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Emergence of spatial order in highly interacting Rydberg gases
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We describe the emergence of strong spatial correlations, akin to liquidlike behavior and crystallization effects,
in low- (one- and two-)dimensional gases of cold Rydberg atoms. The presence of an external electric field
permanently polarizes the atoms, which became highly correlated due to the long-range dipole-dipole interaction.
We describe a theoretical approach particularly suited for strongly coupled systems and numerically obtain both
the two-particle distribution function and the static structure factor. The experimental implementation of such
highly interacting systems is discussed, including detailed calculations of the interaction strength for different
Rydberg states. The results provide insights into many-body effects associated with strongly interacting Rydberg
atoms, including the possibility of observing highly ordered phases.
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I. INTRODUCTION

Rydberg atoms [1,2] provide a powerful platform to study
strongly interacting systems. One manifestation of such inter-
active character is the so-called blockade effect, where Ryd-
berg states strongly inhibit further excitation of their neighbors,
either due to van der Waals [3,4] or dipole-dipole interactions
[5,6], which has been exploited, for instance, in the implemen-
tation of quantum gates for information processing [7]. More-
over, the interactions between the high-lying electronic states
can be mapped onto light fields, giving rise to strong nonlinear
optical effects (photon-photon interactions) [8,9], even at the
single-photon level [10], allowing for the storage and manip-
ulation of quantum optical states in highly excited collective
states (Rydberg polaritons) [11]. Moreover, the combination
of the strong interactive character with the easy manipulation
of Rydberg states constitutes an ideal approach for quantum
simulation [12,13] and general many-body physics [14,15].

Here, we describe a rather distinct manifestation of the
interactive character of Rydberg atoms, namely, the emergence
of strong spatial correlations in low-dimensional gases. While
many studies have been dedicated to the dynamics and trans-
port of Rydberg excitations [12,13,16–18], in the so-called
frozen gas regime, the investigation of the external (motional)
degrees of freedom has received less attention. Among the few
counterexamples [19–21], recent studies [22–26] have demon-
strated, however, that Rydberg gases are suitable to the study
of the (motional) dynamics associated with highly correlated
particle systems, a problem which has been subject to extensive
theoretical, computational, and experimental research [27–34].
Using integral equation techniques and surpassing the need
to resort to molecular dynamics simulations, we are able to
describe the emergence and nature of spatial correlations, in
a wide range of coupling parameters, defined as the ratio of
potential to kinetic (thermal) energy, from weakly to strongly
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correlated regimes. We begin by introducing the integral
equation approach for a low-dimensional Rydberg gas under
dipole-dipole interactions, and obtain both the two-particle
distribution function and the structure factor. The results
are analyzed in detail and routes towards the experimental
obtainment of such highly interacting Rydberg systems are
discussed, together with numerical calculations of the coupling
parameter for different states.

II. THEORY

In a permanently polarized sample, Rydberg atoms interact
via the general dipole-dipole potential [24,35–37],

V (r,θ ) = C3

r3
[1 − 3 cos2(θ )], (1)

with θ the angle between the interatomic separation vector
r and the atomic dipoles P (aligned with external electric
field E0). The strength of the interaction is quantified by
C3 = P 2/4πε0, with P the atomic dipole moment and ε0 the
vacuum electric permittivity. In a one-dimensional sample, the
character of the interaction (attractive or repulsive) depends on
the polarization angle. In particular, there exists a magic angle
θ = 54.7◦ such that the interatomic potential vanishes [38].
In a two-dimensional gas, an isotropic repulsive interaction is
obtained when the polarization is perpendicular to the atomic
sample. In this case, θ = π/2 and the in-plane potential is
simply given by V (r) = C3/r3. The average interparticle dis-
tance in a two-dimensional sample is defined as a = (πn0)−1/2,
with n0 = 1/π the homogeneous density, in units of r/a. The
coupling coefficient may be defined as the mean ratio between
potential and kinetic energy, � = 〈V (r)〉/kBT , with kB the
Boltzmann constant and T the temperature of the gas, and
in terms of the mean interparticle distance � = C3/kBT a3.
The weakly and highly correlated regimes, � � 1 and � � 1,
respectively, shall be addressed here.

In general, the (classical) description of strongly cou-
pled systems falls outside the scope of hydrodynamical or
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FIG. 1. Schematic illustration of the origin of correlation between
any pair of dipoles (Rydberg atoms). Besides the direct correlation
between 1 and 2, indirect correlations mediated by any number of
intermediate particles must be taken into account.

Vlasov-like formulations for single-particle densities, where
correlations between the atoms are usually ignored. Nev-
ertheless, even in the presence of strong correlations and
for conditions of thermal equilibrium, the full N -particle
density, ρ(N)(rN ), can be truncated to lower orders, in-
troducing the single- and the two-particle functions [39],
ρ(1)(r) = 〈∑i δ(r − ri)〉 and ρ(2)(r,r′) = 〈∑i

∑
j �=i δ(r −

ri)δ(r′ − rj )〉, respectively, where the summations are taken
over the total N particles and averaging over the canonical
ensemble, relevant for low fluctuations in the number of
atoms. We may safely take the single-particle density as
ρ(1)(r) = n0 and define the (normalized) two-particle distri-
bution g(2)(r1,r2) = ρ(2)(r1,r2)/n2

0. In the case of isotropic in-
teractions, g(2)(r1,r2) = g(2)(|r1 − r2|) ≡ g(r), with the latter
usually known as the radial distribution function, such that the
average number of particles lying between r and r + dr away
from a reference atom is n0g(r)dr and 2πrn0g(r)dr in one
and two-dimensional samples, respectively. The emergence
of correlation, corresponding to g(r) �= 1, or h(r) �= 0, with
h(r) = g(r) − 1 the pair-correlation function, will be fully
rooted in the interactions among the Rydberg atoms.

The description of the gas in reciprocal space becomes
useful in a number of situations and, in this context, the (static)
structure factor is defined as

S(k) = 1

N
〈ρ(1)(k)ρ(1)(−k)〉 = 1 + 1

N

〈∑
i �=j

e−ik·(ri−rj )
〉
.

(2)
The last term in Eq. (2) vanishes when the relative position
between any pair of particles, ri − rj , is statistically indepen-
dent, corresponding to the absence of correlation as S(k) = 1.
Moreover, the static structure factor is related with the radial
distribution function by

S(k) − 1 = n0

∫
dre−ik·r[g(r) − 1], (3)

or, equivalently, S(k) = 1 + n0h(k). It directly describes how
materials scatter radiation and, without direct-imaging tech-
niques, is usually measured by x-ray or neutron-diffraction
experiments. It became instrumental in the study of the internal
structure of systems such as liquid helium [40–42] or strongly
correlated plasmas [27,43].

The total correlation between two Rydberg atoms arises
both from the direct interaction between them and those
with intermediate atoms; see Fig. 1. In this context, we may

introduce the direct correlation function c(r), related with the
total correlation h(r) by the Ornstein-Zernike relation,

h(r) = c(r) + n0

∫
dr′c(|r − r′|)h(r ′). (4)

While the range of c(r) is usually comparable with that of the
pair potential V (r), the total correlation function is, in general,
of higher range due to the effects of indirect correlations.
Although the Ornstein-Zernike (OZ) relation gives an exact
relation between the total and direct correlation functions, in
order to compute these quantities in a self-consistent manner,
some sort of closure condition is needed.

In the absence of drift, pressure and electrostatic forces
must balance, ∇φ = −∇p

n
, with φ(r) the potential created by a

distribution of Rydberg atoms. For an ideal gas at thermal equi-
librium, p = nkBT and ∇[φ + kBT ln(n)] = 0. The solution
n(r) = n0exp[−φ(r)/kBT ] is known as the barometric law,
which simply determines the distribution around a test particle
in the presence of interactions according to a Boltzmann law.
Here, an appropriate potential accounting for both the effects of
direct and indirect interactions can be obtained by constructing
a hierarchy similar to the OZ relation, where the total potential
φ(r) is the sum of the direct pairwise term V (r) and the indirect
contribution from any number of intermediate atoms, namely,

−φ(r)

kBT
= −V (r)

kBT
+ n0

∫
dr′c(|r − r′|)h(r ′)

= −V (r)

kBT
+ h(r) − c(r),

(5)

where the last equality follows from the OZ relation. Evoking
the barometric law finally yields

g(r) = exp

[
−V (r)

kBT
+ h(r) − c(r)

]
. (6)

The latter is known as the hypernetted chain (HNC) closure re-
lation. Together with the OZ relation in Eq. (4), it forms a closed
set of equations for the total and direct correlation functions,
h(r) and c(r), respectively. We should stress that while the OZ
relation is exact, the HNC closure constitutes an approximation
rooted at the barometric assumption, performing particularly
well for systems displaying long-range interactions.

III. SPATIAL CORRELATIONS

The obtainment of the radial distribution function g(r)
implies a numerical approach to the coupled OZ and HNC
closure equations. The former becomes more easily expressed
in reciprocal space, h(k) = c(k) + n0c(k)h(k). For implemen-
tation purposes, the indirect correlation function shall be
defined as e(r) = h(r) − c(r). The algorithm begins with an
initial guess for the direct correlation function, c0(r). From its
Fourier transform c0(k), we compute the indirect correlation
function e0(k), using the OZ relation in reciprocal space.
Finally, from its inverse Fourier transform e0(r), together with
the HNC closure equation, we compute the updated direct
correlation function c1(r) and repeat the entire procedure until
convergence is obtained. In general, such numerical scheme is
numerically unstable and, to mitigate this effect, we only mix
a small part of the new direct correlation function into the old
one.
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FIG. 2. Two-dimensional Rydberg gas. Top: Radial distribution
function for different values of the coupling parameter, displaying the
emergence of liquid and quasiperiodic correlations, with kc the wave
number associated with such regularity in the spatial arrangement. The
inset plot depicts the oscillatory character of g(r) and the high range
persistence of the spatial correlations. Bottom: Static structure factor
for different values of �. The developing peak at approximately kc =
2π/λc 
 3a−1 entails the emergence of stronger correlations and the
short-range oscillatory behavior of the radial distribution function.

The results for a two-dimensional gas are depicted in
Fig. 2. For weak correlations, � � 1, the only prominent
feature is the absence of Rydberg atoms close to the reference
particle, located at r = 0, due to the repulsive character
of the dipole-dipole interaction. For higher values of the
coupling parameter, however, we observe the emergence of
strong spatial correlations. Besides the greater region of atom
depletion near r = 0, due to stronger repulsion, a prominent
density peak appears located at approximately twice the mean
interparticle distance, r ∼ 2a, followed by successive regions
of depletion and accumulation of Rydberg atoms, regularly
spaced by approximately λc 
 2a. Such oscillatory behavior
of g(r) is characteristic of highly correlated systems [27]
and entails the crossover between liquid and crystallinelike
behavior, associated with the highly interactive character of
the system emerging at higher values of � [29,30,33]. The
emergence of such a highly ordered configuration is also visible
in the behavior of the static structure factor, with the growing
peaks at multiples of approximately kc 
 2π/λc.

In one-dimensional systems, we observe the same kind
of spatial order emerging for stronger coupled systems; see
Fig. 3. Here, however, lower interaction strengths are required
to observe similar configurations due to the reduced degrees of
freedom available for spatial arrangement. In other words, the
reduced dimensionality makes it harder to create disorder in
the system. In fact, no major overhead of interaction-induced
ordering to thermal-induced disordering is required to observe
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FIG. 3. One-dimensional Rydberg gas. The radial distribution
function and static structure factor are depicted in the top and bottom
panels, respectively, for different values of �. Strong spatial correla-
tions emerge at weaker coupling due to the reduced dimensionality.

the emergence of strong spatial correlations, which begin to
appear for much lower values of �, of the order of 1. A
worthy observation is related to the long-range character of
the emerging order. Particularly for the one-dimensional case,
the height of the first peak in the radial distribution function
grows faster than those of higher order. This essentially means
that the dipole-dipole interactions are at the origin of short-
to medium-range order, while true long-range order does not
fully arise. This kind of behavior is partially explained by the
Mermin-Wagner theorem of statistical physics, which essen-
tially states that for d � 2, with d the dimensionality of the
system, low momenta thermal fluctuations destroy true long-
range order [44,45]. It is also worth mentioning that strongly
interacting dipolar gases have been previously investigated
in the context of polar molecules [46], with quantum Monte
Carlo simulations describing the different ground-state phases,
emerging at high densities and temperature close to 1 μK.
Here, however, and due to the higher temperatures and lower
densities inherent to the Rydberg blockade effect, we describe
how dipole-dipole interactions are at the origin of strong
correlations and many-body dynamics at the classical level.

IV. EXPERIMENTAL CONSIDERATIONS

Experimentally, the excitation of Rydberg atoms usually
relies on a two-photon transition. For 85Rb, the 5S1/2 ground
state is excited to the intermediate 5P3/2 and subsequently
promoted to a high-lying Rydberg level nS1/2, for instance.
An initial low interacting state ensures small interatomic
separations due to blockade effects. For nS1/2 levels, the
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FIG. 4. Top: First avoided crossing in the Stark map for the 50S1/2

state of 85Rb, whose energy at zero field defines the axis origin. Here,
P1 and P2 correspond to states of low and high dipolar character,
respectively, and the colored lines indicate the amount of 50S1/2

character. Bottom: Coupling parameter (normalized to the temper-
ature) as a function of n. The a, b, and c (black) curves correspond
to a ground-state density (or Rydberg density, by construction) of
ng = 109, 5 × 109, and 1010 cm−3, respectively, where the interaction
is limited by the strength of the dipole moment. The red curve
depicts the regime limited by the van der Waals blockade, where
an on-resonance excitation has been considered, with laser linewidth

 = 3 MHz.

blockade effect only arises from the weaker van der Waals
(repulsive) interaction, which becomes significant only for
higher n (principal quantum number). Moreover, for S orbitals,
the van der Waals interaction does not depend on the relative
atomic orientation, providing fairly homogeneous Rydberg
samples. In order to switch into an highly interacting regime,
the atoms are transferred to high dipolar states through a
Landau-Zener adiabatic passage, promoted by an electric field
sweep through an avoided crossing in the Stark landscape
[47,48]; see Fig. 4. The final highly dipolar linear Stark state
becomes permanently polarized in the direction of the electric
field, efficiently transferring the atoms from a low to a highly
interacting regime [24,25]. The permanent dipole moment of
a state with energy W (E), with E the electric field, is given
by the slope P = − dW (E)

dE
and, therefore, large dipole-dipole

interactions are achieved by exciting Rydberg levels with large
slopes in the Stark map.

While the dipole moment quantifies the strength of the
interaction, C3 = P 2/4πε0, another equally important pa-
rameter for achieving highly coupled samples is the average
interatomic separation a and, here, two regimes can be dis-
tinguished. On the one hand, for high ground-state densities
and/or high principal quantum number, the van der Waals
blockade will limit the Rydberg density. In particular, VvdW =
C6/r6, with the interaction strength smoothly scaling as C6 ∝
n11 [36]. In the case of on-resonance excitation, the blockade
radius is such that 
 = C6/r6

B, with 
 the linewidth of the ex-
citation laser. In this regime, the average interatomic distance is

then limited by the blockade, a = rB. For the sake of reference,
rB = 2.6, 4.2, and 6.0 μm, for n = 40, 50, and 60, respectively,
for the nS1/2 states of 85Rb (assuming 
 = 3 MHz). On the
other hand, for low principal quantum number and ground-state
densities ng , such that a = 〈r〉 = (3/4πng)1/3 > rB, with 〈r〉
the average ground-state interatomic distance, the van der
Waals blockade plays no role and the interaction strength will
mostly be limited by the magnitude of the permanent dipole
moment.

The coupling parameter � computed for different principal
quantum numbers and normalized to the temperature is de-
picted in Fig. 4. Here, the atomic dipole moment is computed
for the adiabatic state after the first avoided crossing appearing
in the Stark map, obtained by diagonalization of the interaction
Hamiltonian. In lowest order, the energy shifts from the linear
Stark effect scale as W ∝ En2 and, consequently, the dipole
moment P ∝ n2 [36]. In the dipole moment limited regime,
where a does not scale with the principal quantum number,
� ∝ P 2 ∝ n4, which is verified by the numerical results. In
the van der Waals blockade regime, however, the scaling of
the average interatomic distance (blockade radius) with n

must be taken into account. Since C6 ∝ n11 and, consequently,
rB ∝ n11/6, the coupling coefficient � ∝ n−3/2, which is also
in agreement with the results. Here, the computation of C6 is
performed via second-order perturbation theory. Clearly, the
fast increase of the blockade radius is more dramatic then
the higher dipole moments and, in this regime, the interaction
strength decreases with n.

Notice that immediately after the excitation stage, no
particular order is expected in the system. This highly out-
of-equilibrium initial state shall be followed by a rapid
reorganization of the atomic dipoles. This is accompanied
by a fast increase in the temperature of the system, as the
randomly positioned dipoles are accelerated by the potential
landscape into an equilibrium distribution. This mechanism of
disorder-induced heating has been reported in experiments on
ultracold neutral plasmas (UCNPs) [49] and could eventually
impose a limitation on the achievement of high values of
�. In the context of UCNPs, it has been demonstrated that
the excitation of initially ordered samples greatly reduces the
effects associated with disorder-induced heating. This could
be obtained either via the Rydberg blockade mechanism [50],
where an initial sample of spatially ordered Rydberg atoms
is posteriorly ionized, or via the preordering of atoms in a
partially filled optical lattice [51]. While the latter could also
be employed in the present context, the former more simply
means that an initial excitation where the interatomic distance
is limited by the blockade mechanism would also suppress the
effects associated with disorder-induced heating. As recently
demonstrated in [24], a Landau-Zener adiabatic crossing is
appropriate to create highly interacting samples, with the emer-
gence of the associated spatial correlations and ordered states
occurring in just a few microseconds, much faster than the
typical lifetimes of the excited states or collisional processes.

At this point, one could wonder about the nature of the
emerging correlations and, in particular, if this rapid forming
order entails a state of thermal equilibrium, such that direct
comparison with the present results could be performed.
Formally, relaxation into thermal equilibrium is usually de-
termined by a Fokker-Planck equation [52], where diffusion
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spreading in momentum space is counterbalanced by velocity
damping due, in this case, to dipole-dipole interactions. The
latter also quantifies the relaxation time τ as the inverse
of the rate of velocity change due to dipole interactions. A
rough estimate can be performed as τ ∼ vth/ad [53], with
vth = √

kBT /m the thermal speed and ad the acceleration due
to dipole forces. Equivalently, we can write in terms of the
coupling coefficient �, τ ∼ a/vth� = a

√
m/kBT /�, with a

the mean interparticle distance, as defined before. For a sample
of 85Rb at a temperature of 100 μK, with a ∼ 2 μm and
a coupling coefficient � ∼ 10, such as reported in [24], we
obtain a relaxation time τ ∼ 2 μs, in excellent agreement with
the time scale at which the authors observe the emergence of
spatial correlations. This strongly suggests that the observed
order corresponds to a state approaching thermal equilibrium
as described by the present model.

The experimental obtainment of correlation functions in-
volves the detection of the atomic trajectories. Ion-imaging-
based methods proved to be very efficient in this regard for
three-dimensional (3D) [54,55] and 1D [25] systems, for
both weak van der Waals [23] and strong dipole-dipole [24]
interactions. It allows the retrieval of the spatial distribution of
Rydberg atoms, with micrometer resolution and single-atom
detection capability. The creation of 1D samples can be done
by trapping the atoms in a tightly focused dipole trap [25],
while, for the 2D case, an astigmatic excitation beam, created
by a cylindrical lens, can be used to create a plane of light in
the excitation process.

V. CONCLUSION

In summary, we demonstrated the emergence of highly
correlated structural phases in low-dimensional gases of Ryd-
berg atoms with strong dipole-dipole interactions. The integral
equation technique employed here constitutes a general ap-

proach to strongly correlated particle systems, particularly well
suited for long-range interactions. Moreover, it surpasses the
necessity to resort to other commonly used massive numerical
approaches, such as Monte Carlo or molecular dynamics
techniques, together with providing easy manipulation of
interaction strengths and overall parameter dependences. In the
context of Rydberg gases, it can be applied to different kinds
of atom-atom interactions, such as van der Waals or soft-core
potentials, the latter corresponding to the case of dressing from
far off-resonant excitation, where ground-state atoms acquire
partial Rydberg character [9,56–58]. Moreover, and contrary
to other highly correlated systems, such as liquids, solid-state
materials, plasmas, etc., cold (Rydberg) atom experiments
benefit from the high degree of control over parameters such
as interacting strength or sample dimensionality. As such,
together with the results presented here, we argue that Rydberg
atoms provide an ideal platform for the investigation of
strongly correlated media and many-body physics, opening
a route towards the simulation of complex systems with
cold-atom experiments [12,13,15,59,60], as well as probing
out-of-equilibrium dynamics in strongly interacting systems.
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