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Resumo

Neste trabalho, consideraremos uma classe de equagdes diferenciais funcionais com retar-
damento e impulsos em tempo varidvel que pode ser identificada, de maneira biunivoca,
com uma certa classe de equagOes diferenciais ordindrias generalizadas e estabeleceremos
resultados de estabilidade uniforme e estabilidade uniforme assintética das solucdes dessas
equagoes através da teoria das equagdes diferenciais ordindrias generalizadas, usando também
funcionais de Lyapunov.






STABILITY OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
VARIABLE IMPULSIVE PERTURBATIONS VIA GENERALIZED
ORDINARY DIFFERENTIAL EQUATIONS

S. AFONSO, E. BONOTTO, M. FEDERSON, AND L. GIMENES

ABSTRACT. We consider a class of functional differential equations with variable impulses
and we establish new stability results which encompass those from [5] and other papers. We
discuss the variational stability and variational asymptotic stability of the zero solution of a
class of generalized ordinary differential equations where our impulsive functional differential
equations can be embedded and we apply that theory to obtain our results, also .using
Lyapunov functionals.

1. INTRODUCTION

Let X be a Banach space and / C R be any interval of the real line. We denote by
G~ (I, X) the space of left continuous regulated functions f : I — X, that is, G~(I, X) is the
set of all functions f : I — X such that, for every compact interval [a,b] C I, f(t—) = f(t)
for each ¢ € (a,b] and the right limit f(t+) exists for each ¢ € [a,b), where

f(t—)=plirg_f(t+p) and f(t+)=pgr§+f(t+p).

The space G~(I, X) is a Banach space when endowed with the usual supremum norm.

We write C(I, X) to denote the space of continuous functions f : / — X. When [ is a
compact interval, we consider the Banach space C(/, X) equipped with the norm induced
by G~(I,X).

Consider Ry = {z € R: z > 0}. We say that b: R, — R, is a function of Hahn class, if

b is monotone increasing and b(0) = 0.
Let » > 0. Given a function y : R — R", we consider y; € G~([-r, 0], R") defined by

y(0) =y(t+46), 0e[-r0,teR.

Then for to > 0 and a function y € G~ ([to — r, +00), R™), we have y, € G~([-r,0],R™) for

all t € [tg, +00).
We consider the following retarded functional differential equation with variable moments

of impulse action

y(t)=Ft),  t# (), 0
Ay(t) =L (y(t), t=m(y(t), k=12,...,
1
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where f(y,t) maps G~([-r,0],R") x R to R", and for k = 1,2,..., Iy maps R" to itself, 7
maps R" to R, and Ay (t) =y (t+) —y (t—) = y (t+) —y (t), for any t € R.

Given ty > 0 and an inicial function ¢ € G~([—r,0],R™), the initial value problem corre-
sponding to equation (1) has the form

y(t) = f (v t), t#7(y(t)), t2to,

Ay(t) == Ik (y(t))a tZTk(y(t))a k= 1,2a'-'a (2)
Yt = ¢
Assume 7o(x) = to, for all z € R™. For each k =1,2,..., consider the set

Sk = {(t,z) € [to, +0o0) x R™ : t = 73,(z) }.

By m(7) we denote the number of times at which the integral curves of system (2) meet the
hypersurface Sk, k = 1,2,.... By t. we denote the i* moment of time at which the integral
curves of system (2) meet the hypersurface Sy, with i =1,...,m(7) and k= 1,2,....

Throughout this paper, we shall consider the following conditions:

(C1) 7 € C(R™, (tg, +00)), k =1,2,...;

(C2) ty < m1(z) < 2(z) < ..., for each z € R™;

(C3) 7k(z) — +o0 as k — +oo uniformly on z € R™;

(C4) The integral curves of system (2) meet successively each hypersurface Si, Sy, ... only

a finite number of times;
(Cs) th <ttt i=1,...,m(r) — 1, forall k=1,2,....

It is clear that system (2) is equivalent to the “integral” equation

v(®) =l + | Flmsdst Y L)

o<t} <t,
i=1,...,m(7y)

Yto = ¢a

when the integral exists in some sense.

Let PC; € G~ ([to — r,+00),R™) be an open set (in the topology of locally uniform
convergence in G~ ([to — 7, +00), R™)) with the following property: if y is an element of PC}
and ¢ € [to, +00), then 7 given by

_ y(t)ito—rgtsi.v
g(t) = _
y(t), t <t<+oo,

is also an element of PC;. In particular, any open ball in G~ ([to — r,+00),R™) has this
property.

We assume that f : G~([—7,0],R") x [to, +00) — R™ is such that for every y € G~ ([to —
7,4+00), R™), the mapping t — f (y;,t) is locally Lebesgue integrable on ¢t € [tq, +00). More-
over, we assume:
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(A) There is a locally Lebesgue integrable function M - [to, +00) — R such that for all
z € PCy and all uy, up € [tg, +00),
/ M (s

/ [ (@) ds| <

(B) There is a locally Lebesgue integrable function L : [to, +00) — R such that for all
z,y € PC) and all uy,uy € [tg, +00),
u2
< [ L@ e - ulas

/u2 [f (xsv 8) - f (ysa 8)] ds

w1

For the impulse operators I, : R - R", k= 1,2,..., we assume:
(A’) There is a constant K; > 0 such that for all k =1,2,... and all z € R™,

[1k(2)| < Ki;
(B’) There is a constant Ky > 0 such that for all k = 1,2,... and all z,y € R",

[1k(z) — Ik(y)| < Kalz —y.

It is possible to prove that, under the conditions above, system (2) is equivalent to a
system of generalized ordinary differential equations which takes values in an abstract space.
A proof of this fact follows the ideas of Theorems 3.4 and 3.5 from [4]. Local existence and
uniqueness of solutions are guaranteed by [3], Theorem 2.1.

In the present paper, we consider system (1) and assume f(0,¢) = 0 and I;(0) = 0, for
k=1,2,..., so that y = 0 is a solution of (1). We also assume that conditions (A), (B),
(A") and (B’) are fulfilled.

The results we obtain here generalize many others. For example, our Theorem 4.4 improves
Theorem 1 from [16]. In the absence of impulses, Theorem 4.4 generalizes [9], Theorem 5.4.1,
for instance. Theorem 4.5 in the sequel improves [16], Theorem 3, [17], Theorem 1, and also
[13], Theorem 3.2. In the absence of impulses, Theorem 4.5 generalizes [9], Theorem 5.4.2,
for instance.

In literature, the usual requirement for f is that f(1,¢) is continuous in 7. In the present
paper, we require that the indefinite integral of f satisfies Carathéodory- and Lipschitz-type
conditions given by conditions (A) and (B). Also the mapping ¢ — f (y;,t) does not need
to be piecewise continuous (see [13], [16] and [17] for instance). We require local Lebesgue
integrability instead.

We start by describing our setting of retarded equations subject to impulse effects at vari-
able times. Then we consider the corresponding class of generalized ordinary differential
equations and we review the stability theory for such a class of generalized equations. By
means of Lyapunov functionals and Lypaunov functions satisfying weak Krasovskii-type con-
ditions and because impulsive retarded differential equations can be regarded as generalized
ordinary differential equations, we are able to obtain our main results.
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2. GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

Let X be a Banach space and consider the set Q = O X [to, +00), where O C X is an
open set. Assume that G : © — X is a given X-valued function defined for all (z, t) € Q.
Having the concept of Kurzweil integrability in mind (see, e.g., [12], [18] or the Appendix),
we recall the concept of generalized ordinary differential equation (see [4] or [18]).

Definition 2.1. A function = : [, 8] — X is called a solution of the generalized ordinary
differential equation

d
— = DG(a,) (3)
in the interval [o, B] C [to, +00) if (z(t),t) € Q for all t € [a, 8] and if the equality

() - ) = | " DG(a(r), 1) 4)

-
holds for every «v, v € [o, 0]

Given an initial condition (7, tg) € 2, a solution of the initial value problem for equation
(3) is given as follows.

Definition 2.2. A function z : [, 8] — X is a solution of the generalized ordinary differ-
ential equation (3) with the initial condition z(tg) = Z, in the interval [, 8] C [to, +00), if
to € [, B], (z(t),t) € Q for allt € [a, B] and if the equality

wlj—F = /t DG(z(), 1) (5)
holds for every v € [a, ).

Now we define a special class of functions G : {2 — X for which we can derive interesting
properties of the solutions of (3).

Definition 2.3. A function G : Q — X belongs to the class F(2, k), if there ezists a
nondecreasing function h : [to, +00) — R such that

1G(z, 52) — G(z, 81)|| < |h(s2) — h(s1)] (6)
for all (z,s3), (z,s1) € Q and
1G(z, 52) — G(z,81) — G(y, 52) + G(y, 1) || < ||z — yll|A(s2) — h(s1)| (7)

fOT' all (1),82), (xasl)a (y,SQ); (yasl) € Q.

Assume that G : Q — X satisfles condition (6) and let var?(z) denote the variation of a
function z : (o, 8] — X. If [a, 8] C [to, +0) and 7 : [@, 8] — X is a solution of (3), then

llz(s1) — z(s2)l| < [h(s2) = h(s1)] (8)
for all s1, s, € [, §], and hence z is of bounded variation on [a, 8] with

var? z < h(B) — h(a) < +oo. 9)
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Furthermore, every point in [c, A] at which the function 4 is continuous is a continuity point
of the solution z : [@, 5] — X and we have

z(o+) = 2(0) = G(z(0),04) = G(z(0),0), for o € [a, f)

and
z(0) — z(0—) = G(z(0),0) — G(z(0),0-), for o € (a, B,
where
G(z,o0+) = sl.i};lﬁ; G(z,s), foro € [a,f)
and

G(z,0-) = lim G(z,s), foro € (a,p].

For proofs of the above statements, see [18], Lemmas 3.10 and 3.12.

Now we present a result on the existence of the integral involved in the definition of the
solution of the generalized ordinary differential equation (3) (see Definition 2.1). This result
is a particular case of Corollary 3.16 from [18].

Lemma 2.1. Let G € F(, h). Suppose [a, 8] C [to,+00), = : [e, 8] — X is of bounded
variation on [a, B8] and (z(s),s) € Q for every s € [, f]. Then the integral ff DG(z(1),t)
exists and the function s — [, DG(z(7),t) € X, s € [, ), is of bounded variation.

The next result we mention for generalized ordinary differential equations (we write gen-
eralized ODEs, for short) with righthand sides in F(Q, h) concerns the existence of a local
solution. For a proof of this fact, see [4], Theorem 2.15.

Theorem 2.1 (Local existence and uniqueness). Let G : Q — X belong to the class F(Q, h),
where the function h is nondecreasing and left continuous. If for every (Z,to) € Q such that
for T, =T+ G(T,to+) — G(T,to) we have (T4,t0) € Q, then there exists A > 0 such that
there ezists a unique solution z : [to, to+A] — X of generalized ordinary differential equation
(3) for which z(to) = Z.

3. SOME CONCEPTS OF STABILITY FOR GODE'’s

In this section, (X, || - ||) is a Banach space and we set Q = B, X [to, +00), where B, =
{y € X : |lyll < c}, with ¢ > 0 and t; > 0. We also assume that G € F(f, k), where
h : [to, +00) — R is a left continuous nondecreasing function, and G(0,t) — G(0,s) = 0, for
t,s > to. Then for every [y,v] C [to, +00), we have

/v DG(0,t) = G(0,v) — G(0,v) =0.

N
Thus z = 0 is a solution of the generalized ODE (3) on [to, +00). Note also that, by (8),
every solution of (3) is continuous from the left. Due to (9), it is natural to measure the
distance between two solutions by the variation norm.
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The next stability concepts were introduced by S. Schwabik in [19] (see also [18]) and are
based on the variation of the solutions of (3) around z = 0.

Definition 3.1. The trivial solution z = 0 of (3) is said to be

(i) Variationally stable, if for every € > 0, there exists 6 = 6(¢) > 0 such that if
T [y,v] = B, tg <y < v < 400, is a function of bounded variation on [v,v] such

that
Izl <o
and .
var? (E(s)— / DG(E(T),ﬁ)) <,
then

[zl <e, te
(i4) Variationally attracting, if there ezists 6o > 0 and for every € > 0, there ezist T =
T(e) > 0 and p = p(e) > 0 such that if T : [y,v] = B, to < v < v < +00, i5s a
function of bounded variation on [7y,v] such that
2N < do

and
vary (53(3) —/ DG(E(T),t)) < p,
then
2@l <&, terun[y+T +00), v 2 to.

(13¢) Variationally asymptotically stable, if it is variationally stable and variationally a-
ttracting.

In the sequel, we turn our attention to direct Lyapunov-type theorems for equation (3).
Such results are borrowed from [18], Theorems 10.13 and 10.14 (see also [19]).

Theorem 3.1. Let V : [tg,+00) x B, = R, where B,={y € X : |ly|| < p}, 0< p <, be
such that V (-, ) : [to, +00) — R is left continuous on (t, +00) for z € X and the following
conditions hold:

(i) V(£,0) =0, t € [to, +o0);
(ii) There is a constant K > 0 such that

]V(t,z)—V(t,y)] SKHZ"y”’ te [t0a+oo), z,yEE;
(iii) There is a function b : [0,+00) — R of Hahn class such that

V(t.2) 2 b(llzll), (¢, 2) € [to, +00) x B,;
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(iv) For all solutions z : [y,v] — B, of (3), with ty <y < v < 400, we have

hmmmVU+nw@+nD—VUwUDSO
n—0+t n

that is, the right derivative of V' along x(t) is non positive.

Then the trivial solution x = 0 of (3) is variationally stable.

Theorem 3.2. Let V : [to,+00) X B, = R, where B, = {y € X : |jy|]| < p}, 0 < p < ¢,
satisfies conditions (1) to (iii) from Theorem 3.1, Suppose there is a continuous function @ :
X — R, with ®(0) = 0 and ®(z) > 0 for z # 0, such that for every solution z : [y,v] — 15
[v,v] C [to, +00), of (3), we have
%4 t - V(t
lim sup L& £ M2+ 1) = VK, ()

n—0+ n

< —®(z(t)), t € [v,v). (10)
Then the trivial solution x = 0 of (3) is variationally asymptotically stable.

4. STABILITY OF IMPULSIVE RFDES

Now we turn our attention to retarded functional differential equations (we write RFDEs)
with variable impulses of type (1). We want to establish stability theorems for these equations
by means of generalized ODEs.

Let ¢ > 0 and consider the impulsive REDE (2), where f : G~ ([—r, 0], R") X [to, to + 0] —
R™, and for every y € G~ ([to — 7, to + 0], R™), t — [ (y;,t) is locally Lebesgue integrable on
t € [to, to + o). If there is a function y € G~ ([to — 7, to + o], R™) such that

(1) 9 (t) = f (w,t), for almost every t € [to,to + o] \ {s € [to,to + 0] : s = Tk(y(s)), k =
1T
(i) ¥ (tH) =y (8) + e W (), t = 7 (u(®)) € i to + 0], k=1,2,... ;

(i) 31, =
then y is called a solution of (2) on [ty — 7, o + o] with initial condition (@, ¢o).

Given y € PC) and t € [to, +00), we define

Oa tO 1 i S ’19 S to,
[ f (yer8)ds, to <t <9 < +oo,
and
+o00 m(Tk) ‘
Iy, )@ =3 > HB)HL(9)k(y(tk), (12)
k=1 i=1

where ¥ € [to — 7, +00) and H} denotes the left continuous Heavyside function concentrated

at ti, that is,
- : 0, for to <t <ti,
Hk(t) = )
1, for t>tj.
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Let G : PCy x [to, +00) — G~ ([to — 7, +00), R™) be defined by

G(y,t) = F(y,t) + J(y, 1) (13)
for y € PC, and t € [to, +00). Then, for s1,s; € [to, +00) and =,y € PC1 we have
|G (z, 52) — G(z, 81)|| < |h(s2) — h(s1)] (14)
and
IG(z, s2) — G(z, 81) — Gy, 52) — G(y, 51)|l < |l = yll|h(s2) — A(s1)], (15)
where
t +00 m(Tk) '
h(t) = / (M(s) + L(s)]ds + max(Kq, K2) Hi(), € [to, +00).
to k=1 i=1

Note that A is a nondecreasing real function which is continuous from the left at every
point, continuous at ¢t # ti and h(ti+) exists for k = 1,2,..., and ¢ = 1,2,...,m(7). For
details, see [4].

By (14) and (15), it is clear that the function G defined by (13) belongs to the class
F(Q,h), with Q = PC) x [to, +0).

Consider the generalized ordinary differential equation

dx

where G is given by (13). The next result gives a one-to-one relation between the solution of
the impulsive RFDE (2) and the solution of the generalized ODE (16) with initial condition
described in terms of the initial condition of (2). A proof of it follows as in [4], Theorems
3.4 and 3.5, with obvious adaptations.

Theorem 4.1 (Correspondence of equations).

(i) Consider system (2), where f : G=([-r,0],R") X [to, to + o] — R™ is such that for
every y € G~ ([—r,0),R™), t — f (y,t) is locally Lebesgue integrable over [tg,ty + o]
and conditions (A), (B), (A"), (B') are fulfilled. Let y(t) be the solution of the
impulsive RFDE (2) on [tg — r,to + o] . Given t € [to, to + o], let

y (@), to—r <9 <L H,
o(t) (9) =
Then z (t) € G~ ([to — 7, to + o], R"™) and z is a solution of (16) on [to,to + o], with
G given by (13).
(ii) Reciprocally, let = (t) be a solution of (16), on [to,to + o], with G given by (13),
satisfying the initial condition
¢(19—t0), to—?"S’ﬁ Sto,
.’E(to)(to), to S 0, S to + 0.

z(to)(¥) = {
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For ¥ € [ty — r,to + o], define

z (to) (9), to—7 <9 <o,
y(9) =
z(9)(9), to <V <ty+o.
Then y is a solution of (2) on [ty — r,ty + 0].
By Theorem 2.1, for # € PC} the condition
T+ =7+ G(Z,th+) — G(Z, 1) € PCy,
is needed, since it assures that the solution of the initial value problem for the generalized
ODE (16) does not jump out of the set PC) immediately after the moment to. However,
in our setting, G is given by (13) and hence G(Z,to+) — G(T,ty) = 0, since ¢y < ti,i =

1,...,m(m),k=1,2,.... Thus ¢y is not a moment of impulse.
In the next lines, we assume that

f(0,t) =0 forall t and I;(0)=0, k=1,2,....

This implies that the function y = 0 is a solution of system (1) on any interval contained in
[to, +00). We also consider the set B, = {¢p € G=([-r,0],R") : ||%| < ¢}, ¢ > 0.
We recall some classic concepts of stability.

Definition 4.1. The trivial solution of (1) is said to be

(i) Stable, if for any to > 0, € > 0, there exists § = 0(e, to) > 0 such that if ¢ € E, and
7 [to — r,v] = R™ is solution of (1) on [to,v] such that §, = ¢ and
18]l <4,
then ‘
”gt(to, ¢)” <g tE€ [t07v]'

(ii) Uniformly stable, if the number § in item (i) is independent of to.

(iii) Uniformly asymptotically stable, if there ezists do > 0 and for every € > 0, there
erists T = T(e) > 0 such that if ¢ € E, and § : [to — r,v] — R™ is solution of (1) on
[to,v] such that j,, = ¢ and

¢l < do,

then
. (to, )|l <&, tE€E [to,v] N [to +T,+00).

We will apply Theorem 4.1 combined with Theorems 3.1 and 3.2 to obtain stability results
for problem (1) under conditions (C1) to (Cs), (A), (B), (4’) and (B’).

Given t > to and a function ¥ € G~ ([-r,0],R™), consider equation (1) with initial condi-
tion y; = 1. This initial value problem admits a unique local solution y : [t —r,v] — R™ with
[t—r,v] C [t—r,+00) (see [3], Theorem 2.1). Then, by Theorem 4.1(4), we can find a solution
z : [t,v] — G~ ([t,v],R") of the generalized ODE (16), with initial condition z(¢) = z, where
#(r)=(r —t), t —r <7 < t,and Z(1) = %(0), 7 > t. Then z(¢)(¢t +0) = y(t + ) for all
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0 € [-r,0] and, hence, (z(t)); = y;. In this case, we write Yi1ny = Ys4x(t,¢) for every n 2 0.
Then for U : [tg, +00) x G~([-,0],R") — R, we define

D+U(t,¢) = lim sup Ut + n:yt+n(ta¢)) — U(t7yt(t1¢))) > to.

n—0+ n

On the other hand, given t > to, if Z € G~ ([t — 7, +00), R™) is such that Z(7) = ¥ (7 — t),
t—r <71 <t and Z(7) = %(0), T > t, there exists a unique solution z : [¢,7] — G~([t,7],R")
of the generalized ODE (16) such that z(t) = Z, with [t,7] C [to, +00). By Theorem 4.1(i7),
there is a solution y : [t — 7,7] — R™ of (1) which satisfies y, = 9 and is described in
terms of z. In this case, we write z,(t) instead of z(t) and we have y,(t,%) = (zy(t)): =
. Consequently, (¢ z4(t)) — (¢, v:(t,%)) is a one-to-one mapping, and we can define a
functional V : [tg, +00) X G~ ([to — 7, +00),R") — R by

V(t, zy(t) = Ut n(t, 9)). (17)
Then we have
V(t+mn,zy(t+n)) — V(L xy(l
DHU(t, ) = limsup L E D 2ult+ 1) = VI 2y(1) (18)
n—0+ n
Remark 4.1. With the previous notation, given t > to, we have ||y:(t, )| = ||zy(t)||, since
lvet, O = llwell = sup [y(t+6)|= sup |y(r)|= sup |zy(t)(7)|
—r<0<0 t—r<rt<t t—r<t<t

sup  [zy(£)(7)] = llz4 (D),

t—r<1t<+00
where we used Theorem 4.1(i1) to obtain the fourth equality.

In the sequel, we consider the sets E, = {y € G~([-r,0],R") : ||y|| < p} and B, = {z €
G~ ([to — 7, +00),R™) : ||z|| < p}, with 0 < p< e

Lemma 4.1. Consider the impulsive RFDE (1), where f : G=([-7,0],R") x [to, +00) — R"
is such that for every y € G~([-r,0],R™), ¢t — f (y:,t) is locally Lebesgue integrable over
[to, +00) and conditions (A), (B), (A"), (B') are fulfilled. Assume that U : [tg, +00) x E, —
R satisfies the conditions:

(i) U(t,0) =0, t € [to, +00);
(i) There exists a constant K > 0 such that
Ut 9) = U, 9)| S Kllp =9I, tE€ lto,+00), ¥,9 € E,.
Then the function V : [to,+00) x B, — R defined by (17) satisfies V(t,0) = 0 for all
t € [to, +00), and
[V(t,2) = V(,2)| < K|z -z,
fort >ty and z,Z € Fp.
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Proof. Given t > t; and 10,@_6 Fp, let y,7,¥ : [t — r,+00) — R™ be solutions of equation
(1) such that y, = ¥, 3§, = ¥ and 7, = 0. Suppose z,Z,7 are solutions on [t,+00) of the
generalized ODE (16) given by Theorem 4.1(4) with respect to 3,7 and § respectively. Then
(z()e =y =9, (Z(t)): =7, =¥ and (2(t)), = 7, = 0. By Remark 4.1, zy(t), z5(t) € B,.
Since [ satisfies (A) and (B) and I, satisfies (A’) and (B’) for k = 1,2,..., then the
function G in equation (16) belongs to F (0, h).
Let V' : [to, +00) x B, — R be given by (17). By condition (i), we have

0=U(t,0) =U(t,7:(t,0) = V(t,Z(t)) = V(¢,0),

since Z(t)(r) = 0 for all 7 (see Theorem 4.1(3)), that is, Z(t) = 0.
By condition (i7), we have

[Vt 2y (1)) = V(ETZO)] = U, 5e(t, %)) = U, 5,4 9))| = U () — U, 9)|-
Then by Remark 4.1, we obtain
[V (t,24(t) = V(E,Z5(1))] < K[y — 3l = Kllzy(t) — Z5()]- (19)
It is clear that g_iven t >toand 2,Z € Ep, there exist solutions z and 7 of the generalized
ODE (16) and %, % € G~([—r,0],R™) such that z = zy(t), (z4(t)): = w(t, %), Z = Ty(t) and
(T5(t))e = 7,(t, %), by Remark 4.1.
Since
191l = llge @ D) = llzp (O = llzIl < p
and
121l = 17 9)ll = IZ50)1 = Izl < p,
it follows by (19) that
V(t,2) - V()] < K|z - 3,
and the result follows. O

Remark 4.2. The next two results, namely Theorem 4.2 and Theorem 4.8, are Lyapunov-
type theorems for the impulsive RFDE (1) and they are analogous to Theorems 4.8 and 4.9,
from [6]. Such results from [6] concern the uniform stability and the uniform asymptotic
stability for a class of RFDFEs with pre-assigned moments of impulse action. Qur results
concerns the uniform stability and the uniform asymptotic stability for a class of retarded
differential equations with variable moments of impulse action. It is important to note that,
in [6], the authors consider a functional U : [0,400) x G~([-r,0],R™) — R with respect to
the impulsive RFDE (1) and a functional V : [0, 4+00) X G~ ([—r, +00), R™) — R with respect
to the generalized ODE (16) and U and V are related by the equality

V(t, T) = U(t,ﬂ;t))

fort >0 and z € G~ ([—r,+00),R"). In the present paper, we relate U and V by (17). Also,
in [6], it was assumed that

U(t,ye) 2 b(llyl),  t € [-r,+00),y € B,, (20)
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where b is a function of Hahn class. Here, we replace condition (20) by the weaker condition
U(tw) 2 b([]), ¢ € [to—7,+00),% € By, (21)

where to > 0. The proofs of Theorems 4.2 and 4.3 were carried out following the ideas of
the proofs of Theorems 4.8 and 4.9 from [6], respectively. We include these proofs using (21)
instead of (20) for the sake of completeness and self-containedness of the paper.

Theorem 4.2. Consider the impulsive RFDE (1). Suppose conditions (A), (B), (A), (B')
are fulfilled. Let U : [to, +00) x E, — R be left continuous on (to, +00) and assume the next
conditions hold:

(i) U(t,0) =0, t € [to, +00);
(i) There is a constant K > 0 such that
Ut 9) - UtP)| <Kl =9, t€lto,+00), ¥,% € E,;
(iii) There is a function b: R, — Ry of Hahn class such that

U(¢,9) > b(ll#l),
forallt > tg and all Y € E,,;
(iv) The inequality
DtU(t,4) <0
holds for each t >ty and each ¢ € E,.
Then the trivial solution y = 0 of (1) is uniformly stable.
Proof. Since f satisfies (A) and (B) and Ij satisfies (A’) and (B') for £k = 1,2,..., the
function G in equation (16) belongs to F(, k).
Let V : [tg, +o0) x B, — R be given by (17). By Lemma 4.1,
V(¢,0)=0, for tE€ [t,+00)
and
|V(t,z) =V (t,Z)| < K||z—7Z||, fort€ [ty,+00) andz,% € B,.

By Remark 4.1 and condition (i), given t > tq, we have

b(llzy () = blllwell) < U, elt, ) = V(¢ 2y (t))

for the solution y of (1) satisfying y, = 9. Then by previous arguments (see Lemma 4.1),
we have

V(t z) >b(z), z€B,.

Finally, condition (iv) above clearly implies condition (iv) from Theorem 3.1 and, there-
fore, the hypotheses of Theorem 3.1 are fulfilled. Hence the solution z = 0 of the generalized
ODE (16) is variationally stable. Thus if for every € > 0, there exists § = ¢(g) > 0 such that
if 7 : [y,v] = B,, tg <7 < v < +00, is a function of bounded variation on [y, v] such that

[zl <6
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and ‘
var? <E(s) - / DG(F(r), t)) <4,
vy
then
B 2@l <e, tely). (22)
Let ¢ € E, and § : [ty — 7, +00) — R™ be a solution of (1) with Uy, = ¢. Suppose
6]l < 6. (23)
We want to prove that
[7:(to, D)l <&, € [to, +00). (24)

Let us denote 7, = 7,(to, ¢) and define
y(r), to—r <7<,

z(0) (r) = { b

By Theorem 4.1, Z(t) is a solution on [ty, +00) of the generalized ODE (16) satisfying the
initial condition Z(¢y) = Z, where

(25)

o~ _ ¢(7—_t0)a tO_TSTStO)
)= { $(0), 7> 0. @)

Moreover, 7 is of bounded variation on [tg, +00).

By (26) and (23), we have

[Z(t)ll = sup  |E(7)] = [I¢]l < 4. (27)

to—r<7T<+00
Besides,

varl (E(s) = / s DG(E(r),t)) —0<5é (28)

to
Therefore (22) holds, that is, ||Z(¢)|| < € for all ¢ € [to, v], where v € [to, +00). In particular,
|z(v)|| < e. Hence (25) implies that for any ¢ € [to,v], we have

17:(to, &)l = T/l = sup [F(t+6)< sup [7(7)]
—-r<60<0 to—r<T<v
= sup [Z()(7)[= sup [ZT(v)(7)] (29)
to—r<r<v to—r<T<+400
= [zl <e.
Thus (24) holds and the proof is complete. O

Theorem 4.3. Consider the impulsive RFDE (1), where conditions (A), (B), (A"), (B') are
fulfilled. Assume that U : [tg, +00) x E, — R satisfies conditions (i) to (iii) from Theorem
4.2. Suppose there is a continuous function A : Ry — Ry satisfying A(0) = 0 and A(z) > 0
if T # 0, such that for every ¢ € E,,

DUt ) < =A(l¥l), t2to. (30)
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Then the trivial solution y = 0 of (1) is uniformly asymptotically stable.

Proof. We assume the notation of the previous theorem.

Suppose V : [to, +00) x B, — R is given by (17). Then the hypotheses of Theorem 4.2
are fulfilled.

Let @ : B, — R be defined by ®(2) = A(]|z]]), for z € B,. Then @ is continuous, ®(0) =0
and ®(z) > 0 whenever z # 0.

Assume that z : [t,+00) — B, is a solution of (16) such that (z(t)): = ¥, where t €
[to, +00) and ¢ € E,, and suppose y : [t — r,+00) — R" is the solution of (1) given by
Theorem 12(44) such that y, = 1. By (30), we have

lim sup V(E+m gt +2)) — V(t,zy(t)) = D*U(t,u(t, %)) =
n—0+

= DFU(t, ) < =A(ll9ll) = —AllylD)-

But

lyell = llzw (D)1,
by Remark 4.1. Therefore,

nm?pv“+””“‘+?>"v“”“”)s—AmmD=—Amw@m>=—@mum

and the hypotheses of Theorem 3.2 are satisfied. Hence z = 0 is variationally asymptotically
stable, that is, there exists d; > 0 and for every ¢ > 0, there exist 7 = T'(¢) > 0 and
p = p(¢) > 0 such that if T : [y,v] = B, to < v < v < 400, is a function of bounded
variation on [vy,v] such that

[Z(V)l < do (31)
and \
var® (E(s) _ /7 DG(E(T),t&)) o (32)
then
7@l <&, t€ ol +Tkoo), 72 to (33)

Given e > 0, let 69 > 0 and T = T'(¢) be as above. Let ¢ € E,, and 7 : [{g — , +0c0) — R™
be the solution of (1) such that 7, = ¢ and assume

6]l < do. (34)

We want to prove that
17:(t0, 9)|l <&, ¢ € [to+T,+00). (35)
But this is immediate by the proof of Theorem 4.2. By (34), we obtain (31) as in (27). Also,

as in Theorem 4.2, we have (28) and hence (32) follows. Finally (35) holds, since we have
(29) as in Theorem 4.2 and because of (33). : O
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Now, we consider Lyapunov functions U : [t — 7, +00) x R — R and establish new
stability results for the trivial solution of the impulsive RFDE (1). We deﬁne the derivative
of U along the solutions of (1) by

D*U(t, y(¢)) = limsup Ut +n,y(t+nt,9)) - Ut y(tt,9))
70+ n
where y(s,t,9) is the solution of (1) which satisfies y, = 1, with Y € G~([-r,0,R").
Note that we can write D*U(t,4(0)) instead of D¥U(t,y(t)), since given an initial function
¥ € G=([-r,0],R") and ¢ > to, there exists a unique solution of (1) which satisfies y; = ¥
and, therefore, y(t) = 1(0) (see [3], Theorem 2.1).

Theorem 4.4. Consider the impulsive RFDE (1). Assume that conditions (A), (B), (A"),
(B') are fulfilled. Suppose U : [to —r,+00) x R* — R is left continuous on [t —r, +00), the
limits

) tzth

‘U(t_)y(t_)) = lirflvU(s,y(s)), t € [to — 1,+00)
. o4
and
U y(t4) = lim Uls,(s)), ¢ € lto =7 +o0),
exist with U(t—,y(t—)) = U(t,y(t)) satisfied, where y € G~([ty — r,+00),R™). Suppose U
fulfills the following conditions: :
(i) U(t,0) =0, t € [tg — T, +00);
(if) For each a > 0, there is a constant K, > 0 such that
|U(t,z) — U(t,y)| < Kallz =y, t €to—7,+00) and z,y € By,
where B, = {z € R": ||2|| < a};
(iii) There is a function b : Ry — R, of Hahn class such that
Ut y(t)) = b(]lwell)
for any y € G~([to — 7, +00),R™), t € [to, +00);
(iv) There is a function A : Ry — Ry such that
D*U(t,%(0)) < =A(l¥0))  if U+6,%(8)) < U %(0))
for t € [to, +00), 8 € [-7,0] and ¢ € G~([-r,0],R"™).
Then the trivial solution y = 0 of (1) is uniformly stable.

Proof. For s >ty and € € E,, let us define

U(s,§) = aes[lilr)o] U(s+6,£(0)). (36)

It is clear that U(s,0) = 0 for all s > to.
Given t > to and ¥ € E,,, consider y : [t —r,+00) — R™ a solution of (1) such that Y =1

Note that by (8), the solution z of (3) corresponding to (1) is continuous from the left and
so is y. This fact can be easily seen by the relations between the solutions y and z given
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in Theorem 4.1. Therefore the assumptions of the present theorem imply that the function
U(s,y(s)) is continuous from the left for s in the interval where the solution y is defined.
By (36), we have

U(t.9) =Tltw) = sup U(t+0,y(t+0) - (37)
fe [-1,0 »
We will show that DU (t,v) = D*U(t,y:) < 0.

Let
R(t)={U(t+0,y(t+0)):0¢€[-r0]}.

We will consider two cases: when U(t,y;) belongs to R(t) and otherwise.

Suppose U(t,v;) belongs to R(t). Then there is a 6 € [—r,0] such that U(t + 6o, y(t +
80)) = Ul(t, ). If 6o = 0, then U(t,y:) = U(t,y(t)) which implies, by condition (iv), that
D*U(t,y:) < 0. If 6y < 0, then U(t +0,y(t +6)) < U(t + o,y (t + o)) for all o < 6 <0 by
(37) and by the choice of fp. Then for all & > 0 sufficiently small with h < [fo|, we have

Ut + hyYeen) = ) s[up()] Ut+h+0,yit+h+06))
el-r,

= U(t+060,y(t+60)) =U(t, %)

and hence D*U(t,y;) = 0.
Now, we consider the case where U(t,y;) does not belong to R(t). In this case,

Ult,y) > U(t+6,y(t+9)), g € [—r,0],

and there is a convergent sequence {f,}nen in [—7,0], with § = liT 6., such that
n—-1+0oo

U—(t, yt) = nli»I-Poo U(t o Hm y(t + gn))

Suppose there are countably many @,,’s such that 0, < 9. Then

Ut ye) = Hm U(t+0n,y(t +6n,)) = Ut + 6,y(t+9))

which is a contradiction, since 0 € [-r,0] and in such a case U(t,y;) € R(t). This reasoning
also shows that & < 0. Therefore we may assume that § < 8, < 0, for all n, and hence

Ult,ye) = U((t+8)+,y((t +6)+).
Thus, for all A > 0 sufficiently small with A < ||, we have

U(t+ h,y+n) = s[up ]U(t+ h+0,y(t+h+0))
e [-r,0

= U(t+0)+y((t+8)+) =TU(t,u).
Hence D*U(t,y.) = 0.
Now, we assert that U satisfies condition (ii) of Theorem 4.2. Indeed. Consider ¢ > .

Given 12,?5 € E,, let 3, 7 be solutions of (1) such that 7, = 12)\, 7, = 1. With the above
notation, we have
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Ut ) =U(t, %) = U(t+ 05,5t + 05)) or

U(t, %) = U 3) = U((¢ +8)+,5((t + 05)+))
and
(t 7,/)) (z‘ 7,) =U(t+ Ha,y(t +05)) or

Ut,¥) =U(t,5) = U@+ 85)+,5((¢ + 5)+)),

where 9 , 07 and 61/)’ (911, correspond respectively to 6, and @ for the functions ¢ P e E,,
Consxder B,={z € R": |z|| < p} and B, = = {z € R": ||z|| < c}, where p < c. Since
U((t+ 03 3+ B(E+ 85 2)+)) and U((t + 05)+,7((t + 65)+)) exist, condition (i7) implies

U, $) U9 = [ULT) -5
= | sup U(t+6,9(t+06))— sup U(t+0,7(t+0))
o€ [-r,0] 0e [-r,0]
2 s[up]IU(t+9,17(t+9))—U(t+9,U(t+9))l
e [—-r,0
< K. sup [y(t+0)-7(t+0)|
6e[-r,0]

= K-l = Kellv -],
since Y(t + 6),Y(t + 6) € B, for all § € [-r,0], and B, C B.. Furthermore, we have

U, %) =T(t,5) 2 Ut y()) = b(llwel)) = b(llwl)),

by the definition of U and by condition (44).
Thus all conditions of Theorem 4.2 are satisfied for U and hence the solution 7 = 0 of (1)
is uniformly stable. O

Theorem 4.5. Consider the impulsive RFDE (1). Assume that conditions (A), (B), (A'),
(B') are fulfilled. Let U : [to—r1,+00) x R™ — R be a left continuous function on (to—1, +00)
and assume that the limits

U(t—)y(t_)) . sll‘rfl_ U(s,y(s)), t e [tO =T, +OO),

and
Ult+,y(t+) = lim U(s,u(s)), £ € lfo—r,+00),
ezist with U(t—,y(t=)) = U(t,y(t)) satisfied, where y € G~([to — 7, +00),R™). Suppose

conditions (1), (i4) and (iii) of Theorem 4.4 are satisfied and there is a function d : Ry — Ry
of Hahn class such that for every solution y of (1), we have

N U(s+6,y(s +6)) < d(ly(s)]), (38)
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where s > to, with d(f) > b(t), for every t > 0. Assume, in addition, that there is a function
A : Ry — R, which satisfies A(0) = 0 and A(z) > 0, if  # 0, and there 1s a continuous
nondecreasing function p(s) > s for s > 0 such that

DYU(t,%(0)) < =A(1p(Q)) o U(t+6,%(6)) <p(U(E$(0)), (39)

for 6 € [-r,0], t € [to, +00) and ¢ € G~([~r,0],R™). Then the trivial solution y =0 of (1)
is uniformly asymptotically stable.

Proof. This proof follows some ideas presented in the proof of Theorem 5.4.2 in [9].
If we define
U(s,€) = sup U(s+0,£(9)), (40)
e [-r,0]
for s > tg and £ € E,,, then the trivial solution y = 0 is uniformly stable, by repeating the
arguments used in the proof of Theorem 4.4.
Let tp > 0 and ¢ € E,. Let ¥ : [to — r,+00) — R" be a solution of (1) which satisfies
Ty, = ¢ We write 7(t) = 7(t, to, ¢) to denote this solution.
Set 7, = U,(to, ¢) for t > to, and let € > 0. Since the solution y = 0 is uniformly stable,
there is § > 0 such that if ||¢|| < 4, then ||7,(to,¢)|| < €. Note that ||¢|| < ¢ implies
U(t,3(t)) < d(e), for every t € [to, +00), since

Uty(t) < sup U(t+6,7(t+0)) < d(lg®)ll) < d(llz.l) < dle), (41)

6¢e [-r,0]
where d is an increasing function.

Suppose 0 < n < ¢ is arbitrary. We will show that there exists a number T = T'(e,n) > 0
such that ||@|| < ¢ implies ||7,|| < 7, for all ¢t € [to + T, +00). This will be true if we show
that U(t,7(t)) < b(n), for all t € [to+ T, +00), where b is given by condition (¢24) of Theorem
4.4.

At first, let us find the number 7. By the properties of the function p(s), there exists a
number o > 0 such that p(s) — s > o for b(n) < s < d(e) (note that b(n) < b(e) < d(e)).

Let IC be the first positive integer such that b(n) + Ka > d(e). Since b(n) < d(e), we have
d=1(b(n)) < e. Let

= inf
g d‘l(bgll))ssssA(s) >0
and define
T:= @@-
g
Now, we will show that U(t,7(t)) < b(n), for all t € [ty + ﬂ;—),-i—oo). We assert that

U(t,5(t)) < b(n)+(K—1)a, forall t € [tm—%,-{—oo). Indeed. Assume that b(n)+(K—1)a <

U(t,y(t)), for t € [to + ﬂﬁﬂ, +00). By the choice of K and (41), we have
b(n) < b(n) + (K — 1o < U(¢,7(t)) < d(e) (42)
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and
pU () 2 U(LF() + o > b(n) + Ko > d(e) > Ut + 6,5(t + 6)),
for tp <t <ty + % and 6 € [~r,0]. Note that (41) and (42) imply

d=(b(n)) < d7(@(IF(B)I)) < d7 (d(e)),
that is,
a7 (b(n)) < [g(1)|l <&,
where tg <t <ty + 51%. Consequently, by (39), we get
d(e)

DrUg() < —A([FHI) < ~B, to<t<to+ v

Thus,

U(t1,5(t)) < Ulto,T(to)) = Btr ~ to) < d(e) — Blts — Lo)
and U(t1,7(t1)) < 0, where t; = ty + ﬂﬁﬂ, which is a contradiction, since we have the
positiveness of U. Hence,

d
U 7(0) < o)+ (€ = D, £ =10+ 2.

Note that, when U(¢,%(t)) = b(n) + (K — 1)a, we have DTU(¢,5(t)) < 0, because of (39),

since b(n) < U(t,y(t)) = b(n) + (K — 1)a < d(e). Hence
p(U,7() =2 UR,Y(E) + = b(n) + Ka > d(e) > U(t +6,7(t + 6)),
for 6 € [—r,0].

Now, suppose there exists ¢ > ¢y + % such that U(t,7(¢)) > b(n) + (K — 1)a. Then
D*U(t,g(t)) > 0, for ¢ such that U(t,%(t)) = b(n) + (K — 1)a, which is a contradiction. It
is important to note that if ¢ = ¢}, the same contradiction applies.

Let £, = "dl'ge), n=1-,K, % =0 and assume that for some integer N > 1 and for ¢
satisfying t,_, <t — ty < I,, we have

b(n) + (K- N)a < U(t,7(t) <b(n) + (K- N+1)a.

Using the previous arguments, we get

DU FE) < -8, TwaSt—-to<in
and
UL, 5(t) < U(to + tno1, Ylto + Tn1)) — Bt — o — Tai1) < d(€) — B(t — to — Tne1).

Thus U(t,y(t)) < 0, whenever ¢ = ¢y + ¢,. Analogously, one can prove that U(t,y(t)) <
b(n) + (K — N)a, for t > to +In. For N = K, we have U(t,(t)) < b(n) for all ¢t > to + X4,
Finally, since

b([[7.ll) < U(t,3(2) < b(n),
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and b is an increasing function, we have ||7,|| < n, for all ¢ > to + Mlﬁﬂ, and the proof is
complete. d

5. FINAL COMMENTS AND REMARKS

Consider the framework presented in Section 1.
Many problems in physics, mechanics, electronics, biology, economics, medicine, pharma-
cokinetics and several other sciences can be modelled as special cases of system

'ZJ (t) = f (yt)yat)a t ?‘L' Tk(y(t))> t 2 to,

Ay (te) = I (y(t)), t = m(y(®), k=1,2,...,
£(0,0,) =0, [(0) =0, k=1,2,...

Yto = ¢

and yet stability results similar to Theorems 4.4 and 4.5 hold. Such results can be easily
accomplished. Indeed, in case of system (43), it is enough to replace (11) by

(43)

0, to - T < 7_9 < to,
F(y’t) (19) = fto ys, )dS to <V <t<+o0,
fto (Vasy(8);8)ds; tp <E <Y < to0,

and to consider equation (12) so that equations (43) and (3) are equivalent for G given by
(13). The proof of this fact follows as in [4], Theorems 3.4 and 3.5 applying the observations
in the last section of [4].

In the particular non impulsive case (i.e., when I(z) = 0), there are a number of problems
modelled by particular forms of v (t) = f (y:,v,t). In population dynamics, for instance, we
can mention the well-known Lasota-Wazewska model

N'(1) = —pN(t) + o=,
the Nicholson’s blowflies equation
N'(t) = =3N(t) + pN(t — r)e”eNt=)
and the Nazarenko’s equation

gz (t)

Q?’(t) = —pzc(t) + m

See, e.g., [1], [7], [8], [11], [15]. However all such problems can be considered as being
subject to variable moments of impulse effects (or controls). Therefore it is important to
have stability results for such equations.

One can consider, further, that the delay in equation (43) is variable, that is 7(t) is a
function of ¢ satisfying /() < A < 1. In this case, we consider G~ ([—(t), 0], R™) instead of
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G~ ([~r,0],R") and all other appropriate changes. Also F (y,t) is given by
0, to—r()<19§to,
Fly,t) ()= fto (Ys,y(s),s)ds, to <9 <t< +oo,
f:o (Ys,y(s),s)ds, to<t< VI < 4oc0.
In the particular case of the dlﬁerentlal—dlfference system 7 (t) = f (y(t —r(t)),y(t), 1),
t # ti, we define
0, to—r(t) <9 < to,
F(y,t) (9) = ;Zf(y(s—?"(b’)), (s),8)ds, to <Y<t < oo,
fto y(s —7(s),y(s),8)ds, to <t <Y< +oo0.

Then extensions to the case where several delays are present can be obtained similarly.
Consider the general delayed neural network

n n
U= —cyi(t) + ) aigi(y; (D) + D by f(ys(t — ry () + Hi(®), i=1,2,...,n, (44)

j=1 =1
where ¢; > 0, 0 < r;;(t) < r. Equation (44) describes the evolution process of the neural
networks, where n corresponds to the number of units in the neural networks, v; corresponds
to the state variable, f;(z;),g;(z;) are activation functions of the neurons, ¢; is the neu-
ron changing time constant, a;;,b;; are the weights of the neuron interconnections, H; is
the internal bias, and r;;(t) is the transmission delay. In particular, equation (44) encom-
passes models as the Hopfield neural network, bidirectional neural networks, cellular neural
networks, recurrent neural networks, etc. See, e.g., [2], [10], [14], [20] and [21].

By appropriate transformations, equation (44) can be formulated in a form like 7 (t) =
fly(t=r1(8), y(t — 2(8)), y(t — 3(t)),y(t), t), but with several delays r;;(¢), and similar
results as Theorems 4.4 and 4.5 hold for this kind of system when it undergoes abrupt
changes at fixed moments or variable moments as in (43).

6. APPENDIX

In this part of our paper, we present the concept of integrability Kurzweil.
A tagged division of a compact interval [a,b] C R is a finite collection

{(Ti, [Si—la S,’]) = 1, 2, ey k}} ’
where a = 59 < 57 < ... < s, = b is a division of [a,b] and 7; € [s;-1,8],1=1,2,...,k.
A gauge on [a,b] is any function d : [a,b] — (0,+00). Given a gauge ¢ on [a, D], a tagged
division d = (7, [si-1, 8i]) of [a,b] is d-fine if, for every 1,
[si-1,85] C{t€[a,b]: [t—7n| <d(m)}.
Let X be a Banach space. Now, we define the type of integration which belongs to Jaroslav
Kurzweil.
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Definition 6.1. A function U (7,t) : [a,b] X [a,b] — X is Kurzweil integrable over [a,b], if
there is a unique element I € X such that given € > 0, there is a gauge d of [a,b] such that
for every é-fine tagged division d = (i, [si—1,8:]) of [a,b], we have

IS (U,d) = I]| <e,

where S (U,d) = X, [U (7i, 8i) — U (7, 8i-1)]. In this case, we write I = fab DU (,t) and use
the convention f: DU (r,t) = — [, DU (7,t), whenever b < a.

The Kurzweil integral was described extensively in Chapter I of [18] for the case X = R"
(see Definition 1.2 in [18]).

It worths mentioning that the Kurzweil integral is linear, additive on disjoint intervals and
emcompasses the known Perron-Stieljs integral as well as its improper integrals. For more
properties, the reader may want to consult [18].
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