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ABSTRACT
Multiple-choice question answering for the open domain is a task
that consists of answering challenging questions from multiple
domains, without direct pieces of evidence in the text corpora. The
main application of multiple-choice question answering is self-
tutoring. We propose the Multiple-Choice Reinforcement Learner
(MCRL) model, which uses a policy gradient algorithm in a par-
tially observable Markov decision process to reformulate question-
answer pairs in order to find new pieces of evidence to support each
answer choice. Its inputs are the question and the answer choices.
MCRL learns to generate queries that improve the evidence found
for each answer choice, using iteration cycles. After a predefined
number of iteration cycles, MCRL provides the best answer choice
and the text passages that support it. We use accuracy and mean
reward per episode to conduct an in-depth hyperparameter analy-
sis of the number of iteration cycles, reward function design, and
weight of the pieces of evidence found in each iteration cycle on the
final answer choice. The MCRL model with the best performance
reached an accuracy of 0.346, a value higher than naive, random,
and the traditional end-to-end deep learning QA models. We con-
clude with recommendations for future developments of the model,
which can be adapted for different languages using text corpora
and word embedding models for each language.

CCS CONCEPTS
• Information systems: Question answering; Query reformu-
lation; •Computingmethodologies: Information extraction;
Natural language generation; Natural language processing;
Partially-observable Markov decision processes; Neural net-
works; • Theory of computation: Reinforcement learning;
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1 INTRODUCTION
Natural language processing can be characterized as a group of
techniques and methods that focus on processing and extracting
information from natural language, free form texts [1]. In this paper,
we focus on applying methods with deep reinforcement learning
(DRL) for the task of answering complex multiple-choice questions
on the open domain. This task involves a subset of the question an-
swering (QA) problems in which there are multiple possible choices
for answers. The objective is to evaluate the pieces of evidence
that support each possible answer and select the most suitable one.
Important examples for models that try to solve it are [2] and [3].

The main application of this task is self-tutoring, in which a stu-
dent evaluates and learns from unlabeled multiple-choice questions
without a teacher to point out the correct answer and the pieces of
evidence that support it. A QA model must be able to provide the
most likely choice and the text passages that support it.

The main difficulties in this task are: (i) identifying pieces of
evidence that support each answer choice in the text corpora [3];
(ii) a need to understand long questions [4]; and (iii) that the answer
may require multiple passages of text [4].

The traditional models used for solving QA problems, such as
information retrieval (IR) and machine reading comprehension
(MRC), do not address this problem satisfactorily [4]. The state-of-
the-art model for this task [3] consists of an essential terms selector
(ETS), which extracts terms from the question-answer choice pair;
an IR model to select the text passages that support each choice;
and an MRC model to evaluate the choices and find the best answer.
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The answer chosen is the one that has the best pieces of evidence,
and that contains the essential terms [2].

Nevertheless, three main problems need to be addressed to im-
prove the results on this task: (i) lack of pieces of evidence found
by the IR in the case of long and complex questions; (ii) difficulty
of training the model due to the lack of labeled multiple-choice
QA datasets; and (iii) difficulty of using the model on different
languages. In this paper, we will implement deep reinforcement
learning (DRL) to address those three problems, by reformulating
the question-answer pairs when satisfactory pieces of evidence are
not found [5] [3].

DRL is little explored in the literature for this problem. Its main
advantage is allowing model training with unlabeled datasets and
fewer data points [5]. This group of techniques addresses the cur-
rent problem of lack of high quality, labeled datasets for this task.
The results in the literature are promising using this method.

We propose the Multiple-Choice Reinforcement Learner (MCRL)
model, which has components inspired in the current models (ETS,
IR, and MRC) and a DRL with a policy gradient algorithm. Its focus
is on extracting relevant pieces of evidence from several passages of
text and reformulating the question-answer pairs. We then conduct
an in-depth evaluation of the most critical hyperparameters of
the model: reward function design, the weight of the pieces of
evidence, and the number of iteration cycles. We used the ARC
dataset [6] and accuracy and mean rewards per episode as quality
metrics.

The paper is organized as follows: Section 2 contains fundamen-
tal concepts; Section 3 formulates the problem; Section 4 describes
the MCRL model; Section 5 describes experiments and their results;
Section 6 presents related work; Section 7 discusses the model’s
main impacts; and Section 8 concludes the paper.

2 FUNDAMENTALS
This section contains the relevant basic concepts related to possible
solutions for the multiple-choice open-domain QA task, the use
of DRL, the framework of Partially Observable Markov Decision
Process (POMDP).

According to the literature, there are several possible options for
solving this task, each with advantages and disadvantages:
(1) Using only an IR model: This model can quickly find pieces
of evidence for the answer choices, but is not able to extract and
interpret multiple text passages, leading to poor results;
(2) Using a model with IR and MRC: It can answer simple ques-
tions, but presents problems when dealing with complex questions.
It is not able to reformulate queries to find new pieces of evidence
when the current ones are not enough;
(3) Using the model by [3], which focuses on questions with
multiple choices, by combining IR, MRC, and ETS: Although
this model is better than options 1 and 2, it does not provide good
results when the pieces of evidence found for the answer choices
are not satisfactory. On the current paper, reformulating the queries
will be evaluated as an alternative;
(4)Using themodel by [3] with an additional Reinforcement
Learning (RL) component for generating new queries for
each choice, using several iteration cycles: This is the model
proposed in this paper. The model uses several iteration cycles

to generate new queries for each answer choice and provide new
pieces of evidence. The model saves the score of each choice after
each iteration cycle. Then, the MRC will consider a final ranking at
the end of all the cycles, based on a mean of the choice probabilities
on each cycle.

The DRL framework is used to train autonomous agents to learn
through interactions with the environment, by performing actions,
evaluating state changes, and receiving rewards or punishments
depending on the quality of the action taken [7]. This quality of
action involves predicting the expected future rewards by choosing
an individual action at a specific state. The policy determines the
quality of the actions and guides the actions taken.

Markov Decision Process (MDP) is used to model many sequen-
tial decision problems [8] solved by RL. MDP is used when the
agent’s decision depends directly on the last action taken. However,
in some situations, the DRL agent can only observe part of the en-
vironment, or it may receive a considerable amount of noise on its
inputs. In those cases, one can model the problem using a Partially
Observable Markov Decision Process (POMDP) [9].

A POMDP is an abstraction of an MDP in which the agent has
the same system dynamics as an MDP agent [9] but can only ob-
serve part of the state. As a result, the agent must identify and
update a probability distribution considering the set of possible
states.

A POMDP is described by the tuple ⟨S,A,T ,R,O,Ω⟩, where S is
the set of environment states,A is the set of available actions,T is
the transition function, R is the reward function, O is a set of
observations, and Ω is an observation function. The agent does
not know T and R so it must estimate and constantly update their
values. The agent’s goal is to learn an optimal policy π ∗ that maps
each observation to the actions that lead to the highest expected
cumulative sum of rewards over the agent’s lifetime.

3 PROBLEM FORMULATION
The task of complex QA on the open domain with multiple choices
can be defined as the following sequence of steps [3]:

(1) The model receives a question Q and N answer choices Cn ,

withC = {Cn }
N

n = 1, and Cx ∈ C being the correct one;

(2) It formulates N queries Hn for the IR model, based both on
the question Q and its answer choicesC , forming the set of queries

H = {Hn }
N

n = 1;

(3) The IR model searches in the text corpora Tcorpora for the
passages of text (pieces of evidence) Pn that better answer each

query Hn, forming the set of pieces of evidence P = {Pn }
N

n = 1;

(4) The MRC model receives set of pieces of evidence P and
chooses the best possible answer choice Cx for the question Q.

A successful model for the self-tutoring problem would allow
a student to learn a subject without the need of a professor, un-
derstanding: (i) the correct answers for each question; and (ii) the
pieces of evidence that support them. Therefore, our research ques-
tion is the following: "Can RL improve the solution for the multiple
choices complex open-domain QA task?".
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4 MULTIPLE-CHOICE REINFORCEMENT
LEARNER

Our model has the following assumptions: (i) only one choice must
be correct; (ii) the question must refer to material up to the 9th
grade; and (iii) the question is formulated using proper grammar.

As shown in Figure 1, the MCRL is comprised of the models: (i)
Essential Term Selector (ETS); (ii) Question Generator 1 (QG1); (iii)
Information Retriever (IR); (iv) Machine Reading Comprehension
(MRC); (v) Question Generator 2 (QG2); and (vi) Passage Ranking
(PR). We designed the ETS, QG1, IR, and MRC models based on
[3], and the QG2 and PR models based on [4]. Based on [5], we
incorporate the idea of iteration cycles, adding a new step for the
model: reformulating the queries and repeating steps 2 to 4 until
the agent finds a satisfactory answer choice.

The central role of ETS is to search for the most relevant terms
in a question Q, related to the answer choicesC . Therefore, both the
question Q and each answer choicesC form the input for ETS, and
the resulting output is the selected terms E. The QG1 model then
uses E and C to generate queries H on the IR. Its main objective
is to find evidence that can support each answer choice Cn . Each
evidence is a text passage contained in the text corpora Tcorpora ,
and the sum of the pieces of evidence found at the end of the final
iteration cycle will form the final pieces of evidence for the answer
choice concerning the specific question.

IR is a model built to return a set of pieces of evidence P from
the Tcorporadivided in N subsets Pn in which each one supports
one of the answer choice Cn , given one query Hn . The resulting
pieces of evidence P are sent both to the MRC and PR models

At the end of each iteration cycle, the MRC model receives as
input the set of pieces of evidence P from the IR and Q and C . If
the current cycle is the last one, it receives the ranking R from the
PR model instead of the set of pieces of evidence P . It uses those
inputs at each iteration cycle to determine the matching scores SC
and the state o of the MRC.

The state ot of the MRC represents what the agent can see from
the whole environment at the time step t. QG2 later uses this state
as one of its inputs. The QG2 model takes the queries generated
by QG1 (if this is the first cycle) or QG2 (if this is any other cycle)
in the previous step Ht−1 and the state of the MRC ot to generate
new queries Ht . The model uses these new queries to find better
pieces of evidence Pn to support each answer choice Cn .

During the set of iteration cycles, PR collects all the sets of pieces
of evidence P for the answer choicesC provided by IR. It ranks each
evidence for each answer choice Cn based on how many times IR
returned it on the iteration cycles. Pieces of evidence that appeared
more times have a higher ranking. The PR output are the top k
evidences R from Tcorpora to support the answer choices C. We
separated the model into two phases.

Phase 1
As shown in algorithm1 , ETS selects relevant words from the

question E ⊂ Q , and then QG1 constructs N queries Hn joining E
with eachCn . Next, IR uses theses queries to score all the sentences
in Tcorpora and retrieve the top k sentences Pn . The MRC model
receives N triples {Q, Cn , Pn } to generate the ot and N matching

scores SCt = {SCn }
N

n = 1.

Phase 2
The agent is composed of the QG2 and IR models. Its objective

is to find the best P to support C. First,QG2 receives ot and the
previous queries Ht-1 and then generate a new group of queries
Ht. Secondly, the IR model repeats the same process carried out in
phase 1,applying Ht to score all the sentences in the Tcorpora to get
the top k piece of evidence that can support each Cn. In the final
cycle, MRC receives R from PR instead of P from IR and returns ot
and SCt . MCRL applies a softmax function on the SCt to determine
the correct answer Cx.

Algorithm 1 MCRL
Inputs: Question text (Q), Text corpora (Tcorpora), Model (M),
Number of cycles (T ), Number of top ranked sentences (k), Answer
choices (C)
Output: Selected Answer choice (Cx )
Phase 1
1: E←M. essencial_term_selector(Q,C)
2: H0← M.query_generator1(E,C)
3: P0← M. information_retriver(H0,Tcorpora,k)
4: Rt← M . passaдe_rankinд(p0)
5:SC0,o0 ← machine_readinд_comprehension(Q, C, P0)
Phase 2
1: for t in range (T ) do
2: Ht← M .query_дenerator2(ot ,Q)
3: Pt← M . in f ormation_retriver (Ht ,Tcorpora,k)
4: Rt← M . passaдe_rankinд(pt )
5: if t < T then
6: SCt,ot = machine_readinд_comprehension(Q, C, Pt )
7: else
8: SCt,ot = machine_readinд_comprehension(Q, C, Rt )
9: Cx = So f tmax(SCt )
10: end if
11: end for
12: return Cx

During the MCRL learning process, the POMDP is the following:
S: Composed of the question, answer choices, essential terms, text
corpora, and queries.
O: Given by the state of machine reading comprehension.
A: Given by all phrases in the text corpora.
T: The environment progresses deterministically after reading the
paragraphs sent by the information retriever model.

The parameters in the QG2 model represent the policy π . The
QG2 model is composed of a Gated Recurrent Unit and a Feed-
Forward Neural network. We use a policy gradient algorithm to
guide the construction of the agent’s policy, as in [4].

The rt represents the reward at time t returned by the environ-
ment after each action by the agent. The T represents the number
of interactions cycles. To maximize the expected reward, the agent
optimizes the QG2 parameters:

J (θ ) = Eπ

T∑
t=1

rt (1)
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Figure 1: Main components of the MCRL model.

We calculate the gradient using the REINFORCE algorithm [10]:

∇θ J (θ ) = Eπ

T∑
t=1

rt · log (πθ (pt |q))) (2)

Let q denote the query and pt the top k sentences sent to the
MRC model at time t. We apply a softmax function to compute the
probability that the current policy assigns to pt , as in [4],

πθ (pt |q) = so f tmax (score (pt |q)) (3)

5 EXPERIMENTS
This section contains a description of the experiments conducted to
evaluate the proposed model. The dataset used was the ARC dataset
[6]. The ARC dataset contains 7.787 natural science questions of
varying complexity, with up to 5 possible answer choices, extracted
from exams for students from 3rd to 9th-grade [6]. The length of
each question varies from 3 to 128 words, with an average of around
20. The vocabulary size contains 6.329 words after stemming [6].

A simple query on an IR model cannot answer most of the ques-
tions in this dataset. Its main differences in comparison with other
QA datasets are: (i) it has easy and challenging questions; (ii) the
majority of questions demand reasoning or interpretation; (iii) all
questions have multiple answer choices; and (iv) the questions en-
compass various categories. We carried out our experiments in the
challenging set, which is composed of train, validation, and test
subsets, consisting of 1.119, 299, and 1.172 questions.

We used the following Python libraries: NumPy, Pandas, Scikit
learn, PyTorch, TensorFlow, Matplotlib, and SciPy. The techniques
used for preprocessing were tokenization, stemming, part-of-
speech, stop-words-removal, and named-entity recognition [3].

The first experiment was exploring different weights of the com-
ponents of the reward function. We evaluated two possibilities: (i)
equal weights for the differences between the score in time t and t
- 1 for all possible answer choices, as shown in equation:

r1 =
N∑
i

(
SCit − SCit−1

)
(4)

and (ii) considering double weight for the difference between the
score in time t and t-1 for the right answer choice and keeping
simple weight for the rest of the differences:

Table 1: Models implemented.

Model Reward
Function

Number of
cycles

Information
weight

M1 1 1 1,2
M2 1 3 1,2
M3 1 5 1,2
M4 2 1 1,2
M5 2 3 1,2
M6 2 5 1,2

r2 = 2(SCrt − SCrt−1 ) +
N−1∑
i
(SCit − SCit−1 ) (5)

The second experiment was related to how the information of
each iteration cycle was used on the final prediction, considering:
(i) equal weights for all the cycles:

WPassaдe Rankinд 1 = 1 (6)

and (ii) the first cycle as having double the weight of the other
cycles on the final prediction:

WPassaдe Rankinд 2 =

{
i f cycle = 1 → 2

else → 1 (7)

The central hypothesis behind this formulation is that, as more
iteration cycles happen, the query starts to deviate from the original
question-answer pair. For this reason, we expect that the first refor-
mulation (first iteration cycle) should gather the most information
necessary to answer the question.

The third experiment was related to the different number of
iteration cycles. The primary rationale behind it is that there will be
an optimal number of iteration cycles for the RL agent, as observed
by [5]. We considered the following options: 1, 3, and 5 cycles.

Table 1 describes the models evaluated and their hyperparame-
ters. Table 2 contains the accuracy and mean rewards per cycle of
all the experiments. All the experiments considered convergence
on 10.000 episodes. More cycles led to higher running time.

We can conclude that: (i) the reward function 1 provided the best
results in terms of accuracy (0.338 vs. 0.335 for the reward function
2); (ii) the models with 1 iteration cycle presented the best accuracy
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Table 2: Results of the hyperparameter analysis of themodel
on the validation subset. The best results are in bold.

Model Information weight Accuracy Mean rewards/cycle

M1 1 0.359 4.123
2 0.359 4.124

M2 1 0.336 1.764
2 0.359 1.809

M3 1 0.322 1.311
2 0.295 1.311

M4 1 0.356 9.915
2 0.356 9.915

M5 1 0.326 0.847
2 0.356 0.847

M6 1 0.299 0.791
2 0.319 0.759

Table 3: Results of the final models.

Model Accuracy Mean rewards/cycle Total time (h)

M1 0.343 4.628 7.96
M2 0.346 1.995 15.18
M3 0.306 1.385 21.74
M4 0.345 10.702 7.96
M5 0.328 0.979 15.18
M6 0.311 0.826 21.74

(0.357 for 1 cycle vs. 0.344 for 3 cycles and 0.309 for 5 cycles); and (iii)
considering the weight of the first cycle the double of the weight
of the other cycles provided the best accuracy (0.341 vs. 0.333 for
considering the same weight for all cycles). M1 and M2 provided
the best results, with an accuracy of 0.359. The mean of rewards
per cycle of M1 is more than twice as higher than that of M2, and
more than three times higher than that of M3. It is important to
note that M4 also obtained similar results in terms of accuracy.

M6 was the worst model, with an accuracy of 0.299. Its mean of
rewards per cycle was also the lowest for the reward function 2,
indicating that it did not capture as much information as the others
for this reward function. Its mean of rewards per cycle was around
10% lower than M5, and more than ten times lower than M4.

Those results are in line with our initial hypotheses: (i) the model
gathers most of the information on the first cycle; and (ii) the
reward function should provide a higher weight for the first cycle.
Nevertheless, more experiments are needed on different datasets.

Table 3 contains the results of the final models on the test sub-
set. We evaluated the following metrics: accuracy, mean rewards
per cycle, and total time in hours. The best model was M2, with
an accuracy of 0.346. Nevertheless, both the models M4 and M1
had similar results. More experiments are needed with additional
datasets to be able to conclude which of these models present the
best accuracy. Based on the hyperparameter analysis, we infer that
a model with 1 iteration cycle will present the best results.

Table 4: Comparisonwith state-of-the-artmodels on the test
subset.

Model Accuracy

IR solver [3] 0.203
Random [3] 0.250
BiDAF [3] 0.265

BiLSTM Max-out [3] 0.339
MCRL - M4 (our model) 0.345
MCRL - M2 (our model) 0.346
ET-RR (Concat) [3] 0.353

ET-RR [3] 0.366

For mean rewards per cycle, M4 presented the best results, with
10.702, followed by M1, with 4.628. These results are another in-
dication that the models with 1 iteration cycle may present better
results. The model with the worst mean reward per cycle was M6,
with a value of 0.826. These results reinforce that having more
cycles may not improve considerably on the information gathered.

While an artificial neural network may take seconds up to min-
utes to run on a test subset, an RL agent can take hours up to days.
In the case of the MCRL, running on the test subset took about 8
hours for the models with 1 cycle, up to around 22 hours for the
models with 5 cycles. These results show a significant increase in
running time when increasing the number of cycles.

Table 4 contains the results of the comparison of the MCRL
models with several other models [3]. The MCRL model (with 1 or
3 iteration cycles) provides better results than random, naive, and
end-to-end deep learning models. Nevertheless, it did not provide
better results than the state-of-the-art ET-RR model.

Nevertheless, using an RL agent has benefits concerning the
ET-RR: (i) model training with unlabeled datasets and fewer data
points; and (ii) the possibility of using on different datasets, as the
reward function is not specific for a restricted domain.

We conclude that using RL to reformulate questions and evaluate
pieces of evidence of question-answer pairs provide a satisfactory
solution for the multiple-choice complex open-domain QA task.

6 RELATEDWORKS
The first works on open-domain QA are from the 1960s [11]. The
Trec-8 task was created to promote the area, launching many
datasets [12–14]. The ARC dataset [6] is important for multiple-
choice QA. Its questions cannot be answered by a model only based
on the IR or Pointwise Mutual Information paradigm. The state of
the art model scores a little better than a random guess [3].

Two developments have been suggested in recent years: (i) query
reformulation; and (ii) use of iteration cycles. Both aim to improve
the possibility of finding the correct answer. Query reformulation
has been demonstrated to improve the IR results, by improving
the original query [15]. This is shown by [16], which used RL to
reformulate the queries.

The work of [5] has shown improvements over the results of the
BiDAF reader model. The Multi-step Retriever-Reader developed
by [4] is the closest to our work. Nevertheless, their model is not
optimized for multiple-choice QA problems.
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The use of iteration cycles has improved results for many QA
tasks. The iteration cycles in [4] act as a type of controller update.
Our work, based on [4], uses cycles to reshape queries and improve
the possibility of finding the right answer.

7 DISCUSSIONS
An analysis of several instances of the model’s results indicates
that it is possible to group the text passages found by the model
for each answer choice in three main categories: (a) passages that
directly point to the correct answer choice; (b) passages that are
only partially related to the correct answer choice; and (c) passages
that are not related to any of the answer choices.

In Example 1, the model chose the wrong alternative. We believe
that the main reason is that it did not capture what was being asked.
The question asked was which of the answer options did not cause
the evolution, but the model seems to have interpreted which was
the leading cause of it. For this reason, it picked choice A. The
pieces of evidence found for choice B were not as strong.

We can observe that: (i) the model is not able to capture subtle
changes in the question phrasing; and (ii) the pieces of evidence
gathered when the model does not understand the question are
noise. Future work will address both of these points, by improving
the number of questions with a negative connotation in the dataset
and by further exploring how to better separate noisy passages,
reducing the probability of choosing the wrong answer.
Example 1
Question: Biological evolution can occur through all of these
except?
(A) competition

(B) fossilization ✓
(C) variation
(D) adaptation
There are two main explanations for this observation: (i) a small

dataset, resulting in sub-optimal policies; and (ii) a lack of a clear
metric for defining if the agent should go through an additional
cycle. The first point could be addressed by using larger datasets.
The second, by using a metric such as information gain to evaluate
and help the agent define if more cycles are necessary.

8 CONCLUSIONS AND FUTUREWORKS
Improving the accuracy of multiple-choice QA for complex open do-
main questions could have a series of benefits. The main difficulties
of this task are: (i) identifying pieces of evidence that support each
answer choice; (ii) understanding long questions; and (iii) choosing
the answer based on multiple passages of text.

We proposed the use of a deep RL model, MCRL, with several
iteration cycles to reformulate queries for the IR component and
then to choose the answer that has the highest probability of being
the correct one. Although the proposed model did not achieve the
same results as the state-of-the-art model, it was considerably close
and still has room for improvement in several aspects.

The main limitations of our work are: (i) lack of available datasets
for multiple-choice QA; and (ii) difficulty assessing the number
of iteration cycles. Future works are related to: (i) improving the
passage ranking algorithm, improving the information gathered

through the cycles; (ii) using different datasets to train the agent;
and (iii) using an unsupervised machine learning model to cluster
the questions and answer choices before using the model.
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