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Abstract We use a canonical quantization procedure to obtain the quantum Fokker–Planck equation for
a system of interacting particles, which can be either bosons or fermions. Based on this equation, we
develop a quantum stochastic thermodynamics of equilibrium and nonequilibrium systems. The approach
is applied to a system in contact with two reservoirs of heat and particles from which we determine the
entropy production rate, as well as the heat and particle fluxes. When applied to noninteracting systems,
we obtain the usual expression for the mean occupation number for bosons and for fermions.

1 Introduction

The distinguishing feature of stochastic thermodynam-
ics [1–9] is the use of a dynamics that is stochastic in
nature. If the space of states is continuous, this dynam-
ics is well described by the Fokker–Planck (FP) equa-
tion [10, 11] which governs the time evolution of the
probability density. When applied to a system of inter-
acting particles, the FP equation is capable of describ-
ing the states out of thermodynamic equilibrium as well
as the thermodynamic equilibrium [1]. If the system to
be studied is a quantum system, we need a quantum
version of the FP to represent the stochastic dynamics.
One way of reaching the quantum version is by means
of canonical quantization [12].

The canonical quantization procedure that we use
here led us to a quantum FP equation which can be
understood as the quantum Liouville plus a term asso-
ciated to quantum dissipation. Other approaches to a
quantum stochastic equation with this structure have
been devised [13–24] such as that proposed by Lindblad
[13] and that by Caldeira and Leggett [19, 20].

We set up a quantum FP equation using a represen-
tation in terms of the creation and annihilation oper-
ators that is appropriate for a systems of bosons and
fermions. We start with a Langevin equation written
in terms of complex conjugate dynamic variables from
which we find the associated FP equation. This equa-
tion is written in a canonical form from which we get
the quantum FP equation by a canonical quantization.
The resulting equation for a system with one degree of
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freedom has the following structure

i�
∂ρ

∂t
= [H, ρ] − [a, J†] − [a†, J ], (1)

where ρ is the density operator, H is the Hamiltonian, a
and a† are the annihilation and creation operators, and
J is the current associated to the density operator. The
appropriate form of J is found by imposing the con-
dition that in thermodynamic equilibrium, the system
is described by the Gibbs state. This condition guaran-
tees that the usual expressions for the mean occupation
number of bosons and fermions are obtained for a sys-
tem of non-interacting particles.

After setting up the quantum FP equation for one
degree of freedom, we generalize the equation for several
degrees of freedom, which is appropriate for a system of
interacting particles. Based on this quantum equation
we develop the quantum stochastic thermodynamic for
boson and fermion systems in equilibrium and out of
equilibrium. This includes the definition of the rate of
entropy production and of the heat and particle fluxes.

We apply the formalism developed here to the case of
a system in contact with two reservoirs of heat and of
particles at distinct temperatures and chemical poten-
tials. We determine the heat and particle fluxes through
the system at the stationary state as well as the rate
of the entropy production. The corresponding Onsager
coefficients are also determined.
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2 Complex conjugate variables

The equations of motion associated to a classical sys-
tem with one degree of freedom under the action of a
conservative force are given by

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂x
, (2)

where q and p are the canonical variables and H is the
Hamiltonian, which is a real function.

Instead of the conjugate variables q and p, we may
use another pair of variables that are obtained by a
canonical transformation. Here we use a peculiar canon-
ical pair of variables, denoted by a and a∗, that are com-
plex conjugates of one another [25]. They are obtained
from the real q and p by the transformation

a = c1q + ic2p, (3)

where c1 and c2 are real, and c1c2 = 1/2. Using
this transformation, the two equations of motion are
reduced to just one complex equation of motion

i
da

dt
=

∂H

∂a∗ , (4)

where the Hamiltonian H is a real function of a and a∗.
A Langevin equation of motion is set up by adding a

dissipation and a fluctuation term to Eq. (4),

i
da

dt
=

∂H

∂a∗ − iγg + iζ, (5)

where the term γg represents the dissipation, γ being
its strength, and ζ = ζ1 + iζ2, where ζ1 and ζ2 are inde-
pendent stochastic real variables with equal variances
proportional to Γ.

From the Langevin equation we derive the associ-
ated FP equation that governs the time evolution of
the probability density ρ. Using standard procedures
[11], the resulting FP equation is

i
∂ρ

∂t
=

∂H

∂a

∂ρ

∂a∗ − ∂H

∂a∗
∂ρ

∂a

+ i
∂

∂a
(γgρ +

Γ
2

∂ρ

∂a∗ ) + i
∂

∂a∗ (γg∗ρ +
Γ
2

∂ρ

∂a
).

(6)

Defining the Poisson brackets by

{A,B} =
∂A

∂a

∂B

∂a∗ − ∂A

∂a∗
∂B

∂a
, (7)

the FP equation can be written as

i
∂ρ

∂t
= {H, ρ} − {a, J∗} − {a∗, J}, (8)

where J is the probability current, given by

J = iγgρ + i
Γ
2

{a, ρ}. (9)

To determine g , we assume that the stationary solution
of the FP equation is the Gibbs distribution given by

ρ0 =
1
Z

e−βH , (10)

where β = 1/kT , and T is the temperature. More pre-
cisely, we are supposing that the FP equation describes
a system in contact with a heat reservoir at a tempera-
ture T . The Gibbs distribution is a stationary solution
if J(ρ0) = 0. Choosing Γ = 2γ/β, we find

g =
∂H

∂a∗ , (11)

and the probability current (9) becomes

J = iγgρ + i
γ

β
{a, ρ}. (12)

The last term of J is the stochastic or noise term since
it comes from the noise term of the Langevin equation

3 Quantum Fokker–Planck equation

The canonical form (8) of the FP equation is suitable
for the canonical quantization, which is carried out by
replacing a classical variable A by an operator Â acting
on a Hilbert space and by replacing the Poisson brack-
ets {A,B}qp by the commutator [Â, B̂]/i�, where � is
the Planck constant. By this procedure, the relation
{a, a∗}q,p = −i would give [â, â†] equal to �. However,
as we wish this commutation to be equal to unity, that
is, [â, â†] = 1, we use a rule in which a is replaced with
â
√

� and a∗ with â†
√

�.
This rule is valid as long as we are using a represen-

tation in terms of real canonical variables such as the
position q and momentum p. If we are using a repre-
sentation in terms of the complex canonical variable a
and a∗, then the appropriate procedure is to replace the
Poisson brackets {A,B} as defined by (7), with [Â, B̂]/�

because {A,B} = i{A,B}q,p.
Using the procedure just explained, we are led to the

following equation for the time evolution of the density
operator ρ,

i�
∂ρ

∂t
= [H, ρ] − [a, J†] − [a†, J ], (13)

where H is the Hamiltonian, and J is given by

J = iγgρ +
iγ

β
[a, ρ]. (14)
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We have also replaced g with g/
√

� and have dropped
the hats. The operator a and its adjoint operator a† are
interpreted as the annihilation and creation operators,
respectively, and a†a is the number operator. As the
last term in (12) is the noise term, the last term of (14)
is the quantum noise term.

To find the operator g , we suppose that the station-
ary state is given the Gibbs density operator

ρ0 =
1
Z

e−β(H−μa†a). (15)

The Gibbs density operator (15) describes a system in
contact with a heat reservoir at a temperature T and in
contact with a particle reservoir at a chemical potential
μ. The condition J(ρ0) = 0 gives

g =
1
β

(e−β(H−μa†a)aeβ(H−μa†a) − a). (16)

The extension of the quantum FP Eq. (13) to the case
of several interacting particles is given by

i�
∂ρ

∂t
= [H, ρ] −

∑

j

([aj , J
†
j ] + [a†

j , Jj ]), (17)

where

Jj = iγj

(
gjρ +

1
βj

[aj , ρ]
)

, (18)

and γj and βj = 1/kTj are parameters. The operator
gj is defined by

gj =
1
βj

(e−βjHjaje
βjHj − aj), (19)

where Hj = H − μjN̂ , and

N̂ =
∑

j

a†
jaj (20)

is the total number of particles operator. The operators
ai and a†

i represent the respective annihilation and cre-
ation of a particle in a one-particle state labeled by the
index i . If we consider particles hopping on the sites of
a lattice, the index i denotes a site of the lattice, and
ai and a†

i annihilate and create a particle at the site i ,
respectively.

The quantum FP Eq. (17) is understood as describ-
ing a system in contact with several heat and particle
reservoirs characterized by temperatures Tj and chemi-
cal potentials μj . The parameter γj is understood as the
strength of the contact of the system with the reservoir
j .

If the temperatures are the same, Tj = T , and the
chemical potentials are the same, μj = μ, then the sta-
tionary state is described by the Gibbs density operator

ρ0 =
1
Z

e−β(H−μN̂). (21)

This distribution leads to the vanishing of the term
[H, ρ0] and of each current Jj , and thus represents not
just a stationary state but a state of thermodynamic
equilibrium. Indeed, in this case,

gj =
1
β

(e−β(H−μN̂)aje
β(H−μN̂) − aj), (22)

which can be written in the equivalent form

gjρ0 +
1
β

[aj , ρ0] = 0, (23)

from which we immediately see that Jj(ρ0) = 0.
The quantum FP Eq. (17) is understood as appro-

priate for a collection of interacting particles. Up to
this point we have not specified for which type of par-
ticles the equation is valid. We will show now that the
equation is appropriate for bosons as well as fermions.
Bosons obey the commutation relations [ak, a†

�] = δk�

and [ak, a�] = 0. To verify that these relations are
indeed preserved by the quantum FP equation, we first
determine the time evolution of the average

〈F 〉 = TrFρ (24)

of any operator F . From the quantum FP Eq. (17), we
find

i�
d

dt
〈F 〉 = 〈[F,H]〉 + i

∑

j

γj〈g†j [F, aj ] − [F, a†
j ]gj〉

− i
∑

j

γj

βj
〈[[F, aj ], a

†
j ] + [[F, a†

j ], aj ]〉. (25)

If we replace F with [ak, a†
�], we see that both sides of

Eq. (25) vanish. The same can be said if we replace F
with [ak, a�].

Fermions obey the anti-commutation relations aka†
�+

a†
�ak = δk� and aka� + σa�ak = 0. To verify that the

anti-commutation relations are preserved by the quan-
tum FP equation, we replace F with aka†

� + a†
�ak. We

see that both sides of Eq. (25) vanish. The same can be
said if we replace F with aka� +σa�ak. This shows that
the quantum FP Eq. (17) is valid not only for bosons
but also for fermions.

For convenience, we write down the commutation
relation for bosons and the anti-commutation relation
for fermions in the form

aka†
� − σa†

�ak = δk�, (26)
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aka� − σa�ak = 0, (27)

where σ = 1 for bosons and σ = −1 for fermions.

4 Quantum stochastic thermodynamics

Let us determine the time evolution of the energy E =
〈H〉 and of the average number of particles N = 〈N̂〉.
From the quantum FP equation we find

dE

dt
= Φe =

∑

j

φe
j , (28)

where

φe
j = − 1

i�
Tr([aj , J

†
j ] + [a†

j , Jj ])H, (29)

which can be written as

φe
j =

1
i�

Tr([aj ,H]J†
j + [a†

j ,H]Jj). (30)

In this form we see that it is understood as the flux of
energy from the j reservoir to the system.

The time evolution of the number of particles is

dN

dt
= Φn =

∑

j

φn
j , (31)

where

φn
j = − 1

i�
Tr([aj , J

†
j ] + [a†

j , Jj ])N̂ , (32)

obtained by taking into account that N̂ commutes with
H . This expression can be written as

φn
j =

1
i�

Tr([aj , N̂ ]J†
j + [a†

j , N̂ ]Jj). (33)

In this form we see that it is understood as the flux of
particles from reservoir j to the system.

The flux of heat from each reservoir is given by

φq
j = φe

j − μjφ
n
j , (34)

where μj is the chemical potential related to reservoir
j . The entropy flux from each reservoir is assumed to
be given by

φj =
φq

j

Tj
=

1
Tj

φe
j − μj

Tj
φn

j , (35)

where Tj is the temperature of the reservoir j , and can
be written as

φj = − 1
i�Tj

Tr([aj , J
†
j ] + [a†

j , Jj ])(H − μjN̂).

(36)

The total entropy flux to the system is

Φ =
∑

j

φj . (37)

The time variation of the entropy of the system is not
equal to the flux of entropy but includes a term due to
entropy generation or entropy. Denoting by Π the rate
of entropy production, the time variation of the entropy
S of the system is

dS

dt
= Π + Φ. (38)

In thermodynamic equilibrium, both Φ and Π as well
as dS/dt vanish. In a nonequilibrium stationary state,
Φ and Π do not vanish, although dS/dt does, in which
case Π = −Φ.

The entropy S of the system is given by the von Neu-
mann expression

S = −kTrρ ln ρ. (39)

Deriving S with respect to time and using the quantum
FP equation, we find

dS

dt
=

k

i�

∑

j

Tr([aj , J
†
j ] + [a†

j , Jj ]) ln ρ. (40)

An expression for Π is obtained by subtraction Φ, given
by (36) and (37), from dS/dt , given by (40). The result
is

Π =
k

i�

∑

j

Tr([aj , J
†
j ] + [a†

j , Jj ])(ln ρ + βjH − βjμjN̂).

(41)

This expression can be written in the equivalent form

Π =
k

i�

∑

j

Tr([aj , J
†
j ] + [a†

j , Jj ])(ln ρ − ln ρj),

(42)

where

ρj =
1
Zj

e−βj(H−μjN̂). (43)

In the stationary state, the density ρ will be indepen-
dent of t but it will not equal ρj , as these quantities are
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different, and we conclude that Π will not vanish. How-
ever, if all the temperatures Tj are the same and equal
to T , and all chemical potentials μj are the same and
equal to μ, then ρj are all equal to the Gibbs density

ρ0 =
1
Z

e−β(H−μN̂), (44)

and in this case the stationary density ρ equals ρ0 and
Π vanishes.

5 Noninteracting system

Let us consider a noninteracting system described by a
Hamiltonian which is a sum of terms of the type εja

†
jaj .

As the particle do not interact, it suffices to treat just
one of them. Thus we consider just one particle with
Hamiltonian

H = εa†a, (45)

where we have dropped the index j . The system is in
contact with a reservoir at temperature T and chemical
potential μ. The quantum FP equation is given by Eqs.
(13) and (14), and the operator g by (16).

For H = εa†a, the operator g is proportional to a. To
show this result, it suffices to determine 〈n′|g|n〉, where
|n〉 are the eigenvectors of a†a, that is, a†a|n〉 = n|n〉.
Using the expression (16), we find

〈n′|g|n〉 =
1
β

(e−β(ε−μ)(n′−n) − 1)〈n′|a|n〉. (46)

Taking into account that 〈n′|a|n〉 is nonzero only when
n′ = n − 1, then

〈n′|g|n〉 =
1
β

(eβ(ε−μ) − 1)〈n′|a|n〉, (47)

that is,

g = wa, (48)

where

w =
1
β

(eβ(ε−μ) − 1). (49)

The time evolution of the average of any quantity F is

i�
d

dt
〈F 〉 = 〈[F,H]〉 + iγ(〈g†[F, a]〉 − 〈[F, a†]g〉)

− iγ

β
(〈[[F, a], a†]〉 + 〈[[F, a†], a]〉). (50)

Replacing F by a†a in this equation, we find

�
d

dt
〈a†a〉 =

2γ

β

(
σ − eβ(ε−μ)

)
〈a†a〉 +

2γ

β
, (51)

where σ = 1 for bosons and σ = −1 for fermions.
In the stationary state, in fact, in equilibrium

〈a†a〉 =
1

eβ(ε−μ) − σ
, (52)

which is the mean occupation number. For bosons, σ =
1, the mean occupation number is

〈a†a〉 =
1

eβ(ε−μ) − 1
, (53)

and for fermions, σ = −1, it is

〈a†a〉 =
1

eβ(ε−μ) + 1
. (54)

If we denote by f = 〈a†a〉 the mean occupation number,
Eq. (51) becomes

d

dt
f = −α(f − f0), (55)

where α = 2γ/β�f0, and f0 is the mean occupa-
tion number at equilibrium, given by (52). The time-
dependent solution is

f = f0 + A0e
−αt. (56)

Next we determine the time-dependent solution of the
quantum FP equation by assuming a solution of the
type

ρ =
1
Z

e−Ba†a, (57)

where B depends on t , and the normalization factor Z
is

Z = (1 − σe−B)−σ, (58)

where σ = 1 for bosons and σ = −1 for fermions. The
relation between B and f = 〈a†a〉 is found by observing
that

f = − ∂

∂B
ln Z. (59)

Therefore,

f =
1

eB − σ
, (60)

and the relation sought is

B = ln(f−1 + σ). (61)
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As the time dependence of f is known and given by
(56), one concludes that B is known as a function of t .
Note that, when t → ∞, f → f0 and B → β(ε − μ),
and we reach the equilibrium distribution

ρ0 =
1
Z

e−β(ε−μ)a†a. (62)

The entropy is determined by

S = −kTrρ ln ρ. (63)

Using ρ given by (57) and B given by (61), we find S
as a function of t ,

S = k(σ + f) ln(1 + σf) − kf ln f. (64)

The entropy flux Φ is obtained from the formulas (36)
and (37), that is, by

Φ = − 1
i�T

(ε − μ)Tr(a†J − J†a), (65)

and it is given by

Φ = −kαβ(ε − μ)(f − f0), (66)

valid for bosons and fermions.
To determine the rate of entropy production Π, we

first determine dS/dt , which is given by (40), that is,
by

dS

dt
=

k

i�
Tr([a, J†] + [a†, J ]) ln ρ, (67)

or by deriving (64) and using (55). The result is

dS

dt
= −kα(f − f0) ln

1 + σf

f
. (68)

Then we find the rate of entropy production by the
difference dS/dt − Φ = Π, which is

Π = kα(f − f0) ln
f + σff0
f0 + σff0

. (69)

This expression is positive if f > f0 or f < f0, and van-
ishes when f = f0, that is, in equilibrium, from which
it follows that Π ≥ 0. We recall that this expression is
valid for bosons, σ = 1, and for fermions σ = −1.

6 Contact with two reservoirs

We consider here a simple system consisting of particles,
either bosons or fermions, that hops between two sites
labeled 1 and 2 and is in contact with two reservoirs.
The site j is in thermal contact with a heat reservoir
j at temperature Tj and exchanges particles with the

particle reservoir j at the chemical potential μj . The
interacting Hamiltonian is

H = ε(a†
1a1 + a†

2a2) + η(a†
1a2 + a†

2a1), (70)

and the FP equation is that given by Eq. (17) where j
takes only the values 1 and 2.

The total entropy flux is a sum of terms of the type
(35) and is

Φ =
1
T1

φe
1 +

1
T2

φe
2 − μ1

T1
φn
1 − μ2

T2
φn
2 , (71)

where φe
j and φn

j are the fluxes of energy and particles
from the reservoir j to the system. We will consider
only the stationary regime, in which case the fluxes are
independent of time, and φe

1 + φe
2 = 0 and φn

1 + φn
2 =

0. In this case, Π = −Φ, and we reach the following
expression for the rate of entropy production

Π = φeχe + φnχn, (72)

where φe = (φe
1 − φe

2)/2, φn = (φn
1 − φn

2 )/2, and

χe =
1
T2

− 1
T1

, χn =
μ1

T1
− μ2

T2
. (73)

To determine the fluxes φe
j and φn

j , we have to solve the
quantum FP Eq. (17). To this end we need to determine
gj given by Eq. (19). Using the same method employed
in the previous section we find

g1 = s1a1 + r1a2, g2 = r2a1 + s2a2, (74)

s1 =
1
2
(w1 + v1), r1 =

1
2
(w1 − v1), (75)

r2 =
1
2
(w2 − v2), s2 =

1
2
(w2 + v2), (76)

where

wi =
1
βi

(eβi(ε1−μi) − 1), (77)

vi =
1
βi

(eβi(ε2−μi) − 1), (78)

where ε1 = ε + η and ε2 = ε − η.
The time evolution of the covariance 〈a†

1a1〉 = X1,
〈a†

2a2〉 = X2, 〈a†
1a2〉 = X3+iX4, and 〈a†

2a1〉 = X3−iX4

are obtained from Eq. (25). In the stationary state we
find the equations

s1X1 + r1X3 − 1
c
X4 =

1
β1

(1 + (σ − 1)X1), (79)

s2X2 + r2X3 +
1
c
X4 =

1
β2

(1 + (σ − 1)X2), (80)
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r2X1 + r1X2 + (s1 + s2)X3 =
(

1
β1

+
1
β2

)
(σ − 1)X3,

(81)

X1 − X2 − c(s1 + s2)X4 =
(

1
β1

+
1
β2

)
(σ − 1)X4,

(82)

where c = γ/η, and σ = 1 for bosons and σ = −1 for
fermions.

Once the covariances are determined, the fluxes φe
j

and φn
j are obtained from Eqs. (30) and (33), and we

get

φe =
γ

�
[−(s1ε − r2η)X1 − (r1η − s2ε)X2

− (s1η + r1ε)X3 + (s2η + r2ε)X3 +
ε

β1
− ε

β2
],

(83)

φn =
γ

�
[−s1X1 + s2X2 − (r1 − r2)X3 +

1
β1

− 1
β2

].

(84)

Solving the equations for the covariances and replac-
ing the solution in the above equations, we obtain the
expression for the fluxes. From now on we obtain these
expressions for the case where χe and χn are small.
When they vanish, we find

X1 = X2 =
1
2
(f1 + f2), X3 =

1
2
(f1 − f2),

(85)

where

f1 =
1

eβ(ε1−μ) − σ
, f2 =

1
eβ(ε2−μ) − σ

, (86)

and X4 = 0, and φe = 0 and φn = 0. Here, β and μ are
defined by β = (β1 + β2)/2 and μ = (μ1 + μ2)/2, and
σ = 1 for bosons and σ = −1 for fermions.

The expansions of φe and φn up to linear terms in χe

and χn are

φe = Keeχe + Kenχn, (87)

φn = Kneχe + Knnχn, (88)

where the coefficients are

Kee =
γT

2�
{(1 + f1)ε21 + (1 + f2)ε22}, (89)

Ken = Kne =
γT

2�
{(1 + f1)ε1 + (1 + f2)ε2}, (90)

Knn =
γT

2�
{(1 + f1) + (1 + f2)}. (91)

These are known as the Onsager coefficients. We see
that the diagonal coefficients are equal, in agreement
with the Onsager reciprocal relations.

It is worth mentioning that when T1 = T2, the fluxes
are proportional to μ1 − μ2,

φe = Ce(μ1 − μ2), (92)

φn = Cn(μ1 − μ2), (93)

where

Ce =
γ

2�
{(1 + f1)ε1 + (1 + f2)ε2}, (94)

Cn =
γ

2�
{(1 + f1) + (1 + f2)}. (95)

These quantities are finite even at zero temperature as
long as f1 and f2 are finite. Thus, at zero tempera-
ture, there is a flux of particles as well as a flux of heat
through the system if the chemical potentials are dif-
ferent.

7 Lindblad form

The quantum FP Eq. (17) is understood as a quantum
Liouville equation supplemented by a term representing
the dissipation and fluctuation, that is,

i�
∂ρ

∂t
= [H, ρ] + iD. (96)

The dissipation-fluctuation term D = A + B is a sum
of two parts,

A = α
∑

j

([aj , ρh†
j ] − [a†

j , hjρ]), (97)

B = α
∑

j

([a†
j , ρaj ] − [aj , a

†
jρ]), (98)

where

hj = e−βHaje
βH , (99)

and we are considering that the temperatures are all
the same. These two terms can be written in the form

A = α
∑

j

(ajρh†
j + hjρa†

j − ρh†
jaj − a†

jhjρ),

(100)

B = α
∑

j

(2a†
jρaj − ρaja

†
j − aja

†
jρ). (101)

We wish to show that the dissipation-fluctuation have
the Lindblad form [26]. The term B already has the
Lindblad form, so our analysis is confined to the term
A. In the following we show that this term has the
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Lindblad form when the Hamiltonian is bilinear in aj

and a†
j ,

H =
∑

ij

Hija
†
iaj , (102)

where Hij are c-numbers.
We start by considering a unitary transformation

aj =
∑

k

Ujkbk, bk =
∑

j

U∗
jkaj (103)

where Ujk are c-numbers with the property

∑

k

U∗
kiUkj = δij , (104)

and such that it diagonalizes H , transforming it into
the form

H =
∑

k

Ekb†kbk. (105)

Using (103), we find

hj =
∑

k

Ujkqk, (106)

where

qk = e−βHbkeβH , (107)

and hj transforms into qk like aj transforms into bj .
The terms A and B transform into

A = α
∑

k

([bk, ρq†k] − [b†k, qkρ]), (108)

B = α
∑

k

([bk, ρb†k] − [b†k, bkρ]), (109)

which have the same form as (97) and (98). Again, they
can be written in a form similar to (100) and (101),

A = α
∑

k

(bkρq†k + qkρb†k − ρq†kbk − b†kqkρ),

(110)

B = α
∑

j

(2b†kρbk − ρbkb†k − bkb†kρ). (111)

The term B is again of the Linblad form as expected.
To show that A is also of the Lindlad form, we use
the property that H has the diagonal form (105) in bk.
From this property, we find

qk = eβEkbk, (112)

which when substituted in (110) gives

A =
γ

β

∑

k

eβEk(2bkρb†k − ρb†kbk − b†kbkρ), (113)

which is of the Lindblad form.
For a Hamiltonian that is not bilinear in aj and a†

k,
the method we use above is not appropriate. However,
for a generic Hamiltonian, we may still use a canonical
transformation. As the FP Eq. (96) is written in terms
of commutators, its form will be preserved by a canon-
ical transformation and so will the terms A and B. If
a canonical transformation exists that diagonalizes the
Hamiltonian H , then the operator qk, given by (107),
reduces to the form (112), which makes the term A of
the Lindblad form.

8 Conclusion

The canonical quantization procedure allowed us to
obtain a quantum FP equation from the ordinary FP
equation in terms of the creation and annihilation oper-
ators that is valid for bosons and fermions. The result-
ing equation is understood as a quantum Liouville equa-
tion supplemented by a dissipation term, as given by
Eq. (96). The appropriate form of the dissipation term
D was established by imposing that in equilibrium, the
density operator is of the Gibbs type.

When applied to noninteracting systems, we have
obtained the time-dependent solution of the quantum
FP equation from which we have obtained the mean
occupation number and the rate of entropy production.
In the stationary state, which means the equilibrium
state, we have obtained the well-known expression for
the mean occupation for bosons and for fermions.

Based on the quantum FP equations for several par-
ticles we have developed a quantum stochastic thermo-
dynamics for nonequilibrium systems, and obtained the
expressions for the rate of entropy production and the
fluxes of heat and particles. The formalism was applied
to a system in contact with two reservoirs from which
we have obtained the fluxes of heat and particles, and
the Onsager coefficients.
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