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Abstract 

We study some global geometric properties of a static Lorentz­
ian manifold A embedded in a differentiable manifold M, with 
possibly non smooth boundary 8A. We prove a variational prin­
ciple for geodesics in static manifolds, and using this principle 
we establish the existence of geodesics that do not touch 8A and 
that join two fixed points of A. The results are obtained under 
a suitable completeness assumption for A, that generalizes the 
property of global hyperbolicity, and a weak convexity assump­
tion on 8A. Moreover, under a non triviality assumption on the 
topology of A, we also get a multiplicity result for geodesics in A 
joining two fixed points. 

•Partially supported by CNPq, Processo n. 301410/95-0 
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1 Preliminaries and Statement of the Results 

In this paper we consider the problem of the existence of geodesics that 

do not touch the boundary of a convex subset of a Lorentzian manifold, 

with a non necessarily smooth boundary. Some space-times of great 

physical relevance, like the Schwarzschild space-time and the Reissner­

Nordstrom space-time (see [11]), provide examples of the Lorentzian 

structures that we will consider. 

Here, by singularity, we mean loosely a geometrical or a metric 

singularity at the boundary points of a manifold. The two concepts 

of singularity may in some cases be considered equivalent, up to a 

change of coordinates. For instance, in the case of the Schwarzschild 

space-time M, its boundary 8M is smooth, but its metric cannot be 

smoothly extended to 8M. Nonetheless, if M 1 denotes the Kruskal 

space-time (see [11)), there exists an injective isometry j : M 1-----t M 1, 

but j(8M) is not a smooth submanifold of M 1. In this sense, we say 

that that M has singular boundary. 

The geodesic problem in Lorentzian manifolds is much more delicate 

than in the Riemannian case, where the Hopf-Rinow theorem gives the 

equivalence of the metric and the geodesical completeness. These con­

ditions also imply the existence of geodesics between any points. On 

the other hand, in the Lorentzian case there exist several inequivalent 

forms of singularity and incompleteness. To emphasize the difference 

between the Riemannian and the Lorentzian case, it suffices to observe 

that there exist compact manifolds which are neither geodesically com­

plete nor geodesically connected (see for instance [2, 16, 17]). 

In this paper, we will prove the existence of geodesics between two 

fixed events of static manifolds with boundary, under suitable complete­

ness and convexity assumptions. The notion of convexity used in this 

paper is adapted to situations where the boundary is non necessarily 

smooth. The results are based on an intrinsic variational principle for 

geodesics in stationary manifolds (see Theorem 2.1) which generalizes 

the variational principles proven in (3, 8] . In these papers, the state­

ment and the proof of the principle is made under an extra assumption 

on the topology of the manifold and it is used a (non canonical) space-
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time splitting of the manifold. 
We present an intrinsic approach to the problem of the existence 

of ( at least) one geodesic between two fixed points of a Lorentzian 
manifold which is static with respect to a given timelike Killing vector 
field. To this purpose, we introduce a sort of completeness condition, 
which, in the case of a manifold M which is a warped product of JR by 
a Riemannian manifold Mo, generalizes in a. non trivial way the notion 
of completeness for the underlying manifold Mo (see Definition 1.1 and 
Example 1.8). 

The main existence and multiplicity results of the paper (Theo­
rem 1.2, Corollary 1.3 and Theorem 1.4) are proven with techniques 
of Critical Point Theory. Consistently with the spirit of the paper, an 
effort was made to keep the proofs of the technical results free from 
non intrinsic (hence non canonical) choices; for instance, in no part 
of the paper the Nash's embedding Theorem was used. It should also 
be remarked that, as an element of novelty, the proof of the Palais­
Smale condition of Proposition 3.3 is carried out without referring to 
any particular embedding of the Lorentzian manifold into a Euclidean 
space. 

Moreover, a localization argument of the completeness assumption 
allows to extend the existence results to the case of Lorentzian mani­
folds given by non trivial fiber bundles over Riemannian manifolds (see 
Corollary 1.3). 

Before stating the main results, we recall some basic notions of the 
Lorentzian geometry. The books [1, 11, 13, 14] are excellent references 
for a complete account of the theory and for all the background material 
assumed in this paper. 

A Lorentzian manifold is a smooth, finite dimensional manifold A, 
equipped with a (0, 2)-tensor g of index 1, i.e., for every z E A, g(z)[·, •] 
is a nondegenerate, symmetric bilinear for on the tangent space TzA, 
such that the dimension of a maximal subspace of TzA on which g is 
negative definite is 1. The bilinear form g(z)[•, •] on TzA will also be 
denoted by (·, ·} in the rest of the article. 

A vector v E TzA is said timelike (resp. lightlike, spacelike) if (v, v} 
is negative (resp. null, positive); v is called causal if it is not spacelike. 
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A smooth curve "Y : (a, b} ~ JR~ A is called timelike {resp. lightlike, 

spacelike, causal) if -y(s) is timelike (resp. lightlike, spacelike, causal) 

for all s E ( a, b). This classification is called the causal character of a 

tangent vector, or of a curve. 

A Lorentzian manifold is said to be time-oriented if there exists a 

vector field Yon A such that Y(z) is timelike for all z EA. A timelike 

vector field defines the past and the future of a point z in A: a causal 

vector v E TzA is said to be future pointing (resp. past pointing) if 

(v, Y(z)) is negative (resp. positive). 

Moreover, a timelike vector Y field on A ( or on an open subset of 

A) defines a Riemannian metric 9<R> on A by setting: 

for every x E A and every (1, (2 E TxA. It is not difficult to see that, 

for every ( E TzA, it is: 

(2) 

A smooth curve z (a, b) --+ A is a geodesic if it satisfies the 

differential equation: 

Vzi = 0, (3) 

where V denotes the covariant derivative relative to the Levi-Civita 

connection of the metric tensor g. Given an absolutely continuous 

curve z and an absolutely continuous vector field ( along z, whenever 

there is no danger of confusion we will denote by Va( the covariant 

derivative of ( along z, defined for almost alls. 

It is well known that if z is a geodesic in A, then there exists a 

constant Ez such that: 

(z(s), z(s)) = Ez, Vs, (4) 

hence, the geodesics have a causal character. A geodesic z is said to be 

timelike (resp. lightlike, spacelike) if Ez is negative (resp. null, positive). 
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We recall that a vector field Y on A is a Killing vector field if 
the Lie derivative Lyg of the metric tensor g is everywhere vanishing. 
Equivalently, Y is a Killing vector field if and only if the stages of all 
its local flows are isometries, i.e., if the metric tensor g of A is invariant 
by the flow of Y. 

In this paper, we will often use the following well known charac­
terization of Killing vector fields (see [14], Proposition 9.25). If X(A) 
denotes the space of all C1-vector fields on on A, then Y E X(A) is 
Killing if and only if for every pair W1, W2 E X(A) it is: 

(5) 
In particular, if z :]a, b[i---t A is an absolutely continuous curve and Y 
is Killing, then 

(i, V'8 Y(z)) = 0 a.e. (6) 
This implies that, if Y is Killing, then for every geodesic z in A the 
quantity (z, Y(z)) is constant. An open subset A of a Lorentzian man­
ifold A is called stationary if it is the domain of a timelike Killing 
vector field Y; such a set A is said to be static with respect to Y if Y 
is integrable in the sense that the orthogonal distribution to Y is inte­
grable. We recall that a distribution 'D C TA is said to be integrable 
if through every point p E A there exists a submanifold Np of A such 
that TqNp = 'Dq for all q E Np. It is well known (see e.g. Proposition 
12.30 of [14)) that the orthogonal distribution to Y is integrable if and 
only if Y is irrotational. This means that the curl of Y is null on the 
orthogonal distribution Y .1.: 

(curlUy)[W1, W2] = (Vw1 Y, W2) - (Vw2 Y, W1) = 0 'v'W1, W2 J_ Y. 
(7) 

If <I> : A i---t JR is a C1 function, V <I> ( x) will denote the Lorentzian 
gradient of <I>, defined by (V<I>(x), v) = d<I>{x)[v] for every v E TxA. If 
<I> is of class C2, the Hessian H41 (x) is the bilinear form on TxA defined 
by: 

(8) 
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where v E TxA and 'Y.v is the unique geodesic in A satisfying 'Yv(O) = x 

and i'v(O) = v. We will denote by expz the exponential map from an 

open neighborhood of O in TzA to A. 

A Lorentzian manifold A is said to be geodesically connected if given 

any two points p, q E A there exists at least one geodesic z in A with 

endpoints in p and q. In order to prove the existence of geodesics, 

we need a completeness condition that we are going to define in the 

following. 
Let/ denote the action functional on A: 

/(z) = ½ fo1 

(i, i) ds, 

defined on the set of all curves z : [O, 1] ~ A of class C 1• 

Let p and q be fixed points in A, and consider the set of C 1-curves 

in A joining p and q and such that (i, Y) is constant: 

Cp,q = C,,q(A) = { z E C1([0, 1],A): z(O) = p, z(l) = q, (i, Y) = Gz }. 

(9) 

We denote by A= ALJoA the closure of A in M. 

Definition 1.1. Let c be a real number. A subset S ~ Cp,q is said to 

be c-precompact if every sequence {zn}neJV CS with /(Zn) $ c has a 

uniformly convergent subsequence in A. We say that the restriction of 

/ to Cp,q is pseudo-coercive if Cp,q is o-precompact for all c > ~nf J. 
p,q 

We remark here that, as it is shown in [9), if the pseudCKOercivity 

condition on the functional / holds for all pairs p and q, then this 

implies the global hyperbolicity of A (see [1]). Nevertheless, the global 

hyperbolicity alone does not in general imply the geodesical connect­

edness, even in the static case, as simple counterexamples show (see 

Example 1.10). And even more, it may happen that the set Cp,q is not 

c-precompact for any choice of c, but it is the countable union of open 

connected components which are c-precompact for all values of c (see 

Example 1.9). 
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On the other hand, even in non globally hyperbolic static Lorentzian 
manifolds, the set Cp,q may happen to be c-precompact for some choices 
of c > inf/ and for all pairs of points p and q (see Example 1.8). 

Cp,q 

We will assume in the rest of the paper that A is a Lorentzian man­
ifold which is embedded as an open subset of a smooth differentiable 
manifold M. Observe that we do not require that the boundary fJA of 
A in Mis a smooth submanifold of M. We need to introduce a suitable 
notion of convexity for A, in order to guarantee that the geodesics in 
A cannot touch 8A, in a sense to be clarified. The notion of convexity 
used in this paper (compare with [4, 7, 81) is given in terms of a condi­
tion for the Hessian near the boundary of A of a suitable function, as 
explained below. 

For p, q E M and c E JR, we denote by Ap,q and Ap,q,c the following 
subsets of A: 

Ap,q = {).EA: 3z E Cp,q ands E [0, 1] such that ). = z(s) }; 

Ap,q,c = {). E A : 3 z E Cp,q with / (z) :$; c and s E [O, 1] 

such that ). = z(s) }· {10) 

Obviously, Ap,q = U Ap,q,ci moreover, if c < inf/, then Ap,q,c = 0. 
cEIR C,,,q 

The following is a generalization of a result of Benci, Fortunato 
and Giannoni for the geodesical connectedness of static manifolds (see 
Theorem 1.8 of [3]}: 

Theorem 1.2. Let A be a Lorentzian manifold, which is embedded as 
an open subset of a smooth differentiable manifold M. Let Y be a 
smooth vector field on A which is timelike and Killing. Suppose that 
A is static with respect to Y, and that the following hypotheses are 
satisfied: 

(1) for a fixed pair of points p and q in A there exists a real 
constant c > inf / such that Cp,q is c-precompact; 

Cp,q 
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(2) there exist a positive constantµ = µ(p, q, c) such that: 

-(Y(z), Y(z)) $ µ < +oo (11) 

for all z E Ap,q,c; 

(3) there exists a C2 -regular function</>: Ai-------+ JR+ satisfying: 

(a) Iim ¢,(z) = O; 
z➔zoE8A 

{b) for every subset B of M with B n A bounded, there 

exists a neighborhood U of oAnB and a positive constant 

M such that (V</>(z), V</>(z)) $ M for all z EU n A; 

(c) for every subset B of M with B n A bounded, there 

exists a neighborhood U of BnoA and a positive constant 

p such that (H'P(z)v,v) $ p•llvll! ·</>(z), for all z E UnA 

and all v E TzMi 

(d) (V</>, Y} = 0 in A. 

7 

Then, there exists at least one geodesic in A joining p and q. In par­

ticular, if (1) and (2) hold for all pairs p and q, then A is geodesically 

connected. 

Observe that in our Theorem, no assumption is made on the topol­

ogy of the spacetime A. In particular, A is not assumed to be standard, 

as in the case of the previous works [3, 4, 7, 8, 13]. We would also like 

to point out that the assumptions (3c) and (3d) of Theorem 1.2 are 

weaker than the assumptions made in Theorem 1.8 of (3) and in [7]; 

moreover, the hypothesis (1) is more general than the completeness 

assumptions of [3J. 
The weak notion of convexity for A is given by the hypotheses (3a) 

and (3d) of Theorem 1.2. 
The results of Theorem 1.2 can be refined as follows. We recall that 

a homotop71 class 1l of Cp,q is an equivalence class of curves in Cp,q with 

respect to the 0 1-homotopy equivalence (with fixed endpoints). 
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Corollary 1.3. Suppose that Y is a complete vector field on A and 
that hypothesis (9) of Theorem 1.2 is satisfied. If the following are 
satisfied: 

(1)' for a fixed pair of points p and q in A there exists a ho­
motopy class 1l of Cp,q and a real constant c > i'~/l f such 
that 1l is c-precompact; 

(2)' there exist a positive constant µ = µ(p, q, c) such that 
the inequality -(Y(z), Y(z)) ~ µ < +oo holds for all z E 
Ap,q,c n 1l; 

then, there exists one geodesic in the homotopy class 1l. If the constant 
c of (1)' can be chosen negative, then the geodesic in 1l can be found 
timelike. 

Some examples will be presented at the end of the section to discuss 
in more details the hypotheses of Theorem 1.2 and of Corollary 1.3. 

Under a non triviality condition on the topology of A, there exist 
geodesics of arbitrarily large energy joining any pair of points in A. 
Indeed, we have the following multiplicity result: 

Theorem 1.4. Under the same hypotheses of Theorem 1.2, suppose 
that the inequality ( 11) holds in Ap,q. If f is pseudo-coercive on Cp,q 
and if A is non-contractible, then there exists a sequence {zn}nEIV of 
spacelike geodesics between p and q in A such that: 

lim / (zn) = +oo. 
n➔oo 

(12) 

The integrability assumption for the vector field Y is almost cer­
tainly unnecessary for the results proven in the paper, but it is used to 
avoid some technical complicacies in our proofs. More specifically, it 
hM been used in the proof of part 6 of Theorem 2.1. The same proof 
can be obtained in a more general context, but using non intrinsic con­
ditions on the coefficients of the metric with respect to a given (non 
canonical) coordinate system (see for instance (8, 9, 13]). 

To motivate the relevance of the results of Theorem 1.2 and Corol­
lary 1.3, we now discuss some examples. In the following, Example 1.5 
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and Example 1.6 serve only as a physical motivation for the prob­

lem of the geodesical connectedness of static spacetimes with singular 

boundary; it is presented a quick proof that these two example fit into 

the model of Theorem 1.2. It should be observed that the geodesical 

connectedness for the Schwarzschild and for the Reissner-Nordstrom 

spacetimes can be established using the results in (4, 7]. In the rest of 

the cases discussed, the emphasis is given to the differences between the 

results of the paper and the results contained in the above mentioned 

papers. 

Example 1.5. the exterior Schwarzschild spacetime. 

Let (r, 0, cp) be the polar coordinates in JR3 and m be any positive 

number. Consider the subset Mo of JR3 given by the exterior of the 

ball of radius 2m and centered in the origin. Let A C 1R4 be the 

Lorentzian manifold Mo x JR C JR:4, with metric: 

where 

2m 
,B(r) = 1- -

r 

and c is the speed of light. For simplicity, we set c = 1. This solution of 

the Einstein equations is the model for the gravitational field produced 

by a static, spherically symmetric massive body. 

In this manifold, the timelike vector field Y = Ht is Killing, because 

the coefficients of the metric (13) do not depend on the coordinate t. 

The Riemannian metric 9CR) is obtained simply changing the sign in 

front of the last term of (13). 

Moreover, we consider the function </>(r, 0, </>, t) = rp(r) = .,/ii[r). 
Such a function clearly satisfies the hypotheses (3a) and (3b) of Theo­

rem 1.2. Also hypothesis (3e) is satisfied, since</> does not depend on 

the variable t. 

As to the pseudo-coercivity of the actions functional, let p = (xo, to) 

and q = (x1, ti) be any pair of points in Mox JR and let c be any real 
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number. A C 1-curve z(s) = (x(s), t(s)) joining p and q is in Cp,q if: 

-(z, Y) = f3(r) · i = Cz (constant). 

From (14), we have: 

( /1 ds )-i 
Cz = t:,. · Jo j3(r(s)) ' 

where 

t:,. = t(l) - t(O) = t1 - to, 

and so: 

The boundedness condition /{z) $ c is written as: 

fo1 

[ ~ + r 2(92 + sin2 9,j,2) - ,Bi2] ds $ c; 

from (14) and (15) we get: 

(14) 

(15) 

{16) 

fo1 

[ ~ + r2 (92 + sin2 O<j,2)] ds $ c + fo\J(r) i2 ds = (17) 

( 
(1 d )-

1 
= c + Cz. t:,. = c + t:,.2 lo ,B(r(s)) 

Since O < fJ < 1, it is: 

r1 ·2 r1 
and lo ~ ds ~ lo r2 

ds, 

hence, from (17) we deduce: 

fo1

[r2 +r2 (92 +sin2 9,?)] ds$c+l:,.2
• (18) 
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Now, the left hand side of (18) is the Euclidean energy of the spatial 

part of the curve z written in polar coordinates: 

fo1 

{x,x) ds ~ c+ A2
. (19) 

By the completeness of the set {x E JR3 : llxll 2:: 2m} and the Ascoli­

Arzela Theorem, any sequence Xn satisfying {19) has a uniformly con­

vergent subsequence. From (16), if Xn is uniformly convergent, then so 

is tn, and Cp,q is c-precompact for every p, q E M and all c E JR. 

One easily computes V¢ = a(r) · Ir, with 

a(r) = !./li0/1(r) = m ✓1 - 2
m. 

2 r 2 r 

Hence, (Vcp, Vcp) = ~' which is bounded on every bounded subset of 

Mo, so that also hypothesis {3c) is satisfied. Finally, using the same 

computations of [4], one proves that for every geodesic 'Yin A, if ¢(-y(s)) 

is small enough, then it is: 

(20) 

Thus, (2) and (20) imply that also the hypothesis (3d) is satisfied. 

Example 1.6. the exterior Reissner-Nordstrom spacetime. In 

the notation of Example 1.5, let's consider the subset Mo of JR.3, given 

by: 

Here m and e represent respectively the mass and the electric charge of 

the spherically symmetric body responsible for the gravitational field. 

The Reissner-Nordstrom spacetime is the Lorentzian manifold A = 
Mo x JR C lR4 endowed with the metric: 
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where 

2m e2 
{3(r) = 1- - + 2 . 

r m 

We consider the function ,p(r, 8, <p, t) = t/>(r) = v7f[r}. Since tp does 
not depend on the variable t, hypothesis (3e) is satisfied. 

The gradient of <I> is easily computed as Vt/>= v7f[r}/3'(r)-9;, and 

1 2 (mr-e2
)

2 

(V<J,, V<P} = 2,B'(r) = r3 

The same arguments of Example 1.5 show that, also in the Reissner­
Nordstrom spacetime, for for all pair of points p and q in M, the action 
functional f is pseudo-coercive on Cp,q• 

Finally, using the same computations of [4], one proves that also 
the hypothesis (3d) is satisfied and Theorem 1.2 holds for the exterior 
Reissner-Nordstrom spacetime. Further results on the geodesical con­
nectedness of Reissner-Nordstrom type Lorentzian manifolds may be 
found in [7] and [18]. 

In the following easy example we show a non geodesically connected 
manifold for which the hypothesis (1) of Theorem 1.2 holds precisely 
for those points that are joined by a geodesic. 

Example 1. 7. Let M = .1R4 \ {O} be endowed with the Minkowski flat 
metric; we denote by x the 3-space variable and by t the time variable 
in M. Let Y be the vector field &; in this example we also denote 
by(·,·) and II· II respectively the Euclidean inner product and norm in 
m_3_ • 

Given any two points p = (xo, to) and q = (x1, t1) in M; then any 
curve z in c,,9 is of the form z(s) = (x(s), t0 + (t1 - t0)s), where x is a 
curve in the 3-space joining xo and x1. Hence: 

(22) 
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If z(s) = (x(s), to+ (t1 - to)s) is a curve in JR.4 joining p and q and 

passing through the origin, then an easy calculation shows that: 

f(z) ~ ~ ( ( ✓llxoll 2 + t5 + ✓11x111 2 + tI) 2 
- 2(t1 - to)2

) = C(p, q). 

(23) 

By continuity, if z is any curve in Cp,q with f ( z) < C (p, q), then the im­

age of z stays uniformly far from the origin. From the Ascoli-Arzela's 

theorem, it follows immediately that, any sequence {Zn} C Cp,q satis­

fying f (zn) ~ c < C(p, q) is uniformly convergent in M. 
Observe that, from (22) and (23} it is easily obtained that the 

inequality C(p, q} > inf f is equivalent to: 
Cp,q 

which holds precisely when the segment in lR.4 joining p and q does not 

contain the origin. So, in this case Theorem 1.2 gives exactly the set 

of points which are joined by one geodesic in M. 

The following example shows that, even in the case of a standard 

static manifold M which is a warped product Mo x JR, with Mo a 

non complete Riemannian manifold, one can have the condition of c­

precompactness satisfied for all pair of points p and q. 

Example 1.8. Let Mo be the open hemisphere x2 + y2 + z2 = 1, 

z > 0, with the induced Euclidean metric of JR3 denoted by dl5, and 

let M = Mo x JR be the standard static Lorentzian manifold with 

metric dl2 = dli - dt2• Here, t denotes the real variable in the second 

factor; clearly, the vector field Y = Gt is Killing and M is static with 

respect to Y. Observe that, since Mo is not complete, then M is not 

globally hyperbolic. 
Given the points p = (po, to} and (p1, ti) in Mo x JR, a geodesic 

joining p and q in M is of the form')' = bo, t.), where 'Yo : [O, 1] t-t Mo 

is a geodesic in Mo joining Po and pi, and t.(s) = (1 - s)to + st1. 

Observe that any pair of points in Mo is joined by a minimal geodesic 
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in Mo; moreover, the set Cp,q consists precisely of curves of the form 
z = (x, t.), where x is curve joining Po and Pl in Mo. 

Hence, we have: 

where dist(•,•) denotes the distance function on Mo. Clearly, the fol­
lowing inequality bolds: 

dist(po,pt) < min (dist(po, qo) + dist(p1, qo)); (25) 
qoE8Mo 

we set: 

and 

d = -
2

1 
(dist(po,P1) + min (dist(po, qo) + dist(p1, qo))) , 

qoEBMo 

By (24), it is c > inf/. If Zn = (xn, t.) is any sequence in Cp,q such 
Cp,v 

that /(zn) $ c, then 

fo1 

IJ:i:n(s)IJ2 ds $ 2c+ (t1 -to)2
, 

hence, by the Ascoli-Arzela's Theorem, Xn has a subsequence which is 
uniformly convergent to a curve x in Mo = Mo U oM0 • By the choice 
of d and c, it follows that Xn stays uniformly far from 8Mo, hence x 
has image in Mo. This implies that Zn has a uniformly convergent 
subsequence in M, and Cp,q is c-precompact. 

Example 1.8 may be easily generalized by taking Mo to be any 
non complete Riemannian manifold (possibly with singular boundary) 
having the property that any two of its points are joined by a minimal 
geodesic. Examples of this type can be constructed in such a way that 
the metric does not have a continuous extension to the boundary of 
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Mo, like for instance in the case of Riemannian orbifolds (see for in­

stance the examples in [5] and the references therein). In this case, the 

Riemannian manifold Mo cannot be smoothly embedded into a com­

plete Riemannian manifold, and for this class of examples the results 

of (4, 7, 8] do not apply. 

The following example shows a non standard static manifolds, for 

which Corollary 1.3 can be applied to obtain the geodesical connected­

ness by timelike geodesics. 

Example 1.9. the Lorentzian Klein bottle. Consider the plane 

JR2 with coordinates x and t endowed with the flat Minkowski metric 

g = dx2 - dt2
; let Y = -£. Let ¢1 and ¢2 the two diffeomorfisms of JR2 

given by: 

¢1(x, t) = (x, t + 1), ¢1.(x, t) = (x + 1, 1 - t). 

It is easy to see that ¢1 and ¢2 preserve the metric g and the vector 

field Y. Hence, if G denotes the subgroup of the group of isometries of 

( JR2, g), the quotient JC = JR2 / G (which is homeomorphic to the Klein 

bottle) inherits a static Lorentzian structure. Observe indeed that G 
acts properly discontinuously on JR2, hence JR2 is locally isometric to IC, 

which implies that Y projects to the quotient as a (timelike} integrable 

Killing vector field. Since lC is compact, then Y is a complete vector 

field. 
Let 1r : JR2 t-t lC denote the quotient map; with a little abuse of 

notation we will denote by / the action functional for curves on both 

manifolds JR2 and JC; clearly, if z is a curve in JR2 , then /(z) = /(1roz). 

Given any two points p and q in K, and any homotopy class 1-l of Cp,q, 

then, fixing a base point Po E 1r-1 (p) E JR.2 , then there exists a unique 

q0 E 1r-1(q) such that every curve z E 1-l has a unique lift z E CPo,l/0; 

moreover, /(z} = /(z}. 
Since CPo,qo is c-precompact in (lR.2,g) for all c, it follows that every 

homotopy class 1-l of Cp,q is c-precompact for all c. By Corollary 1.3, 

every homotopy class of Cp,q contains a geodesic and JC is geodesically 

connected. 
Observe that, in this example, the entire space Cp,q is not c-precompact 

for any choice of the points p and q and of the constant c > inf /. 
c,.,9 
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Observe also that, for all p and q in K., one can find a homotopy class 
1l of Cp,q such that if! f < 0, which implies that any two points in K, 
are joined by a timelike geodesic. 

We conclude this section with an example of a non geodesically 
connected static and globally hyperbolic Lorentzian manifold. 

Example 1.10. Let M be the 4-dimensional Minkowski space, with 
Y = ,& the timelike Killing vector field. Take any non convex open 
subset A of the spacelike surface t = 0, and consider the Cauchy devel­
opment D(A) of A, which is the set of points pin M such that every 
past or future pointing, inextendible causal curve through p meets A 
(see Definition 14.45 of (14]). The interior of D(A) is non empty, as it 
contains A, and so by Theorem 14.38 of [14] it is a globally hyperbolic 
manifold. Nonetheless, it is not geodesically connected, because two 
points in A cannot joined by any geodesics contained in D(A). 

The paper is organized as follows. In section 2 we set up our variational 
framework, we state and prove a variational principle for geodesics in 
A, and we introduce a family of penalizing functionals. In section 3 
we will prove the Palais-Smale condition for our functionals, which is 
the main technical tool used to get the existence and the multiplicity 
of critical points for our variational problems. In section 4 we will 
prove some uniform estimates on the critical points of the penalizing 
functionals, needed to pass from critical points of these functionals to 
geodesics in A. Finally, in section 5 we collect all the results and we 
will present a proof of Theorem 1.2 and of Corollary 1.3. The proof 
of Theorem 1.4 is only sketched, as it can be easily deduced from our 
framework using the same arguments as in (4}. 

2 The Variational Setup. 
A Variational Principle for Geodesics. 

We use the Riemannian metric (1) to define intrinsically the main 
spaces of our functional framework. We denote by v<a) the Levi-Civita 
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connection of 9ca> and by dist(•,•) the distance function on Ax A in­

duced by Yea>. We assume that Y is a smooth vector field defined in 
M which is timelike in A. 

Let p and q two arbitrarily fixed points in A. n}:~ will denote the 

space of H 1•2-curves in A joining p and q: 

nt:: = { z: [O, 1) ........+A I z absolutely continuous, 

z(O) = p, z(l) = q, fo1 

(i, i)cR> ds < +oo }. 

It is well known that n!:~ is an infinite dimensional Hilbert manifold 

(see [15]); for z E n}:~ the tangent space Tzn}:! may be identified with 
the space of H1,2-vector fields along z: 

Tzn!:~ = { (: [0, 1) I-----+ TA I ((s} E Tz(a)A, ( absolutely continuos, 

((0) = ((1) = 0, fo1 

{V.,(, V,()ca> ds < +oo }. (26) 

Observe that Tzni:~ is a Hilbert space with respect to the norm: 

(27) 

For r ~ 1, we will denote by Lr([o, 1), Tv) the set of all r-integrable 

vector valued functions on [0, 1) with values in TA: 

Lr((0, 1), TM)= { (: [0, 1] ~ TA measurable: 
l 

ll(llr = (fo1

{({s), ((s))fai ds); < +oo }-

Similarly, one defines the space £ 00([0, 1], TA) as the set of all measur­

able maps (: [0, 1] ........+ TA for which 

ll(lloo = e.ss sup J(((s), ((s))cR> < +oo. 
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We say that a sequence (n in Lr([O, l],A) tends to O if ll(n llr con­
verges to O as n goes to infinity. 

The action functional f on n};~ is defined by: 

J(z) = ~ fo1 

(i, i} ds; (28) 

observe that, by (2), it is l(i, i) I $ (i, i}cR>, hence the integral in (28) 
makes sense for z E n}:~- The action functional is smooth on n;;~, 
and its critical points are smooth curves that satisfy the equation (3), 
hence they are geodesics. The differential of J is given by: 

/'(z)[(] = fo1 

(z, V.,() ds, (29) 

for every ( E Tzn}:i• 
We denote by W the distribution on the manifold o};~ consisting 

of vector fields parallel to the timelike vector field Y: 

W = { (z, () E Tn!:; I ((s) II Y(z(s)) Vs E [O, 1] }. (30) 

Since Y is smooth, it follows immediately that W is a smooth distri­
bution on n}:~. We set II{z, () = z the projection of W onto n!:~, and 
for z E n};;, Wz will denote the subspace of Tzn}:; given by n-1 (z). 

Finally, we introduce the space Np,q of curves z in n}:i such that 
the derivative J'(z) vanishes in the directions of W: 

Np,q = { z En;:; I J'(z)[(] = OV( E Wz }· (31) 

We will denote by J the restriction of the action functional f on the 
space Np,q: 

J = t l.,v, . 
P,9 

The space Np,q and the functional J have been explicitly introduced in 
[9), but they appear in a hidden form in some previous works by Benci, 
Fortunato, Giannoni and Masiello (see [3, 4, 7, 8, 13]). 

We state and prove the following variational principle for geodesics 
in static manifolds, that will be used in the rest of the paper. 
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Theorem 2.1. Suppose that A is an open connected subset of M, and 

Y is a smooth vector field on M such that A is static with respect to 

Y. Then 

1 . .Np,q = {z E n!:~ : (i(s), Y(z(s))) is constant a.e. on [O, 1]}; 

2. .Np,q is a 0 1 -submanifold of n!:~, and J is 0 1 -functional; 

3. for every z E .Np,q, the tangent space Tz.Np,q is identified with the 

set: 

Tz.Np,q = { ( E Tzn!;! : (Vs(, i) is constant a.e. on [O, 1]}. 

4. i/ Y satisfies (11) on A, and if A satisfies the hypothesis {3b} of 

Theorem 1.2, then ./vp,q is non empty; 

5. a curve z in n!:~ is a geodesic joining p and q if and only if 

z E .Np,q and z is a critical point for J; 

6. if Cp,q is c-precompact for some c > inf /, then J is bounded from 
Cp,q 

below in Np,q · 

Remark !U!. From part (1) of Theorem 2.1, using standard arguments 

in Sobolev spaces one sees that the set Cp,q introduced in Section 1 

is contained as a dense subset of ./vp,q• Hence, in the statements of 

Definition 1.1 and of Theorem 1.2, we can replace the space Cp,q with 

.Np,q• The reason for introducing the space .Np,q is that it is the natural 

space for obtaining the Palais-Smale compactness condition for the 

action functional. The details of this fact will be discussed in Section 3. 

Proof of Theorem 2.1. For part (1), suppose that z E n}:~ is such 

that the quantity (i, Y(z)} = Cz is constant. Then, for every ( E 

Tzn~:~ such that (z, () E W, it is ((s) = µ{s) • Y(z(s)), for some 

µ E H 1•2 ([0, 1], JR) and µ(0) = µ(1) = 0. Then, 

f'(z)[(] = fo\z,Vs(µY))ds= fo\µ 1(i,Y)+µ(z,V 11Y))ds= 

- fo1 

µ' (z, Y) ds = Cz fo1 

µ' ds = 0. 
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Moreover, if f0
1 µ'(i, Y) ds = 0 for allµ E H 1•2 ([0, 1], JR) witb. µ(O) = 

µ(1) = 0, then (z, Y) must be constant, and part {1) is proven. 
For part (2), consider the map: 

F · 0 1•2 t--t L 2([0 1] JR) . p,q ' ' 

given by z ~ (i, Y). It is easily seen that F is smooth, and its 
Gateaux derivative is given by: 

F'(z)[(] = (V,(, Y} + (i, VcY). 

If C denotes the submanifold of L2([0, 1), JR) consisting of all the con­
stant functions, clearly .Np,q = F-1(C). By the Implicit function The­
orem (see Proposition 3.II.2 of [121), in order to prove that .Np,q is a 
0 1 submanifold of n}:~ it suffices to show that, for every z E .Np,q and 
h E L2([0, 1), JR) the equation in(: 

F'(z)[(] = h + const., (32) 

can be solved. In order to prove this, we fix z E .Np,q and h E 
L2([0, 1), JR), and we consider the equation (32). We set 

((s) = µ(s) • Y(z(s)), 

for someµ E H 1•2 ([0, 1), JR), with µ(O) = µ{1) = 0, so that ( E Tzn~:~­
Substituting ( in (32), and considering that, since Y is Killing, it is: 

(z, V cY(z)} - µ · (i, VyY(z)) = 
= -µ · (Y(z), V.,Y(z)), (33) 

we obtain the equation: 

(V,(, Y(z)) + (z, VcY(z)) = µ' · {Y(z), Y(z)) + 
+µ · (V.,Y(z), Y(z)) - µ · (V.,Y{z), Y{z)} = 

= µ' · (Y(z), Y(z)} = h + C, (34) 

where C is a constant. Since (Y, Y) < 0, we can always solve (34) for 
µ by setting: 

[" h(r) +C 
µ(s) = lo (Y(z(s)), Y(z(s))) dr, 
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and clearly µ(O} = 0. Moreover, choosing 

C = - (1 h(s) dr 
lo (Y(z(s)), Y(z(s))) ' 

we also have µ(1) = 0. So, Np,q is a 0 1 submanifold of n;:~, and J is 
the restriction to this submanifold of the smooth functional f. Hence, 
J is C1 ~d part (2) is proven. 

Part (3) follows immediately from part (2) and the Implicit Func­
tion Theorem. 

For part (4), given any z En;;~ and denoting by 1/J the flow of the 
-vector field Y in A, we observe that the boundedness assumptions for 
Y and the completeness assumptions for A guarantee that tp(z, t) is 
defined for all values oft E JR. Then, we set z(s) = v,(z(s), t(s)) for 
function t to be determined in such a way that z belongs to Np,q· Using 
the fact that Y is Killing and the map 1/J(·, t) is an isometry for every 
t, it is checked easily that t needs to satisfy the differential equation: 

t • (Y, Y) + (z, Y) = C (constant) {35) 

and the boundary conditions t(O) = t(l) = 0. Since (Y, Y) =/= 0 every­
where, this problem admits a unique solution t for a unique value of 
the constant C that appears in {35), which proves part (4). 

For part (5), observe that since Y is Killing, then by part (1), all the 
geodesics belong to Np,q· Since the geodesics are critical points of /, 
then they are also critical points of J in Np,q• Conversely, suppose that 
z E Np,q is a critical point for J. In order to show that z is a geodesic, 
we need to prove that z is also a critical point for / in n~:~- This follows 
immediately from the definition of Np,q, and the fact that the tangent 

space Tzfl~;~ is spanned by the subspaces TzNp,q and Wz. In order to 
see this, from part (3), we need to show that every ( E Tzn;;! can be 
written as the sum: 

( = (1 +µ·Y, 

where (V.,(1,z) is constant andµ E H 1•2([0, 1],JR) is such that µ(O) = 
µ(1) = 0. By the same argument of the proof of part (4), we see thatµ 
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has to satisfy a first order liner differential equation with an arbitrary 
constant on the right hand side, and two boundary conditions. Such a 
problem admits a unique solution, and we have proven part (5). 

Finally, for part (6), let p and q be fixed and c > inf J be such that 
N,,,v 

Np,q is c-precompact. 
Let Zn E Np,q be a minimizing sequence for ,!- Then, eventually 

it is J(zn) = J(zn) ~ c, and by the c-precompactness, up. to-taking 
subsequences, we can assume that Zn is uniformly convergent to a curve 
z with image in A. 

First we observe that the quantity Cz,. = (Zn, Y) is bounded, say: 

{36) 

To see this it suffices to work in local coordinates and use the same 
result of [3] (see also Lemma 4.1 of [9] for details). 

We consider the 1-form won A given by the dual of the vector field 
Y · (Y,Y}-1 : 

(Y(x), v) 
w(x)[v] = (Y(x), Y(x)), 'vx EA, v E TzA. 

A straightforward computation shows that w is locally integrable, i.e. 
dw = O. Namely, denoting by {(x) the vector field Y(x){Y(x), Y(x))-1 , 

for all pairs v1, v2 E T:i;A, it is: 

dw(x)[v1,V2] - {V111{,v2}- (V112 Y,v1} = 
(Vv1 Y,V2}- (Vv2 Y,v1} 

= (Y,Y} + 
_ 2 (Y, v2}{V 111 , Y) + (Y, v1 )(V 112 , Y) 

{Y, Y) 2 

(37) 

If both v1 and v2 are orthogonal to Y, by the integrability of Y it follows 
that dw(x)[v1, v2] vanishes (see (7)); if both v1 and v2 are multiple of Y, 
then it is easily seen that(37) vanishes because of the Killing property 
ofY: 

(VyY,Y) = 0. 
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If v1 is orthogonal to Y and v2 is a multiple of Y, using the anti­

symmetry of the the expression (V v1 Y, v2), one checks immediately 

from (37} that dw(x)[v1,v2] = 0. By the bilinearity and the anti­

symmetry of dw we get that dw = 0 in A. 

We go back now to the study of the minimizing sequence Zn and its 

uniform limit z. Since z{[O, 1)) is compact, we can find a finite family 

{uk}:::;::1 of open subset in M and a finite sequence O = ao < a1 < 
a2 < ... < aN = 1 such that: 

N 

{a) z((O, 1]) C LJ Uk; 
k::;::l 

(b) Zn([ak-1, ak]) C Uk for all k = 1, 2, ... , N and for n sufficiently 
large; 

(c} Uk n A is compact for all k; 

(d) Uk n A is contractible in A, and, in particular, it is simply 

connected; 

(e) by the property above and the local integrability of w, there 

exist smooth functions Tk : Uk i----t JR such that dTk =win Uk, i.e.: 

Y(:z:) 
VTk(x) = (Y(x}, Y(x)), 'vx E Uk, V k = -1, 2, ... , N; (38) 

(f} sup !Tk(xi) - Tk(x2} I $ 1, for all k. 
z1,z2EU1, 
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Hence, from (36) and the above properties, for n large enough we have: 

J(Zn) = ~ fo 1 

(in, Zn) ds = 

I N f°" (" Y)2 
- 2 ~Ja,._

1 
((zn,in)ca>+2 ;~Y)) ds~ 

N r1c (. Y)2 N [°" 
> ~ la,._1 ;~ Y) ds = Czn ~ la,._1 {zn, v'Tk} ds =(39) 

N 

= Czn L (Tk(Zn(ak)) -Tk(zn(ak_i))) ~-ND> -oo. 
k=l 

This concludes the proof. □ 

Observe that the boundedness property of the functional J is crucial to 
obtain the existence of minimizers using standard techniques of Non­
linear Analysis. Observe also that the proof of the boundedness of J 
presented here relies heavily on the integrability assumption for Y, i.e. 
on the staticity of the metric of A. The non integrable case, that cor­
responds to stationary manifolds, is much more delicate to deal with; 
a complete reference for the standard stationary case is the book [13], 
the non standard case of a manifold with no boundary is studied in [9]. 

We isolate the following result for later use: 

Lemma 2.3. Suppose that Y is a complete vector field on A. Then, 
there exists a smooth open map F : ni:~ ~ Np,q which is a homotopy 
equivalence. 

Proof. Let ,p: Ax JR~ A denote the flow of Y; since Y is Killing, 
then the map p ~ tfJ(p, to) is an isometry of A for all to E JR. The 
map F is given by: 

F(z) = w, 

with 

w(s) = t/J(z(s), tz(s)) 
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where tz is the solution of the initial value problem: 

t' = Cz - (z, Y(z)) ( ) 
z (Y(z), Y(z)) , tz O = 0, (40) 

and Cz is given by: 

Cz = ds . i, Y(z)) ds ( 1 )-1 1 ( 1 (Y(z}, Y(z)) 1 (Y(z), Y(z)) · 
(41) 

By the isometry property of ,p and the fact that Y is ,p-invariant one 

checks immediately that :Fis a well defined map between n};~ and Np,qi 

moreover, it is easily established that :F is the identity on Np,q· The 

smoothness of :F follows immediately from the smooth dependence on 

z of the solution of the differential equation ( 40) and from the smooth 

dependence of Cz on z in (41). The fact that :Fis open can be easily 

checked using local coordinates, as in the proof of part (6) of Theo­

rem 2.1. Finally, the map H(t, z) : [O, 1} x n!;~ ~ n!:~ given by: 

H(r, z)(s) = ,p(z(s), r · tz(s)) 

is easily seen to give a smooth homotopy between :F and the identity 

map on Np,q• □ 

In order to overcome the lack of compactness of the functional J, which 

is caused by the presence of the boundary 8A, we introduce a family of 

approximating functionals Je, depending on a positive (small) param­

eters e. 
Let ¢ be the function introduced in the hypothesis of Theorem 1.2, 

and e be a positive number. We define the penalized functional Jeon 

Np,q by: 

(42) 

It is not too difficult to see that, for every e > 0, the functional Je is 

differentiable on Np,q, and, for every ( E TzNp,q, the Gateaux derivative 

1; ( z )[ (] is given by: 

J;(z)[(] = J'(z)[(] -2e -11 

(V:(~1~(} ds. (43) 
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The critical points of the functional Je are smooth curves and they 
satisfy the following conservation law: 

Proposition 2.4. Let c > 0 be fixed. If Ze is a critical point for Je 
in Np,q, then Ze is a cun,e of class 0 2, and there exists a constant 
E = E(ze) such that: 

(44) 

Proof. If Ze is a critical point for JE in Np,q, then Zt satisfies: 

(45) 

for all ( E Tzllp,q• We denote by F the vector field along Ze given by 
the covariant integral of the C1 vector field 2~c£)3"), i.e., F is uniquely 
defined by the equations F(O) = 0 and 

Then, integrating by parts the right hand side of (45), we obtain: 

(46) 

Then, a classical boot-strop argument shows that the component of the 
vector field ie + F in Tz,,Np,q is of class 0 1. Since F is of class 0 1, then 
the component of ie in Tz.Np,q is of class C 1. Moreover, since z E Np,q, 
then by (31) it is: 

for all ( E Wz., the same boot-strap argument shows that also the 
component of Ze in Wz. is C 1 . 

Since Tz. n}:~ = Wz., EB Tz,,Np,q, it follows that ie is of class 0 1• 
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Then, using {29) and integrating by parts in {43), one sees that the 

vector 

. V <f,(ze) 
-v' sZe - 2t: q,(ze)3 

has null component on the space Tz~Np,q• Actually, since {V </J, Y} = O, 

arguing as in the proof of the regularity of Ze, we see that Ze satisfies 

the Euler-Lagrange equations: 

. V<p(ze) 
-V8 ze - 2t: cp(ze)l = 0. (47) 

Multiplying {47) by ii;, we get: 

-(v'.,ie, ie) - 2 </>(;e)l (V<f,(zi;), Ze) = - :s ( (ie, ie} - ¢(:)2 ) = 0, 

which gives the thesis. □ 

3 The Palais-Smale Condition 

We will assume henceforth that A, Y, <p are given and p, q and c are 

chosen in such a way that the hypotheses of Theorem 1.2 are satisfied. 

We recall that if (X,h) is a Hilbertian manifold and F: X ~ JR 

is a C1-functional on X, then F is said to satisfy the Palais-Smale 

condition at the level c E JR if every sequence { Xn }neJV C X satisfying: 

(PSl) lim F(xn) = c, 
n➔oo 

(PS2) lim IIF'(xn)II = 0, 
n➔oo 

has a subsequence converging in X. The norm II · II used in (PS2) is 

the operator norm of F' ( Xn) in the Hilbert space Txn X. 

The Pala.is-Smale condition is an essential tool for studying the 

existence and the multiplicity of critical points for regular functionals. 

The main goal of this section is to prove that, for every t: > 0 and every 
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c E m , the functional Ji; satisfies the Palais-Smale condition at the 
level c in Np,q• 

We start with a basic Lemma, whose proof is essentially contained 
in (10]. 

Lemma 3.1. Let {zn}nERV be a sequence in Np,q for which there exists 
a sequence Sn E (0, 1) with: 

/fin is boundedinL2 ([0,1],TA), then 

{48) 

Proof. First of all, we observe that, since {V </,, Y) = 0, it is easily 
computed that: 

where V(R)<P denotes the gradient of </J with respect to the Riemannian 
structure Yea> on A. It follows that the hypothesis (3c) of Theorem 1.2 
can be written as: 

(49) 

Now, suppose that J01(z, i}ca> ds S: a and let s > Sn be a point in [O, 1] 
(we can assume that Sn is uniformly far away from the endpoints O and 
1). From (49), we have: 

</J(s) - </>(sn) = 1a (V (R)<P, i}ca> ds S: C1 J s - Sn, (50) 
&n 

with C1 = VaM. Then, there exists a constant C2 such that, for 
S > Sn, it is: 

(51) 
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and, integrating on [sn, l}, we get: 

The thesis follows immediately from the fact that 1 - Sn is uniformly 

far from O and that Zn(sn)) tends to 0. D 

A crucial point for using the classical results of Palais-Smale functionals 

is the completeness of the manifold, or, more generally, of the sub levels 

of the functionals. This is proven in the next 

Proposition 3.2. For every a E JR and every c > O, the sublevel J:: 

(53) 

is a complete metric subspace of Np,q· 

Proof. Let E > 0 be fixed. We claim that the quantity: 

is bounded in J:. To prove this, we argue as in the proof of part (6) 

of Theorem 2.1, and we introduce a coordinate function t defined in a 

neighborhood of a curve z E J:. Using the same notations as in the 

proof of Theorem 2.1 and recalling that 

we have: 

/1 . . /1 (i, Y)2 
Jo (z, z)ca) ds = 2J(z) - 2 }

0 
(Y, Y) ds ~ JE(z) + Czl:J.. (54) 

The proof of the Proposition follows directly from (36) and (54). □ 
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We will use the following notation. If z : [0, 1] --+- M is an absolutely 
continuous curve and f3 E £ 1([0, 1], TM) is a vector field along z, then 
the covariant integral of /3 along z, denoted by B = fz /3, is the (unique) 
vector field along z that satisfies the initial value problem: 

We need the following elementary result, which holds generally in 
semi-Riemannian geometry: 

Lemma 3.1. Let K be a compact subset of A. Suppose that z is an 
absolutely continuous cun,e in K, with z E £ 1([0, 1],TA), and that 
/3 E £ 1([0, 1],TA) is a vector field along z. Then, the covariant integral 
B = fz/3 of /3 along z is in £00 ((0,1],TA), and there exists constant 
M = M(K) such that: 

IIBlloo ~ II.BIii · eM•llilli. (55) 

Proof. Since K is covered by a finite number of charts, using local 
coordinates, we can assume that A is an open subset of JRN. We 
denote by I · I the Euclidean norm. The vector field B is the solution 
of the initial value problem: 

! B = -f(z)[i:, B] + /3, B(O) = 0, (56) 

where 

f(z{s))[·, ·] : Tzc,)A x T.i:c,)A--+- T.,c,)A 

is the bilinear map given by the Christoffel symbols {ff;} of the Lo­
rentzian metric g. 

Integrating {56) on [0, s], we obtain: 

B(s) = 1' {3dr- fo
1 

r(z)[i,B]dr, 

hence 

(57) 
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where M is the maximum of the norm of the operator r on K. Applying 

Gronwall's Lemma to (57), we obtain: 

/1 1 
IB(s)I ~ Jo l,61 dr. eM Io lildr, 

which gives (55). □ 

Remark 3.2. Suppose that {zn} is a sequence of absolutely continu­

ous curves having image in a fixed compact subset of A, and with 

llin!l1 bounded. Suppose further that f3n is a sequence of vector fields 

along the Zn's that tends to O in L1([0, 1], TA). From Lemm.a 3.1 and 

its proof it follows that the sequence Bn = J f3n converges to O in 
~n 

£<)0((0, 1], TA). 

We can now prove our main compactness result: 

Proposition 3.3. Under the hypotheses of Theorem 1.2, for every c > 
0 and c E JR, the functional Je satisfies the Palais-Smale condition at 

the level c on Np,q · 

Proof. Let c and c be fixed, and let {zn}nEIV be a Pala.is-Smale se­

quence for Je in Np,q, i.e., it satisfies: 

We know that Zn is bounded in £ 2([0, 1], TA), so, by Lemma 3.1, Zn 

stays far from oA. By hypothesis (3b) of Theorem 1.2, the Zn's have 

image in a complete Riemannian manifold. Since Zn(O) = p is fixed, 

then Zn is equibounded and equicontinuous, so that, by Asooli-Arzela's 

theorem, up to passing to a subsequence, we can assume that Zn is 

uniformly convergent to some curve z E n!::. Moreover, since Zn is 

bounded in L2, we can assume that the convergence of Zn to z is weak 

in gl,2 
p,q• 

To prove that the convergence of Zn is strong, we now use the 

condition J;(zn) ➔ 0: 
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for all (n E Tz,.Np,q bounded. 
Using the same argument as in the proof of Proposition 2.4, since 

Zn E Np,q, (V<j), Y} = 0 and Tz,.n~:~ = Tz,.Np,q EB WZnl then we can 
assume that (58) holds for every bounded sequence (n E Tz ... n~;~. 

Using the fact that (n converges uniformly to 0, and the fact that 
</>(zn) and V</>(zn) are uniformly convergent, we get that: 

. 11 
V </>(zn) lim ( "'( )3 , (n) ds = 0, 

n➔oo O 'I' Zn 

hence, by (58), we have 

lim /
1 
(in, V a(n) ds = 0. n➔ooJo (59) 

Let's prove the following Lemma: 

Lem.ma 3.3. In the above notations, there exists a sequence On in 
Tz"n}:~ that tends to 0 in L2([0, 1], TA) and such that: 

11 

(in, V z,.(n} ds = fo1 

{an, Vz,.(n} ds. (60) 

Proof. We denote by 0n the vector field along Zn which is the gradient 
V J(Zn) of the functional J with respect to the Hilbertian norm II · II. 
defined by (27). By definition, we have: 

/1 {in, V in(n} ds = /1 {vt>en, v~R)(n}(R) ds, lo lo " • 
and, by (59), the sequence of vector fields 

An=Vt>en 

goes to O in £ 2 ([0, 1],TA). 
Using the Christoffel symbols of the metric tensors g and YCR), we 

can express the Riemannian covariant covariant derivative v~:>(n in 
terms of the Lorentzian covariant derivative V z,. (n- Then, we write 

/1 (An, v~R)(n}(R) ds = /1 (An, Vzn(n + G(zn)[in][(nJ)(R) ds, (61) lo " lo 
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where G(z)[(1][(2] is a bilinear functions in the variables (1, (2 which is 

continuous in the first variable z. Using (1), it is immediately checked 

the existence of two sequences Bn and bn going to 0 in £2([0, 1],TA) 

such that: 

fo1 

(An, v~:)(n)(R) ds = fo1 

((Bn, Vz,.(n) + (bn,(n)) ds. (62) 

Now, it is: 

because (n(0) = (n(l) = 0. By Remark 3.2, it follows that fs,. bn tends 

to O uniformly, therefore (60) follows from (62). □ 

Going back to the proof of Theorem 3.3, we now consider these­

quence of vector fields 

From (60) we get that wn is of class C 1 and that 

VznWn = o. 

(63) 

(64) 

The next observation is that the L2-norm l1wnll2 of Wn is bounded, 

because llinll2 is bounded and On tends to O in L2 ([0, 1}, TA). This im­

plies, in particular, that, for some sequence {sn} C [O, lJ, the sequence 

lwn(sn) I is bounded, say: 

(65) 

Once again, Gronwall's Lemma applied to the differential equation (64) 

and the boundedness condition (65) gives the existence of "Yo > 0 such 

that: 

lwn(s)I 5 CO· e'YO J; linldr, Vs E (0, 1]. 

It follows that Wn is bounded in £ 00
• From (63) it follows that Zn is 

bounded in L2 , and since z,i(O) is fixed the sequence Zn is uniformly 

bounded. 
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Writing equation (64) in coordinates, it becomes: 

(66) 

where r is a continuous function in Zn {that can be expressed using 
the Christoffel symbols of g), which is linear in the arguments in and 
Wn• From (66), we obtain that w~ is bounded in £2, and thus Wn is 
bounded in H 1•2. 

It follows that a subsequence of Wn still denoted by wn, is weakly 
convergent in H 1•2, and, in particular, Wn is convergent in L2([0, 1], TA). 

Therefore, there exists a subsequence of Zn that tends to z strongly • ,-,.1,2 
1n Up,q• 

We are now left with the proof that z belongs to Np,q· Since Zn 
tends to z in L2 , up to passing to a subsequence we can assume that 
Zn tends to z pointwise almost everywhere. So, (Zn, Y) tends to {i, Y) 
pointwise a.e., which implies that {.i, Y) is constant almost everywhere, 
and z E Np,q· This concludes the proof. □ 

We have the following Corollary to Theorem 3.3 

Corollary 3.4. Under the hypotheses of Theorem 1.£, for E > 0 small 
enough, the functional JE attains its minimum in Np,q• Moreover, if Zt 
is a family of minimal points for Jt, there exists two real constants A 
and B such that; 

(67) 

Proof. It is a classical argument in Critical Point Theory. Thanks to 
the Palais-Smale condition and the completeness of the sublevels of the 
functionals Jt, if the infimum iE of Jeon Np,q weren't a critical value, 
then it would be possible to find a homotopy between the sublevels 
J;r-6 and J;eH, where d > 0 is sufficiently small. This is clearly 
impossible, because, for every d > 0, Jj•-6 = 0 while J;e+6 ,j:. 0. 

If we set A = inf J, then clearly JE(zE) ~ J(zE) ~ A. Moreover, Np,q 
since for all z E Np,q the map £ t-+ Je ( z) is increasing, hence also the 
map£ t-+ inf Je is increasing, so Jt(zE) ~ Je0(Zt0). □ /tlp,q 
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4 A Priori Estimates for the Penalized 
Functional 

35 

In this section we will assume that {zE}E>O is any fixed family in Np,q, 
consisting of critical points for the functionals JE, and satisfying the 

boundedness condition ( 67). For instance, zE can be a minimal point 

for JE. We prove some estimates on zE, uniform inc, with the aim of 

passing to the limit as c tends to O to obtain a critical point for the 

functional J. 

Proposition 4.1. The family iE is bounded in £2 ([0, 1], TA). 

Proof. It is: 

(68) 

Moreover, from the proof of part (6) of Theorem 2.1, it follows that 

the constant Oz£ = {iE, Y) is bounded. Arguing as in that proof, we 

introduce a local coordinate function t around the image of zE, and we 

compute: 

/1 {iE, idcR> ds = 2J(zE) - 2Cz. /1 (zE, Vt) ds = 2J(zE) - 2Cz.6.. k . h 
(69) 

The thesis follows at once from {36}, (68) and (69}. D 

The main result of the section is that the family zE stays far from 

the boundary of A, uniformly in c: 

Proposition 4.2. There exists a positive constant r such that, for c 

sufficiently small, it is: 

dist(zE(s), aA} ~ r > 0, Vs E [O, 1). (70) 

Proof. For every c > 0, let te E [0, 1) be a minimal point for the function 

ve(s) = rp(zE(s)). Then, it is i{(tE) = 0 and: 

(71) 
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Using Euler-Lagrange equation (47) and the assumptions (3c) and (3d) 
of Theorem 1.2, from (71) we get: 

Observe indeed that the condition (Vip, Y} = 0 implies that 'v<j) is 
spacelike. Since Jl (.iE, .iE) (R) ds is bounded and i{ ( tE) = 0, the Gron­
wall's Lemma says that, if vE(tE) is not bounded away from 0, then vE 
would converge to O uniformly on [O, 1]. But this implies that JE(ze) 
is not bounded from above, and that contradicts (67). This concludes 
the proof. □ 

5 Proof of the Main Results 

In this section we put together the partial results obtained in the pre­
vious sections to prove Theorems 1.2 and 1.4 and Corollary 1.3. 

Proof of Theorem 1.2. Let {zt} be a family of critical points of JE in 
.Np,q, satisfying (67). By Proposition 4.2 and the hypothesis (3b), the 
z/s lie in a complete metric subspace of A. Moreover, since zt(0) = p 
for all c, Proposition 4.1 says that the family {zt} is bounded and 
equicontinuous. By Ascoli-Arzela.'s theorem, we can find a sequence 
En converging to O and a curve z E .Np,q, such that Zen converges to z 
uniformly, and by Proposition 4.1, we can assume that we have weak 
convergence in H 1•2 • 

Since Zen is far from 8A, then t/>(zen) is far from 0, hence 

is uniformly convergent to 0. Using the conservation law (44), we get 
that V .,ien is uniformly convergent to 0. This implies that the limit 
curve z satisfies the equation V .,.i = 0. Then, z is a geodesic between 
p and q, and the Theorem is proven. □ 
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Proof of Corollary 1.9. To prove Corollary 1.3, it suffices to prove that 
every homotopy class 1l of Np,q is an open connected component of 
Np,q· Using the same arguments of the proof of Theorem 1.2 it would 
then follow that the Palais-Smale condition, the completeness of the 
sublevels and the boundedness property for the penalized functionals 
Je hold in 1l, yielding the existence of a critical point for J in 1l. For 
the completeness of the sublevels, observe indeed that the uniform limit 
z of a sequence {Zn} of curves belongs to the same homotopy class of 
all the Zn's with n sufficiently large. 

It is well known that the homotopy classes are connected compo­
nents of the manifold n~;:; moreover, they are open. Using the map F 
of Lemma 2.3 we can conclude that 1l is an open connected component 
of Np,q, and the Corollary is proven. D 

The proof of the multiplicity result of Theorem 1.4 is based on the 
Theory of Ljusternik and Schnirelman. We recall that the Ljusternik­
Schnirelman category catx(F) of a subset F of the topological space X 
is the minimal number (possibly infinite) of closed, contractible subsets 
of X that cover F. 

A well known result by Fadell and Husseini (see [61) states that, 
if A is non contractible, then there exists a sequence Kn of compact 
subsets of ~:~ such that: 

(73) 

Using the flow of the vector field Y (see Lemma 2.3) it is easy to see 
that, under the hypothesis of Theorem 1 .4, the spaces n!;~ and Np,q 
are homotopically equivalent, hence (73) is valid also in Np,q· 

Now, using a well known minimax argument, for every c > 0 and 
m E JN, we define: 

where: 
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The cm 's are critical values of JE:. 
Now, the same arguments used in [4] can be repeated verbatim in 

our case to prove that one can pass to the limit as e .l,. 0, obtaining an 
unbounded sequence Cm of critical values for J. We omit the proof of 
this fact, as it can be found in [4]. 
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