ ∶ 𝐴 → ℝ𝑘 ⧵ {0}. If such a map does not exist, the genus is set to +∞ and finally 𝛾(∅) = 0. It is well known that
the genus is a topological invariant (under odd homeomorphism) and that the genus of the sphere in ℝ𝑁 is 𝑁, while in
infinite dimension, it is +∞. Hence, by Lemma 2.5, we have the following:

Corollary 2.8. Assume (V0) and (C). Then, the manifold𝜀 (which is closed and symmetric with respect to the origin) has
infinite genus.

Proof. Just observe that𝜀 is homeomorphic to the unit sphere via an odd homeomorphism. □

Let us pass now to study the functional 𝐼𝜀 defined in (2.3), namely,

𝐼𝜀(𝑢) =
1

2 ∫ℝ3 |∇𝑢|2 + ∫
ℝ3
𝑉(𝜀𝑥)𝑢2 + ∫

ℝ3
𝐹(𝑢).

Here, 𝜀 > 0 is fixed.

The compactness condition: As it is standard in variational methods, we will need a compactness condition, the so-called
Palais Smale condition, that we recall here. In general given 𝐼, a 𝐶1 functional on a Hilbert manifold , a sequence
{𝑢𝑛} ⊂ is said to be a Palais–Smale sequence for 𝐼 (briefly, a (𝑃𝑆) sequence) if {𝐼(𝑢𝑛)} is bounded and 𝐼′(𝑢𝑛) → 0 in
the tangent bundle. The functional 𝐼 is said to satisfy the Palais–Smale condition if every (𝑃𝑆) sequence has a convergent
subsequence to an element of.
The validity of this condition is strongly based on the compactness assumption (C).
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10 FIGUEIREDO and SICILIANO

Lemma 2.9. Assume (f1) (or (f1)’), (f2), (f3), (V0), and (C). Then, the functional 𝐼𝜀 satisfies the (𝑃𝑆) condition on𝜀 .

Proof. Let {𝑢𝑛} ⊂𝜀 be a (𝑃𝑆) sequence for 𝐼𝜀, then we can assume

𝐼𝜀(𝑢𝑛) =
1

2 ∫ℝ3 |∇𝑢𝑛|2 + 12 ∫ℝ3 𝑉(𝜀𝑥)𝑢2𝑛 + ∫
ℝ3
𝐹(𝑢𝑛) → 𝑐

and there exists {𝜆𝑛} ⊂ ℝ such that

∀𝑣 ∈ 𝑊𝜀 ∶ ∫
ℝ3
∇𝑢𝑛∇𝑣 + ∫

ℝ3
𝑉(𝜀𝑥)𝑢𝑛𝑣 + 𝜆𝑛 ∫

ℝ3
𝜙𝑢𝑛𝑢𝑛𝑣 + ∫

ℝ3
𝑓(𝑢𝑛)𝑣 = 𝑜𝑛(1). (2.7)

Since 𝐼𝜀 is coercive, the sequence {𝑢𝑛} is bounded in𝑊𝜀, then converges, after passing to a subsequence, weakly to 𝑢 and
being𝜀 weakly closed, we have

∫
ℝ3
𝜙𝑢𝑢

2 = 1. (2.8)

By choosing 𝑣 = 𝑢𝑛 in (2.7), we have

∫
ℝ3

|∇𝑢𝑛|2 + ∫
ℝ3
𝑉(𝜀𝑥)𝑢2𝑛 + 𝜆𝑛 + ∫

ℝ3
𝑓(𝑢𝑛)𝑢𝑛 = 𝑜𝑛(1), (2.9)

and since {𝑢𝑛} is bounded in𝑊𝜀, we infer that (using (2.1))|||||∫ℝ3 𝑓(𝑢𝑛)𝑢𝑛
||||| ≤ 𝛿|𝑢𝑛|22 + 𝐶𝛿|𝑢𝑛|𝑞𝑞 ≤ 𝐶.

Then, by (2.9), we deduce that {𝜆𝑛} is bounded, hence converging, up to subsequences, to some 𝜆.
By (2.7) again, we have

∀𝑣 ∈ 𝑊𝜀 ∶ ∫
ℝ3
∇𝑢∇𝑣 + ∫

ℝ3
𝑉(𝜀𝑥)𝑢𝑣 + 𝜆 ∫

ℝ3
𝜙𝑢𝑢𝑣 + ∫

ℝ3
𝑓(𝑢)𝑣 = 0.

In particular, by taking 𝑣 = 𝑢, we see that ∫
ℝ3
𝑉(𝜀𝑥)𝑢2 < +∞, which joint to (2.8) gives that 𝑢 ∈𝜀.

Finally, by taking 𝑣 = 𝑢𝑛 − 𝑢 in (2.7) and passing to the limit, since (as it is easy to see)

∫
ℝ3
𝜙𝑢𝑛𝑢𝑛(𝑢𝑛 − 𝑢) → 0 and ∫

ℝ3
𝑓(𝑢𝑛)(𝑢𝑛 − 𝑢) → 0,

we infer that ‖𝑢𝑛‖𝑊𝜀 → ‖𝑢‖𝑊𝜀 .
Then, 𝑢𝑛 → 𝑢 in𝑊𝜀, which concludes the proof. □

3 PROOF OF THEOREM 1.1 AND THEOREM 1.2

As a consequence of the (𝑃𝑆) condition, we have existence of ground state, namely, a minimizer for 𝐼𝜀 on𝜀, and actually
infinitely many critical points under the oddness condition.

Proof of Theorem 1.1: The existence of the ground state is a consequence of the (𝑃𝑆) condition. Of course, 𝐼𝜀(±|𝑢|) = 𝐼𝜀(𝑢)
and we have actually a positive and a negative ground state.
Finally, by applying the Krasnoselski Genus Theory, we get the existence of infinitely many critical points {𝑢𝑛}. That

{𝑢𝑛} are at divergent critical levels follows from the abstract theory. Then, it is easy to see, since

∫
ℝ3
𝐹(𝑢𝑛) ≤ ∫

ℝ3

(
𝑢2𝑛 + 𝐶|𝑢𝑛|𝑝),

that {𝑢𝑛} are divergent also in norm. By noticing that 𝑓(𝑡)𝑡 ≥ 0, the divergence of the Lagrange multipliers follows.

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100308 by U
niv of Sao Paulo - B

razil, W
iley O

nline L
ibrary on [27/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGUEIREDO and SICILIANO 11

Proof of Theorem 1.2: It follows by the (𝑃𝑆) condition and the fact that 𝐼𝜀(−|𝑢|) ≤ 𝐼𝜀(𝑢).
Remark 3.1. In case of negative ground states, since the functional essentially reduces to the (squared) norm, we can find
an easy result concerning the bifurcation from the trivial solution (0, 𝜆) of the ground states.
To this aim, for any 𝜀, 𝑐 > 0, let us denote with 𝑢𝜀,𝑐 the negative ground state solution found in Theorem 1.1 or

Theorem 1.2 (recall Remark 1.5) on the constraint

∫
ℝ3
𝜙𝑢𝑢

2 = 𝑐 > 0,

and let 𝜆𝜀,𝑐 be the associated Lagrange multiplier. Then, explicitly

𝐼𝜀(𝑢𝜀,𝑐) =
1

2
‖𝑢𝜀,𝑐‖2𝑊𝜀 , ∫

ℝ3
𝜙𝑢𝜀,𝑐𝑢

2
𝜀,𝑐 = 𝑐, 𝜆𝜀,𝑐𝑐 = −‖𝑢𝜀,𝑐‖2𝑊𝜀 < 0. (3.1)

We see that if 0 < 𝑐1 < 𝑐2, then

1

2
‖𝑢𝜀,𝑐1‖2𝑊𝜖 = 𝐼𝜀(𝑢𝜀,𝑐1 ) ≤ 𝐼𝜀((𝑐1∕𝑐2)1∕4𝑢𝜀,𝑐2) = 12(𝑐1∕𝑐2)1∕2‖𝑢𝜀,𝑐2‖2𝑊𝜀 ,

which means that the map

𝑐 ∈ (0, +∞) ↦
‖𝑢𝜀,𝑐‖2𝑊𝜀
𝑐1∕2

∈ (0, +∞) is increasing

and then

∃ lim
𝑐→0+

‖𝑢𝜀,𝑐‖2𝑊𝜀
𝑐1∕2

∈ [0, +∞).

In particular, lim𝑐→0+ ‖𝑢𝜀,𝑐‖2𝑊𝜀 = 0. Consequently by (3.1),
lim
𝑐→0+

𝜆𝜀,𝑐𝑐 = − lim
𝑐→0+

‖𝑢𝜀,𝑐‖2𝑊𝜀 = 0,
and we see that two cases hold:

(1) there exists a sequence 𝑐𝑛 → 0+ such that lim𝑛→+∞ 𝜆𝜀,𝑐𝑛 = 𝜆 ∈ (−∞, 0], or
(2) lim𝑐→0+ 𝜆𝜀,𝑐 = −∞.

In the first case, we have a bifurcation point (0, 𝜆); in the second case, we have a bifurcation “from −∞.”

4 THE AUTONOMOUS PROBLEM

In order to prove themultiplicity results involving condition (f1), it will be important to consider the autonomous problem
associated to (1.1).
For a given constant potential 𝜇 > 0, consider the problem

−Δ𝑢 + 𝜇𝑢 + 𝜆𝜙𝑢𝑢 + 𝑓(𝑢) = 0 in ℝ3. (𝐴𝜇)

Let𝐻1𝜇(ℝ3) be the usual subspace of𝐻1(ℝ3) endowed with (squared) norm

‖𝑢‖2𝜇 = ∫
ℝ3

|∇𝑢|2 + 𝜇 ∫
ℝ3
𝑢2.
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12 FIGUEIREDO and SICILIANO

The solutions (𝑢, 𝜆) ∈ 𝐻1𝜇(ℝ3) × ℝ of (𝐴𝜇) are the critical points of the positive and 𝐶1 functional

𝐸𝜇(𝑢) =
1

2 ∫ |∇𝑢|2 + 𝜇
2 ∫ 𝑢2 + ∫

ℝ3
𝐹(𝑢) =

1

2
‖𝑢‖2𝜇 + ∫

ℝ3
𝐹(𝑢)

restricted to

𝜇 =
{
𝑢 ∈ 𝐻1𝜇(ℝ

3) ∶ 𝐽(𝑢) = 0
}
, 𝐽(𝑢) = ∫

ℝ3
𝜙𝑢𝑢

2 − 1.

It is clear that 𝜇 is not empty and has the same properties of 𝜀 given in Lemma 2.4, Lemma 2.5, Corollary 2.6, and
Corollary 2.8. Finally, as in Lemma 2.7, we have

𝔪𝜇 ∶= inf
𝑢∈𝜇

𝐸𝜇(𝑢) > 0.

Actually, in order to find solutions of (𝐴𝜇), we work in the subspace of radial functions since, by the Palais’s Symmetric
Criticality Principle, it is a natural constraint. Then, define

rad,𝜇 ∶=𝜇 ∩ 𝐻
1
rad,𝜇(ℝ

3)

(which evidently has the same properties of𝜇 and𝜀) and

𝔪rad,𝜇 ∶= inf
𝑢∈rad,𝜇

𝐸𝜇(𝑢) ≥𝔪𝜇 > 0.

The advantage of the radial setting is that, due to the compact embedding of 𝐻1rad,𝜇(ℝ
3) into 𝐿𝑝(ℝ3), 𝑝 ∈ (2, 6), the

manifoldrad,𝜇 is weakly closed. Then, we get the following compactness condition whose proof, being very similar to
that of Lemma 2.9, is omitted.

Lemma 4.1. Assume (f1) (or (f1)’), (f2), and (f3). Then, the functional 𝐸𝜇 satisfies the (𝑃𝑆) condition onrad,𝜇.

Then, we deduce a result analogous to Theorem 1.1 for critical points of 𝐸𝜇.

Theorem 4.2. Assume (f1)’, (f2), and (f3). Then, any minimizing sequence for 𝐸𝜇 on rad,𝜇 is convergent. So 𝔪rad,𝜇 is
achieved and the ground state can be assumed of one sign.
Indeed the functional 𝐸𝜇 possesses infinitely many critical points {𝑢𝑛} on rad,𝜇 with associated Lagrange multipliers

{𝜆𝑛} ⊂ (−∞, 0) satisfying

𝐸𝜇(𝑢𝑛) =
1

2
‖𝑢𝑛‖2𝜇 + ∫

ℝ3
𝐹(𝑢𝑛) → +∞,

‖𝑢𝑛‖2𝜇 → +∞,
𝜆𝑛 = −

(‖𝑢𝑛‖2𝜇 + ∫
ℝ3
𝑓(𝑢𝑛)𝑢𝑛

)
→ −∞.

In particular (𝐴𝜇) has infinitely many solutions.

In case condition (𝑓1) holds, then we have the following:

Theorem 4.3. Assume (f1) –(f3). Then, any minimizing sequence for 𝐸𝜇 onrad,𝜇 is convergent. So𝔪rad,𝜇 is achieved on a
radial function, hereafter denoted with 𝔲, and moreover

𝔪rad,𝜇 = 𝔪𝜇 = min
𝑢∈𝜇

𝐸𝜇(𝑢) = 𝐸𝜇(𝔲) > 0.

Finally, 𝔲 is negative, and then 𝐸𝜇(𝔲) =
1

2
‖𝔲‖2𝜇.

We stress the fact that 𝔲 has minimal energy on the whole𝜇, namely, even between nonradial functions.
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FIGUEIREDO and SICILIANO 13

Proof. We need just to prove that 𝔲 realizes the minimum among all functions in𝜇, and for this, it is sufficient to show
that for any 𝑢 ∈𝜇, there is another function inrad,𝜇 with less energy.
Then, let 𝑢 ∈𝜇, denote with 𝑢∗ its Schwartz symmetrization and set 𝑡∗ > 0 such that 𝑡∗𝑢∗ ∈𝜇. By the

rearrangement inequality (see [18, Theorem 3.7]), we get

1

𝑡4∗
= ∫

ℝ3
𝜙𝑢∗(𝑢

∗)2 ≥ ∫
ℝ3
𝜙𝑢𝑢

2 = 1

and deduce that 𝑡∗ ≤ 1. Consequently, using the properties of the spherical rearrangement and that 𝑓 is positive, for a
suitable 𝜉 ∈ (0, 1):

𝐸𝜇(𝑡∗𝑢
∗) − 𝐸𝜇(𝑢) ≤ 12(𝑡2∗ − 1)‖𝑢‖2𝜇 + ∫

ℝ3
(𝐹(𝑡∗𝑢) − 𝐹(𝑢))

=
1

2
(𝑡2∗ − 1)‖𝑢‖2𝜇 + (𝑡∗ − 1)∫

ℝ3
𝑓(𝜉𝑢)

≤ 0,
which concludes the proof. The final part follows by 𝐹(−|𝑢|) ≤ 𝐹(𝑢). □

Remark 4.4. Analogously to Remark 3.1, we have bifurcation of the negative ground states found in Theorem 4.3 from the
trivial solution also for the autonomous problem (𝐴𝜇).

The ground state 𝔲 found in Theorem 4.3 will have a special role from now on.
We observe that all we have seen up to now was valid for any fixed 𝜀 > 0 and it was never used that the infimum 𝑉0 of

𝑉 is achieved.

5 THE BARYCENTERMAP AND PROOF OF THEOREM 1.3 AND THEOREM 1.4

Without the oddness assumption of 𝑓 (namely, condition (f1)’), the multiplicity result is obtained, thanks to the smallness
of 𝜀 and the fact that 𝑉0 is achieved on a subset𝑀 ⊂ ℝ3:

0 < min
𝑥∈ℝ3

𝑉(𝑥) =∶ 𝑉0, with 𝑀 =
{
𝑥 ∈ ℝ3 ∶ 𝑉(𝑥) = 𝑉0

}
.

Without loss of generality, we assume 0 ∈ 𝑀. Define the set of negative functions:

𝑁 ∶=
{
𝑢 ∶ ℝ3 → (−∞, 0]

}
.

Consider the autonomous problem

−Δ𝑢 + 𝑉0𝑢 + 𝜆𝜙𝑢𝑢 + 𝑓(𝑢) = 0 in ℝ3

and let 𝔲 be the radial and negative function satisfying

𝔪𝑉0 = min
𝑢∈𝑉0

𝐸𝑉0(𝑢) = 𝐸𝑉0(𝔲) > 0,

see Theorem 4.3.
Finally, since𝜀 ⊂𝑉0 and 𝑉(𝑥) ≥ 𝑉0,

𝐸𝑉0(𝔲) ≤𝔪𝜀.
For 𝑇 > 0, define 𝜂 the smooth nonincreasing cut-off function defined in [0,∞) by

𝜂(𝑠) =

{
1 if 0 ≤ 𝑠 ≤ 𝑇∕2
0 if 𝑠 ≥ 𝑇
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14 FIGUEIREDO and SICILIANO

and for any 𝑦 ∈ 𝑀, set

Ψ𝜀,𝑦(𝑥) ∶= 𝜂(|𝜀𝑥 − 𝑦|)𝔲( 𝜀𝑥 − 𝑦𝜀
)
.

Let 𝑡𝜀,𝑦 ∶= 𝑡𝜀(Ψ𝜀,𝑦) > 0 such that 𝑡𝜀,𝑦Ψ𝜀,𝑦 ∈𝜀, and define the map

Φ𝜀 ∶ 𝑦 ∈ 𝑀 ↦ 𝑡𝜀,𝑦Ψ𝜀,𝑦 ∈𝜀,

which is easily seen to be continuous. By construction, for any 𝑦 ∈ 𝑀, Φ𝜀(𝑦) has compact support and Φ𝜀(𝑦) ∈𝜀 ∩ 𝑁.
In particular,

𝐼𝜀(Φ𝜀(𝑦)) =
1

2
‖Φ𝜀(𝑦)‖2𝑊𝜀 .

Lemma 5.1. Assume (f1)–(f3), (V1), and (C). Then,

lim
𝜀→0+

𝐼𝜀(Φ𝜀(𝑦)) = 𝐸𝑉0(𝔲), uniformly 𝑖𝑛 𝑦 ∈ 𝑀.

Proof. Suppose by contradiction that there exist 𝛿0 > 0, 𝜀𝑛 → 0+ and {𝑦𝑛} ⊂ 𝑀 such that

|𝐼𝜀𝑛 (Φ𝜀𝑛 (𝑦𝑛)) − 𝐸𝑉0(𝔲)| ≥ 𝛿0. (5.1)

From the Lebesgue’s Theorem, we deduce

lim
𝑛→∞∫

ℝ3
|∇Ψ𝜀𝑛,𝑦𝑛 |2 = ∫

ℝ3
|∇𝔲|2, lim

𝑛→∞∫
ℝ3
𝑉(𝜀𝑛𝑥)Ψ

2
𝜀𝑛,𝑦𝑛

= 𝑉0 ∫
ℝ3
𝔲2. (5.2)

In particular, {Ψ𝜀𝑛,𝑦𝑛 } is bounded in𝑊𝜀𝑛 , and so weakly convergent to some 𝑣 ∈ 𝑊𝜀 and a.e. in ℝ
3. By (5.2), it has to be

𝑣 = 𝔲, and therefore we have, due to the compactness assumption (C),

Ψ𝜀𝑛,𝑦𝑛 ⇀ 𝔲 in𝑊𝜀, Ψ𝜀𝑛,𝑦𝑛 → 𝔲 in 𝐿𝑝(ℝ3), 𝑝 ∈ (2, 6).

Recalling that Φ𝜀𝑛(𝑦𝑛) = 𝑡𝜀𝑛,𝑦𝑛Ψ𝜀𝑛,𝑦𝑛 ∈𝜀𝑛 and Proposition 2.3, we get

1

𝑡4𝜀𝑛,𝑦𝑛

= ∫
ℝ3
𝜙Ψ𝜀𝑛,𝑦𝑛 Ψ

2
𝜀𝑛,𝑦𝑛

= ∫
ℝ3
𝜙𝔲𝔲

2 + 𝑜𝑛(1) = 1 + 𝑜𝑛(1),

which implies that 𝑡𝜀𝑛,𝑦𝑛 → 1. But then using (5.2), we conclude that

𝐼𝜀𝑛 (𝑡𝜀𝑛,𝑦𝑛Ψ𝜀𝑛,𝑦𝑛 ) =
𝑡2𝜀𝑛,𝑦𝑛
2 ∫

ℝ3
|∇Ψ𝜀𝑛,𝑦𝑛 |2 + 𝑡2𝜀𝑛,𝑦𝑛2 ∫

ℝ3
𝑉(𝜀𝑛𝑥)Ψ

2
𝜀𝑛,𝑦𝑛

→ 𝐸𝑉0(𝔲).

contradicting (5.1). □

By Lemma 5.1, ℎ(𝜀) ∶= |𝐼𝜀(Φ𝜀(𝑦)) − 𝐸𝑉0(𝔲)| = 𝑜𝜀(1) for 𝜀 → 0+ uniformly in 𝑦, and then
𝐼𝜀(Φ𝜀(𝑦)) − 𝐸𝑉0(𝔲) ≤ ||𝐼𝜀(Φ𝜀(𝑦)) − 𝐸𝑉0(𝔲)||| ≤ ℎ(𝜀) = 𝑜𝜀(1).

For simplicity, we do not write the explicit dependence of ℎ by 𝑦. In particular, the sublevel set

𝐸𝑉0 (𝔲)+ℎ(𝜀)

𝜀 ∶=
{
𝑢 ∈∲ ∶ 𝐼𝜀(𝑢) ≤ 𝐸𝑉0(𝔲) + ℎ(𝜀)

}
(5.3)

is not empty, since for sufficiently small 𝜀,

Φ𝜀(𝑦) ∈𝐸𝑉0 (𝔲)+ℎ(𝜀)

𝜀 ∩ 𝑁. (5.4)

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100308 by U
niv of Sao Paulo - B

razil, W
iley O

nline L
ibrary on [27/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGUEIREDO and SICILIANO 15

5.1 The barycenter map

We are in a position now to define the barycenter map that will send a convenient sublevel in 𝜀 in a suitable
neighborhood of𝑀. From now on, we fix a 𝑇 > 0 in such a way that𝑀 and

𝑀2𝑇 ∶=
{
𝑥 ∈ ℝ3 ∶ 𝑑(𝑥,𝑀) ≤ 2𝑇}

are homotopically equivalent (𝑑 denotes the euclidean distance). In particular, they are also homotopically equivalent to

𝑀𝑇 ∶=
{
𝑥 ∈ ℝ3 ∶ 𝑑(𝑥,𝑀) ≤ 𝑇}.

Let 𝜌 = 𝜌(𝑇) > 0 be such that𝑀2𝑇 ⊂ 𝐵𝜌 and 𝜒 ∶ ℝ3 → ℝ3 be defined as

𝜒(𝑥) =

{
𝑥 if |𝑥| ≤ 𝜌
𝜌
𝑥|𝑥| if |𝑥| ≥ 𝜌.

Finally, let the barycenter map𝛽𝜀 defined on functions with compact support 𝑢 ∈ 𝑊𝜀 by

𝛽𝜀(𝑢) ∶=
∫
ℝ3
𝜒(𝜀𝑥)𝑢2

∫
ℝ3
𝑢2

∈ ℝ3.

The next three lemmas give the behavior of 𝛽𝜀 and 𝐼𝜀.

Lemma 5.2. Under assumption (V1), the function 𝛽𝜀 satisfies

lim
𝜀→0+

𝛽𝜀(Φ𝜀(𝑦)) = 𝑦, uniformly in 𝑦 ∈ 𝑀.

Proof. Suppose, by contradiction, that the lemma is false. Then, there exist 𝛿0 > 0, 𝜀𝑛 → 0+ and {𝑦𝑛} ⊂ 𝑀 such that

|𝛽𝜀𝑛 (Φ𝜀𝑛 (𝑦𝑛)) − 𝑦𝑛| ≥ 𝛿0. (5.5)

Using the definition of Φ𝜀𝑛(𝑦𝑛), 𝛽𝜀𝑛 and 𝜂 given above, we have the equality

𝛽𝜀𝑛 (Φ𝜀𝑛 (𝑦𝑛)) = 𝑦𝑛 +
∫
ℝ3
[𝜒(𝜀𝑛𝑧 + 𝑦𝑛) − 𝑦𝑛]

|||𝜂(|𝜀𝑛𝑧|)𝔲(𝑧)|||2
∫
ℝ3

|||𝜂(|𝜀𝑛𝑧|)𝔲(𝑧)|||2
.

Using the fact that {𝑦𝑛} ⊂ 𝑀 ⊂ 𝐵𝜌 and the Lebesgue’s Theorem, it follows

|𝛽𝜀𝑛 (Φ𝜀𝑛 (𝑦𝑛)) − 𝑦𝑛| = 𝑜𝑛(1),
which contradicts (5.5) and the lemma is proved. □

Lemma 5.3. Assume (f1)–(f3), (V1), and (C). If 𝜀𝑛 → 0 and {𝑢𝑛} ⊂𝜀𝑛 is such that 𝐼𝜀𝑛 (𝑢𝑛) → 𝐸𝑉0(𝔲), then {𝑢𝑛} converges
to 𝔲 in𝐻1𝑉0(ℝ

3).
Then, for 𝑛 sufficiently large, {𝑢𝑛} can be assumed negative.

Proof. Since {𝑢𝑛} ⊂𝜀𝑛 ⊂𝑉0 ,

|𝐼𝜀𝑛 (𝑢𝑛) − 𝐸𝑉0(𝑢𝑛)| ≤ ∫
ℝ3
(𝑉(𝜀𝑛𝑥) − 𝑉0)𝑢

2
𝑛 → 0,
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16 FIGUEIREDO and SICILIANO

we deduce that 𝐸𝑉0(𝑢𝑛) → 𝐸𝑉0(𝔲), namely, {𝑢𝑛} is a minimizing sequence for 𝐸𝑉0 on 𝑉0 . The result follows by
Theorem 4.3. □

Lemma 5.4. Assume (f1)–(f3), (V1), and (C). Then,

lim
𝜀→0+

sup

𝑢∈𝐸𝑉0
(𝔲)+ℎ(𝜀)

𝜀 ∩𝑁

inf
𝑦∈𝑀𝑇

|||𝛽𝜀(𝑢) − 𝑦||| = 0.
Proof. Let {𝜀𝑛} be such that 𝜀𝑛 → 0+. For each 𝑛 ∈ ℕ, there exists 𝑢𝑛 ∈𝐸𝑉0 (𝔲)+ℎ(𝜀𝑛)

𝜀𝑛
∩ 𝑁 such that

inf
𝑦∈𝑀𝑇

|||𝛽𝜀𝑛 (𝑢𝑛) − 𝑦||| = sup

𝑢∈𝐸𝑉0
(𝔲)+ℎ(𝜀𝑛)

𝜀𝑛
∩𝑁

inf
𝑦∈𝑀𝑇

|||𝛽𝜀𝑛 (𝑢) − 𝑦||| + 𝑜𝑛(1).
Thus, it suffices to find a sequence {𝑦𝑛} ⊂ 𝑀𝑇 such that

lim
𝑛→∞

||||𝛽𝜀𝑛 (𝑢𝑛) − 𝑦𝑛|||| = 0. (5.6)

Actually this holds for any sequence {𝑦𝑛} ⊂ 𝑀𝑇 . Indeed since {𝑢𝑛} ⊂𝑉0 (and since under assumption (f1), 𝔲 is the
ground state of 𝐸𝑉0 on the whole𝑉0), we have

𝐸𝑉0(𝔲) ≤ 𝐸𝑉0(𝑢𝑛) ≤ 𝐼𝜀𝑛 (𝑢𝑛) ≤ 𝐸𝑉0(𝔲) + ℎ(𝜀𝑛),
which implies that 𝐼𝜀𝑛 (𝑢𝑛) → 𝐸𝑉0(𝔲). Then, by Lemma 5.3,

{𝑢𝑛} is convergent to 𝔲 in𝐻1𝑉0(ℝ
3). (5.7)

Then, if {𝑦𝑛} is any sequence in𝑀𝑇, since

𝛽𝜀𝑛 (𝑢𝑛) = 𝑦𝑛 +
∫
ℝ3
[𝜒(𝜀𝑛𝑧 + 𝑦𝑛) − 𝑦𝑛]𝑢

2
𝑛(𝑧)

∫
ℝ3
𝑢𝑛(𝑧)

2

,

by using (5.7), we see that {𝑦𝑛} verifies (5.6). □

In virtue of Lemma 5.4, there exists 𝜀∗ > 0 such that

sup
𝑢∈𝜀

𝐸𝑉0
(𝔲)+ℎ(𝜀)

∩𝑁

𝑑(𝛽𝜀(𝑢),𝑀𝑇) < 𝑇∕2.

Define now

𝑀+ ∶= 𝑀3𝑇∕2 =
{
𝑥 ∈ ℝ3 ∶ 𝑑(𝑥,𝑀) ≤ 3𝑇∕2}

so that𝑀 and𝑀+ are homotopically equivalent.
Now, reducing 𝜀∗ > 0 if necessary, we can assume that Lemma 5.2, Lemma 5.4, and (5.4) hold. Then, by standard

arguments (see, e.g., [7, 8]) the composed map

𝑀
Φ𝜀
⟶𝜀

𝐸𝑉0 (𝔲)+ℎ(𝜀) ∩ 𝑁
𝛽𝜀
⟶𝑀+ is homotopic to the inclusion map. (5.8)

At this point, we can finish the proof of the multiplicity result by implementing the Ljusternick–Schnirelmann Theory.
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FIGUEIREDO and SICILIANO 17

5.2 The Ljusternick–Schnirelmann category: Proof of Theorem 1.3

By (5.8) and the very well-known properties of the category, we get, for any 𝜀 ∈ (0, 𝜀∗],

cat(𝜀
𝐸𝑉0 (𝔲)+ℎ(𝜀) ∩ 𝑁) ≥ cat𝑀+(𝑀).

Then, since the (𝑃𝑆) condition holds (Lemma 2.9), the Ljusternik–Schnirelman Theory (see, e.g., [22]) applies and 𝐼𝜀 has
at least cat𝑀+(𝑀) = cat(𝑀) critical points on𝜀 with energy less than 𝐸𝑉0(𝔲) + ℎ(𝜀); so we have found cat(𝑀) solutions
for problem (1.1), which are negative.
To find the other solution, we argue as in [7]. Since 𝑀 is not contractible, the compact set  ∶= Φ𝜀(𝑀) cannot be

contractible in𝜀
𝐸𝑉0 (𝔲)+ℎ(𝜀). Moreover, we can choose 𝑣 ≤ 0, 𝑣 ∈𝜀 ⧵ so 𝑣 cannot be multiple of any element of .

In particular, 𝐼𝜀(𝑣) > 𝐸𝑉0(𝔲) + ℎ(𝜀).
Let

ℭ ∶=
{
𝑡𝑣 + (1 − 𝑡)𝑢 ∶ 𝑡 ∈ [0, 1], 𝑢 ∈ }

be the cone (hence compact and contractible) generated by 𝑣 over. It follows that 0 ∉ ℭ.
Consider also (see the map defined in the proof of Lemma 2.5)

𝜉𝜀(ℭ) =
{
𝑡𝜀(𝑤)𝑤 ∶ 𝑤 ∈ ℭ

}
the projection of the cone on𝜀, compact as well, and define

𝑐 ∶= max
𝑡𝜀(ℭ)

𝐼𝜀 > 𝐸𝑉0(𝔲) + ℎ(𝜀).

Since  ⊂ 𝜉𝜀(ℭ) ⊂𝜀 and 𝜉𝜀(ℭ) is contractible in𝑐
𝜀 ∶= {𝑢 ∈𝜀 ∶ 𝐼𝜀(𝑢) ≤ 𝑐}, it follows that also  is contractible in

𝑐
𝜀 .
Summing up, we have a set, which is contractible in𝑐

𝜀 but not in𝐸𝑉0 (𝔲)+ℎ(𝜀)

𝜀 , and 𝑐 > 𝐸𝑉0(𝔲) + ℎ(𝜀). The reason
of that, since 𝐼𝜀 satisfies the (𝑃𝑆) condition, is due to the existence of another critical level between 𝐸𝑉0(𝔲) + ℎ(𝜀) and 𝑐.
Then, we have another critical point in𝜀 ∩ 𝑁 with higher energy.
The proof of Theorem 1.3 is thereby complete.

5.3 The Morse Theory: Proof of Theorem 1.4

Here, we prove Theorem 1.4, hence assumptions (f4)–(f6) as well as (V1) and (C) are assumed here once for all.
Let us recall first few basic definitions and fix some notations.
Given a pair (𝑋, 𝑌) of topological spaces with 𝑌 ⊂ 𝑋, let 𝐻∗(𝑋, 𝑌) be its singular homology with coefficients in some

field 𝔽 (from now on omitted) and

𝑡(𝑋, 𝑌) =∑
𝑘

dim𝐻𝑘(𝑋, 𝑌)𝑡
𝑘

its Poincaré polynomial. Whenever 𝑌 = ∅, then it will be always omitted in all the objects, which involve the pair.
Recall also that if 𝐻 is a Hilbert space, 𝐼 ∶ 𝐻 → ℝ a 𝐶2 functional, and 𝑢 an isolated critical point with 𝐼(𝑢) = 𝑐, the

polynomial Morse index of 𝑢 is defined as

𝑡(𝑢) =∑
𝑘

dim𝐶𝑘(𝐼, 𝑢)𝑡
𝑘.

Here, given the sublevel 𝐼𝑐 = {𝑢 ∈ 𝐻 ∶ 𝐼(𝑢) ≤ 𝑐} and a neighborhood 𝑈 of the critical point 𝑢, 𝐶𝑘(𝐼, 𝑢) = 𝐻𝑘(𝐼𝑐 ∩ 𝑈,
(𝐼𝑐 ⧵ {𝑢}) ∩ 𝑈) denote the critical groups. The multiplicity of 𝑢 is the number 1(𝑢).
When 𝐼′′(𝑢) is associated to a self-adjoint isomorphism, then the critical point 𝑢 is said to be nondegenerate and it holds

𝑡(𝑢) = 𝑡𝑚(𝑢), where𝑚(𝑢) is the (numerical) Morse index of 𝑢: the maximal dimension of the subspaces where 𝐼′′(𝑢)[⋅, ⋅]
is negative definite.
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18 FIGUEIREDO and SICILIANO

Lemma 5.5. The functional 𝐼𝜀 is of class 𝐶2 and for 𝑢, 𝑣, 𝑤 ∈ 𝑊𝜀,

𝐼′′𝜀 (𝑢)[𝑣, 𝑤] = ∫
ℝ3
∇𝑣∇𝑤 + ∫

ℝ3
𝑉(𝜀𝑥)𝑣𝑤 + ∫

ℝ3
𝑓′(𝑢)𝑣𝑤.

Moreover, 𝐼′′𝜀 (𝑢) is represented by the operator

L𝜀(𝑢) ∶= R(𝑢) + K(𝑢) ∶ 𝑊𝜀 → 𝑊′𝜀,

where R(𝑢) is the Riesz isomorphism and K(𝑢) is compact.

Proof. By (2.2) 𝐼′′𝜀 is well defined and continuous. Then,

𝐼𝜀(𝑢) ≈ 𝐿𝜀(𝑢) ∶= 𝑅(𝑢) + K(𝑢) ∶ 𝑊𝜀 → 𝑊
′
𝜀.

Let us show that, for 𝑢 ∈ 𝑊𝜀, K(𝑢) is compact. Let then 𝑣𝑛 ⇀ 0 in𝑊𝜀 and 𝑤 ∈ 𝑊𝜀. By (2.2), we get that given 𝛿 > 0 for
some constant 𝐶𝛿 > 0:

∫
ℝ3

||𝑓′(𝑢)𝑣𝑛𝑤|| ≤ 𝛿|𝑣𝑛|2|𝑤|2 + 𝐶𝛿|𝑢|𝑞−2𝑞 |𝑣𝑛|𝑞|𝑤|𝑞
and the last term tends to zero due to assumption (C). By the arbitrarily of 𝛿, we deduce

‖K(𝑢)[𝑣𝑛]‖ = sup‖𝑤‖𝑊𝜀=1
|||∫
ℝ3
𝑓′(𝑢)𝑣𝑛𝑤

|||→ 0,
namely, the compactness of K(𝑢). □

Now for 𝑎 ∈ (0, +∞], define the sublevels of the functional

𝐼𝑎𝜀 ∶=
{
𝑢 ∈ 𝑊𝜀 ∶ 𝐼𝜀(𝑢) ≤ 𝑎

}
, 𝑎

𝜀 ∶=𝜀 ∩ 𝐼
𝑎
𝜀 ,

and the sets of critical points

𝜀 ∶=
{
𝑢 ∈ 𝑊𝜀 ∶ 𝐼

′
𝜀(𝑢) = 0

}
, 𝑎𝜀 ∶= 𝜀 ∩ 𝐼𝑎𝜀 , (𝜀)𝑎 ∶=

{
𝑢 ∈ 𝜀 ∶ 𝐼𝜀(𝑢) > 𝑎

}
.

In the remaining part of this section, we will follow [4, 8].
Let 𝜀∗ > 0 small as at the end of Section 5 and let 𝜀 ∈ (0, 𝜀∗] be fixed. In particular, 𝐼𝜀 satisfies the Palais–Smale condition.

We are going to prove that 𝐼𝜀 restricted to𝜀 has at least 21(𝑀) − 1 critical points.
We can assume, of course, that there exists a regular value 𝑏∗𝜀 > 𝐸𝑉0(𝔲) for the functional 𝐼𝜀.Moreover, possibly reducing

𝜀∗, we can assume that, see (5.3),

Φ𝜀 ∶ 𝑀 →𝐸𝑉0 (𝔲)+ℎ(𝜀)

𝜀 ∩ 𝑁 ⊂𝑏∗𝜀
𝜀 .

Since Φ𝜀 is injective, it induces injective homomorphisms in the homology groups, then dim𝐻𝑘(𝑀) ≤ dim𝐻𝑘(𝑏∗𝜀
𝜀 )

and consequently

𝑡(𝑏∗𝜀
𝜀 ) = 𝑡(𝑀) +(𝑡),  ∈ ℙ, (5.9)

where ℙ is the set of all polynomials with nonnegative integer coefficients.
As in [8, Lemma 5.2], we have the following:

Lemma 5.6. Let 𝑟 ∈ (0, 𝐸𝑉0(𝔲)) and 𝑎 ∈ (𝑟, +∞] a regular level for 𝐼𝜀 . Then,

𝑡(𝐼𝑎𝜀 , 𝐼𝑟𝜀 ) = 𝑡𝑡(𝑎
𝜀 ). (5.10)

Then, the following result holds.
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FIGUEIREDO and SICILIANO 19

Corollary 5.7. Let 𝑟 ∈ (0,𝔪𝑉0). Then,

𝑡(𝐼𝑏∗𝜀𝜀 , 𝐼𝑟𝜀 ) = 𝑡
(𝑡(𝑀) +(𝑡)),  ∈ ℙ,

𝑡(𝑊𝜀, 𝐼𝑟𝜀 ) = 𝑡.
Proof. The first equality follows by (5.9) and (5.10) simply by choosing 𝑎 = 𝑏∗𝜀 . The second one follows by (5.10) with
𝑎 = +∞ and recalling that𝜀 is contractible. □

To deal with critical points above the regular level 𝑏∗𝜀 , we recall also the following result whose proof is only based on
notions of algebraic topology and is exactly as in [8, Lemma 5.6], see also [4, Lemma 2.4].

Lemma 5.8. It holds

𝑡(𝑊𝜀, 𝐼𝑏∗𝜀𝜀 ) = 𝑡2
(𝑡(𝑀) +(𝑡) − 1),  ∈ ℙ.

Then, by using the Morse Theory, we arrive at the following fundamental result.

Corollary 5.9. Suppose that the set𝜀 is discrete. Then,∑
𝑢∈𝜀𝑏∗𝜀

𝑡(𝑢) = 𝑡
(𝑡(𝑀) +(𝑡)) + (1 + 𝑡)1(𝑡)

and ∑
𝑢∈(𝜀)𝑏∗𝜀

𝑡(𝑢) = 𝑡2
(𝑡(𝑀) +(𝑡) − 1) + (1 + 𝑡)2(𝑡),

where ,1,2 ∈ ℙ.
Proof. Indeed the Morse Theory gives ∑

𝑢∈𝑏∗𝜀𝜀
𝑡(𝑢) = 𝑡(𝐼𝑏∗𝜀𝜀 , 𝐼𝑟𝜀 ) + (1 + 𝑡)1(𝑡)

and ∑
𝑢∈(𝜀)𝑏∗𝜀

𝑡(𝑢) = 𝑡(𝑊𝜀, 𝐼𝑏∗𝜀𝜀 ) + (1 + 𝑡)2(𝑡)

so that, by using Corollary 5.7 and Lemma 5.8, we easily conclude. □

Then by Corollary 5.9, we get ∑
𝑢∈𝜀

𝑡(𝑢) = 𝑡𝑡(𝑀) + 𝑡2
(𝑡(𝑀) − 1) + 𝑡(1 + 𝑡)(𝑡)

for some  ∈ ℙ. We easily deduce that, if the critical points of 𝐼𝜀 are nondegenerate, then they are at least 21(𝑀) − 1, if
counted with their multiplicity.
Then, the proof of Theorem 1.4 is complete.
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