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Abstract. A map f : [0, 1) → [0, 1) is a piecewise contraction of n intervals (n-PC) if

there exist 0 < λ < 1 and a partition of I = [0, 1) into intervals I1, I2, . . . , In such that

|f(x) − f(y)| ≤ λ|x − y| for every x, y ∈ Ii (i = 1, 2, . . . , n). An infinite word θ = θ0θ1 . . .

over the alphabet A = {1, . . . , n} is a natural coding of f if there exists x ∈ I such that

θk = i whenever fk(x) ∈ Ii. We prove that if θ is a natural coding of an injective n-PC,

then some infinite subword of θ is either periodic or isomorphic to a natural coding of

a topologically transitive m-interval exchange transformation (m-IET), where m ≤ n.

Conversely, every natural coding of a topologically transitive n-IET is also a natural

coding of some injective n-PC.

1. Introduction

Throughout this article, let I = [0, 1) denote the unit interval. A map f : I → I is a

piecewise contraction of n intervals (n-PC) if there exist 0 < λ < 1 and a partition of I into

non-degenerate intervals I1, . . . , In such that f |Ii is λ-Lipschitz for every 1 ≤ i ≤ n. If, in

particular, there exist b1, . . . , bn ∈ R and σ1, . . . , σn ∈ {−1, 1} such that f(x) = σiλx+ bi

for every x ∈ Ii, then we say that f is a piecewise λ-affine contraction.

The natural f -coding of a point x ∈ I is the infinite word θf(x) = θ0θ1 . . . defined by

θk = i whenever fk(x) ∈ Ii, where f 0 denotes the identity map. We say that an infinite

word θ is a natural coding of f if θ = θf (x) for some x ∈ I. We say that θ is ultimately

periodic (respectively, periodic) if there exist finite subwords u, v of θ such that θ = uvv . . .

(respectively, θ = vv . . .). The language L(θ) of a natural coding θ is the union of the sets

Lk(θ) = {θmθm+1 · · · θm+k−1 : m ≥ 0} of finite subwords of length k occuring in θ, where

L0 is the one-point-set formed by the empty word.

In this article, we give a complete and systematic description of the languages of in-

jective n-PCs, n ≥ 2, by providing a dictionary between these languages and the fairly

well-understood languages of interval exchange transformations (IETs). We also pro-

vide converse results which enable us to construct n-PCS with any prescribed admissible

coding.
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2 SYMBOLIC DYNAMICS OF PIECEWISE CONTRACTIONS

The first point addressed in this article consists in providing the list of all admissible

natural codings of injective n-PCs. Natural codings of piecewise contractions defined on

2 intervals (or more generally, defined on 2 complete metric spaces) were provided by

Gambaudo and Tresser [14] and are intrinsically related to natural codings of rotations

of the circle. Concerning languages of injective n-PCs f : I → I for n > 2, some progress

was made recently by Catsigeras, Guiraud and Meyroneinc [7]. They proved that for

each natural coding θ of f , the complexity function of the language L(θ), defined by

pθ(k) = #Lk(θ), where # denotes cardinality, is eventually affine.

The second point concerns the problem of how to construct n-PCs with any prescribed

list of admissible natural codings. In this regard, it follows from the works [21, 22, 23] that

a generic n-PC admits only ultimately periodic natural codings. Therefore, n-PCs with

no ultimately periodic natural coding are exotic and their construction is a nontrivial

issue. The existence of 2-PCs having no ultimately periodic natural coding is related

to the existence of smooth flows on the 2-torus with pathological dynamics (see Cherry

[8]). More generally, 2-PCs topologically semiconjugate to irrational rotations have being

constructed and studied via a rotation number approach (see [4, 5, 6, 15, 16, 18]). Here

we address the second point in full generality, by using another approach, based on the

existence of an invariant measure (see [26]). In particular, we prove that every minimal

n-IET, with n ≥ 2, with or without flips, is a topological factor of an n-PC with no

ultimately periodic natural coding. This combined with Keane’s irrationality criteria [17,

p. 27] provides a huge class of exotic n-PCs. Since every irrational rotation can be

considered as a minimal 2-PC, the previous results fit into our framework.

As for the motivation to study n-PCs, it is worth remarking that they describe pretty

well the dynamics of some Cherry flows on 2-manifolds, dissipative outer billiards, traffic

systems, queueing systems and switched server systems.

Acknowledgments. The author is very grateful to Filipe Fernandes and Francisco Braun

whose comments contributed to the improvement of the first version. The author was

partially supported by grant # 2018/06916-0, São Paulo Research Foundation (FAPESP)

and by CNPq.

2. Statement of the results

A bijective map T : I → I is an n-interval exchange transformation (n-IET) if there exist

a partition I1, . . . , In of I into non-degenerate intervals, b1, . . . , bn ∈ R and σ1, . . . , σn ∈
{−1, 1} such that T (x) = σix + bi for every x ∈ Ii. an n-IET T is standard if Ii a left-

closed right-open interval and T |Ii is the translation x 7→ x + bi for every 1 ≤ i ≤ n.

Following [20], we say that a non-standard n-IET T has flips if, for some 1 ≤ i ≤ n, T |Ii
is the map x 7→ −x + bi. We say that an n-IET T : I → I is irreducible if there is no

0 < δ < 1 such that T
(
[0, δ)

)
⊂ [0, δ) or, equivalently, if there is no 1 ≤ j ≤ n − 1 such

that T
(
∪j
i=1 Ii

)
⊂ ∪j

i=1Ii.
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An n-IET T : I → I is: topologically transitive if it has a dense T -orbit {x, T (x), . . .},
minimal if every T -orbit is dense, and aperiodic if it has no periodic orbit. A periodic orbit

γ is attractive if there exists an open set Uγ such that ω(x) = γ for every x ∈ Uγ. In a

standard n-IET, every periodic orbit is attractive, thus in this case topological transitivity

is equivalent to minimality. An n-IET T satisfies the infinite distinct orbit condition

(i.d.o.c.) if the orbits {xi, T (xi), . . .} of its discontinuities xi, 1 ≤ i ≤ n − 1, are infinite

and pairwise disjoint. Keane [17] proved that every irreducible standard n-IET, n ≥ 2,

satisfying the i.d.o.c. is minimal. The natural T -coding of a point x ∈ I is the infinite

word θT (x) = θ0θ1 . . . defined by θk = i whenever T k(x) ∈ Ii. If T is an irreducible

standard n-IET satisfying the i.d.o.c., then the language L(θ) of a natural T -coding θ is

the same for any θ. In this case, we define the language of T , denoted by L, to be the

language L(θ) of any of its natural T -codings.

The alphabetA(θ) of an infinite word θ = θ0θ1 . . . is the set of letters that occur in θ. We

say that two infinite words θ = θ0θ1 . . . and ω = ω0ω1 . . . are isomorphic if their alphabets

A(θ) and A(ω) have the same cardinality and there is a bijection π:A(θ) → A(ω) such

that ωk = π(θk) for every k ≥ 0. For example, the infinite words

θ = 010010001 . . . and ω = 121121112 . . .

are isomorphic because A(θ) = {0, 1} and A(ω) = {1, 2} have the same cardinality and

ωk = π(θk) for every k ≥ 0, where the bijection π : A(θ) → A(ω) is given by π(0) = 1

and π(1) = 2.

Our main results are the following.

Theorem 2.1. Let f : I → I be an injective n-PC, then there exist 2 ≤ m ≤ n and an

m-IET T : I → I without attractive periodic orbits such that for each x ∈ I there exists an

integer k ≥ 0 such that the natural f -coding of fk(x) is either periodic or isomorphic to

a non ultimately periodic natural coding of T .

Theorem 2.2. Given any topologically transitive n-IET T : I → I, there exist an injective

piecewise 1
2
-affine contraction fT : I → I of n intervals and a continuous, surjective, non-

decreasing map h: I → I such that θfT (x) = θT
(
h(x)

)
for every x ∈ I. In particular, if T

is an irreducible standard n-IET satisfying the i.d.o.c., then the language of each natural

coding of fT equals the language of T .

In Theorem 2.1, the term “without attractive periodic orbits” may be replaced by

“aperiodic” in the case in which Ii =
[
xi−1, xi

)
and f |Ii, 1 ≤ i ≤ n, is (strictly) increasing,

where I1, . . . , In is the partition associated to f .

Theorem 2.1 turns out to be a dictionary between languages of PCs and languages of

IETs. Languages of minimal IETs were studied by Belov and Chernyat’ev [2], Ferenczi

[11], Ferenczi and Zamboni [12], and Dolce and Perrin [10]. In particular, it is known

that if θ is a natural coding of an irreducible standard minimal n-IET, then the language

L(θ) does not depend on θ, is uniformly recurrent and has complexity function satisfying
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pθ(k) ≤ (n− 1)k + 1, where the equality holds if the IET satisfies the i.d.o.c.. Languages

generated by substitutions (e.g. languages of self-similar IETs) were studied by Lopez

and Narbel [19]. Natural codings of aperiodic n-IETs are isomorphic to natural codings

of topologically transitive n-IETs.

Theorem 2.2 provides examples of n-PCs without periodic or ghost orbits, or equiva-

lently, without ultimately periodic natural codings. These examples are not easy to con-

struct because generically n-PCs of the interval are asymptotically periodic (see [22, 23]).

The following result is a corollary of Theorem 2.1.

Corollary 2.3. Let θ be a natural coding of an injective n-PC, then some infinite subword

of θ is either periodic or isomorphic to a non ultimately periodic natural coding of a

topologically transitive m-IET, where 2 ≤ m ≤ n.

Theorems 2.1 and 2.2 imply, in particular, the result of Catsigeras, Guiraud and Mey-

roneinc [7] concerning the complexity function of languages of n-PCs, which is stated

below in a more complete way, with fT given by Theorem 2.2.

Corollary 2.4. Let θ be a natural coding of an injective n-PC f : I → I, then

(i) There exist α ∈ {0, 1, . . . , n − 1}, β ≥ 1 and k0 ≥ 1 such that the complexity

function of θ satisfies pθ(k) = αk + β for every k ≥ k0 with β = 1 if α = n− 1;

(ii) If n ≥ 2, T : I → I is a standard n-IET satisfying the i.d.o.c. and f = fT , then

pθ(k) = (n− 1)k + 1 for every k ≥ 1.

The particular family of 2-PCs f : I → I defined by f(x) = λx+ δ (mod 1) was consid-

ered by Bugeaud [4, 5], Bugeaud and Conze [6] and, more recently, by Janson and Öberg

[16], and also by Laurent and Nogueira [18], by means of a rotation number approach.

Concerning such family, we provide the following corollary, which turns out to be a special

case of [18, Corollary 7]. We recall that an n-PC f :I → I is topologically semiconjugate to

an n-IET T :I → I if there exists a continuous, nondecreasing and surjective map h:I → I

such that h ◦ f = T ◦ h.

Corollary 2.5. For each irrational 0 < α < 1, there exists a transcendent δ ∈ R such

that the 2-PC fT : I → I and the minimal 2-IET T : I → I defined by

fT (x) =
1

2
x+ δ (mod 1) and T (x) = x+ α (mod 1)

are topologically semiconjugate and every natural coding of fT is a Sturmian sequence. In

particular, if α = 2−ϕ, where ϕ = (1+
√
5)/2 is the golden ratio, then δ = 1− R

2
, where

R is the rabbit constant.

In Corollary 2.5, we have that δ = 1
4

∑
k≥0 θk2

−k, where θ = θ0θ1 . . . is the natural

coding of α under the action of the irrational rotation x 7→ x+ α (mod 1).
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3. Preparatory lemmas

In this section, we present some results that will be used to prove Theorem 2.1, as the

next table clarifies.

result needs

Lemma 3.3 Lemma 3.2

Corollary 3.4 Lemma 3.3

Theorem 3.5 Lemma 3.6 and [26, Theorem 2.1]

Theorem 2.1 Lemma 3.1, Corollary 3.4 and Theorem 3.5

Throughout this section, let I = [0, 1) and f : I → I be an injective n-PC with associated

partition I1, . . . , In whose endpoints are 0 = x0 < x1 < · · · < xn = 1.

The ω-limit set of x ∈ I is defined by

ω(x) =
⋂

ℓ≥1

⋃

k≥ℓ

{fk(x)} ,

where S denotes the topological closure in R of any set S ⊂ I.

Lemma 3.1. Let x ∈ I be such that ω(x) is finite, then there exists an integer k ≥ 0 such

that the natural f -coding of fk(x) is periodic.

Proof. We may assume that {x, f(x), f 2(x), . . .} is an infinite set, otherwise x would be

a periodic point, then we could take k = 0. Since ω(x) is a finite set, we may write

ω(x) = {p1, . . . , pr}. Without loss of generality, we suppose that ω(x) ⊂ (0, 1), thus there

exists ǫ > 0 so small that

ǫ <
1

4
min

1≤i<j≤r
|pi − pj | and

r⋃

j=1

(pj − ǫ, pj) ∪ (pj, pj + ǫ) ⊂ I\{x0, x1, . . . , xn−1}.

In particular, if

I = {(p1 − ǫ, p1), (p1, p1 + ǫ), . . . , (pr − ǫ, pr), (pr, pr + ǫ)} ,

then f(J) is an open interval for every J ∈ I .

Let I ′ ⊂ I denote the subcollection formed by the intervals that are visited infinitely

many times by the f -orbit of x, that is,

I
′ =
{
J ∈ I : {x, f(x), f 2(x), . . .} ∩ J is an infinite set

}
.

We claim that for each J1 ∈ I ′, there exists J2 ∈ I ′ such that f(J1) ⊂ J2. Without loss

of generality, suppose that J1 = (p− ǫ, p), where p ∈ ω(x). As J1 ⊂ I\{x0, x1, . . . , xn−1},
we have that f |J1 is a contraction, thus f(J1) is an open interval of length smaller than

ǫ. On the other hand, since J1 ∈ I
′, there exists an increasing sequence of integers 0 ≤

k1 < k2 < · · · such that
{
fkj(x)

}
j≥1

⊂ J . Notice that limj→∞ fkj(x) = p, otherwise there

would exist a point of ω(x) in J1 different from p, which contradicts the first inequality in

the definition of ǫ. Because f |J1 is injective and continuous, we have that
{
fkj+1(x)

}
j≥1

⊂
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f(J1) converges to some point q ∈ ω(x) ∩ ∂f(J1), where ∂f(J1) denotes the endpoints of

the open interval f(J1). Putting it all together, we conclude that f(J1) is an open interval

that contains infinitely many points of the f -orbit of x, has length smaller than ǫ, and

has an endpoint in ω(x). Therefore, there exists J2 ∈ I ′ such that f(J1) ⊂ J2.

To finish the proof, let J ∈ I ′, then there exists k′ ≥ 0 such that fk′(x) ∈ J . By the

claim, there exist 1 ≤ i1 < i2 and intervals J1, . . . , Ji1, Ji1+1, . . . , Ji2 ∈ I ′ such that J1=J,

Ji1 = Ji2 and f(Ji) ⊂ Ji+1 for all 1 ≤ i ≤ i2−1, proving that fk(x) has a periodic natural

f -coding for some k ≥ k′. �

Lemma 3.2. Let J ⊂ I be an open interval, then there exists a finite set B ⊂ I such that

if J0 ⊂ J\B is an open interval, then one of the following happens:

(i) f(J0), f
2(J0), . . . are pairwise disjoint open intervals contained in I\J ;

(ii) ∃m ≥ 0 such that fm+1(J0) is open subinterval of J . Moreover, if m ≥ 1, then

f(J0), . . . , f
m(J0) are open subintervals of I\

(
J ∪ {x0, x1, . . . , xn−1}).

Proof. Let J ⊂ I be an open interval. Given x ∈ I, set

(1) τx = min
{
k ≥ 0 : f−k

(
{x}
)
⊂ J

}
,

where by convention inf ∅ = ∞. Let

B =
⋃{

f−τx({x}) : x ∈ {x0, x1, . . . , xn−1} ∪ ∂J and τx < ∞
}
.

Let J0 ⊂ J\B be an open interval, then one of the following alternatives happens:

{fk(J0)}k≥1 ⊂ I\J or there exists an integer ℓ ≥ 1 such that f ℓ(J0) ∩ J 6= ∅. In the

first case, by the injectivity of f and also because J0 ⊂ J\B, we have that J0, f(J0),

f 2(J0),. . . are pairwise disjoint sets contained in I\{x0, x1, . . . , xn−1}. Since each f |Ii is

Lipschitz continuous, we conclude that fk(J0) is an open interval for every k ≥ 0, which

proves (i). As for the second alternative, let m = min
{
ℓ ≥ 1 : f ℓ(J0) ∩ J 6= ∅

}
− 1.

If m = 0, then f(J0) ∩ J 6= ∅, which together with the fact that J0 ⊂ J\B implies

that f(J0) is an open subset of J . Otherwise, if m ≥ 1, then proceeding as in the

first case yields that the sets f(J0), . . . , f
m(J0) are pairwise disjoint open subintervals of

I\
(
J ∪ {x0, x1, . . . , xn−1}). Moreover, because J0 ⊂ J\B, we have that fm+1(J0) ∩ J 6= ∅

implies that fm+1(J0) is an open subinterval of J . �

Remark. The item (ii) of Lemma 3.2 implies that fm+1|J0 : J0 7→ fm+1(J0) is a bijective

contraction.

Lemma 3.3. If for some x ∈ I and 1 ≤ i ≤ n, the set {x, f(x), f 2(x), . . .} ∩ (xi−1, xi) is

infinite and ω(x) ∩ (xi−1, xi) = ∅, then ω(x) is finite.

Proof. By hypothesis, we have that

(H1) {x, f(x), f 2(x), . . .} ∩ (xi−1, xi) is infinite;

(H2) {x, f(x), f 2(x), . . .} ∩K is finite for all compact set K ⊂ (xi−1, xi).
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By (H1), the orbit of x returns to J = (xi−1, xi) infinitely many times. Let 1 ≤ k1 < k2 <

· · · denote the return times of x to J under the action of f . Because of (H2), we have

only three cases to consider.

Case (a). limj→∞ fkj(x) = xi−1.

Let B the finite set given by Lemma 3.2 considering J = (xi−1, xi). Let ǫ > 0 be so small

that J0 = (xi−1, xi−1+ ǫ) is a subset of J\B. Notice that the alternative (i) of Lemma 3.2

cannot occur. In fact, since fkj(x) ↓ xi−1, we have that fk(J0) ∩ J 6= ∅ for many positive

values of k. By exclusion, the item (ii) of Lemma 3.2 is true, then there exists m ≥ 0

such that fm+1(J0) is an open subinterval of J and, if m ≥ 1, then f(J0), . . . , f
m(J0) are

open subintervals of I\
(
J ∪ {x0, x1, . . . , xn−1}). In particular, if y ∈ J0, then m + 1 is

the first return time of y to J . This means that if j0 ≥ 1 is such that {fkj(x)}j≥j0 ⊂ J0,

then {fkj(x)}j>j0 ⊂ fm+1(J0), implying that xi−1 belongs to the boundary of the open

interval fm+1(J0). Moreover, since fm+1|J0:J0 → fm+1(J0) is a bijective contraction (see

the Remark after Lemma 3.2), we have that fm+1(J0) ⊂ J is an open interval with length

smaller than ǫ and with an endpoint in xi−1, thus f
m+1(J0) ⊂ (xi−1, xi−1 + ǫ) = J0. This

implies that ω(x) is finite.

Case (b). limj→∞ fkj(x) = xi.

Just proceed as in Case (a) considering now J0 = (xi − ǫ, xi).

Case (c).
⋂

ℓ≥1

⋃
j≥ℓ

{
fkj(x)

}
= {xi−1, xi}.

The proof presented here is a variation of that used in Case (a). Let ǫ > 0 be so

small that J ′
0 = (xi−1, xi−1 + ǫ) and J ′′

0 = (xi − ǫ, xi) are contained in J\B. Then

by the same arguments used in Case (a), there exist m′, m′′ ≥ 0 such that fm′+1(J ′
0)

and fm′′+1(J ′′
0 ) are disjoint open subintervals of J and, if m′ ≥ 1 (respectively, m′′ ≥

1), then f(J ′
0), . . . , f

m′

(J ′
0)
(
respectively, f(J ′′

0 ), . . . , f
m′′

(J ′′
0 )
)
are open subintervals of

I\
(
J ∪ {x0, x1, . . . , xn−1}). In particular, if y ∈ J ′

0 (respectively, if y ∈ J ′′
0 ), then m′ + 1

(respectively, m′′ + 1) is the first return time of y to J . This means that if j0 ≥ 1 is such

that {fkj(x)}j≥j0 ⊂ J ′
0 ∪ J ′′

0 , then {fkj(x)}j>j0 ⊂ fm′+1(J ′
0) ∪ fm′′+1(J ′′

0 ), implying that

xi−1 ∈ ∂fm′′+1(J ′′
0 ) and xi ∈ ∂fm′+1(J ′

0). Moreover, since fm′+1|J ′
0
:J ′

0 → fm′+1(J ′
0) and

fm′′+1|J ′′
0
:J ′′

0 → fm′′+1(J ′′
0 ) are bijective contractions, we can argue in the same way as

in Case (a) to conclude that fm′+1(J ′
0) ⊂ J ′′

0 and fm′′+1(J ′′
0 ) ⊂ J ′

0, proving that ω(x) is

finite. �

Lemma 3.3 leads to the following result.
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Corollary 3.4. Let x ∈ I be such that ω(x) is infinite. If for some 1 ≤ i ≤ n, the set

{x, f(x), f 2(x), . . .} ∩ (xi−1, xi) is infinite, then ω(x) ∩ (xi−1, xi) 6= ∅.

We will also need the following result, which is a variation of [26, Theorem 2.1].

Theorem 3.5. Let x ∈ I be such that Λ = ω(x) is infinite, then there exists a non-atomic

f -invariant Borel probability measure whose support is Λ.

The proof of Theorem 3.5 depends on Lemma 3.6 stated below. In what follows, let

x ∈ I be such that Λ = ω(x) is infinite. As x is not periodic, there exists ℓ ≥ 0 such that

{fk(x) : k ≥ ℓ} ∩ {x0, x1, . . . , xn−1} = ∅. Hence, by replacing x by f ℓ(x) if necessary, we

assume that

(2)
{
x, f(x), f 2(x), . . .

}
∩ {x0, x1, . . . , xn−1} = ∅.

Denote by {νm}m≥1 the sequence of Borel probability measures on I defined by

νm =
1

m

m−1∑

k=0

δfk(x),

where δfk(x) is the Dirac probability measure on I concentrated at fk(x). By the Banach-

Alaoglu Theorem, there exist a Borel probability measure on I, denoted henceforth by ν,

and a subsequence of {νm}m≥1, denoted henceforth by {νmj
}j≥1, that converges to ν in

the weak⋆- topology. We will keep these notations until the end of this section.

Lemma 3.6. Let y ∈ I, then there exist an open subinterval Jy of I containing y and

an integer j0 ≥ 1 such that νmj
(Jy) < ǫ for every j ≥ j0. Moreover, the support of ν is

Λ = ω(x).

Proof. Let y ∈ I and ǫ > 0. We will prove that there exist δ > 0 and j0 ≥ 1 such that

the interval

Jy =




[0, δ) if y = 0

(y − δ, y + δ) if y > 0

satisfies Jy ⊂ I and νmj
(Jy) < ǫ for all j ≥ j0. Without loss of generality, we may assume

that y > 0 and Jy = (y − δ, y + δ). Since ν is a probability measure, ν has at most

countably many atoms, which means that the set

∆ =
{
0 < δ < min {y, 1− y} : ν

(
{y − δ, y + δ}

)
= 0
}

contains arbitrarily small values of δ. It follows from [25, Theorem 6.1, p. 40] that if

δ ∈ ∆, then

(3) Jy ⊂ I and ν(Jy) = lim
j→∞

νmj
(Jy).

Now have two cases to consider.

Case I : y 6∈ Λ, that is, y 6∈ ω(x).
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In this case, there exist δ ∈ ∆ and j0 ≥ 1 such that fk(x) 6∈ Jy for every k ≥ mj0 . Let

j1 ≥ j0 be such that mj > mj0/ǫ for every j ≥ j1, then

νmj
(Jy) =

1

mj

#
{
0 ≤ k ≤ mj0 − 1 : fk(x) ∈ Jy

}
≤ mj0

mj

< ǫ, ∀j ≥ j1.

Moreover, making j → ∞ and using (3) yield ν(Jy) = 0, implying that y does not belong

to the support of ν.

Case II : y ∈ Λ.

First assume that there exists an increasing sequence of integers 1 ≤ k1 < k2 < · · ·
such that fkj(x) ↑ y. Since f is an injective piecewise contraction, the following limits are

well-defined:

y0 = y, y1 = lim
j→∞

f
(
fkj(x)

)
, y2 = lim

j→∞
f 2
(
fkj(x)

)
, . . .

We claim that #{k ≥ 1 : yk = y} ≤ 1. By way of contradiction, suppose that there exist

1 ≤ p < q such that yq = yp = y. It is elementary to see that for every δ > 0 small

enough and A0 = (y − δ, y), the sets A1 = f(A0), A2 = f 2(A0), . . . , Aq = f q(A0) are open

intervals of length less than δ. Yet, yk ∈ ∂Ak for every 0 ≤ k ≤ q. Hence, either Ap ⊂ A0

or Aq ⊂ A0, which contradicts the fact that ω(x) is infinite. In this way, the claim is true.

Then, there exists r0 ≥ 1 such that yk 6= y for all k ≥ r0. In particular, given r ≥ 1, there

exists δ1 = δ1(r) such that for every 0 < δ < δ1,

#
{
0 ≤ k ≤ r − 1 : fk

(
(y − δ, y)

)
∩ Jy 6= ∅

}
≤ 2.

Let r > 0 be such that 3
r
< ǫ

3
. Set δ1 = δ1(r). Then, for all 0 < δ < δ1 with δ ∈ ∆ and

for any j large enough,

νmj

(
(y − δ, y)

)
=

1

mj

#
{
0 ≤ k ≤ mj − 1 : fk(x) ∈ Jy

}
≤ 3

r
<

ǫ

3
.

Now assume that the sequence 1 ≤ k1 < k2 < . . . does not exist, then for every δ small

enough,

νmj

(
(y − δ, y

)
) = 0 <

ǫ

3
.

Likewise, there exists δ2 > 0 such that for all 0 < δ < δ2 with δ ∈ ∆, we have that

νmj

(
(y, y + δ)

)
< ǫ

3
for any j large enough. Moreover, νmj

({y}) < ǫ
3
for any j large

enough. Putting all together, there exist δ > 0 with δ ∈ ∆ and j0 ≥ 1 such that

νmj
(Jy) < ǫ for all j ≥ j0.

It remains to prove that in this case y belongs to the support of ν. By the above,

we know that the orbit of x enters in Jy infinitely many times. If we prove that the

return times of x to Jy are bounded, then we will conclude that infj≥j0 νmj
(Jy) > 0,

which together with (3) will imply that ν(Jy) > 0. Let S = {x0, x1, . . . , xn−1} ∪ ∂Jy and

S ′ =
{
z ∈ S : ∪k≥0f

−k({z}) ∩ Jy 6= ∅
}
. Given z ∈ S ′, let

τz = min {k ≥ 0 : f−k({z}) ⊂ Jy}
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and B = {f−τz(z) : z ∈ S ′}. If U is a connected component of Jy\B, then all points of

U either never return to Jy or return to Jy at the same time. The second case always

happens when U ⊂ Jy is a small interval with an endpoint at y. In particular, the return

times of the points of the orbit of x to Jy are bounded. �

Proof of Theorem 3.5. Theorem 3.5 is a variation of [26, Theorem 2.1] where the hypothe-

ses of no connection and no periodic orbit were weakened. Here we just point out which

change is necessary in the proof of [26, Theorem 2.1]. In this regard, [26, Lemma 3.2]

ought to be replaced by Lemma 3.6. The hypothesis that f has no periodic orbit in the

statement of [26, Theorem 2.1] is not necessary: all we need is that ω(x) is infinite. In this

way, the claims of [26, Theorem 2.1] hold in our context, which proves Theorem 3.5. �

4. Proof of Theorem 2.1

Throughout this section, let f : I → I be an n-PC with associated partition I1, . . . , In

having endpoints 0 = x0 < x1 < · · · < xn = 1. We will need the following elementary

result.

Lemma 4.1 ([21, Lemma 3.6]). There exist r ≤ 2n pairwise disjoint open intervals

F1, . . . , Fr such that fk(Fj), 1 ≤ j ≤ r, k < 0, are empty sets, and fk(Fj), 1 ≤ j ≤ r,

k ≥ 0, are pairwise disjoint open intervals and Ω = ∪r
j=1 ∪k≥0 f

k(Fj) is a dense subset of

I\{x0, x1, . . . , xn−1} having Lebesgue measure 1.

A non-empty compact subset Λ ⊂ [0, 1] is an attractor of f if there exists p ∈ I such

that Λ = ω(p). Let F1, . . . , Fr be as in the statement of Lemma 4.1, then for each

1 ≤ j ≤ r, ∪k≥0f
k(Fj) ∩ {x0, x1, . . . , xn−1} = ∅, implying that ω(pj) is the same for any

pj ∈ ∪k≥0f
k(Fj). In this way, the attractors

(4) Λ1 = ω(p1), . . . ,Λr = ω(pr)

do not depend on the choice of (p1, . . . , pr) ∈ F1 × · · · × Fr.

Lemma 4.2. Let p ∈ I. If ω(p) is infinite, then ω(p) ∈ Λ1 ∪ · · · ∪ Λr.

Proof. Since ω(p) is infinite, the f -orbit of p is not periodic. In particular, there exists

k0 ≥ 0 such that the f -orbit of fk0(p) does not pass through discontinuities. By the

density of Ω, there exists 1 ≤ j ≤ r such that fk0(p) ∈ ω(pj). Then, ω(p) = ω
(
fk0(p)

)
⊂

ω(pj) = Λj . �

Without loss of generality, by replacing r by a smaller number, we may assume that

the sets Λ1, . . . ,Λr are pairwise distinct. It follows from Lemma 4.1 that S = I\Ω is a

Lebesgue null set. Let 1 ≤ j ≤ r. As S = S ∪ {1} and Λj ⊂ S, we have that S has

empty interior, hence Λj is totally disconnected. By the Cantor-Bendixson Theorem, we

conclude that Λj is either a finite set or the union of a Cantor set with a discrete set. If

all the attractors Λ1, . . . ,Λr are finite, then, by Lemmas 3.1 and 4.2, all natural codings

of f are ultimately periodic and we are done. Otherwise, there are 1 ≤ s ≤ r infinite
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attractors. Without loss of generality, assume that Λ1, . . . ,Λs are the infinite attractors.

It follows from Theorem 3.5 that for each 1 ≤ j ≤ s, there exists a non-atomic f -invariant

Borel probability measure µj whose support is Λj . Hence, if

µ =
1

s
µ1 + · · ·+ 1

s
µs, A = Λ1 ∪ · · · ∪ Λs,

then µ is a non-atomic f -invariant Borel probability measure with support equal to A.

Let h: [0, 1] → [0, 1] be the nondecreasing, continuous, surjective map defined by h(t) =

µ
(
[0, t]

)
, t ∈ I. Notice that h is strictly increasing on A and constant on each connected

component of I\A. Given x, x′ ∈ Ii with h(x) = h(x′), we claim that h
(
f(x)

)
= h

(
f(x′)

)
.

Since f is injective, f |Ii is either increasing or decreasing. Without loss of generality, in

what follows, assume that f |Ii is increasing (and continuous) for every 1 ≤ i ≤ n. Assume

x ≤ x′, then f(x) ≤ f(x′). Moreover, since f |Ii is increasing and continuous,

[x, x′) = f−1
([
f(x), f(x′)

))
.

Hence, since µ is non-atomic and f -invariant, we have that for any x ≤ x′ in Ii,

(5) h
(
f(x′)

)
− h
(
f(x)

)
= µ

([
f(x), f(x′)

))
= µ

(
f−1
([
f(x), f(x′)

)))
= h(x′)− h(x),

which proves the claim.

We will use (5) to define an IET T : I → I. Let

I =
{
1 ≤ i ≤ n : (xi−1, xi) ∩A 6= ∅

}
,

where xi−1 and xi are the endpoints of Ii. Let m ≤ n be the cardinality of I, then we

may write I = {i1, . . . , im}. Let 0 = y0 < y1 < · · · < ym = 1 be the points defined by

yℓ = h(xiℓ), 1 ≤ ℓ ≤ m. Let T : I → I be the map that at h(x) ∈ I\{y0, y1, . . . , ym−1}
takes the value

(6) T
(
h(x)

)
= h

(
f(x)

)
.

The map T is well-defined on I\{y0, y1, . . . , ym−1}. To see that, let x, x′ ∈ I, x < x′, be

such that h(x) = h(x′) is a point in I\{y0, y1, . . . , ym−1}. Then, {x, x′} ⊂ ⋃i∈I(xi−1, xi),

otherwise x or x′ would belong to {y0, y1, . . . , ym−1}. In this way, there exist i, j ∈ I
such that x ∈ (xi−1, xi) and x′ ∈ (xj−1, xj). If i 6= j, then the hypothesis h(x) = h(x′)

yields h(x) = h(xi) = h(xj−1) = h(x′), showing that h(x) ∈ {y0, y1, . . . , ym−1}, which is a

contradiction. Hence, the only alternative left is i = j and x, x′ ∈ (xi−1, xi). In this way,

x, x′ belong to the same interval Ii and (5) implies that T
(
h(x)

)
= T

(
h(x′)

)
, thus T is

well-defined on I\{y0, y1, . . . , ym−1}.
Let us prove that T |(yℓ−1,yℓ), 1 ≤ ℓ ≤ m, is a translation. If y, y′ are two points in

(yℓ−1, yℓ), there exist x, x′ ∈ (xiℓ−1, xiℓ) such that y = h(x) and y′ = h(x′), then (5) and

(6) yield

T (y′)− T (y) = T
(
h(x′)

)
− T

(
h(x)

)
= h

(
f(x′)

)
− h
(
f(x)

)
= h(x′)− h(x) = y′ − y,

proving that T |(yℓ−1,yℓ) is a translation. In particular, T |(yℓ−1,yℓ) is injective and T
(
(yℓ−1, yℓ)

)

is an open interval for each 1 ≤ ℓ ≤ m. Moreover, since h is order-preserving, if ℓ 6= k, then
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h
(
xiℓ−1, xiℓ

)
and h

(
xik−1, xik

)
are non-overlapping open intervals, implying that T is (glob-

ally) injective on I\{y0, y1, . . . , ym}. As for the definition of T on the set {y1, . . . , yn−1},
we can choose one of the lateral limits of f as we approach each of these points in such a

way that T is, indeed, globally injective. In this way, T is a m-IET.

We claim that T has no attractive periodic orbit. In fact, if for each 1 ≤ j ≤ s, γi is

an infinite f -orbit dense in Λi, then the union of the infinite T -orbits T (γ1), . . . , T (γs) is

a dense subset of I, ruling out attractive periodic T -orbits.

Let x ∈ I be a point whose natural f -coding is θ = θ0θ1 . . ., then we may assume that

ω(x) is infinite, otherwise Lemma 3.1 says that θ would be ultimately periodic (i.e. ∃k ≥ 0

such that the natural f -coding of fk(x) is periodic). By Corollary 3.4, there exists k0 ≥ 0

such that fk(x) ∈ (xi1−1, xi1)∪· · ·∪(xim−1, xim) for all k ≥ k0. This means that the natural

f -coding ζ = ζ0ζ1 . . . of f
k0(x) is an infinite word over the alphabet A′ = {i1, . . . , im}.

Let η = η0η1 . . . be the natural T -coding of y = h(x), then ζj = iℓ ∈ {i1, . . . , im} if and

only if ηj = ℓ ∈ {1, . . . , m}, proving that ζ and η are isomorphic infinite words.

5. Proofs of Theorem 2.2 and Corollary 2.5

Proof of Theorem 2.2. Let T : I → I be a topologically transitive n-IET and J1, . . . , Jn be

the associated partition. Without loss of generality we may assume that the endpoints of

Ji are yi−1 and yi, where 0 = y0 < y1 < · · · < yn = 1. Let {pk}∞k=1 ⊂ I\{y0, y1, . . . , yn−1}
be a dense T -orbit. Given k ≥ 1, let

(7) Lk = {ℓ ≥ 1 : pℓ < pk} and Gk =

[
∑

ℓ∈Lk

2−ℓ, 2−k +
∑

ℓ∈Lk

2−ℓ

]
.

Notice that pk > 0 and Lk 6= ∅. Hence, Gk ⊂ (0, 1) is a well-defined interval of length

|Gk| = 2−k. We claim that {pk}k≥1 and {Gk}k≥1 share the same ordering meaning that

(8) pk < pj ⇐⇒ supGk < inf Gj .

In fact, pk < pj if and only if {k} ∪ Lk ⊂ Lj, which is equivalent to

supGk = 2−k +
∑

ℓ∈Lk

2−ℓ <
∑

ℓ∈Lj

2−ℓ = inf Gj.

In particular, we have that the intervals G1, G2, . . . are pairwise disjoint and their union

is dense because
∑∞

k=1 |Gk| = 1. Applying (8) we conclude that if J ⊂ I is an interval

and

{mk}k≥1 = {ℓ ≥ 1 : pℓ ∈ J}, then ∪k≥1Gmk
is an interval.

Let ĥ: ∪k≥1Gk → I be the function that on Gk takes the constant value pk. By (8), we

have that ĥ is nondecreasing and has dense domain and dense range. Thus, ĥ admits a

unique nondecreasing continuous surjective extension h: [0, 1] → [0, 1] to the whole interval

[0, 1]. It is elementary to see that h−1
(
{pk}

)
= Gk. Denote by I1, . . . , In the partition of

I defined by Ii = h−1(Ji). Notice that xi = h−1(yi), 0 ≤ i ≤ n, are the endpoints of the

partition I1, . . . , In.
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Let f̂ : ∪k≥1Gk → ∪k≥2Gk be such that f̂ |Gk
:Gk → Gk+1 is an affine bijection with

slope 1
2
T ′(pk) for every k ≥ 1, where T ′(pk) ∈ {−1, 1} is the derivative of T at pk. We

claim that for each 1 ≤ i ≤ n , there exist a dense subset Îi of Ii, λi ∈
{
−1

2
, 1
2

}
and bi ∈ R

such that

(9) f̂(x) = λix+ bi for all x ∈ Îi.

In order to show that (9) is true, fix 1 ≤ i ≤ n and let {mk}k≥1 = {ℓ ≥ 1 : pℓ ∈ Ji},
then Ĵi = ∪k≥1{pmk

} is a dense subset of Ji and Îi = ∪k≥1Gmk
is a dense subset of Ii.

Moreover, there exists λi ∈
{
−1

2
, 1
2

}
such that T ′(y) = 2λi for all y ∈ Ji. In particular,

T ′(pmk
) = 2λi for all k ≥ 1. By definition, f̂ |Gmk

:Gmk
→ Gmk+1 is an affine bijection

with slope 1
2
T ′(pmk

) = λi for all k ≥ 1, which proves (9). We have proved that there exist

λi ∈
{
−1

2
, 1
2

}
and cmk

∈ R such that

(10) f̂(x) = λix+ cmk
for all x ∈ Gmk

.

Let us prove that if λi =
1
2

(
respectively, λi = −1

2

)
then f̂ is strictly increasing (respec-

tively, strictly decreasing) on ∪k≥1Gmk
. Without loss of generality, assume that λi = −1

2
,

then f̂ is strictly decreasing on each interval Gmk
. Let yk < zj be such that yk ∈ Gmk

and zj ∈ Gmj
, where k 6= j and supGmk

< inf Gmj
. By (8), we have that pmk

< pmj

and {pmk
, pmj

} ⊂ Ji. Then, since T ′(y) = 2λi = −1 for all y ∈ Ji, we have that

T |Ji is decreasing, thus T (pmk
) > T (pmj

), that is, pmk+1 > pmj+1. By (8) once more,

we get supGmj+1 < inf Gmk+1. By definition, f(yk) ∈ Gmk+1 and f(zj) ∈ Gmj+1,

thus f(yk) > f(zj). This proves that f̂ is decreasing on ∪k≥1Gmk
. It remains to

prove that cmk
in (10) is the same for all k ≥ 1. Let j 6= k. We may assume that

a = supGmj
< inf Gmk

= b. Notice that

1

2
(b− a) +

|λi|
λi

(cmk
− cmj

) =
|λi|
λi

(
f̂(b)− f̂(a)

)
=

∑

Gmℓ
⊂[a,b]

∣∣∣f̂
(
Gmℓ

)∣∣∣

=
1

2

∑

Gmℓ
⊂[a,b]

|Gmℓ
| = 1

2
(b− a)

yielding cmk
= cmj

. Thus, (9) is true.

It follows from (9) that f̂ |∪k≥1Gmk
admits a unique monotone continuous extension to

the interval Ii = h−1(Ji). This extension is also an affine map with slope equal to 1
2
in

absolute value. Since i is arbitrary, we obtain an injective piecewise 1
2
-affine extension f

of f̂ to the whole interval I = ∪n
i=1Ii.

It remains to show that h ◦ f = T ◦ h. In fact, for every y ∈ Gk, we have that

(11) h
(
f(y)

)
= ĥ

(
f̂(y)

)
= pk+1 = T (pk) = T

(
ĥ(y)

)
= T

(
h(y)

)
.

Hence, (11) holds for a dense set of y ∈ I. By continuity, (11) holds for every y ∈ I. �
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Proof of Corollary 2.5. Let 0 < α < 1 be irrational. Let T :I → I be the 2-IET defined

by T (y) = y + α (mod 1), or equivalently, let J1 = [0, 1− α), J2 =
[
1− α, 1

)
, and

T (y) =




y + α if y ∈ J1

y + α− 1 if y ∈ J2

.

It is widely known that T is minimal. Hereafter, we take all the notation of the proof

of Theorem 2.2. Let y0 = 0, y1 = 1 − α and y2 = 1. Let γ = {pk}∞k=1 = {α, T (α), . . .}
be the T -orbit of α, then γ is a dense orbit contained in I\{y0, y1}. Let θ = θ0θ1 . . . be

the natural T -coding of α, then θ is a Sturmian word. Let us define the 2-PC fT . Let

Gk, k ≥ 1, be the pairwise disjoint intervals of length |Gk| = 2−k defined by (7). Let

Ii = h−1(Ji) for i = 1, 2, then I1 = [0, x1), I2 = [x1, 1), where x1 = h−1(y1). Let

{mk}k≥1 = {ℓ ≥ 1 : pℓ ∈ J1} = {ℓ ≥ 1 : θℓ−1 = 1},

then Ĵ1 = ∪k≥1{pmk
} is a dense subset of J1 and Î1 = ∪k≥1Gmk

is a dense subset of I1.

In this way, since |Gmk
| = 2−mk , we have that

x1 = sup I1 =
∑

k≥1

|Gmk
| =

∑

k≥1

2−mk =
∑

ℓ≥1

(2−θℓ−1)2
−ℓ =

1

2

∑

ℓ≥0

(2−θℓ)2
−ℓ = 2−1

2

∑

ℓ≥0

θℓ2
−ℓ.

Since T ′(y) = 1 for every y ∈ I, we have that the slope λi of fT is 1
2
. In this way, we have

that

fT (x) =





1

2
x+ b1 if x ∈ [0, x1)

1

2
x+ b2 if x ∈ [x1, 1)

.

Since 1
2
x1 + b1 = 1 and 1

2
x1 + b2 = 0, we conclude that

fT (x) =
1

2
x+ δ, where δ =

1

4

∑

ℓ≥0

θℓ2
−ℓ.

It is clear that

(12) δ =
1

4

(
1 + θ0 +

∑

ℓ≥1

(θℓ − 1)2−ℓ

)
,

thus {θℓ−1}ℓ≥1 is the binary expansion of
∑

ℓ≥1(θℓ−1)2−ℓ. In this case, the transcendence

of δ follows from Ferenczi and Mauduit [13, Proposition 2] or Adamczewski and Cassaigne

[1, Theorem 1] together with the fact that w = (θ1 − 1)(θ2 − 2) . . . is a Sturmian word.

Now let us consider the particular case in which α = 2 − ϕ, where ϕ = (1 +
√
5)/2 is

the golden ratio. In this case, it is known that (θ1 − 1)(θ2 − 1) . . . is the Fibonacci word

θ − 1 = 010010100100101001010010010100100101001010010010100 . . .

The number

R = 1−
∑

ℓ≥0

(θℓ − 1)2−(ℓ+1) = 0.7098034428612913146 . . .
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is known in the mathematical literature as the rabbit constant. Notice that by (12), we

have that

δ =
1

4

(
1 + θ0 + 2

∑

ℓ≥1

(θℓ − 1)2−(ℓ+1)

)
=

1

4

(
2 + 2

∑

ℓ≥0

(θℓ − 1)2−(ℓ+1)

)
= 1− R

2
.

The transcendence of the rabbit constant was proved by Davison [9].

�

6. Proofs of Corollary 2.3 and Corollary 2.4

Proof of Corollary 2.3. Let θ = θ0θ1 . . . be a natural coding of an injective n-PC f : I → I.

By Theorem 2.1, there exist a m-IET T : I → I with 2 ≤ m ≤ n and q ≥ 0 such that the

infinite word θ∗ = θqθq+1 . . . is either periodic or isomorphic to the non ultimately periodic

natural T -coding ω = ω0ω1 . . . of some point y ∈ I. For the sake of simplification, we

will only consider the case in which T is an orientation-preserving m-IET with associated

partition I1 = [y0, y1), . . ., Im = [ym−1, ym). Since ω is non ultimately periodic, there exist

r ≥ 0 and y∗ = T r(y) whose T -orbit is regular, which means

OT (y
∗) =

{
T r(y), T r+1(y), . . .

}
⊂ I\{y0, y1, . . . , ym−1}.

Because OT (y∗) is regular, it is entirely contained in a minimal component of T . More

specifically, there exist open intervals A1, . . . , Ap with pairwise disjoint closures such that

OT (y
∗) is a dense subset of A1∪· · ·∪Ap and T (A1) ⊂ A2, . . . , T (Ap−1) ⊂ Ap, T (Ap) ⊂ A1,

and T takes I\(A1 ∪ · · · ∪ Ap) into itself (see [3, 24]). Let µ be the normalized Lebesgue

measure on A1 ∪ · · ·Ap, then µ is T -invariant: µ
(
T−1(B)

)
= µ(B) for every Borel set

B ⊂ I. Let h: [0, 1] → [0, 1] be the nondecreasing, continuous, surjective map defined by

h(t) = µ
(
[0, t]

)
, t ∈ I. Notice that h is strictly increasing on A1 ∪ · · · ∪ Ap and constant

on each of the finitely many connected components of I\A1 ∪ · · · ∪ Ap. Given y, y′ ∈ Ii

with h(y) = h(y′), we claim that h
(
T (y)

)
= h

(
T (y′)

)
. Without loss of generality, assume

that y ≤ y′, then T (y) ≤ T (y′). Moreover, since T |Ii is a translation,

[y, y′] = T−1
([
T (y), T (y′)

])
.

Hence, since µ is non-atomic and T -invariant, we have that for any y, y′ ∈ Ii,

(13) h
(
T (y′)

)
− h
(
T (y)

)
= µ

([
T (y), T (y′)

])
= µ

(
T−1

([
T (y), T (y′)

]))
= h(y′)− h(y),

which proves the claim.

We will use (13) to define an IET E: I → I. Let

I =
{
1 ≤ i ≤ m : Ii ∩ (A1 ∪ · · · ∪ Ap) 6= ∅

}
.

Let m′ ≤ m be the cardinality of I, then we may write I = {i1, . . . , im′}. The intervals

J1 = h
(
Ii1
)
, . . ., Jm′ = h

(
Iim′

)
form a partition of I into non-degenerate intervals with
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endpoints 0 = z0 < z1 < · · · < zm′ = 1 defined by zℓ = h(yiℓ), 0 ≤ ℓ ≤ m′. Let E:I → I

be the right-continuous map that at z = h(y) ∈ I\{z0, z1, . . . , zm′−1} takes the value

(14) E
(
h(y)

)
= h

(
T (y)

)
.

The map E is well-defined. In fact, if y, y′ ∈ I are such that h(y) = h(y′), then y, y′

belong to the same connected component of I\(A1 ∪ · · · ∪Ap). There is no discontinuity

of T between y and y′, otherwise h(y) would belong to ∈ {z1, . . . , zm′−1}. In this way,

y, y′ belong to the same interval Ii and (13) asserts that E is well-defined. Notice that,

by definition, E(zℓ) = limǫ→0+ E(zℓ + ǫ) for all 0 ≤ ℓ ≤ m′ − 1.

Let us prove that E|(zℓ−1,zℓ), 1 ≤ ℓ ≤ m′, is a translation. If z, z′ are two points in

(zℓ−1, zℓ), then there exist y, y′ ∈
(
yiℓ−1

, yiℓ
)
such that z = h(y) and z′ = h(y′). Now (13)

and (14) yield

E(z′)− E(z) = E
(
h(y′)

)
− E

(
h(y)

)
= h

(
T (y′)

)
− h
(
T (y)

)
= h(y′)− h(y) = z′ − z,

proving that E|Jℓ is a translation.

The map E is surjective. In fact, since h and T are surjective, given z ∈ I, there exists

y ∈ I such that E
(
h(y)

)
= h

(
T (y)

)
= z. To see that E is also injective, by the above, E

takes each interval Jℓ into its translate E(Jℓ), which therefore has the same length, that

is, |E(Jℓ)| = |Jℓ|. Since E is surjective, we have that

1 =

m′∑

ℓ=1

|E(Jℓ)| ≤
m′∑

ℓ=1

|Jℓ| ≤ 1,

implying that no overlapping is possible for the intervals E(J1), . . . , E(Jm′). This proves

that E is a m′-IET.

Becasuse OT (y
∗) is a dense subset of A1 ∪ · · · ∪ Ap and h(A1 ∪ · · · ∪ Ap) is dense in

I, we have that h takes the T -orbit OT (y
∗) onto a dense E-orbit, thus E is topologically

transitive. Moreover, if ζ = ζ0ζ1 . . . is the natural T -coding of y∗ and η = η0η1 . . . is

the natural E-coding of z∗ = h(y∗), then ζk = iℓ ∈ {i1, . . . , im′} if and only if ηk = ℓ ∈
{1, . . . , m′}, proving that ζ and η are isomorphic infinite words. To conclude the proof,

we recall that θq+rθq+r+1 . . . is isomorphic to ζ .

�

Lemma 6.1. Let θ = θ0θ1 . . . be an infinite word and θ∗ = θq+1θq+2 . . . an infinite subword

of θ, then there exist k0 ≥ 1 and β ≥ 0 such that

pk(θ) = pk(θ
∗) + β for every k ≥ k0.

Proof. For each k ≥ q + 1, let

Wk = {θ0θ1 . . . θk−1, θ1θ2 . . . θk, . . . , θqθq+1 . . . θq+k−1} ⊂ Lk(θ)

W∗
k = {ω ∈ Wk : ω 6∈ Lk(θ

∗)}
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Notice that Wk is formed by at most q + 1 distinct finite words and k 7→ #W∗
k is a

nondecreasing map, thus there exist k0 ≥ 0 and β ≤ q + 1 such that #Wk = β for every

k ≥ k0. Moreover, for every k ≥ k0, we have the disjoint union

Lk(θ) = W∗
k∪Lk(θ

∗), thus pk(θ) = pk(θ
∗) + β.

�

Lemma 6.2. Let θ be a natural coding of a topologically transitive m-IET T :I → I, then

there exist k0 ≥ 1, α ∈ {0, . . . , m− 1} and β ≥ 1 such that

(15) pθ(k) = kα + β for every k ≥ k0.

Moreover, if T is a standard m-IET, with m ≥ 2, satisfying the i.d.o.c., then α = m− 1,

β = 1 and k0 = 1.

Proof. Let T : I → I be a topologically transitive m-IET and P = {I1, . . . , Im} be the

partition associated to T , then, since T−1 is also an IET, T−k(P) is a partition of I into

intervals for every k ≥ 0, implying that the members of the set

Pk =
k−1∧

ℓ=0

T−ℓ(P) =
{
Ii0 ∩ T−1

(
Ii1
)
∩ · · · ∩ T−(k−1)

(
Iik−1

)
: 1 ≤ i0, i1, . . . , ik−1 ≤ m

}
.

are pairwise disjoint intervals. Moreover, if θ is a natural coding of T , then the k-word

i0i1 . . . ik−1 occurs in θ if and only if the interval J = Ii0 ∩T−1
(
Ii1
)
∩· · ·∩T−(k−1)

(
Iik−1

)
∈

Pk is nom-empty.

Let θ be the natural T -coding of some point x ∈ I. If θ is (ultimately) periodic, then

by the Morse-Hedlund Theorem, there exist k0 ≥ 1 and β ≥ 1 such that pθ(k) = β for

every k ≥ k0, meaning that (15) holds with α = 0. Hence, we may assume that θ is not

(ultimately) periodic. In this case, there exists q ≥ 0 such that the orbit {x∗, T (x∗), . . .} of
x∗ = T q+1(x) is a dense subset of I\{x0, x1, . . . , xm−1}, where 0 = x0 < x1 < · · · < xm = 1

are the endpoints of the partition P. In this way, for each k ≥ 1, {x∗, T (x∗), . . .} is

contained in the union of the interiors of the intervals of Pk. Hence, the k-word i0i1 . . . ik−1

occurs in the natural T -coding θ∗ of x∗ if and only if the interval J = Ii0 ∩T−1
(
Ii1
)
∩· · ·∩

T−(k−1)
(
Iik−1

)
∈ Pk has non-empty interior. Therefore, the number of such intervals J in

Pk equals pk(θ
∗) and is related to the number of endpoints of the partition Pk as follows

(16) pk(θ
∗) = 1 +

k−1∑

ℓ=0

mℓ,

where m0 = m− 1 and

mℓ =
{
T−ℓ(x1), . . . , T

−ℓ(xm−1)
}∖ ℓ−1⋃

p=0

{
T−p(x1), . . . , T

−p(xm−1)
}

gives the number of new division points at the ℓ-th step towards the construction of Pk.

The map ℓ 7→ mℓ is a non-increasing, therefore there exist k′
0 ≥ 0 and α ≥ 1 such that



18 SYMBOLIC DYNAMICS OF PIECEWISE CONTRACTIONS

mℓ = α for every ℓ ≥ k′
0. Notice that α ≥ 1 because, as θ∗ is not (ultimately) periodic,

pk(θ
∗) → ∞ as k → ∞. Let β0, β1, . . . , βk0−1 ≥ 0 be such that

(17) mℓ =




α + βℓ if ℓ ∈ {0, 1, . . . , k′

0 − 1}
α if ℓ ≥ k′

0

.

By (16) and (17), we have that if β ′ = 1 + β0 + β1 + · · ·+ βk0−1, then

pk(θ
∗) = 1 +

k′
0
−1∑

ℓ=0

(α+ βℓ) +
k−1∑

k′
0

α = αk + β ′ for all k ≥ k′
0 + 1.

By Lemma 6.1, there exist k0 ≥ k′
0 + 1 and β ′′ ≥ 0 such that

pk(θ) = pk(θ
∗) + β ′′ = αk + (β ′ + β ′′

︸ ︷︷ ︸
β

) = αk + β for all k ≥ k0.

Notice that if T satisfies the i.d.o.c., then θ∗ = θ and mℓ = m− 1 for all ℓ ≥ 0, then (16)

yields

pk(θ) = pk(θ
∗) = (m− 1)k + 1 for all k ≥ 1,

implying that in this case (15) holds with α = m− 1, β = 1 and k0 = 1. �

Proof of Corollary 2.4. Let f :I → I be an injective n-PC and θ = θ0θ1 . . . be the natural

f -coding of x ∈ I. By Corollary 2.3, there exist k ≥ 0 and a topologically transitive

m-IET, with 2 ≤ m ≤ n, such that the natural coding θ∗ of fk(x) is either periodic or

isomorphic to a non ultimately periodic natural coding of T . By Lemma 6.2, there exist

k0 ≥ 1, α ∈ {0, . . . , m− 1} and β ≥ 1 such that

(18) pk(θ
∗) = kα + β for all k ≥ k0.

Notice that in the case in which θ∗ is periodic, by the Morse-Hedlund Theorem, (18) holds

with α = 0. To conclude the proof of the item (i), apply Lemma 6.1. As for tye item (ii),

we apply Theorem 2.2 together with Lemma 6.2. �
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C. R. Math. Acad. Sci. Paris Ser. I Math. 317 (6) (1993) 575-578.

[5] Y. Bugeaud, Linear mod one transformations and the distribution of fractional parts of ξ(p/q)n,

Acta Arith. 114 (4) (2004) 301-311.

[6] Y. Bugeaud and J.-P. Conze. Calcul de la dynamique de transformations linéaires contractantes mod
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