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1 Preliminaries and Statement of the Results

In this paper we consider the problem of the existence of geodesics that
do not touch the boundary of a convex subset of a Lorentzian manifold,
with a non necessarily smooth boundary. Some space-times of great
physical relevance, like the Schwarzschild space-time and the Reissner-
Nordstrom space-time (see [11]), provide examples of the Lorentzian
structures that we will consider.

Here, by singularity, we mean loosely a geometrical or a metric
singularity at the boundary points of a manifold. The two concepts
of singularity may in some cases be considered equivalent, up to a
change of coordinates. For instance, in the case of the Schwarzschild
space-time M, its boundary M is smooth, but its metric cannot be
smoothly extended to &M. Nonetheless, if M; denotes the Kruskal
space—time (see [11]), there exists an injective isometry j : M — My,
but (M) is not a smooth submanifold of M;. In this sense, we say
that that M has singular boundary.

The geodesic problem in Lorentzian manifolds is much more delicate
than in the Riemannian case, where the Hopf-Rinow theorem gives the
equivalence of the metric and the geodesical completeness. These con-
ditions also imply the existence of geodesics between any points. On
the other hand, in the Lorentzian case there exist several inequivalent
forms of singularity and incompleteness. To emphasize the difference
between the Riemannian and the Lorentzian case, it suffices to observe
that there exist compact manifolds which are neither geodesically com-
plete nor geodesically connected (see for instance (2, 16, 17)).

In this paper, we will prove the existence of geodesics between two
fixed events of static manifolds with boundary, under suitable complete-
ness and convexity assumptions. The notion of convexity used in this
paper is adapted to situations where the boundary is non necessarily
smooth. The results are based on an intrinsic variational principle for
geodesics in stationary manifolds (see Theorem 2.1} which generalizes
the variational principles proven in [3, 8]. In these papers, the state-
ment and the proof of the principle is made under an extra assumption
on the topology of the manifold and it is used a (non canonical) space-
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time splitting of the manifold.

We present an intrinsic approach to the problem of the existence
of (at least) one geodesic between two fixed points of a Lorentzian
manifold which is static with respect to a given timelike Killing vector
field. To this purpose, we introduce a sort of completeness condition,
which, in the case of a manifold M which is a warped product of IR by
a Riemannian manifold My, generalizes in a non trivial way the notion
of completeness for the underlying manifold My (see Definition 1.1 and
Example 1.8).

The main existence and multiplicity results of the paper (Theo-
rem 1.2, Corollary 1.3 and Theorem 1.4) are proven with techniques
of Critical Point Theory. Consistently with the spirit of the paper, an
effort was made to keep the proofs of the technical results free from
non intrinsic (hence non canonical) choices; for instance, in no part
of the paper the Nash’s embedding Theorem was used. It should also
be remarked that, as an element of novelty, the proof of the Palais—
Smale condition of Proposition 3.3 is carried out without referring to
any particular embedding of the Lorentzian manifold into a Euclidean
space.

Moreover, a localization argument of the completeness assumption
allows to extend the existence results to the case of Lorentzian mani-
folds given by non trivial fiber bundles over Riemannian manifolds (see
Corollary 1.3).

Before stating the main results, we recall some basic notions of the
Lorentzian geometry. The books (1, 11, 13, 14] are excellent references
for a complete account of the theory and for all the background material
assumed in this paper.

A Lorentzian manifold is a smooth, finite dimensional manifold A,
equipped with a (0, 2)-tensor g of index 1, i.e., for every z € A, 9(2)[-,]
is a nondegenerate, symmetric bilinear for on the tangent space T,A,
such that the dimension of a maximal subspace of T,A on which g is
negative definite is 1. The bilinear form g(2)[-,-] on T,A will also be
denoted by (-,-) in the rest of the article.

A vector v € T, A is said timelike (resp. lightlike, spacelike) if (v, v)
is negative (resp. null, positive); v is called causal if it is not spacelike.
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A smooth curve 4 : (a,b) C IR — A is called timelike (resp. lightlike,
spacelike, causal) if ¥(s) is timelike (resp. lightlike, spacelike, causal)
for all s € (a,b). This classification is called the causal character of a
tangent vector, or of a curve.

A Lorentzian manifold is said to be time-ortented if there exists a
vector field Y on A such that Y (z) is timelike for all z € A. A timelike
vector field defines the past and the future of a point z in A: a causal
vector v € T, A is said to be fulure pointing (resp. past pointing) if
(v,Y(2)) is negative (resp. positive).

Moreover, a timelike vector Y field on A (or on an open subset of
A) defines a Riemannian metric gy on A by setting:

(€, Y (@))(6, Y (2))
(Y(2),Y(z))

for every z € A and every (1,{2 € TxA. It is not difficult to see that,
for every ¢ € T;A, it is:

g(R)(z)[Clagﬂ = (CvaZ)(R) = <C11C2) -2 (1)

(€, Chemy 2 KGH M- (2)

A smooth curve 2z : (a,b) — A is a geodesic if it satisfies the
differential equation:

V;iz=0, (3)

where V denotes the covariant derivative relative to the Levi-Civita
connection of the metric tensor g. Given an absolutely continuous
curve z and an absolutely continuous vector field ¢ along 2z, whenever
there is no danger of confusion we will denote by V,( the covariant
derivative of ¢ along z, defined for almost all s.

It is well known that if z is a geodesic in A, then there exists a
constant E, such that:

(z(s),é(s)) =FE,;, Vs, (4)

hence, the geodesics have a causal character. A geodesic z is said to be
timelike (resp. lightlike, spacelike) if E, is negative (resp. null, positive).
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We recall that a vector field Y on A is a Killing vector field if
the Lie derivative Lyg of the metric tensor g is everywhere vanishing.
Equivalently, Y is a Killing vector field if and only if the stages of all
its local flows are isometries, i.e., if the metric tensor g of A is invariant
by the flow of Y.

In this paper, we will often use the following well known charac-
terization of Killing vector fields (see [14], Proposition 9.25). If X(A)
denotes the space of all C'-vector fields on on A, then Y € X(A) is
Killing if and only if for every pair Wy, W, € X(A) it is:

(Vw, Y, Wa) = —(Vu,Y, W1). (5)

In particular, if 2z :]a,b[— A is an absolutely continuous curve and Y
is Killing, then

(2,V,Y(2)) =0 ae. (6)

This implies that, if ¥ is Killing, then for every geodesic z in A the
quantity (Z,Y(z)) is constant. An open subset A of a Lorentzian man-
ifold A is called stationary if it is the domain of a timelike Killing
vector field Y'; such a set A is said to be static with respect to Y if Y
is integrable in the sense that the orthogonal distribution to Y is inte-
grable. We recall that a distribution D C TA is said to be integrable
if through every point p € A there exists a submanifold Np of A such
that TN, = D, forallq € Np. It is well known (see e.g. Proposition
12.30 of [14]) that the orthogonal distribution to Y is integrable if and
only if Y is irrotational. This means that the curl of ¥ is null on the
orthogonal distribution Y1:

(curl Uy)[Wl, W2] = (VWIY, WQ) = (VWIY, Wl) =0 VWl, W2 5 ¢
(7)
If®: A+ Risa C! function, V®(z) will denote the Lorentzian
gradient of ®, defined by (V&(z),v) = d®(z) [v] for every v € T A. If

9 is of class C?, the Hessian H®(z) is the bilinear form on T, A defined
by:

2 (o]
H(@)o,0] = T2 1) ), ®
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where v € T;A and 7, is the unique geodesic in A satisfying 7,(0) =z
and ¥,(0) = v. We will denote by exp, the exponential map from an
open neighborhood of 0 in T;A to A.

A Lorentzian manifold A is said to be geodesically connected if given
any two points p,q € A there exists at least one geodesic z in A with
endpoints in p and q. In order to prove the existence of geodesics,
we need a completeness condition that we are going to define in the
following.

Let f denote the action functional on A:

1
16 =5 [ ) as,

defined on the set of all curves z : [0,1] — A of class C'.
Let p and q be fixed points in A, and consider the set of Cl-curves
in A joining p and g and such that (2,Y’) is constant:

Cpa = Coa(A) = {7 € C1([0,1],4) : 2(0) = p, 2(1) = q, (2,Y) = C}.
(9)

We denote by A = A|JA the closure of A in M.

Definition 1.1. Let ¢ be a real number. A subset S C Cp 4 is said to
be c-precompact if every sequence {zn}neav C S With f(zn) < chasa
uniformly convergent subsequence in A. We say that the restriction of
f to Cpq is pseudo—coercive if Cp g is c-precompact for all ¢ > énf f-
Pq

We remark here that, as it is shown in [9], if the pseudo-coercivity
condition on the functional f holds for all pairs p and q, then this
implies the global hyperbolicity of A (see [1]). Nevertheless, the global
hyperbolicity alone does not in general imply the geodesical connect-
edness, even in the static case, as simple counterexamples show (see
Example 1.10). And even more, it may happen that the set Cp 4 is not
c-precompact for any choice of ¢, but it is the countable union of open
connected components which are c-precompact for all values of ¢ (see
Example 1.9).
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On the other hand, even in non globally hyperbolic static Lorentzian
manifolds, the set C; ; may happen to be ¢-precompact for some choices
of ¢ > inf f and for all pairs of points p and ¢ (see Example 1.8).

cP-q

We will assume in the rest of the paper that A is a Lorentzian man-
ifold which is embedded as an open subset of a smooth differentiable
manifold M. Observe that we do not require that the boundary A of
A in M is a smooth submanifold of M. We need to introduce a suitable
notion of convexity for A, in order to guarantee that the geodesics in
A cannot touch 9A, in a sense to be clarified. The notion of convexity
used in this paper (compare with [4, 7, 8]) is given in terms of a condi-
tion for the Hessian near the boundary of A of a suitable function, as
explained below.

For p, ¢ € M and ¢ € R, we denote by A, , and A, 4 the following
subsets of A:

Apg={r€A:32€Cyq and 5 € [0,1] such that A = 2(5)};
Apge={A€A:3z€Cpq with f(z) S cand 5€[0,1]
such that A = 2(5)}. (10)

Obviously, Apg = ) Ap,g,c; moreover, if c < inf f, then Ay, = 0.
cclR P,q

The following is a generalization of a result of Benci, Fortunato
and Giannoni for the geodesical connectedness of static manifolds (see
Theorem 1.8 of [3]):

Theorem 1.2. Let A be a Lorentzian manifold, which is embedded as
an open subset of a smooth differentiable manifold M. Let Y be a
smooth vector field on A which is timelike and Killing. Suppose that
A is static with respect to Y, and that the following hypotheses are
satisfied:

(1) for a fized pair of points p and q in A there exists a real

constant ¢ > (i:nf f such that Cp 4 is c-precompact;
.9
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(2) there erist a positive constant pu = u(p,q,c) such that:
—(Y(2),Y(2)) S p < +o0 (11)
Jorallz€ Apge;

(3) there exists a C*-regular function ¢ : A — IR* satisfying:

(a) lim  ¢(z) =0;

z—2p€BA

(b) for every subset B of M with BN A bounded, there
ezists a neighborhood U of OANB and a positive constant
M such that (Vé(2),V$(2)) < M for all z € U NA;

(c) for every subset B of M with B N A bounded, there
ezists a neighborhood U of BNOA and a positive constant
p such that (H?(z)v,v) < p-|lv||% - ¢(2), for allz € UNA
and allv e T,M;

(d) (V$,Y)=0inA.

Then, there ezists at least one geodesic in A joining p and q. In par-
ticular, if (1) and (2) hold for all pairs p and g, then A is geodesically
connected.

Observe that in our Theorem, no assumption is made on the topol-
ogy of the spacetime A. In particular, A is not assumed to be standard,
as in the case of the previous works [3, 4, 7, 8, 13]. We would also like
to point out that the assumptions (3c) and (3d) of Theorem 1.2 are
weaker than the assumptions made in Theorem 1.8 of (3] and in [7);
moreover, the hypothesis (1) is more general than the completeness
assumptions of [3).

The weak notion of convexity for A is given by the hypotheses (3a)
and (3d) of Theorem 1.2.

The results of Theorem 1.2 can be refined as follows. We recall that
a homotopy class H of Cp 4 is an equivalence class of curves in Cp,q with
respect to the Cl-homotopy equivalence (with fixed endpoints).
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Corollary 1.3. Suppose that Y is a complete vector field on A and
that hypothesis (3) of Theorem 1.2 is satisfied. If the following are
satisfied:

(1)’ for a fized pair of points p and q in A there ezists a ho-
motopy class H of Cp 4 and a real constant c > i%f f such

that H is c-precompact;

(2)’ there exist a positive constant u = u(p,q,c) such that
the inequality —(Y'(2),Y (2)) < u < +oo holds for all z €
ApgeNH;

then, there exists one geodesic in the homotopy class H. If the constant
c of (1)’ can be chosen negative, then the geodesic in H can be found
timelike.

Some examples will be presented at the end of the section to discuss
in more details the hypotheses of Theorem 1.2 and of Corollary 1.3.

Under a non triviality condition on the topology of A, there exist
geodesics of arbitrarily large energy joining any pair of points in A.
Indeed, we have the following multiplicity result:

Theorem 1.4. Under the same hypotheses of Theorem 1.2, suppose
that the inequality (11) holds in A, 4. If f is pseudo-coercive on Cogq
and if A is non-contractible, then there ezists a sequence {zn}nemv of
spacelike geodesics between p and q in A such that:

ﬂll)n.}o f(2n) = +o00. (12)

The integrability assumption for the vector field Y is almost cer-
tainly unnecessary for the results proven in the paper, but it is used to
avoid some technical complicacies in our proofs. More specifically, it
has been used in the proof of part 6 of Theorem 2.1. The same proof
can be obtained in a more general context, but using non intrinsic con-
ditions on the coefficients of the metric with respect to a given (non
canonical) coordinate system (see for instance [8, 9, 13)).

To motivate the relevance of the results of Theorem 1.2 and Corol-
lary 1.3, we now discuss some examples. In the following, Example 1.5
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and Example 1.6 serve only as a physical motivation for the prob-
lem of the geodesical connectedness of static spacetimes with singular
boundary; it is presented a quick proof that these two example fit into
the model of Theorem 1.2. It should be observed that the geodesical
connectedness for the Schwarzschild and for the Reissner-Nordstrom
spacetimes can be established using the results in [4, 7]. In the rest of
the cases discussed, the emphasis is given to the differences between the
results of the paper and the results contained in the above mentioned
papers.

Example 1.5. the exterior Schwarzschild spacetime.

Let (r,0,p) be the polar coordinates in IR® and m be any positive
pumber. Consider the subset Mg of R3 given by the exterior of the
ball of radius 2m and centered in the origin. Let A C IR* be the
Lorentzian manifold Mg x IR C IR*, with metric:

ds? = %dﬂ +12(d6? +sin? 0dy?) — FB(r)de?,  (13)
where
2m
Br)=1--—

and c is the speed of light. For simplicity, we set ¢ = 1. This solution of
the Einstein equations is the model for the gravitational field produced
by a static, spherically symmetric massive body.

In this manifold, the timelike vector field Y = % is Killing, because
the coefficients of the metric (13) do not depend on the coordinate t.
The Riemannian metric g, is obtained simply changing the sign in
front of the last term of (13).

Moreover, we consider the function ¢(r,0,¢,t) = o(r) = V/B(r).
Such a function clearly satisfies the hypotheses (3a) and (3b) of Theo-
rem 1.2. Also hypothesis (3e) is satisfied, since ¢ does not depend on
the variable ¢.

As to the pseudo-coercivity of the actions functional, let p = (zo, to)
and ¢ = (z1,t1) be any pair of points in Mp x IR and let ¢ be any real



10 Paolo Piccione

number. A C'-curve z(s) = (z(s), (s)) joining p and ¢ is in Cp 4 if:

—(2,Y)=p(r)-t=C, (constant).

-o ([ aem)

A =1(1) — t(0) = t, — t,

o i=a ([ 8)

The boundedness condition f(z) < c is written as:

From (14), we have:

where

and so:

17,2 . )
/ [r_ +r2(8% + sin® 9 %) — ,Bt2] ds <¢;
o LB
from (14) and (15) we get:

! 1
/1 [ﬁ -9-1-2(492 +sin20¢2)] ds < c+/ B(r) % ds =
o LB 0

(14)

(15)

(16)

(17)

=c+C,-A=c+A2(/Olmf—é)))—l.

Since 0 < B < 1, it is:

(/ ﬁr(s»)— 5 ——— /—-—ds>/rds,

hence, from (17) we deduce:

1 .
/ [+ 7207 +5in? 0 ¢)] ds < c+ A2
0

(18)
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Now, the left hand side of (18) is the Euclidean energy of the spatial
part of the curve z written in polar coordinates:

/0 \(6,5) ds < c + A2 (19)

By the completeness of the set {x € IR3 : ||z|| > 2m} and the Ascoli-
Arzela Theorem, any sequence z, satisfying (19) has a uniformly con-
vergent subsequence. From (16}, if z, is uniformly convergent, then so
is t,, and Cp q is c-precompact for every p,g € M and all c € R.

One easily computes V¢ = a(r) - %, with

1 m 2m
a(r) = §V,5(T)ﬂ'(r) = r_ﬂ/l s

Hence, (Vp, Vo) = ':‘—4-?, which is bounded on every bounded subset of
M, so that also hypothesis (3c) is satisfied. Finally, using the same
computations of [4], one proves that for every geodesic -y in A, if ¢((s))
is small enough, then it is:

2 ’
2590 < E-3(9), 5090 - S5, (20)
Thus, (2) and (20) imply that also the hypothesis (3d) is satisfied.

Example 1.6. the exterior Reissner—Nordstrém spacetime. In
the notation of Example 1.5, let’s consider the subset My of IR3, given
by:

My ={(r,0,p) :T>m+ vVm? - e?}, (m2 > ez)

Here m and e represent respectively the mass and the electric charge of
the spherically symmetric body responsible for the gravitational field.
The Reissner-Nordstrém spacetime is the Lorentzian manifold A =
Mgy x IR C IR* endowed with the metric:

ds? = %dﬂ + 12 (d6? + sin? 0dy?) — B(r) 4%, (21)
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where

om  é?
’B(r)=1_7+ﬁ.

We consider the function ¢(r, 8, ¢,t) = ¢(r) = 1/B(r). Since ¢ does
not depend on the variable ¢, hypothesis (3e) is satisfied.
The gradient of ¢ is easily computed as V¢ = /B(r)f’ (r);?;, and

a2\ 2
(V4,99) = 20/(r)" = ("”,3 - ) -

The same arguments of Example 1.5 show that, also in the Reissner—
Nordstrém spacetime, for for all pair of points p and ¢ in M, the action
functional f is pseudo-coercive on Cp,.

Finally, using the same computations of [4], one proves that also
the hypothesis (3d) is satisfied and Theorem 1.2 holds for the exterior
Reissner-Nordstrém spacetime. Further results on the geodesical con-
nectedness of Reissner-Nordstrém type Lorentzian manifolds may be
found in [7] and [18].

In the following easy example we show a non geodesically connected
manifold for which the hypothesis (1) of Theorem 1.2 holds precisely
for those points that are joined by a geodesic.

Example 1.7. Let M = IR*\ {0} be endowed with the Minkowski flat
metric; we denote by = the 3-space variable and by ¢ the time variable
in M. Let Y be the vector field Z; in this example we also denote
bys(-, ) and [f - || respectively the Euclidean inner product and norm in
R, .

Given any two points p = (zq,%) and ¢ = (z1,%;) in M; then any

curve z in Cpq is of the form z(s) = (z(s), to + (21 — to)s), where z is a
curve in the 3-space joining zg and z;. Hence:

inf £ = 2 (21 = 2ol = (2~ 0)?) . (22)
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If Z(s) = (&(s),t0 + (t1 — to)s) is a curve in IR* joining p and ¢ and
passing through the origin, then an easy calculation shows that:

102 3 (il + 8+ izl +8 ) -2 - ) = Clpro)
(29

By continuity, if z is any curve in C, 4 with f(z) < C(p, q), then the im-
age of z stays uniformly far from the origin. From the Ascoli-Arzeld’s
theorem, it follows immediately that, any sequence {zn} C Cp 4 satis-
fying f(z,) < ¢ < C(p,q) is uniformly convergent in M.

Observe that, from (22) and (23) it is easily obtained that the
inequality C(p,q) > (i:nf f is equivalent to:

P

I zoll? + 23 - y/llzall? + 2 > —(z1,z0) — t1to,

which holds precisely when the segment in IR? joining p and q does not
contain the origin. So, in this case Theorem 1.2 gives exactly the set
of points which are joined by one geodesic in M.

The following example shows that, even in the case of a standard
static manifold M which is a warped product My x IR, with Mo a
non complete Riemannian manifold, one can have the condition of c-
precompactness satisfied for all pair of points p and q.

Example 1.8. Let My be the open hemisphere 22 + 3% + 2% = 1,
z > 0, with the induced Euclidean metric of IR® denoted by dif, and
let M = Mg x IR be the standard static Lorentzian manifold with
metric di2 = di2 — dt2. Here, t denotes the real variable in the second
factor; clearly, the vector field Y = gz‘ is Killing and M is static with
respect to Y. Observe that, since My is not complete, then M is not
globally hyperbolic.

Given the points p = (po,to) and (p1,t1) in Mo x IR, a geodesic
joining p and g in M is of the form v = (7o, t.), where 7o : [0, 1] — Mp
is a geodesic in Mg joining po and p;, and t.(s) = (1 - s)to + sty.
Observe that any pair of points in My is joined by a minimal geodesic
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in My; moreover, the set Cp4 consists precisely of curves of the form
z = (z,t.), where z is curve joining py and p; in My.
Hence, we have:

énff I(]:funf = 2 (dlSt(po,pl) — (¢ — to) ) (24)

where dist(-,-) denotes the distance function on My. Clearly, the fol-
lowing inequality holds:

dist(pg,p1) < min (dist(po, qo) + dist(p1,go)); (25)
goEOMo
we set:
1
d= §(d13t(Po,P1)+ Ienaln (dlSt(P01QO)+d13t(P1,QO)))
and

o= (& - (b1 —t0)?).

By (24), it is ¢ > mf f. If zn = (z4,t.) is any sequence in Cp 4 such
that f(z,) <c, then

1
[ 1P ds s 26+ (0~ 101,
0

hence, by the Ascoli-Arzeld’s Theorem, z,, has a subsequence which is
uniformly convergent to a curve z in Mp = My |J O M,. By the choice
of d and ¢, it follows that z, stays uniformly far from My, hence z
has image in Mp. This implies that 2, has a uniformly convergent
subsequence in M, and Cp 4 is c-precompact.

Example 1.8 may be easily generalized by taking M, to be any
non complete Riemannian manifold (possibly with singular boundary)
having the property that any two of its points are joined by a minimal
geodesic. Examples of this type can be constructed in such a way that
the metric does not have a continuous extension to the boundary of
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Mo, like for instance in the case of Riemannian orbifolds (see for in-
stance the examples in [5] and the references therein). In this case, the
Riemannian manifold My cannot be smoothly embedded into a com-
plete Riemannian manifold, and for this class of examples the results
of [4, 7, 8] do not apply.

The following example shows a non standard static manifolds, for
which Corollary 1.3 can be applied to obtain the geodesical connected-
ness by timelike geodesics.

Example 1.9. the Lorentzian Klein bottle. Consider the plane
IR? with coordinates z and t endowed with the flat Minkowski metric
g=dz?~dt% let Y = &. Let ¢; and ¢ the two diffeomorfisms of R?
given by:

$1(z,t) = (2,8 +1), ¢o(zt) =(z+1,1~-1)

It is easy to see that ¢; and ¢2 preserve the metric g and the vector
field Y. Hence, if G denotes the subgroup of the group of isometries of
(IR?,g), the quotient K = JR2/G (which is homeomorphic to the Klein
bottle) inherits a static Lorentzian structure. Observe indeed that G
acts properly discontinuously on IR?, hence IR? is locally isometric to K,
which implies that Y projects to the quotient as a (timelike) integrable
Killing vector field. Since K is compact, then Y is a complete vector
field.

Let 7 : IR?2 — K denote the quotient map; with a little abuse of
notation we will denote by f the action functional for curves on both
manifolds IR? and K; clearly, if z is a curve in IR?, then f(2) = f(woz).
Given any two points p and g in X, and any homotopy class H of Cp g
then, fixing a base point pp € 7~1(p) € IR?, then there exists a unique
go € 7~ 1(g) such that every curve z € H has a unique lift Z € Cpo.g0}
moreover, f(z) = f(Z).

Since Cpy,qo i8 c-precompact in (IR?, g) for all ¢, it follows that every
homotopy class H of Cp 4 is c-precompact for all c. By Corollary 1.3,
every homotopy class of Cp 4 contains a geodesic and K is geodesically
connected.

Observe that, in this example, the entire space C; 4 is not c-precompact

for any choice of the points p and ¢ and of the constant ¢ > énf f.
P.q
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Observe also that, for all p and ¢ in K, one can find a homotopy class
H of C, 4 such that i;l{f f < 0, which implies that any two points in

are joined by a timelike geodesic.

We conclude this section with an example of a non geodesically
connected static and globally hyperbolic Lorentzian manifold.

Example 1.10. Let M be the 4-dimensional Minkowski space, with
Y= % the timelike Killing vector field. Take any non conver open
subset A of the spacelike surface ¢ = 0, and consider the Cauchy devel-
opment D(A) of A, which is the set of points p in M such that every
past or future pointing, inextendible causal curve through p meets 4
(see Definition 14.45 of [14]). The interior of D(A) is non empty, as it
contains A, and so by Theorem 14.38 of [14] it is a globally hyperbolic
manifold. Nonetheless, it is not geodesically connected, because two
points in A cannot joined by any geodesics contained in D(A4).

The paper is organized as follows. In section 2 we set up our variational
framework, we state and prove a variational principle for geodesics in
A, and we introduce a family of penalizing functionals. In section 3
we will prove the Palais-Smale condition for our functionals, which is
the main technical tool used to get the existence and the multiplicity
of critical points for our variational problems. In section 4 we will
prove some uniform estimates on the critical points of the penalizing
functionals, needed to pass from critical points of these functionals to
geodesics in A. Finally, in section 5 we collect all the results and we
will present a proof of Theorem 1.2 and of Corollary 1.3. The proof
of Theorem 1.4 is only sketched, as it can be easily deduced from our
framework using the same arguments as in [4].

2 The Variational Setup.
A Variational Principle for Geodesics.

We use the Riemannian metric (1) to define intrinsically the main
spaces of our functional framework. We denote by V® the Levi-Civita
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connection of g, and by dist(-,) the distance function on A x A in-
duced by gr). We assume that Y is a smooth vector field defined in
M which is timelike in A.

Let p and ¢ two arbitrarily fixed points in A. 9,‘,;3 will denote the
space of H'2-curves in A joining p and ¢:

Q},:Z = {z :[0,1]— A ‘ z absolutely continuous,

1
20 =p, 2(1)=gq, /0 (%, )y ds < +oo}.

It is well known tha.t Qp g is an infinite dlmensnona.l Hilbert manifold
(see [15]); for z € (12 the tangent space Tzﬂp 7 may be identified with
the space of H! 2-vector fields along z:
Tzﬂll,:g = {( :[0,1] — TA ’ ¢(s) € TysA, ¢ absolutely continuos,
1
¢ =) =0, [ (Va6 Vi) da < o0} (26)

Observe that T, Q g is a Hilbert space with respect to the norm:

1 3
¢l = ( [ w6920 ds) - @7)

For r > 1, we will denote by L7([0,1],T'v) the set of all r-integrable
vector valued functions on [0, 1] with values in T'A:

([0, 1], TM) = {c :[0,1] ~— TAmeasurable :
1 R
et = ([ conctonly ) < oo},

Similarly, one defines the space L*°([0, 1}, T'A) as the set of all measur-
able maps ¢ : [0,1] — TA for which

I¢]loo = ess sup \/ {€(3),¢(8))my < +o0.
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We say that a sequence (, in L7([0, 1], A) tends to O if |||, con-
verges to 0 as n goes to infinity.
The action functional f on Q,l,;g is defined by:

1
f@)=3 [ o (28)

observe that, by (2), it is |(2, 2)| < (2, 2)(r), hence the integral in (28)
makes sense for z € Q},jg. The action functional is smooth on Q,l,:g,
and its critical points are smooth curves that satisfy the equation (3),
hence they are geodesics. The differential of f is given by:

1

P = fo e (29)

for every ¢ € Tzﬂljg.
We denote by W the distribution on the manifold Q},;g consisting
of vector fields parallel to the timelike vector field Y:

W= {0 T2 | ¢ I Y((s) Vseo,11}.  (30)

Since Y is smooth, it follows immediately that W is a smooth distri-
bution on Q2. We set II(z,¢) = z the projection of W onto 72, and
for z € Op2, W, will denote the subspace of T2 given by I1-1(z).

Finally, we introduce the space Ny, of curves z in 5> such that
the derivative f'(z) vanishes in the directions of W:

Nypg = {z € Q12 [ f(2)[¢] = 0Y¢ € Wz}. (31)

We will denote by J the restriction of the action functional f on the
space Np g:

J=f‘N,,,,'

The space A, 4 and the functional J have been explicitly introduced in
[9], but they appear in a hidden form in some previous works by Benci,
Fortunato, Giannoni and Masiello (see [3, 4, 7, 8, 13}).

We state and prove the following variational principle for geodesics
in static manifolds, that will be used in the rest of the paper.
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Theorem 2.1. Suppose that A is an open connected subset of M, and
Y is a smooth vector field on M such that A is static with respect to
Y. Then

1. Nyg={z € Q2 : (5(5),Y(2(s))) is constant a.e. on [0,1]};
2. N, q is a C-submanifold of O3, and J is C'-functional;

3. for every z € Np 4, the tangent space TNy 4 is identified with the
set:

T,Npq={C € TzQ,l,f] : (V(, 2) is constant a.e. on [0,1}}.

4. if Y satisfies (11) on A, and if A satisfies the hypothesis (3b) of
Theorem 1.2, then Np,q is non empty;

5. a curve z in Q},;g is a geodesic joining p and q if and only if
z € Npq and z is a critical point for J;

6. if Cp q 18 c-precompact for some c > é:}f f, then J is bounded from
below in Npq- !

Remark 2.2. From part (1) of Theorem 2.1, using standard arguments
in Sobolev spaces one sees that the set Cp, introduced in Section 1
is contained as a dense subset of Ny, Hence, in the statements of
Definition 1.1 and of Theorem 1.2, we can replace the space Cp 4 with
Np,q- The reason for introducing the space Ny g is that it is the natural
space for obtaining the Palais-Smale compactness condition for the
action functional. The details of this fact will be discussed in Section 3.

Proof of Theorem 2.1. For part (1), suppose that z € 9},33 is such
that the quantity (z,Y(z)) = C; is constant. Then, for every { €
T,Q,l,’,g such that (z,{) € W, it is {(s) = p(s) - Y(2(s)), for some
p € HY2([0,1], R) and p(0) = p(1) = 0. Then,

f'(2)]

1 1
/ (3, Vo(uY)) ds = / ({5, Y) + pl2, V,Y)) ds =
0 0

1 1
= [wena=c [ was=o
0 0
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Moreover, if f, u/'(#,Y)ds = 0 for all p € H'2([0,1], R) with u(0) =
p(1) = 0, then (2,Y) must be constant, and part (1) is proven.
For part (2), consider the map:
F: Q12— L2([0,1], R)
given by z > (2,Y). It is easily seen that F is smooth, and its
Gateaux derivative is given by:
F'(2)[C] = (Vs(,Y) + (£, V(Y).

If C denotes the submanifold of L2([0,1],R) consisting of all the con-
stant functions, clearly NV, = F~1(C). By the Implicit function The-
orem (see Proposition 3.IL.2 of [12]), in order to prove that Ny, is a
C! submanifold of Q; it suffices to show that, for every z € N, 4 and
h € L?([0,1], IR) the equation in (:

F'(z)[¢] = h + const., (32)

can be solved. In order to prove this, we fix z € Npg and h €
L2([0,1], R), and we consider the equation (32). We set

C(s) = n(s) - Y(z(s)),
for some u € H'2([0, 1], R), with 4(0) = p(1) = 0, so that ¢ € T,Q52.
Substituting ¢ in (32), and considering that, since Y is Killing, it is:
(‘é’ V(Y(Z)) = p- (2’ VYy(z)) T
—H- (Y(Z), V,Y(Z)), (33)
we obtain the equation:
(Vs(,Y(2)) + (2, VY (2)) = u'-(Y(2),Y(2)) +
+p- (VoY (2),Y (2)) —p - (VY (2),Y (2)) =
= #-(Y(2),Y(2)) =h+C, (34)

where C is a constant. Since (Y,Y) < 0, we can always solve (34) for

4 by setting:
5 h(r)+C .
wo= [ Y)Y @)
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and clearly 4(0) = 0. Moreover, choosing

k) )
o= /0 Y)Y EE)

we also have p(1) = 0. So, N4 is a C! submanifold of Q52, and J is
the restriction to this submanifold of the smooth functional f. Hence,
J is C! and part (2) is proven.

Part (3) follows immediately from part (2) and the Implicit Func-
tion Theorem.

For part (4), given any 2 € Q,l,ﬁ and denoting by 1 the flow of the
vector field Y in A, we observe that the boundedness assumptions for
Y and the completeness assumptions for A guarantee that 1(z,t) is
defined for all values of ¢ € IR. Then, we set Z(s) = 9(z(s),t(s)) for
function  to be determined in such a way that Z belongs to My, 4. Using
the fact that Y is Killing and the map (-, ) is an isometry for every
t, it is checked easily that t needs to satisfy the differential equation:

t-(Y,Y)+ (z,Y) = C (constant) (35)

and the boundary conditions ¢(0) = ¢(1) = 0. Since (Y,Y) # 0 every-
where, this problem admits a unique solution ¢ for a unique value of
the constant C that appears in (35), which proves part (4).

For part (5), observe that since Y is Killing, then by part (1), all the
geodesics belong to Np 4. Since the geodesics are critical points of f,
then they are also critical points of J in Ny 4. Conversely, suppose that
z € Npq is a critical point for J. In order to show that z is a geodesic,
we need to prove that z is also a critical point for f in Q},;g. This follows
immediately from the definition of AV} 4, and the fact that the tangent
space T,,Q},;g is spanned by the subspaces T, A, 4 and W,. In order to
see this, from part (3), we need to show that every ¢ € T,Q,l,;g can be
written as the sum:

(=G+up-Y,

where (V,(1, %) is constant and u € H?([0, 1], IR) is such that x(0) =
p(1) = 0. By the same argument of the proof of part (4), we see that u
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has to satisfy a first order liner differential equation with an arbitrary
constant on the right hand side, and two boundary conditions. Such a
problem admits a unique solution, and we have proven part (5).
Finally, for part (6), let p and ¢ be fixed and ¢ > }fnf f be such that
»q

N,,q is c-precompact.

Let 2, € Np4 be a minimizing sequence for J. Then, eventually
it i8 J(2,) = f(2a) < ¢, and by the c-precompactness, up-to*taking
subsequences, we can assume that z, is uniformly convergent to a curve
z with image in A.

First we observe that the quantity C,, = (2,,Y) is bounded, say:

|Cz.| < D. (36)

To see this it suffices to work in local coordinates and use the same

result of [3] (see also Lemma 4.1 of [9] for details).
We consider the 1-form w on A given by the dual of the vector field

Y- (Y, Y) L

_ (Y(z),v) c Y
w(z)[v]———(y(x)’y(z», Vz €A, v € TA.

A straightforward computation shows that w is locally integrable, i.e.
dw = 0. Namely, denoting by £(z) the vector field Y (z){(Y (), Y (z)) !,
for all pairs v;,vs € T A, it is:

dw(z)[vla ‘02] = (V01§, ”2) — (szxvl) =
(Vvl Ys ‘02) i (sz Y’ 'l)])
(Y,Y)
_9 (Ya 02)(Vu1 y Y) + (Y7 v1)<vvz ) Y)
(Y,Y)? '

(37)

If both v; and v, are orthogonal to Y, by the integrability of Y it follows
that dw(z)[v1,v2] vanishes (see (7)); if both vy and v, are multiple of Y,
then it is easily seen that(37) vanishes because of the Killing property
of Y:

(VyY,Y)=0.
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If v; is orthogonal to Y and vy is a multiple of Y, using the anti-
symmetry of the the expression (V,, Y,vq), one checks immediately
from (37) that dw(z)[vi,v2] = 0. By the bilinearity and the anti-
symmetry of dw we get that dw =0 in A.

We go back now to the study of the minimizing sequence z, and its
uniform limit z. Since 2([0,1]) is compact, we can find a finite family
{Uk}f___l of open subset in M and a finite sequence 0 = a9 < a1 <
a2 < ... < ay =1 such that:

N
(a) 2([0,1]) c {J U;

(b) zn([ak—1,0k]) C Uk forallk =1,2,... , N and for n sufficiently
large;

(c) U NA is compact for all k;

(d) U N A is contractible in A, and, in particular, it is simply
connected;

(e) by the property above and the local integrability of w, there
exist smooth functions T} : Ui — IR such that dT; = w in Uy, ie.:

Y(z)

m, VzGUk, Vk=—172$"'sN; (38)

VTi(z) =

(f) sup |Tk(z1) — Ti(z2)| <1, for all k.

x1,22€U;
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Hence, from (36) and the above properties, for n large enough we have:

J(za) = % / i) ds =

; (2n,Y)?
= >
3 E /a;, 1 (%) Zn)m) + 2 ¥.Y) )ds_

N

. 3 / zm ds=c,, Z / (3n, VTi) ds =(39)
k=1"%k-1 ’ Qk_1
= G, Z (Tk(2a(ax)) — Ti(2n(ax-1))) = =ND > —co.
k=1
This concludes the proof. O

Observe that the boundedness property of the functional J is crucial to
obtain the existence of minimizers using standard techniques of Non-
linear Analysis. Observe also that the proof of the boundedness of J
presented here relies heavily on the integrability assumption for Y, i.e.
on the staticity of the metric of A. The non integrable case, that cor-
responds to stationary manifolds, is much more delicate to deal with;
a complete reference for the standard stationary case is the book [13],
the non standard case of a manifold with no boundary is studied in [9].

We isolate the following result for later use:

Lemma 2.3. Suppose that Y is a complete vector field on A. Then,
there ezists a smooth open map F : QM +—> Np,q which is a homotopy
equivalence.

Proof. Let ¥ : A x IR — A denote the flow of Y; since Y is Killing,
then the map p — ¥(p,tp) is an isometry of A for all ¢, € IR. The
map F is given by:

F(z) = w,
with
w(s) = P(z(s),t:(s))



Geodesics in Static Lorentzian Manifolds 25

where t, is the solution of the initial value problem:

C, - (2,Y(2))

= @.YE)

t-(0) =0, (40)

and C, is given by:

o= ([ worven) [ wasre @

By the isometry property of 1 and the fact that Y is 1p~mva.nant one
checks immediately that F is a well defined map between Q2 and Ny, g;
moreover, it is easily established that F is the identity on Npg- The
smoothness of F follows immediately from the smooth dependence on
z of the solution of the differential equation (40) and from the smooth
dependence of C, on z in (41). The fact that F is open can be easily
checked using local coordinates, as in the proof of part (6) of Theo-
rem 2.1. Finally, the map H(t,2) : [0,1} x Q q— Q,, g given by:

H(r,z)(s) = ¥(z(s), 7 - t(5))

is easily seen to give a smooth homotopy between F and the identity
map on Ny q. O

In order to overcome the lack of compactness of the functional J, which
is caused by the presence of the boundary A, we introduce a family of
approzimating functionals J;, depending on a positive (small) param-
eters ¢.

Let ¢ be the function introduced in the hypothesis of Theorem 1.2,
and ¢ be a positive number. We define the penalized functional J; on
Np,g by:

1
Jo(2) = J(z) +¢- /0 W‘tﬁ. (42)

It is not too difficult to see that, for every & > 0, the functional J; is
differentiable on Ny, 4, and, for every ¢ € T: N q, the Gateaux derivative
JA(2)[C] is given by:

Rl = T -2 [ TG g @)
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The critical points of the functional J. are smooth curves and they
satisfy the following conservation law:

Proposition 2.4. Let ¢ > 0 be fizred. If 2. i3 a critical point for J.
in Npgq, then z. is a curve of class C2, and there ezists a constant
E = E(z.) such that:

(e, 5e) — @ =E. (44)

Proof. If z is a critical point for J; in NV 4, then z. satisfies:

: L V(z)
%, V() ds = 2 / 2, C)s 45
JRCRZS [t (45)
for all { € TN, 4. We denote by F the vector field along z, given by
the covariant integral of the C! vector field 2:;% 52, i.e., F is uniquely
defined by the equations F(0) = 0 and
Vé

V;F = 2E$.

Then, integrating by parts the right hand side of (45), we obtain:

1
/ (Ge + F,()ds =0, V(€ TN,q (46)
0

Then, a classical boot-strap argument shows that the component of the
vector field 2, + F in T, N, 4 is of class C!. Since F is of class C, then
the component of 2, in T}, NVp 4 is of class C1. Moreover, since z € Npgs
then by (31) it is:

1
F(ze)l] = /0 (e VoC)ds = 0

for all ¢ € W,,, the same boot-strap argument shows that also the
component of z, in W, is C.
Since T, Q7 = W,, ® Tz, Ny, it follows that % is of class C1.
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Then, using (29) and integrating by parts in (43), one sees that the
vector

~V,ze — 25%5_)

¢(2)3
has null component on the space Ty, Ny 4. Actually, since (V¢,Y) =0,
arguing as in the proof of the regularity of z, we see that 2 satisfies
the Euler-Lagrange equations:

. V(ze) _
—Vze — 2¢ Sz 0. (47)
Multiplying (47) by 2., we get:
.. € . d, . . €
—(Vsze, Ze) — 2W(V¢(zs)1%) = —5((257 Ze) — W) =0,
which gives the thesis. O

3 The Palais—Smale Condition

We will assume henceforth that A, Y, ¢ are given and p, g and c are
chosen in such a way that the hypotheses of Theorem 1.2 are satisfied.

We recall that if (X, h) is a Hilbertian manifold and F : X +— R
is a C'-functional on X, then F is said to satisfy the Palais-Smale
condition at the level ¢ € IR if every sequence {Zn}nev C X satisfying:

(PS1) lim F(za) =,
(PS2) lim |IF(zn)ll =0,

has a subsequence converging in X. The norm || - || used in (PS2) is
the operator norm of F'(z,) in the Hilbert space T..X.

The Palais-Smale condition is an essential tool for studying the
existence and the multiplicity of critical points for regular functionals.
The main goal of this section is to prove that, for every € > 0 and every
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¢ € IR , the functional J, satisfies the Palais-Smale condition at the

level ¢ in NV}, ,.
We start with a basic Lemma, whose proof is essentially contained

in [10].

Lemma 3.1. Let {2, }nemv be a sequence in Np,q for which there ezists
a sequence s, € (0,1) with:

nlgxgo &(zn(ss)) = 0.

If 2, is bounded in L*([0,1],TA), then
1 ds
li —— = +00. 48
B [ Gt =+ =

Proof. First of all, we observe that, since (Vg,Y) = 0, it is easily
computed that:

(Vo, Vo) = (Vinyd, V(r) D)y,

where V()¢ denotes the gradient of ¢ with respect to the Riemannian
structure g, on A. It follows that the hypothesis (3c) of Theorem 1.2
can be written as:

(Vieyd: Vg < M. (49)
Now, suppose that fol (2,2)(ryds < a and let 3 > 3, be a point in [0,1]

(we can assume that s, is uniformly far away from the endpoints 0 and
1). From (49), we have:

#(s) — ¢(3n) = ‘/s‘J(V(R)‘]S’ 2-")(!1) ds < C1vs— Sn, (50)

with C; = vaM. Then, there exists a constant C> such that, for
8> 8y, it is:

1 1 1
$n(=)? = 1 (02(3 e ¢(zn<su))2) ) 61)



Geodesics in Static Lorentzian Manifolds 29

and, integrating on [s,, 1], we get:

\ ¢(sf(ss))z Z 4é2 [loglca(1 — sn) + ¢(2n(5n))?] — log(#(2a(sn))?).]
(52)

The thesis follows immediately from the fact that 1 — s, is uniformly
far from 0 and that 2,(s,)) tends to 0. O

A crucial point for using the classical results of Palais-Smale functionals
is the completeness of the manifold, or, more generally, of the sublevels
of the functionals. This is proven in the next

Proposition 3.2. For every a € IR and every € > 0, the sublevel JZ:
Jg = {z € Np,g: Je(2) < a} (53)

is a complete metric subspace of Np q.

Proof. Let € > 0 be fixed. We claim that the quantity:

1
/0 (z, 2)(3) ds

is bounded in J2. To prove this, we argue as in the proof of part (6)
of Theorem 2.1, and we introduce a coordinate function ¢ defined in a
neighborhood of a curve z € J2. Using the same notations as in the
proof of Theorem 2.1 and recalling that

(2,Y)?

YY) (2,Y) - (2, Vi) = C,(2, V)

we have:

L 1(3Y)?
/0 (2, ) ds = 2J(2) — 2 /0 A S KA +CA ()

The proof of the Proposition follows directly from (36) and (54). 0O
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We will use the following notation. If z : [0, 1] — M is an absolutely
continuous curve and 3 € L!([0, 1], TM) is a vector field along z, then
the covariant integral of B along z, denoted by B = [, B, is the (unique)
vector field along z that satisfies the initial value problem:

V:B=p4, B(0)=0.
We need the following elementary result, which holds generally in
semi-Riemannian geometry:

Lemma 3.1. Let K be a compact subset of A. Suppose that z is an
absolutely continuous curve in K, with 2 € LY([0,1),TA), and that
B € LY([0,1]},TA) is a vector field along z. Then, the covariant integral
B = [ B of B along z is in L*>([0,1),TA), and there ezists constant
M = M(K) such that:

1Blloo < iBl]1 - eMlEl (55)

Proof. Since K is covered by a finite number of charts, using local
coordinates, we can assume that A is an open subset of RY. We
denote by |- | the Euclidean norm. The vector field B is the solution
of the initial value problem:

5B =TG5 +6, BO)=0, (56)

where
P(z(s))['s ] : Tz(s)A X Tz(a)A S Tz(a)A

is the bilinear map given by the Christoffel symbols {T'%;} of the Lo-
rentzian metric g.
Integrating (56) on [0, 5], we obtain:

B(s) = /0 "Bar - /O ")z, Bldr,

hence

1 s
1B(s)] < /0 18 dr + M /0 14 - | Bl dr, (57)
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where M is the maximum of the norm of the operator I' on K. Applying
Gronwall’s Lemma to (57), we obtain:

|B(s)| < /01 |8 dr - €M Jo #ldr

which gives (55). a

Remark 3.2. Suppose that {z,} is a sequence of absolutely continu-
ous curves having image in a fixed compact subset of A, and with
|#n]l bounded. Suppose further that 3, is a sequence of vector fields
along the z,'s that tends to 0 in L'([0,1],TA). From Lemma 3.1 and
its proof it follows that the sequence By, = f‘n Bn converges to 0 in
L®([0,1], TA).

We can now prove our main compactness result:

Proposition 3.3. Under the hypotheses of Theorem 1.2, for every € >
0 and c € IR, the functional J, satisfies the Palais—Smale condition at
the level ¢ on Np q.

Proof. Let € and c be fixed, and let {#n}nemv be a Palais-Smale se-
quence for J; in Np g, ie., it satisfies: :

. _ . '] —
nli’ngo Je(zp) =¢, and nlgxgo Ji(zp) =0.

We know that 2z, is bounded in L%([0,1],T'A), so, by Lemma 3.1, 2,
stays far from OA. By hypothesis (3b) of Theorem 1.2, the z,’s have
image in a complete Riemannian manifold. Since z,(0) = p is fixed,
then z, is equibounded and equicontinuous, so that, by Ascoli-Arzeld’s
theorem, up to passing to a subsequence, we can assume that z, is
uniformly convergent to some curve z € Q,l,:g. Moreover, since Z, is
bounded in L2, we can assume that the convergence of z, to z is weak

To prove that the convergence of z, is strong, we now use the
condition J(zn) — O

[ (o Veed = g (Tt ) ds 50, (69
i s Vsbn B(zn)? n)s6n )
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for all ¢, € T,, N, ¢ bounded.
Using the same argument as in the proof of Proposition 2.4, since

Zn € Npg, (V$,Y) = 0 and T,, 07 = Ty, N, , ® W,,, then we can
assume that (58) holds for every bounded sequence ¢, € T,. Q,l,;g.

Using the fact that ¢, converges uniformly to 0, and the fact that
$(zn) and Vé(2,) are uniformly convergent, we get that:

: ! Vé(z,)
7. \3 50 d =01
,,11{1,}0/0 (¢(zn)3 i
hence, by (58), we have

lirg / i Vot ds = 0. (59)
0

n—o00

Let’s prove the following Lemma:

Lemma 3.8. In the above nolations, there exists a sequence a, in
T,.02 that tends to 0 in L*([0,1), TA) and such that:

1 1
/ (20, V3,(n) ds =/ {on, V;,(n) ds. (60)
0 0

Proof. We denote by ©,, the vector field along 2, which is the gradient
VJ(zn) of the functional J with respect to the Hilbertian norm -1
defined by (27). By definition, we have:

1 1
[ o Vs s = [ V000, Y ny ds,
and, by (59), the sequence of vector fields
A, = VYo,

goes to 0 in L2([0, 1], TA).

Using the Christoffel symbols of the metric tensors g and gy, we
can express the Riemannian covariant covariant derivative V(z-':)g',, in
terms of the Lorentzian covariant derivative V;.Ca. Then, we write

1 1
/0 (An, V() (ry ds = /0 {Any Vinln + G(20)[8n)[Cn])my ds,  (61)
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where G(2)[(1][¢2] is a bilinear functions in the variables (;,¢2 which is
continuous in the first variable z. Using (1), it is immediately checked
the existence of two sequences By, and b, going to 0 in L2([0,1],TA)
such that:

/01(A,., V& )y ds = /0 ((Ba Vil + uaC)) ds. (62)

Now, it is:

./ol(b"’g") ds = - /Ol(fz,. bn, ViaCn)y

because (n(0) = (n(1) = 0. By Remark 3.2, it follows that [, b, tends
to 0 uniformly, therefore (60) follows from (62). O

Going back to the proof of Theorem 3.3, we now consider the se-
quence of vector fields

Wy = Zn — Op. (63)
From (60) we get that wy, is of class C* and that
Vzlnwﬂ = 0' (64)

The next observation is that the L?-norm [jwy|l2 of wy is bounded,
because |||z is bounded and a, tends to 0 in L?([0,1], TA). This im-
plies, in particular, that, for some sequence {sn} C [0,1], the sequence
|wn(sn)| is bounded, say:

l“’n(sn” <c¢, Vnekn. (65)

Once again, Gronwall’s Lemma applied to the differential equation (64)
and the boundedness condition (65) gives the existence of 4o > 0 such
that:

lwn(s)] < co- €™ folimler g e [0,1].

It follows that wy is bounded in L. From (63) it follows that 2z, is
bounded in L2, and since z,(0) is fixed the sequence zy is uniformly
bounded.



34 Paolo Piccione

Writing equation (64) in coordinates, it becomes:
wp, + [(zp)[2n,wn] = 0, (66)

where T' is a continuous function in 2z, (that can be expressed using
the Christoffel symbols of g), which is linear in the arguments 2z, and
wy. From (66), we obtain that w, is bounded in L2, and thus w, is
bounded in H12,

It follows that a subsequence of w, still denoted by wp, is weakly
convergent in H'2, and, in particular, w, is convergent in L3([0, 1], TA).

Therefore, there exists a subsequence of z,, that tends to 2 strongly
in Q2.

We are now left with the proof that z belongs to Npg. Since z,
tends to 2z in L2, up to passing to a subsequence we can assume that
Zp tends to Z pointwise almost everywhere. So, (z,,Y) tends to (2,Y)
pointwise a.e., which implies that (z,Y) is constant almost everywhere,
and z € My, 4. This concludes the proof. a

We have the following Corollary to Theorem 3.3

Corollary 3.4. Under the hypotheses of Theorem 1.2, for e > 0 small
enough, the functional J, attains its minimum in Npq. Moreover, if 2z,
is & family of minimal points for J., there ezists two real constants A
and B such that;

A< Je(z) < B, VYee€lo,el. (67)

Proof. 1t is a classical argument in Critical Point Theory. Thanks to
the Palais-Smale condition and the completeness of the sublevels of the
functionals J,, if the infimum ic of J; on M, , weren’t a critical value,
then it would be possible to find a homotopy between the sublevels
Ji~% and Ji¥*% where 6 > 0 is sufficiently small. This is clearly
impossible, because, for every § > 0, Ji=% = @ while Jietd £ ¢

If we set A = }}lf J, then clearly Je(z) > J(z) > A. Moreover,

P9
since for all z € A}, 4 the map & — Je(2) is increasing, hence also the

map € — }fnf Je 18 increasing, so J¢(z:) < Ji, (2, ) O
P9
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4 A Priori Estimates for the Penalized
Functional

In this section we will assume that {z;}¢>o is any fixed family in Np g,
consisting of critical points for the functionals .J;, and satisfying the
boundedness condition (67). For instance, 2, can be a minimal point
for J.. We prove some estimates on z, uniform in ¢, with the aim of
passing to the limit as € tends to O to obtain a critical point for the
functional J.

Proposition 4.1. The family z. is bounded in L*([0,1], TA).
Proof. 1t is:

/1(25,25) ds < 2J.(z¢) < 2A. (68)
0

Moreover, from the proof of part (6) of Theorem 2.1, it follows that
the constant C,, = (%,Y) is bounded. Arguing as in that proof, we
introduce a local coordinate function ¢ around the image of z¢, and we
compute:

1 1
/ e 3e) oy ds = 2J(22) — 2Ci / (e, V1) ds = 2J(22) — 2C3, A,
0 0
(69)
The thesis follows at once from (36), (68) and (69). O

The main result of the section is that the family z, stays far from
the boundary of A, uniformly in &:

Proposition 4.2. There ezists a positive constant T such that, for €
sufficiently small, it is:

dist(z:(s),0A) >7¥ >0, Vsel0,1]. (70)

Proof. For every € > 0, let t. € [0,1] be a minimal point for the function
ve(s) = ¢(ze(s)). Then, it is v (t,) = 0 and:

V! = (H?(2¢)%e, 2e) + (VP(2¢), Vste)- (71)
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Using Euler-Lagrange equation (47) and the assumptions (3c) and (3d)
of Theorem 1.2, from (71) we get:

Vg S M(Z.E) z-s)(R) Ve — )3 <V¢’1 V¢) (ze,éE)(R) " Ve (72)

¢(

Observe indeed that the condition (V¢,Y) = 0 implies that V¢ is
spacelike. Since j;) (¢, Ze)(ny ds is bounded and v.(t;) = 0, the Gron-
wall’s Lemma says that, if v.(t.) is not bounded away from 0, then v,
would converge to 0 uniformly on [0,1]. But this implies that J;(z)
is not bounded from above, and that contradicts (67). This concludes
the proof. a

5 Proof of the Main Results

In this section we put together the partial results obtained in the pre-
vious sections to prove Theorems 1.2 and 1.4 and Corollary 1.3.

Proof of Theorem 1.2. Let {z.} be a family of critical points of J. in
MNy,g» satisfying (67). By Proposition 4.2 and the hypothesis (3b), the
2¢’s lie in a complete metric subspace of A. Moreover, since z.(0) = p
for all €, Proposition 4.1 says that the family {z.} is bounded and
equicontinuous. By Ascoli-Arzel4’s theorem, we can find a sequence
€n converging to 0 and a curve z € N4, such that z., converges to z
uniformly, and by Proposition 4.1, we can assume that we have weak
convergence in H12,
Since z.,, is far from 9A, then ¢(z.,) is far from 0, hence

V¢(ZE,. )
#(ze,)

is uniformly convergent to 0. Using the conservation law (44), we get
that V,z., is uniformly convergent to 0. This implies that the limit
curve 2 satisfies the equation V,2 = 0. Then, z is a geodesic between
p and q, and the Theorem is proven. O

2en
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Proof of Corollary 1.8. To prove Corollary 1.3, it suffices to prove that
every homotopy class H of Ny, is an open connected component of
Np,g. Using the same arguments of the proof of Theorem 1.2 it would
then follow that the Palais-Smale condition, the completeness of the
sublevels and the boundedness property for the penalized functionals
J: hold in H, yielding the existence of a critical point for J in H. For
the completeness of the sublevels, observe indeed that the uniform limit
z of a sequence {2,,} of curves belongs to the same homotopy class of
all the z,’s with n sufficiently large.

It is well known that the homotopy classes are connected compo-
nents of the manifold §2372; moreover, they are open. Using the map F
of Lemma 2.3 we can conclude that # is an open connected component
of N 4, and the Corollary is proven. O

The proof of the multiplicity result of Theorem 1.4 is based on the
Theory of Ljusternik and Schnirelman. We recall that the Ljusternik—
Schnirelman category cat x (F') of a subset F of the topological space X
is the minimal number (possibly infinite) of closed, contractible subsets
of X that cover F.

A well known result by Fadell and Husseini (see [6]) states that,
if A is non contractible, then there exists a sequence K,, of compact
subsets of 9,1,;3 such that:

nli)ngo catn'x,.': (Kp) = +oo. (73)

Using the flow of the vector field Y (see Lemma 2.3) it is easy to see
that, under the hypothesis of Theorem 1.4, the spaces 5 and Np,q
are homotopically equivalent, hence (73) is valid also in Ny .

Now, using a well known minimaz argument, for every € > 0 and
m € IN, we define:

b
Cn = inf sup Je(2),

where:

m = {L C Npgq: L compact, caty;, (L) > m}.
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The ¢,’s are critical values of J,.

Now, the same arguments used in [4] can be repeated verbatim in
our case to prove that one can pass to the limit as € | 0, obtaining an
unbounded sequence ¢, of critical values for J. We omit the proof of
this fact, as it can be found in [4].
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