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ABSTRACT. A map f:]0,1) — [0,1) is a piecewise contraction of n intervals (n-PC) if
there exist 0 < A < 1 and a partition of I = [0, 1) into intervals I, I, ..., I,, such that
|f(z) = f(y)| < Az —y| for every z,y € I; (i =1,2,...,n). An infinite word 8 = 6yb . ..
over the alphabet A = {1,...,n} is a natural coding of f if there exists x € I such that
05 = i whenever f*(x) € I;. We prove that if § is a natural coding of an injective n-PC,
then some infinite subword of 6 is either periodic or isomorphic to a natural coding of
a topologically transitive m-interval exchange transformation (m-IET), where m < n.
Conversely, every natural coding of a topologically transitive n-IET is also a natural

coding of some injective n-PC.

1. INTRODUCTION

Throughout this article, let I = [0,1) denote the unit interval. A map f:1 — I is a
piecewise contraction of n intervals (n-PC) if there exist 0 < A < 1 and a partition of I into
non-degenerate intervals Iy, ..., I, such that f|;, is A-Lipschitz for every 1 < i <n. If, in
particular, there exist by,...,b, € Rand oy,...,0, € {—1,1} such that f(z) = o; Az + b;
for every x € I;, then we say that f is a piecewise A-affine contraction.

The natural f-coding of a point x € I is the infinite word 0¢(x) = 6p0; ... defined by
0r = i whenever f*(z) € I;, where f° denotes the identity map. We say that an infinite
word 6 is a natural coding of f if 8 = 0¢(x) for some x € I. We say that 6 is ultimately
periodic (respectively, periodic) if there exist finite subwords u, v of 6 such that § = uvv. ..
(respectively, 8 = vv...). The language L(0) of a natural coding @ is the union of the sets
Li(0) = {0m0mi1 - - - Omir—1 : m > 0} of finite subwords of length & occuring in 6, where
Lyg is the one-point-set formed by the empty word.

In this article, we give a complete and systematic description of the languages of in-
jective n-PCs, n > 2, by providing a dictionary between these languages and the fairly
well-understood languages of interval exchange transformations (IETs). We also pro-
vide converse results which enable us to construct n-PCS with any prescribed admissible

coding.
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The first point addressed in this article consists in providing the list of all admissible
natural codings of injective n-PCs. Natural codings of piecewise contractions defined on
2 intervals (or more generally, defined on 2 complete metric spaces) were provided by
Gambaudo and Tresser [14] and are intrinsically related to natural codings of rotations
of the circle. Concerning languages of injective n-PCs f: I — I for n > 2, some progress
was made recently by Catsigeras, Guiraud and Meyroneinc [7]. They proved that for
each natural coding 6 of f, the complexity function of the language L£(6), defined by
po(k) = #Lk(0), where # denotes cardinality, is eventually affine.

The second point concerns the problem of how to construct n-PCs with any prescribed
list of admissible natural codings. In this regard, it follows from the works [21], 22} 23] that
a generic n-PC admits only ultimately periodic natural codings. Therefore, n-PCs with
no ultimately periodic natural coding are exotic and their construction is a nontrivial
issue. The existence of 2-PCs having no ultimately periodic natural coding is related
to the existence of smooth flows on the 2-torus with pathological dynamics (see Cherry
[8]). More generally, 2-PCs topologically semiconjugate to irrational rotations have being
constructed and studied via a rotation number approach (see [4] 5] [6 [15], [16] 18]). Here
we address the second point in full generality, by using another approach, based on the
existence of an invariant measure (see [26]). In particular, we prove that every minimal
n-IET, with n > 2, with or without flips, is a topological factor of an n-PC with no
ultimately periodic natural coding. This combined with Keane’s irrationality criteria [17,
p. 27| provides a huge class of exotic n-PCs. Since every irrational rotation can be
considered as a minimal 2-PC, the previous results fit into our framework.

As for the motivation to study n-PCs, it is worth remarking that they describe pretty
well the dynamics of some Cherry flows on 2-manifolds, dissipative outer billiards, traffic

systems, queueing systems and switched server systems.
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2. STATEMENT OF THE RESULTS

A bijective map T: I — I is an n-interval exchange transformation (n-IET) if there exist
a partition [Iy,..., I, of I into non-degenerate intervals, by,...,b, € R and oy,...,0, €
{—1,1} such that T'(z) = o;x + b; for every x € I;,. an n-IET T is standard if I; a left-
closed right-open interval and T'|;, is the translation x — x + b; for every 1 < i < n.
Following [20], we say that a non-standard n-IET T has flips if, for some 1 <1i <n, Ty,
is the map x — —x + b;. We say that an n-IET T:1 — [ is wrreducible if there is no
0 < & < 1 such that 7([0,6)) C [0,4) or, equivalently, if there is no 1 < j < n — 1 such
that T(UL_, I;) C UL, I,.
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An n-IET T:1 — I is: topologically transitive if it has a dense T-orbit {z, T'(z),...},
minimal if every T-orbit is dense, and aperiodic if it has no periodic orbit. A periodic orbit
7 is attractive if there exists an open set U, such that w(z) = ~ for every x € U,. In a
standard n-IET, every periodic orbit is attractive, thus in this case topological transitivity
is equivalent to minimality. An n-IET T satisfies the infinite distinct orbit condition
(i.d.o.c.) if the orbits {x;, T'(x;),...} of its discontinuities z;, 1 < i < n — 1, are infinite
and pairwise disjoint. Keane [17] proved that every irreducible standard n-IET, n > 2,
satisfying the i.d.o.c. is minimal. The natural T-coding of a point x € I is the infinite
word Or(z) = 0y, ... defined by 6, = i whenever T*(x) € I,. If T is an irreducible
standard n-IET satisfying the i.d.o.c., then the language £(6) of a natural T-coding € is
the same for any 6. In this case, we define the language of T, denoted by L, to be the
language £(0) of any of its natural T-codings.

The alphabet A(6) of an infinite word 6 = 6y, . . . is the set of letters that occur in §. We
say that two infinite words 6 = 6,6 . .. and w = wow; . .. are isomorphic if their alphabets
A(#) and A(w) have the same cardinality and there is a bijection 7: A(f) — A(w) such

that wy, = m(0y) for every k > 0. For example, the infinite words
6 =010010001... and w =121121112...

are isomorphic because A(#) = {0,1} and A(w) = {1,2} have the same cardinality and
wy, = m(0) for every k > 0, where the bijection 7 : A(f) — A(w) is given by 7(0) = 1
and 7(1) = 2.

Our main results are the following.

Theorem 2.1. Let f: 1 — I be an injective n-PC, then there exist 2 < m < n and an
m-IET T: 1 — I without attractive periodic orbits such that for each x € I there exists an
integer k > 0 such that the natural f-coding of f*(x) is either periodic or isomorphic to

a non ultimately periodic natural coding of T'.

Theorem 2.2. Given any topologically transitive n-IET T: I — I, there exist an injective
piecewise %-aﬁ‘ine contraction fr: I — I of n intervals and a continuous, surjective, non-
decreasing map h: I — I such that 0y, (z) = 07 (h(x)) for every x € I. In particular, if T
1s an irreducible standard n-1ET satisfying the i.d.o.c., then the language of each natural

coding of fr equals the language of T'.

In Theorem 2.1l the term “without attractive periodic orbits” may be replaced by
“aperiodic” in the case in which I; = [%‘—1, xl) and f|r,, 1 <i <mn,is (strictly) increasing,
where I, ..., I, is the partition associated to f.

Theorem 2] turns out to be a dictionary between languages of PCs and languages of
IETs. Languages of minimal IETs were studied by Belov and Chernyat’ev [2], Ferenczi
[11], Ferenczi and Zamboni [I2], and Dolce and Perrin [10]. In particular, it is known
that if 6 is a natural coding of an irreducible standard minimal n-IET, then the language

L(0) does not depend on 6, is uniformly recurrent and has complexity function satisfying
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pa(k) < (n — 1)k + 1, where the equality holds if the IET satisfies the i.d.o.c.. Languages
generated by substitutions (e.g. languages of self-similar IETs) were studied by Lopez
and Narbel [19]. Natural codings of aperiodic n-IETSs are isomorphic to natural codings
of topologically transitive n-IETs.

Theorem provides examples of n-PCs without periodic or ghost orbits, or equiva-
lently, without ultimately periodic natural codings. These examples are not easy to con-
struct because generically n-PCs of the interval are asymptotically periodic (see [22, 23]).

The following result is a corollary of Theorem 2.1

Corollary 2.3. Let 6 be a natural coding of an injective n-PC, then some infinite subword
of 0 is either periodic or isomorphic to a non ultimately periodic natural coding of a

topologically transitive m-IET, where 2 < m < n.

Theorems 2.1l and imply, in particular, the result of Catsigeras, Guiraud and Mey-
roneinc [7] concerning the complexity function of languages of n-PCs, which is stated

below in a more complete way, with fr given by Theorem 2.2

Corollary 2.4. Let 0 be a natural coding of an injective n-PC f: 1 — I, then

(1) There exist « € {0,1,...,n— 1}, B > 1 and kg > 1 such that the complezity
function of 0 satisfies pg(k) = ak + B for every k > ko with =1 ifa =n —1;

(16) If n > 2, T:1 — I is a standard n-IET satisfying the i.d.o.c. and f = fr, then
po(k) = (n—1)k+1 for every k > 1.

The particular family of 2-PCs f: I — I defined by f(x) = Az +§ (mod 1) was consid-
ered by Bugeaud [4, [5], Bugeaud and Conze [6] and, more recently, by Janson and Oberg
[16], and also by Laurent and Nogueira [I8], by means of a rotation number approach.
Concerning such family, we provide the following corollary, which turns out to be a special
case of [I8, Corollary 7]. We recall that an n-PC f:I — I is topologically semiconjugate to

an n-IET T:I — [ if there exists a continuous, nondecreasing and surjective map h:l — [
such that ho f =T o h.

Corollary 2.5. For each irrational 0 < o < 1, there exists a transcendent 6 € R such
that the 2-PC fr: 1 — I and the minimal 2-IET T: 1 — I defined by

fr(x) = %az +9 (mod 1) and T(z)=xz+ a (mod 1)

are topologically semiconjugate and every natural coding of fr is a Sturmian sequence. In
particular, if & = 2 — @, where o = (1++/5)/2 is the golden ratio, then § = 1 — %, where
R is the rabbit constant.

In Corollary 2.5, we have that § = izkzo 0,27%, where 6 = 6y0, ... is the natural

coding of @ under the action of the irrational rotation x — = + « (mod 1).
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3. PREPARATORY LEMMAS

In this section, we present some results that will be used to prove Theorem 2.1 as the

next table clarifies.

result needs

Lemma 3.3 | Lemma

Corollary B.4] | Lemma

Theorem Lemma [3.6] and |26, Theorem 2.1]

Theorem 2.1] | Lemma [B.1l, Corollary [3.4] and Theorem

Throughout this section, let I = [0, 1) and f: I — I be an injective n-PC with associated
partition Iy,..., I, whose endpoints are 0 = xog < 21 < --- < x,, = 1.
The w-limit set of x € I is defined by

wia) = J @)},

>1k>¢

where S denotes the topological closure in R of any set S C I.

Lemma 3.1. Let x € I be such that w(x) is finite, then there exists an integer k > 0 such
that the natural f-coding of f*(x) is periodic.

Proof. We may assume that {z, f(z), f%(z),...} is an infinite set, otherwise z would be
a periodic point, then we could take k& = 0. Since w(z) is a finite set, we may write
w(z) = {p1,...,p}. Without loss of generality, we suppose that w(x) C (0, 1), thus there

exists € > 0 so small that

1

€< — 152?9 |pi — p;| and LJl(pj —€,p;) U (pj,pj+e€) CI\{zo,21,..., 201}
]:

In particular, if

j = {(pl - 67p1)7 (p17p1 + 6)7 ceey (pT - 67p7’)7 (prupr + 6)}7

then f(J) is an open interval for every J € 7.
Let 7' C . denote the subcollection formed by the intervals that are visited infinitely
many times by the f-orbit of x, that is,

I'={Je I A{z, f(x), f*(x),...} NJ is an infinite set } .

We claim that for each J; € ./, there exists Jo € £’ such that f(J;) C J,. Without loss
of generality, suppose that J; = (p — €,p), where p € w(z). As J; C I\{xo,z1,...,2n_1},
we have that f|;, is a contraction, thus f(J;) is an open interval of length smaller than
€. On the other hand, since J; € .#’, there exists an increasing sequence of integers 0 <
ki < ko < --- such that { f* (x)}j21 C J. Notice that lim;_,«, f*(z) = p, otherwise there
would exist a point of w(z) in J; different from p, which contradicts the first inequality in

the definition of €. Because f|;, is injective and continuous, we have that {fkf+1(x)}j>1 C
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f(J1) converges to some point ¢ € w(x) NIf(Jy), where Of(J;) denotes the endpoints of
the open interval f(.J;). Putting it all together, we conclude that f(.J;) is an open interval
that contains infinitely many points of the f-orbit of x, has length smaller than e, and
has an endpoint in w(x). Therefore, there exists Jy € &’ such that f(J;) C Js.

To finish the proof, let J € .#’, then there exists &’ > 0 such that f*(z) € J. By the

claim, there exist 1 < iy < ip and intervals Jy, ..., J;,, Jiy 11, .., Ji, € & such that J;=J,
Jiy = Ji, and f(J;) C Jiyq forall 1 <i < iy — 1, proving that f*(z) has a periodic natural
f-coding for some k > k' O

Lemma 3.2. Let J C I be an open interval, then there exists a finite set B C I such that
if Jo C J\B is an open interval, then one of the following happens:
(1) f(Jo), f2(Jo), ...are pairwise disjoint open intervals contained in I\J;
(ii) Im > 0 such that f™(Jy) is open subinterval of J. Moreover, if m > 1, then
F(Jo)s -, f™(Jo) are open subintervals of I\(J U {xo, z1,...,Tn1}).

Proof. Let J C I be an open interval. Given x € I, set
(1) 7, =min {k>0: f*({z}) C J},
where by convention inf ) = co. Let

B = U{f‘”({x}) :x € {mo, x1,..., 2,1} UDJ and 7, < 00} .

Let Jo € J\B be an open interval, then one of the following alternatives happens:
{f*(Jo)}x>1 C I\J or there exists an integer ¢ > 1 such that f*(Jo) NJ # 0. In the
first case, by the injectivity of f and also because Jy C J\B, we have that Jy, f(Jo),
f2(Jy),. .. are pairwise disjoint sets contained in I\{zg,1,...,2,_1}. Since each f|;, is
Lipschitz continuous, we conclude that f*(.Jy) is an open interval for every k& > 0, which
proves (i). As for the second alternative, let m = min {¢>1: f{(Jo)NJ #0} — 1.
If m = 0, then f(Jo) NJ # (), which together with the fact that Jo, C J\B implies
that f(Jy) is an open subset of J. Otherwise, if m > 1, then proceeding as in the
first case yields that the sets f(Jy),..., f™(Jo) are pairwise disjoint open subintervals of
IN(J U {z, z1,...,2,-1}). Moreover, because Jo C J\B, we have that f™(Jo)N.J # 0
implies that f™1(.Jy) is an open subinterval of J. OJ

Remark. The item (i) of Lemma [3.2] implies that f™*|; : Jo— f™(Jy) is a bijective

contraction.

Lemma 3.3. If for some x € I and 1 <i < n, the set {z, f(x), f*(x),...} N (z;_1,7;) is
infinite and w(x) N (z_1, ;) = 0, then w(x) is finite.

Proof. By hypothesis, we have that

(H1) {=, f(x), f3(x),...} N (x;_1,x;) is infinite;
(H2) {z, f(x), f*(z),...} N K is finite for all compact set K C (z;_1, ;).
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By (H1), the orbit of x returns to J = (x;_1, x;) infinitely many times. Let 1 < ky < ky <
.-+ denote the return times of z to J under the action of f. Because of (H2), we have

only three cases to consider.
Case (a). lim;_,o f¥(z) = 21,

Let B the finite set given by LemmaB.2l considering J = (x;_1, z;). Let € > 0 be so small
that Jo = (z;_1,x;_1 +¢€) is a subset of J\B. Notice that the alternative (i) of Lemma 3.2l
cannot occur. In fact, since f%(z) | z;_1, we have that f*(Jy) N J # () for many positive
values of k. By exclusion, the item (i) of Lemma is true, then there exists m > 0
such that f™*1(.Jy) is an open subinterval of J and, if m > 1, then f(Jy), ..., f™(Jo) are
open subintervals of [\(J UA{zo,x1,...,2n_1}). In particular, if y € Jy, then m + 1 is
the first return time of y to J. This means that if jo > 1 is such that {f% (x)};>;, C Jo,
then {f*(z)};~;, C f™(Jy), implying that z;_; belongs to the boundary of the open
interval f™1(Jy). Moreover, since f™|; :Jo — f™T1(Jy) is a bijective contraction (see
the Remark after Lemma[B.2]), we have that f™*1(.Jy) C J is an open interval with length
smaller than € and with an endpoint in x;_;, thus f™"(Jy) C (z;_1, ;-1 +€) = Jy. This

implies that w(z) is finite.
Case (b). lim;_,o f*(z) = ;.

Just proceed as in Case (a) considering now Jy = (z; — €, z;).

Case (¢). Np=1 Ujss {fP(x)} = {@i1, 2}

The proof presented here is a variation of that used in Case (a). Let € > 0 be so
small that J) = (x;—1,2,-1 +€) and JJ = (x; — ¢,x;) are contained in J\B. Then
by the same arguments used in Case (a), there exist m/,m” > 0 such that f™*'(.J})
and f™'+1(JY) are disjoint open subintervals of J and, if m’ > 1 (respectively, m” >
1), then f(J0),..., ™ (J;) (vespectively, f(J}),...,[™ (J)) are open subintervals of
I\N(J U {zo,21,...,25-1}). In particular, if y € Jj (respectively, if y € J), then m’ + 1
(respectively, m” + 1) is the first return time of y to J. This means that if jo > 1 is such
that {75 (2)}s0 © Jo U Y, then {15 (2) )y © F7F(J5) U f7 (), implying that
zioy € Of™ () and z; € Of™F(J)). Moreover, since f™F ;g — f™F(J)) and
i gridy — f™ YY) are bijective contractions, we can argue in the same way as
in Case (a) to conclude that f™+'(J) C JY and f™"*1(J¥) C Jj, proving that w(z) is
finite. U

Lemma leads to the following result.
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Corollary 3.4. Let x € I be such that w(z) is infinite. If for some 1 < i < n, the set
{z, f(2), fA(@), ...} N (zi1, 30) ds infinite, then w(z) N (zi-1, 7;) # 0.

We will also need the following result, which is a variation of [26] Theorem 2.1].

Theorem 3.5. Let © € I be such that A = w(x) is infinite, then there ezists a non-atomic

f-invariant Borel probability measure whose support is A.

The proof of Theorem depends on Lemma stated below. In what follows, let
x € I be such that A = w(x) is infinite. As x is not periodic, there exists ¢ > 0 such that
{f¥(): k> n{xo,z1,...,7,_1} = 0. Hence, by replacing = by f*(z) if necessary, we

assume that

(2) {z, f(2), *(2),...} N {zo, 21, ..., 201} = 0.

Denote by {vm }m>1 the sequence of Borel probability measures on I defined by

where &1, is the Dirac probability measure on I concentrated at f*(z). By the Banach-
Alaoglu Theorem, there exist a Borel probability measure on I, denoted henceforth by v,
and a subsequence of {v/, };m>1, denoted henceforth by {v,,,};>1, that converges to v in

the weak*- topology. We will keep these notations until the end of this section.

Lemma 3.6. Let y € I, then there exist an open subinterval J, of I containing y and
an integer jo > 1 such that vy, (J,) < € for every j > jo. Moreover, the support of v is
A =w(z).

Proof. Let y € I and € > 0. We will prove that there exist § > 0 and j, > 1 such that

the interval

J [0,0) ify=0
! (y—0,y+d) ify>0

satisfies J, C I and v,,; (J,)) < € for all j > jo. Without loss of generality, we may assume
that y > 0 and J, = (y — 6,y + §). Since v is a probability measure, v has at most

countably many atoms, which means that the set
A={0<d<min{y,1-y}:v({y—d,y+d}) =0}

contains arbitrarily small values of §. It follows from [25, Theorem 6.1, p. 40] that if

0 € A, then
(3) J,CI and v(J,)= jlggo Vin; (Jy)-

Now have two cases to consider.

Case I: y € A, that is, y € w(z).
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In this case, there exist § € A and j, > 1 such that f*(x) & J, for every k > m;,. Let
J1 > jo be such that m; > m,, /e for every j > j;, then

My

<€7 \v/]Zjl

m;

Vi, (Jy) = %#{0 <k<mj,—1:f"z)eJ,} <

Moreover, making j — oo and using (3] yield v(J,) = 0, implying that y does not belong
to the support of v.

Case Il: y € A.

First assume that there exists an increasing sequence of integers 1 < k; < ko < ---
such that f*(x) 1. Since f is an injective piecewise contraction, the following limits are
well-defined:

o=y, y=lim f(f@), ye = lim f2(fH (),

We claim that #{k > 1:yr =y} < 1. By way of contradiction, suppose that there exist
1 < p < ¢ such that y, = y, = y. It is elementary to see that for every ¢ > 0 small
enough and Ay = (y — 6,y), the sets A; = f(4Ay), Az = f*(Ao),..., A, = [1(Ap) are open
intervals of length less than d. Yet, y, € Ay for every 0 < k < ¢q. Hence, either A, C Ay
or A, C Ay, which contradicts the fact that w(z) is infinite. In this way, the claim is true.
Then, there exists rq > 1 such that y, # y for all £ > rq. In particular, given r > 1, there
exists 91 = d1(r) such that for every 0 < § < dy,

#{0<k<r—1:f(y-oy)nJ,#0} <2

Let r > 0 be such that % < 5. Set 6; = 01(r). Then, for all 0 < 0 < ; with § € A and

for any 7 large enough,

vy (= 6.9) = —# {0 <k <my—1: fHa) € g} <

S lw

€
< g
Now assume that the sequence 1 < k; < ko < ... does not exist, then for every ¢ small
enough,

U, ((y —6,y)) =0 < <
Likewise, there exists d5 > 0 such that for all 0 < § < J, with § € A, we have that

w

l/mj((y,y + 5)) < 5 for any j large enough. Moreover, v, ({y}) < 3 for any j large
enough. Putting all together, there exist 6 > 0 with 6 € A and jp > 1 such that
Vi, (Jy) < € for all j > jo.

It remains to prove that in this case y belongs to the support of v. By the above,
we know that the orbit of x enters in J, infinitely many times. If we prove that the
return times of x to .J, are bounded, then we will conclude that infj;sj, v, (J,) > 0,
which together with (B]) will imply that v(J,) > 0. Let S = {zo,z1,..., 2,1} UJJ, and
S'={z€8:Usof ({z})NJ, #0}. Given z € &, let

7, =min{k>0: f*({z}) C J,}
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and B = {f™(2) : z € §’}. If U is a connected component of J,\B, then all points of
U either never return to J, or return to J, at the same time. The second case always
happens when U C J, is a small interval with an endpoint at y. In particular, the return

times of the points of the orbit of x to J, are bounded. U

Proof of Theorem[3J. Theorem B.0lis a variation of [26, Theorem 2.1] where the hypothe-
ses of no connection and no periodic orbit were weakened. Here we just point out which
change is necessary in the proof of [26] Theorem 2.1]. In this regard, [26] Lemma 3.2]
ought to be replaced by Lemma [3.6l The hypothesis that f has no periodic orbit in the
statement of [26, Theorem 2.1] is not necessary: all we need is that w(x) is infinite. In this

way, the claims of [26, Theorem 2.1] hold in our context, which proves Theorem O

4. PROOF OF THEOREM 2.1

Throughout this section, let f: I — [ be an n-PC with associated partition I4,..., I,
having endpoints 0 = xg < z; < --- < z, = 1. We will need the following elementary

result.

Lemma 4.1 ([2I, Lemma 3.6]). There exist r < 2n pairwise disjoint open intervals
Fi, ..., F. such that f*(F;), 1 < j <r, k <0, are empty sets, and f*(F;), 1 < j <,
k =0, are pairwise disjoint open intervals and £ = U7_; Ug>o f¥(F}) is a dense subset of

IN{xo, 21, ..., 2,1} having Lebesque measure 1.

A non-empty compact subset A C [0, 1] is an attractor of f if there exists p € I such
that A = w(p). Let Fy,...,F, be as in the statement of Lemma [l then for each
1 <j <r, Upsoff(F;) N {zo,z1,...,2,-1} = 0, implying that w(p;) is the same for any
pj € Upsof*(F;). In this way, the attractors

(4) Al = W(p1), RS Ar = w(pr)

do not depend on the choice of (p1,...,p,) € F} x -+ x F,.
Lemma 4.2. Let p € I. If w(p) is infinite, then w(p) € Ay U---UA,.

Proof. Since w(p) is infinite, the f-orbit of p is not periodic. In particular, there exists
ko > 0 such that the f-orbit of f*o(p) does not pass through discontinuities. By the
density of €2, there exists 1 < j < r such that f*(p) € w(p;). Then, w(p) = w(f*(p)) C
w(p;) = A .

Without loss of generality, by replacing r by a smaller number, we may assume that
the sets Aq,..., A, are pairwise distinct. It follows from Lemma 1] that S = I\Q is a
Lebesgue null set. Let 1 < j < 7. As S = SU{l} and A; C S, we have that S has
empty interior, hence A; is totally disconnected. By the Cantor-Bendixson Theorem, we
conclude that A; is either a finite set or the union of a Cantor set with a discrete set. If
all the attractors Aq,..., A, are finite, then, by Lemmas 3.1l and 4.2 all natural codings

of f are ultimately periodic and we are done. Otherwise, there are 1 < s < r infinite
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attractors. Without loss of generality, assume that Aq,..., As are the infinite attractors.
It follows from Theorem [3.5] that for each 1 < j < s, there exists a non-atomic f-invariant

Borel probability measure j1; whose support is A;. Hence, if

u=§u1+---+§us, A=ANU---UA,,
then p is a non-atomic f-invariant Borel probability measure with support equal to A.
Let h:[0,1] — [0, 1] be the nondecreasing, continuous, surjective map defined by h(t) =
u([O, t]), t € I. Notice that h is strictly increasing on A and constant on each connected
component of I\A. Given z,2’ € I; with h(z) = h(2'), we claim that h(f(z)) = h(f(2')).
Since f is injective, f|;, is either increasing or decreasing. Without loss of generality, in

what follows, assume that f|;, is increasing (and continuous) for every 1 <i < n. Assume
x < ', then f(z) < f(a’). Moreover, since f

[z, 2") = [T ([f (=), f(2))) -
Hence, since p is non-atomic and f-invariant, we have that for any = < 2’ in I;,
(5) h(f@) = h(f@) = n([F@). £@)) = (5 ([f@), 1)) = hia') = (),

which proves the claim.
We will use (B]) to define an IET T:1 — I. Let

1, 1s increasing and continuous,

I:{lgzgn(xz,l,xz)ﬂflsé@},

where x;_1 and z; are the endpoints of I;. Let m < n be the cardinality of Z, then we
may write Z = {i1,...,0n}. Let 0 =y < y1 < -+ < Y, = 1 be the points defined by
ye = h(x;,), 1 < € < m. Let T:1 — I be the map that at h(z) € I\{vo,¥1,---,Ym—1}

takes the value

(6) T(h(z)) = h(f(z)).

The map T is well-defined on I\{yo,¥1, .-, Ym—1}. To see that, let x,2" € I, = < 2/, be
such that h(x) = h(z’) is a point in I\{yo, v1,...,Ym—-1}. Then, {z, 2"} C U,cr(ziz1, i),
otherwise = or 2’ would belong to {yo,¥1,-..,Ym—_1}. In this way, there exist i,7 € T
such that = € (z;_1,2;) and 2’ € (x;_1,2;). If i # j, then the hypothesis h(x) = h(2')
yields h(z) = h(z;) = h(z;_1) = h(2'), showing that h(z) € {yo,y1,...,Ym—1}, which is a
contradiction. Hence, the only alternative left is ¢ = j and x,2” € (x;_1,x;). In this way,
x, 2’ belong to the same interval I; and (B)) implies that T'(h(z)) = T'(h(z')), thus T is
well-defined on I\{yo, ¥1,-- -, Ym—1}-

Let us prove that T\( 1 < ¢ < m, is a translation. If y,y" are two points in

Yo—1,Ye)?

(Ye—1,Ye), there exist z,2" € (x;,_1,x;,) such that y = h(z) and y' = h(2'), then (B) and
@) yield
T(y') = T(y) = T(h(z")) = T (h(x)) = h(f(z")) = h(f(x)) = h(z') = h(z) = ¢ — v,

proving that T, , ,,) is a translation. In particular, T'|(, , ) is injective and T((yg_l, yg))

is an open interval for each 1 < ¢ < m. Moreover, since h is order-preserving, if ¢ # k, then
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h(azil,l, xil) and h(xik,l, xzk) are non-overlapping open intervals, implying that T is (glob-
ally) injective on I\{yo,¥1,---,Ym}. As for the definition of 7" on the set {y1,...,yn_1},
we can choose one of the lateral limits of f as we approach each of these points in such a
way that T is, indeed, globally injective. In this way, T is a m-1ET.

We claim that 7" has no attractive periodic orbit. In fact, if for each 1 < j < s, ; is
an infinite f-orbit dense in A;, then the union of the infinite T-orbits T'(v1), ..., T(7s) is
a dense subset of I, ruling out attractive periodic T-orbits.

Let = € I be a point whose natural f-coding is 8 = 646, ..., then we may assume that
w(z) is infinite, otherwise Lemma Bl says that # would be ultimately periodic (i.e. 3k > 0
such that the natural f-coding of f*(z) is periodic). By Corollary B4, there exists ko > 0
such that f*(z) € (zi,_1,2i,)U- - -U(,, 1,2, ) for all k > ky. This means that the natural
f-coding ¢ = (oCy ... of fF(z) is an infinite word over the alphabet A" = {i1,... i}
Let n = non1 ... be the natural T-coding of y = h(z), then (; =i, € {i1,...,4,} if and
only if n; = ¢ € {1,...,m}, proving that ¢ and 7 are isomorphic infinite words.

5. PROOFS OF THEOREM AND COROLLARY

Proof of Theorem[22. Let T : I — I be a topologically transitive n-IET and Ji, ..., J, be
the associated partition. Without loss of generality we may assume that the endpoints of
J; are y;—1 and y;, where 0 = yo < y1 < -+ <yn, = 1. Let {pr}227 C I\{¥0, Y1, - Yn—1}
be a dense T-orbit. Given k > 1, let

(7) Ly={(>1:p,<p} and Gp=|> 27 27F+ 3 27|
Lely LeLly,

Notice that p, > 0 and Ly # (). Hence, G). C (0,1) is a well-defined interval of length
|G| = 27%. We claim that {p;}r>1 and {G}.}1>1 share the same ordering meaning that

(8) pr < p; <= sup Gy < infGj.
In fact, p, < p; if and only if {k} U L), C L;, which is equivalent to
sup G, = 27% + Z 27t < Z 27t = inf G;.
LELy, ZEﬁj
In particular, we have that the intervals G, Go, ... are pairwise disjoint and their union
is dense because ) 7, |Gi| = 1. Applying (8) we conclude that if J C I is an interval
and
{miti>1 ={¢>1:p, € J}, then Up>1G,, Iis an interval.

Let h: Uk>1 G, — I be the function that on Gy takes the constant value pg. By (8]), we
have that h is nondecreasing and has dense domain and dense range. Thus, h admits a
unique nondecreasing continuous surjective extension h: [0, 1] — [0, 1] to the whole interval
[0,1]. Tt is elementary to see that h™? ({pk}) = G. Denote by I, ..., I, the partition of

I defined by I; = h=*(J;). Notice that x; = h™'(y;), 0 < i < n, are the endpoints of the
partition Iq,..., I,.
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Let f: Uk>1Gr — Ug>2Gy be such that ﬂGk3Gk — Gp4 is an affine bijection with
slope $7"(pg) for every k > 1, where T"(py,) € {—1,1} is the derivative of T" at p;. We
claim that for each 1 <17 < n , there exist a dense subset fl of I;, \; € {—%, %} and b; € R
such that

~

(9) Fla) =Nz +b; forall zel.

In order to show that (@) is true, fix 1 < i < n and let {mp}x>1 = {¢ > 1 : py € J;},
then jz = Ug>1{Pm, } is a dense subset of J; and Z = Up>1Gp, 1s a dense subset of I;.
Moreover, there exists \; € {—%, %} such that T"(y) = 2); for all y € J;. In particular,
T'(pm,) = 2X; for all & > 1. By definition, ﬂgmkIGmk — Gy, +1 is an affine bijection
with slope %T' (Pm,) = i for all & > 1, which proves (@). We have proved that there exist
A € {—1 1} and ¢,,, € R such that

202
(10) f(az) =Nz +cp, foral zeG,,.
Let us prove that if \; = % (respectively, A = —%) then J?is strictly increasing (respec-
tively, strictly decreasing) on Uy>1G,y,, . Without loss of generality, assume that \; = —%,

then ]/C\ is strictly decreasing on each interval G,,, . Let y, < z; be such that y;, € G,
and z; € Gy, where k # j and supG,,, < infG,,;. By (8), we have that p,, < pm,
and {pm,,Pm;} C Ji. Then, since T'(y) = 2XA; = —1 for all y € J;, we have that
T'|;, is decreasing, thus T'(pm,) > T(pm,), that is, pm,+1 > Pm;+1. By (B) once more,
we get sup Gy, 41 < inf Gy, q1. By definition, f(yr) € Guq1 and f(z5) € Guyqa,
thus f(yx) > f(z;). This proves that ]? is decreasing on Ug>1Gyy,. It remains to
prove that ¢, in (I0) is the same for all £ > 1. Let j # k. We may assume that
a = sup Gp,; < inf G, = b. Notice that

s0-a+ B, —c) = BlGo-Fw)= X |f(Gn)

Ai
sz C [d,b}

S (Gl = 50— a)

Gy Cla,b]

DO | —

yielding ¢y, = ;. Thus, () is true.

It follows from (@) that ﬂuk21gmk admits a unique monotone continuous extension to

the interval I; = h=%(J;). This extension is also an affine map with slope equal to % in

2
absolute value. Since ¢ is arbitrary, we obtain an injective piecewise %—afﬁne extension f
of f to the whole interval I = L

It remains to show that ho f =T o h. In fact, for every y € G, we have that

~

(11) h(f) = h(f©) =prer = T(pr) = T

=
<
=
I
~
~—
=
<
=

Hence, () holds for a dense set of y € I. By continuity, (IIl) holds for every y € I. O
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Proof of Corollary[2.3. Let 0 < o < 1 be irrational. Let T:I — I be the 2-IET defined
by T(y) =y + o (mod 1), or equivalently, let J; = [0,1 — a), Jo = [1 —a, 1), and
Y+ o if yel

T(y) = :
y+a—1 if ye

It is widely known that T is minimal. Hereafter, we take all the notation of the proof
of Theorem 2.2 Let yp =0, y3 =1 —a and yo = 1. Let v = {pr}2; = {a,T(v),...}
be the T-orbit of «, then v is a dense orbit contained in I\{yo,y1}. Let 8 = 6,0, ... be
the natural T-coding of «, then 6 is a Sturmian word. Let us define the 2-PC fr. Let
G, k > 1, be the pairwise disjoint intervals of length |G| = 27% defined by (7). Let
I, =h'(J;) for i = 1,2, then I} = [0,7,), I, = [x1,1), where z; = h™!(y;). Let

{mk}k21 = {fz 1 P € Jl} = {f >1: eg_l = 1},

then jl = Uk>1{Pm, } is a dense subset of J; and li = Up>1Gp, is a dense subset of ;.

In this way, since |Gy, | = 27™*, we have that
1 1
_ _ _ — —¢_ 1 oot _ o 1t —
vp=suply =Y |Gp|=> 27" =) (2-0,4)27" = : > (20,27 =2 : > 027
k>1 k>1 >1 >0 >0
Since T"(y) = 1 for every y € I, we have that the slope \; of fr is % In this way, we have
that

1
- + b1 if ze [O,l‘l)
2
fr(z) = ] -
§l‘+b2 if ze [ZL‘l,l)

Since %xl +b; =1 and %xl + by = 0, we conclude that
1 1
fr(z) = 2% +0, where 0= 1 Z@ﬂ_e.
>0
It is clear that
1
12 §=-11+86 6, —1)27*
( ) 4 < + 0 + Dzl( l ) ) )

thus {6y — 1}, is the binary expansion of 3, (6,—1)27". In this case, the transcendence
of § follows from Ferenczi and Mauduit [13, Proposition 2] or Adamczewski and Cassaigne
[T, Theorem 1] together with the fact that w = (; — 1)(6, — 2) ... is a Sturmian word.
Now let us consider the particular case in which a@ = 2 — ¢, where ¢ = (1 ++/5)/2 is
the golden ratio. In this case, it is known that (6; — 1)(6; — 1) ... is the Fibonacci word

6 —1=010010100100101001010010010100100101001010010010100. . .

The number

R=1-> (6 —1)2"“") = 0.7098034428612913146 . ..

>0
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is known in the mathematical literature as the rabbit constant. Notice that by (I2), we
have that

_1 —(e+1 _1 —(e+1) | _
5—Z<1+90+2Z(9£—1)2(+)>—Z<2+QZ(@—1)2(+ =1—

0>1 >0

o] %

The transcendence of the rabbit constant was proved by Davison [9].

6. PROOFS OF COROLLARY [2.3] AND COROLLARY [2.4]

Proof of Corollary[Z.3. Let 0 = 640 ... be a natural coding of an injective n-PC f: 1 — 1.
By Theorem 2.1 there exist a m-IET T:1 — [ with 2 < m < n and ¢ > 0 such that the
infinite word 0* = 6,0,y . . . is either periodic or isomorphic to the non ultimately periodic
natural T-coding w = wow; ... of some point y € I. For the sake of simplification, we
will only consider the case in which T is an orientation-preserving m-IET with associated
partition Iy = [yo, Y1), - - -» Im = [Ym—1, Ym). Since w is non ultimately periodic, there exist

r >0 and y* = T"(y) whose T-orbit is regular, which means

Or(y") ={T"(w), T (y),...} € I\{wo, y1.-- - Ym—1}-

Because Or(yx*) is regular, it is entirely contained in a minimal component of 7. More
specifically, there exist open intervals Ay, ..., A, with pairwise disjoint closures such that
Or(y*) is a dense subset of A;U---UA, and T'(A;) C As, ..., T(A,_1) C A,, T(A,) C Ay,
and T takes I\(A; U---UA,) into itself (see [3, 24]). Let p be the normalized Lebesgue
measure on A; U - A4,, then p is T-invariant: p(T7'(B)) = w(B) for every Borel set
B C I. Let h:]0,1] — [0, 1] be the nondecreasing, continuous, surjective map defined by
h(t) = p([0,1]), t € I. Notice that h is strictly increasing on A; U---U A, and constant
on each of the finitely many connected components of I\A; U---U A,. Given y,y" € I,
with h(y) = h(y’), we claim that h(T'(y)) = h(T'(y')). Without loss of generality, assume
that y </, then T'(y) < T'(y’). Moreover, since T'|;, is a translation,

o1 =T ([T(y), T()]) -
Hence, since p is non-atomic and T-invariant, we have that for any y,y' € I,
(13) h(TW) = h(TW) = n([TW), TE]) = (T ([TW), TW)))) = hy) = h(y),

which proves the claim.
We will use (I3) to define an IET E: I — I. Let

I={1<i<m:LN(AU---UA,) #0}.

Let m’ < m be the cardinality of Z, then we may write Z = {iy,...,7,,}. The intervals

J = h([il), R N h([im,) form a partition of I into non-degenerate intervals with
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endpoints 0 = zp < 21 < -+ < 2,y = 1 defined by 2z, = h(y;,), 0 < € <m'. Let E:] — [
be the right-continuous map that at z = h(y) € I\{z0, 21, ..., 2m/—1} takes the value

(14) E(h(y)) = h(T(y)).

The map FE is well-defined. In fact, if y,y’ € I are such that h(y) = h(y’), then y,y’
belong to the same connected component of I\(A; U---U A,). There is no discontinuity
of T between y and y', otherwise h(y) would belong to € {z1,...,z,_1}. In this way,
y,y" belong to the same interval I; and (I3) asserts that E is well-defined. Notice that,
by definition, F(z;) = lim. o+ E(z; +¢€) for all 0 < £ < m/ — 1.

Let us prove that |, ,.), 1 < ¢ < m’, is a translation. If 2,2’ are two points in

(20-1, 2¢), then there exist y,y" € (y;, ,,y;,) such that z = h(y) and 2’ = h(y’). Now (I3)
and (I4)) yield

proving that E|;, is a translation.

The map FE is surjective. In fact, since h and T" are surjective, given z € I, there exists
y € I such that E(h(y)) = h(T(y)) = 2. To see that E is also injective, by the above, F
takes each interval J, into its translate E(.J;), which therefore has the same length, that

is, |[E(J¢)| = |Jo|. Since E is surjective, we have that
L= B <D 11l <1,
=1 =1

implying that no overlapping is possible for the intervals E(J;), ..., E(J,/). This proves
that £ is a m’-IET.

Becasuse Or(y*) is a dense subset of Ay U---U A, and h(A; U---U A,) is dense in
I, we have that h takes the T-orbit O7(y*) onto a dense E-orbit, thus F is topologically
transitive. Moreover, if ( = (p(; ... is the natural T-coding of y* and n = ngny ... is
the natural F-coding of z* = h(y*), then (x = iy € {i1,... 0y} if and only if n, = ¢ €
{1,...,m'}, proving that ¢ and n are isomorphic infinite words. To conclude the proof,

we recall that 0,,,0,4,41 ... 1s isomorphic to (.

g

Lemma 6.1. Let 0 = 640, . .. be an infinite word and 0* = 0,410,412 . . . an infinite subword
of 0, then there exist kg > 1 and 8 > 0 such that

pu(0) = pp(0%) + B for every k> ko
Proof. For each k > q+ 1, let

W, = {0001 O, 0105...0,, ..., 0q0q+1 e 0q+k—1} C Lk(e)
W;: = {w € Wk LW ¢ Lk(ﬁ*)}
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Notice that W is formed by at most ¢ + 1 distinct finite words and k — #W} is a
nondecreasing map, thus there exist ky > 0 and 5 < ¢ 4 1 such that #W), = B for every

k > kq. Moreover, for every k > kg, we have the disjoint union
Ly(0) = WyULL(0%), thus  pi(6) = pu(67) + 5.
O

Lemma 6.2. Let 0 be a natural coding of a topologically transitive m-IET T:1 — I, then
there exist ko > 1, a« € {0,...,m — 1} and 5 > 1 such that

(15) po(k) = ka+ B for every k > k.

Moreover, if T is a standard m-IET, with m > 2, satisfying the i.d.o.c., then « =m — 1,
B=1and ky = 1.

Proof. Let T:1 — I be a topologically transitive m-IET and & = {I;,...,1,} be the
partition associated to T, then, since T~ is also an IET, T—*(£?) is a partition of I into

intervals for every £ > 0, implying that the members of the set
k—1
P, = /\ THP) = {L,NT (L) N---NT ® (L, ) 1 <igyir,...igq <m}.
=0

are pairwise disjoint intervals. Moreover, if  is a natural coding of T', then the k-word
igiy - . . 1,1 occurs in 6 if and only if the interval J = I;, N T~} (Iil) n-..-nT~- k1 (‘[ik—l) €
P, is nom-empty.

Let 6 be the natural T-coding of some point z € I. If 0 is (ultimately) periodic, then
by the Morse-Hedlund Theorem, there exist kg > 1 and § > 1 such that py(k) = 8 for
every k > ko, meaning that (I5) holds with & = 0. Hence, we may assume that € is not
(ultimately) periodic. In this case, there exists ¢ > 0 such that the orbit {z*, T'(z*), ...} of
x* = T7(z) is a dense subset of I\{zg,z1,...,Zm_1}, where 0 =29 < 21 < -+ < 1, = 1
are the endpoints of the partition &. In this way, for each k > 1, {2*,T(z%),...} is
contained in the union of the interiors of the intervals of &2,. Hence, the k-word gty . . .71
occurs in the natural T-coding 6* of z* if and only if the interval J = I,, N'T~! (Iil) n---N
T7—(k=1) (Iik—l) € Y has non-empty interior. Therefore, the number of such intervals J in

P equals pi(0*) and is related to the number of endpoints of the partition & as follows
k—1

(16) pe(07) = 14> my,
=0

where mg =m — 1 and
-1

me={T"(z1),...., T (1)} \ UA{T @), ... T P(@n)}

p=0

gives the number of new division points at the /-th step towards the construction of .

The map ¢ — my is a non-increasing, therefore there exist k) > 0 and o > 1 such that
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my = « for every ¢ > kj. Notice that a@ > 1 because, as 6* is not (ultimately) periodic,
pr(0*) — oo as k — oo. Let By, b1, ..., Bre—1 = 0 be such that

a+ 6, it 0€{0,1,... k) —1}

(17) my =
o if 0>k
By ([I6) and (IT7), we have that if 5’ =1+ o+ 1 + - -+ + Bky—1, then
k(-1 k—1
pr0) =1+ (a+B8)+ Y a=ak+s forall k>kj+1.
=0 K}

By Lemma [6.1] there exist kg > k{ + 1 and 8” > 0 such that

p(0) =pr(0)+ " =ak+ (B +8")=ak+ 3 forall k> k.
——
B
Notice that if T" satisfies the i.d.o.c., then 6* = 6 and m, = m — 1 for all £ > 0, then (16
yields
p(0) =pr(0*)=(m—-1k+1 forall k>1,
implying that in this case (I5) holds with a =m — 1, f =1 and ky = 1. O

Proof of Corollary[2.4. Let f:I — I be an injective n-PC and 6 = 6y6; ... be the natural
f-coding of x € I. By Corollary 2.3 there exist £k > 0 and a topologically transitive
m-IET, with 2 < m < n, such that the natural coding 6* of f*(z) is either periodic or
isomorphic to a non ultimately periodic natural coding of 7. By Lemma [6.2] there exist
ko >1,a€{0,...,m—1} and 5 > 1 such that

(18) pr(0) =ka+ [ forall k> k.

Notice that in the case in which 6* is periodic, by the Morse-Hedlund Theorem, ([Ig]) holds
with @ = 0. To conclude the proof of the item (i), apply Lemma[6.Il As for tye item (i),
we apply Theorem together with Lemma [6.2 O
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