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In this paper we test an approximate method that is often used in lattice studies of the Landau gauge
three-gluon vertex. The approximation consists in describing the lattice correlator with tensor bases from
the continuum theory. With the help of vertex reconstruction, we show that this “continuum” approach may
lead, for general kinematics, to significant errors in vertex tensor representations. Such errors are highly
unwelcome, as they can lead to wrong quantitative estimates for vertex form factors and related quantities
of interest, like the three-gluon running coupling. As a possible solution, we demonstrate numerically
and analytically that there exist special kinematic configurations for which the vertex tensor structures
can be described exactly on the lattice. For these kinematics, the dimensionless tensor elements are equal to
the continuum ones, regardless of the details of the lattice implementation. We ran our simulations for an
SUð2Þ gauge theory in two and three spacetime dimensions, with Wilson and Oða2Þ tree-level improved
gauge actions. Our results and conclusions can be straightforwardly generalized to higher dimensions
and, with some precautions, to other lattice correlators, such as the ghost-gluon, quark-gluon, and four-
gluon vertices.
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I. INTRODUCTION

The primitively divergent vertex functions of quantum
chromodynamics (QCD) and its quenched version, the pure
Yang-Mills theory, have been the subject of numerous
nonperturbative investigations in the past two decades.
There are two main reasons why these objects attract
considerable interest among researchers. First, by studying
the vertices, and in particular their infrared (IR) properties,
one might be able to learn something about confinement.
Of particular interest in this regard are the Gribov-
Zwanziger [1–4] and Kugo-Ojima [5] confinement scenar-
ios and their relation to the IR behavior of the ghost and
gluon propagators. The second reason to study the vertex
functions has to do with the functional bound state
calculations, for which these quantities constitute a key
component; see e.g., [6–11] and references therein.
The nonperturbative methods that have been used to

study the vertices can roughly be divided into two
main categories. The first includes functional techniques
like the Dyson-Schwinger equations (DSEs) (see, e.g.,
[6–8,12–28]), functional renormalization group (FRG)

[29–33], modified perturbation theory [34,35], and others.
The second consists of various lattice formulations and
the corresponding Monte Carlo (MC) simulations; see
e.g., [36–52]. Both of these groups of approaches have
their particular strengths and weaknesses. In the case of
Monte Carlo investigations, there is an issue related to the
tensor representations of lattice vertices, which we would
like to address in detail in this paper.
In most lattice studies of three-point vertices, authors use

the corresponding tensor elements from the continuum
theory [36–40,47–49,51,52]. However, due to the breaking
of rotational symmetry, the continuum tensor bases cannot
be applied in discretized spacetime, at least not for general
kinematics. This has been explicitly demonstrated for the
lattice gluon propagator in Landau gauge [53]. There are a
few reasons why this practice persists, despite the errors
that it might induce on calculated vertex form factors. One
is that, for most vertex functions, the correct alternative
to using a continuum basis is simply unknown, despite
some clues from lattice perturbation theory [54]. The other
important justification is that some lattice studies are almost
exclusively interested in the infrared region [49,51], where
discretization effects are expected to be small and can
arguably be ignored. As an alternative to continuum bases,
some authors have used tree-level tensor elements from
lattice perturbation theory [41–45], which, however,
do not provide a complete representation for most vertex
functions.
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In this paper, we attempt to put these matters on a firmer
footing in terms of discretization error estimates. We
present a simple method, based on vertex reconstruction,
that enables one to quantify how (un)well some basis
describes a given correlation function. We apply the
method to the lattice Landau gauge gluon propagator
and three-gluon vertex, and demonstrate that, for general
kinematics, these functions are described relatively poorly
by the continuum tensor bases. However, we also show
numerically that there exist special kinematic configura-
tions for which these functions can be described, with
virtually no errors, in terms of continuum basis elements.
We demonstrate analytically why this last statement holds,
and we argue that it is also applicable, with some caveats,
to other QCD correlators. The possibility to describe the
tensor structure of a given lattice correlator with virtually
no discretization artifacts is of particular interest for lattice
studies of the QCD running coupling [37,38,47,55–58],
where elimination of uncertainties in the ultraviolet energy
region is of paramount importance.
The paper is organized as follows. In Sec. II we provide

details of our lattice setup. In Sec. III we describe the
reconstruction procedure and test the method by using it
on the Landau gauge lattice gluon propagator. In Sec. IV we
employ the reconstruction approach to probe the tensor
elements of the Landau gauge three-gluon vertex and com-
ment on our findings. Some further discussions, indirectly
related to the results presented here, as well as conclusions
are provided in Sec. V. The important technical details have
been relegated to Appendixes A and B, while Appendix C
contains some of our results for vertex dressing functions.

II. NUMERICAL SETUP

A. Generation of configurations

In this work we will consider a lattice SUð2Þ gauge
theory in two and three dimensions, with periodic boundary
conditions and an equal number of points N in all
directions. The gauge field configurations used in our
simulations have been generated with the standard gauge
action of Wilson [59], as well as with an Oða2Þ tree-level
improved theory [60–64]. Denoting the Wilson and
improved gauge actions as SW and SI , respectively, one has

SW ¼ β

Nc

X
plaq

Re½Trð1 −UplaqÞ�;

SI ¼
5β

3Nc

X
plaq

Re½Trð1 −UplaqÞ�

−
β

12Nc

X
rect

Re½Trð1 − UrectÞ�; ð1Þ

where Nc ¼ 2, Uplaq is a Wilson plaquette operator, and
Urect stands for 1 × 2 and 2 × 1 rectangle operators. More
explicitly, we have

UplaqðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ;
UrectðxÞ ¼ UμðxÞUνðxþ μ̂ÞUνðxþ ν̂þ μ̂ÞU†

μðxþ 2ν̂ÞU†
ν

× ðxþ ν̂ÞU†
νðxÞ þUμðxÞUμðxþ μ̂ÞUν

× ðxþ 2μ̂ÞU†
μðxþ μ̂þ ν̂ÞU†

μðxþ ν̂ÞU†
νðxÞ: ð2Þ

In (2), all of the linksUσ are elements of an SUð2Þ gauge
group. They are parametrized as U≡ U01þ iU⃗ · σ⃗, where
1 is the identity matrix and σ⃗ ≡ ðσ1; σ2; σ3Þ are the Pauli
matrices. The coefficients ðU0; U⃗Þ are real numbers, and
one has U2

0 þ U⃗2 ¼ 1. The gauge actions of (1) formally
become equivalent to the continuum Yang-Mills theory in
the limit a → 0, if one defines the lattice coupling as β≡
4=ða2g2Þ (in two dimensions) or β≡ 4=ðag2Þ (in three
dimensions). Here, g is a bare coupling constant.
For configuration updates, we used a multihit variant of

the Metropolis algorithm, with 12 hits (update suggestions)
per one staple evaluation. Parameters of the algorithm were
tuned such that, on average, approximately half of all
suggested updates was accepted. Starting from a cold
configuration, we performed 5000 update steps for thermal-
ization, for all the volumes and β values considered in this
work. Upon thermalization, we kept all of the subsequent
configurations for measurements, 9600 for each ðN; βÞ pair,
and performed an integrated autocorrelation time analysis
when calculating statistical uncertainties. For an estimation
of the integrated autocorrelation time τint, we used an
automatic windowing procedure outlined in Sec. III. 3 of
[65], with parameter S ¼ 2.5. For the quantities studied in
Secs. III and IVof this paper, the biggest obtained τint was
slightly larger than 1 (recall that τint ¼ 0.5 implies there are
no autocorrelations).
Comparisons of Wilson and Oða2Þ improved setups

were done at constant physics; i.e., for each β used in the
Wilson approach, we tried to find a corresponding value
in the improved theory, such that the lattice spacings are
roughly the same (in physical units) for the two cases. To
determine the spacing a in physical units, the measure-
ments of the static quark-antiquark potential were used.
The scale was set via the string tension, with the valueffiffiffi
σ

p ¼ 0.44 GeV. To improve the signal quality for the
potential, we used the so-called APE smearing procedure
[66]: the associated parameter values are collected in
Table I. In the case of the Wilson gauge action, we also
compared the dimensionless quantity

ffiffiffi
σ

p
a from our sim-

ulationswith the analytic result of [67] (for two-dimensional
theory), as well as with a fit of Eq. (67) from [68] (for three-
dimensional theory). In all cases we obtained reasonable
agreement of results; see Table I for details.

B. Gluon potential and gauge fixing

We use a standard linear definition for the lattice gluon
potential Aμ, which is an element of the SUð2Þ Lie algebra:
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AμðxÞ≡ 1

2
½UμðxÞ − U†

μðxÞ� ¼ iU⃗μðxÞ · σ⃗: ð3Þ

The color components of AμðxÞ are obtained as

Ab
μðxÞ≡ 1

2i
Tr½AμðxÞσb�; b ¼ 1 � � � 3: ð4Þ

The correlation functions in which we are interested are
gauge dependent, and to evaluate them we fix the ther-
malized configurations fUg to the Landau gauge. The
details on how this is done can be found in [69–71]. More
precisely, we use Eq. (3.3) of [69], with an expansion to
leading order in α and subsequent reunitarization. The free
parameter α can be tuned to improve convergence, and its
optimal values are collected for each set of considered
gauge field configurations in Table I. We are using this
so-called Cornell method to fix the gauge due to the
algorithm’s straightforward implementation in a parallel
environment. The iterative gauge-fixing process is stopped
when the convergence criterion

1

V

X
x

X3
b¼1

½∇ · AðxÞ�2b ≤ 10−14 ð5Þ

is satisfied. In the above expression, V ≡ adNd is the lattice
volume and ∇ · Ab

μðxÞ stands for the color components of
the lattice divergence of Aμ. More precisely, one has

∇ · Ab
μðxÞ≡

Xd
μ¼1

½Ab
μðxÞ − Ab

μðx − eμÞ�: ð6Þ

With (5) one approximates, in terms of lattice quantities,
the continuum Landau gauge condition ∂μAμðxÞ ¼ 0. With
the gauge-fixing criterion thus specified, we can turn to the
final ingredient needed for the evaluation of n-point gluon
correlators in momentum space, which is the Fourier
transform of Ab

μðxÞ. It is defined as

Ãb
μðkÞ≡

X
x

Ab
μðxÞ exp ½2πiðk · xþ kμ=2Þ�; with

kμ ≡ 2πnμ
aN

; nμ ∈ ½0; N − 1�: ð7Þ

In (7), the kμ=2 modification is applied in order to
recover the continuum Landau gauge condition withOða2Þ
corrections, instead of OðaÞ ones [37]. Namely, with the
lattice divergence of (6), and the Fourier transform Ãb

μðkÞ as
defined in (7), the lattice version of the momentum space
Landau gauge condition takes the form

Xd
μ¼1

p̂μÃ
b
μðpÞ ¼ 0; ð8Þ

where p̂μ ¼ 2 sinðpμ=2Þ. The above relation is formally
equivalent to pμÃμðpÞ ¼ 0 up to order Oða2Þ. In actual
simulations the number on the right-hand side (RHS) of (8)
will not be exactly 0, but will have some value on the
order of 10−5 or 10−6, as dictated by the gauge-fixing
criterion (5).

III. VERTEX RECONSTRUCTION AND
LATTICE GLUON PROPAGATOR

Wewish to test the applicability of describing the lattice
correlators, primarily the three-gluon vertex, with con-
tinuum tensor bases. A question arises as to how this
can be done in practical terms; i.e., how can one check if
some basis is suitable for a description of a given vertex
function? One approach is presented in [53], where it was
applied to the Landau gauge lattice gluon propagator.
The technique employed there can be useful, but it only
works for vertices with a single tensor element. Here we
propose a method based on vertex reconstruction, which
can (in principle) be used for arbitrary correlators. For the
gluon propagator, our approach reduces to the same steps
used in [53].
We denote a generic lattice correlation function with

ΓμðpÞ, where the superindex μ stands for any applicable

TABLE I. Some details for our gauge field configurations. “W” stands for Wilson gauge action, and “I” for the improved one. The
value of the spacing a in GeV was set via a static qq̄ potential Upot, with

ffiffiffi
σ

p ¼ 0.44 GeV. For Wilson gauge action, we provide the
expected (superscript “exp”) and calculated (superscript “calc”) values for the quantity

ffiffiffi
σ

p
a, with the expected ones coming from

the analytic results of [67] (for two dimensions) and from a fit of Eq. (67) of [68] (for three dimensions). hW1;1i is the expectation value
of the 1 × 1Wilson loop, needed for the fit in [68]. αAPE denotes the APE smearing parameter [66], used in measurements ofUpot. αgauge

is the parameter for the gauge fixing procedure, the Cornell method [69].

V Action β a [GeV−1] hW1;1i ð ffiffiffi
σ

p
aÞexp ð ffiffiffi

σ
p

aÞcalc αAPE αgauge

322 W 10 0.93(2) 0.854 32(10) 0.396 0.411(9) 0.7 0.495
322 I 8 0.95(2) 0.874 41(9) … … 0.7 0.495
323 W 5 0.74(2) 0.786 94(9) 0.313(27) 0.327(8) 0.3 0.348
323 I 3.8 0.72(2) 0.811 95(9) … … 0.3 0.346
323 W 12 0.35(1) 0.914 81(8) 0.119(14) 0.142(5) 0.3 0.324
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Lorentz indices and p subsumes the independent momen-
tum variables. We wish to test if ΓμðpÞ can be described

with a basis τjμðpÞ, with index j denoting individual tensor
elements. That is, we wish to see if the relation

ΓμðpÞ ¼
X
j

F jðpÞτjμðpÞ ð9Þ

holds,withF j being a dressing/coefficient function (or form

factor) of a tensor element τjμ. Oneway to do this is to attempt
a vertex reconstruction. Explicitly, one constructs the
projectors for the basis τμ, and projects out the functions
F from the lattice vertex Γμ. One then reconstructs the
correlator, via (9), from the dressings F and the τμ basis.
Finally, one compares the reconstructed and the original
vertices. If the relation (9) is correct, then no informationwill
be lost when computing the F functions. Consequently, the
reconstructed vertex will be equal to the original one. Any
discrepancy between the reconstructed and original vertex
points to an inadequacy of the basis τμ, and the “size” of the
discrepancy is an indication of howunsuitable the basis is for
given kinematics. Let us test these ideas on the gluon two-
point function. The continuum, infinite-volume version of
the Landau gauge gluon propagator is given by

Dcont;ab
μν;p ¼

�
δμν −

pμpν

p2

�
δabDðp2Þ; ð10Þ

with color indices a, b. On the lattice, one can deduce the
tensor structure of the Landau gauge propagator by combin-
ing the correlators definition with (8). The lattice gluon
propagator is given by

Dab
μνðpÞ ¼

1

V
hÃa

μðpÞÃb
νð−pÞi; ð11Þ

with V the lattice volume and ÃðpÞ defined in (7). From
the constraint of (8) and the definition of (11), one can
straightforwardly show that the lattice gluon two-point
function in Landau gauge has the form (up to corrections
dictated by numerical gauge fixing):

Dab
μνðpÞ ¼

�
δμν −

p̂μp̂ν

p̂2

�
δabDðp2Þ: ð12Þ

The structure of (12) will remain the same regardless
of the employed lattice action, as long as the same gauge-
fixing algorithm is used for all simulations. We assume the
propagator to be diagonal in color space, as shown above,
and will henceforth consider the color-averaged quantities
Dμν ≡ 1

3

P
aD

aa
μν . This leaves only the tensorial part. For

both the representation of (10), and the one of (12), the
form factor DðpÞ can be projected out with a simple D-
dimensional Kronecker tensor δμν. In other words, one has

DðpÞ ¼ 1

N
δμνDμνðpÞ; ð13Þ

with implied summation over repeated indices. For p ¼ 0,
the normalization factor N equals D (the number of
dimensions); otherwise it is D − 1 [37]. Since the projector
of (13) is momentum independent, the discussion of tensor
structure is actually superfluous for the Landau gauge
gluon propagator. Put differently, a detailed consideration
of the propagators tensor representation has no bearing on
the way that one calculates the form factor DðpÞ. Never-
theless, taking a closer look at this two-point function is
useful for demonstrating the basic ideas of our method.
For the reconstruction part of our approach, we take the

propagator dressing of (13) and obtain the reconstructed
correlator by plugging DðpÞ into either Eq. (10) or
Eq. (12). The end result is then compared to the original
propagator, i.e., Dcalc

μν ∼ ÃμÃν. Since we do not wish to
compare the two-point functions for each individual value
of indices μ and ν, we will consider the index-averaged
quantities, namely

Dcalc
jhμνij

Drecon
jhμνij

≡
P

μ

P
ν jDcalc

μν jP
μ

P
ν jDrecon

μν j ; ð14Þ

with j·j denoting a (complex number) absolute value. When
evaluating the ratios like the one above, we will always use
the absolute value of propagators and vertices. There are
multiple reasons for this, and here we mention two of them.
First, for diagonal momenta (i.e., pμ ¼ pν for all μ, ν),
performing an index average for the reconstructed Landau
gauge correlators would always yield zero, without the
absolute value. For the gluon propagator, this can be seen
by taking an ordinary (no absolute value) index average
of the RHS of either Eq. (10) or Eq. (12) for diagonal
momenta. The second reason is that the signal quality is
generally better for absolute value of correlators than the
correlators themselves. We discuss the second point in
more detail at the end of Sec. IV B. To confirm that the
index-averaging procedure does not introduce a large bias
for the results, we have also performed calculations
where propagators were compared componentwise (e.g.,
Dcalc

11 =Drecon
11 ) and checked that such comparisons yield

(on average) results similar to the ratio of (14). The biggest
relative difference in results between the two methods was
on the order of one percent.
A remark is in order regarding our notation. In Eq. (14),

Dcalc
μν does not stand for a Monte Carlo average, akin to

the one of (11). It instead denotes a product of vector
potentials, considered for each gauge field configuration
separately. The same goes for the reconstructed gluon
propagator and the whole ratio in (14): the ratios are
evaluated on the level of individual configurations, and
in the end these results are averaged to get the final
estimate, together with the associated uncertainty. For
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better statistics, we also perform averages over permuta-
tions of momentum components, of which there are two
in two dimensions and six in three dimensions.1 Due to
hypercubic symmetry (a symmetry under permutations and
reflections of coordinates), the dressing function DðpÞ of
(13) should remain unchanged when components of p are
interchanged, thus justifying the aforementioned permuta-
tion average. The final results for momenta near the lattice
axis in a three-dimensional theory are given in Fig. 1. In
Fig. 1 we do not consider the momenta exactly along the
axis in order to avoid finite volume effects: as an example
of a possible finite volume artifact, see the first data point
of Fig. 2.
The plots in Fig. 1 show the behavior that one would

expect, based on our previous discussions. The data
indicate that the reconstruction method works for the gluon
propagator. To get more valuable insight, one can use the
continuum tensor of (10) for reconstruction, but for
diagonal momenta. The result is given in Fig. 2, and it
suggests that along the lattice diagonal, one can describe
the lattice gluon with a continuum tensor structure. The
explanation for this is straightforward. For diagonal kin-
ematics, the nontrivial part of the transverse projector
Tp
μν ¼ δμν − pμpν=p2 [bracketed object on the RHS of

Eqs. (10) and (12)] is momentum independent. To be more
explicit, with pμ ¼ pν (for all μ, ν), one gets2

pμpν

p2
¼ p̂μp̂ν

p̂2
¼ 1

D
; forall μ; ν; ð15Þ

where D is the number of dimensions. The above equation
might be somewhat confusing, due to a “loss of indices” on

the right-hand side. To clarify things, let us look at an
explicit example in two dimensions, with diagonal momen-
tum p ¼ ðp1; p2Þ ¼ ðm;mÞ, and its sine-transformed
version p̂ ¼ ðp̂1; p̂2Þ ¼ ðm̂; m̂Þ, with m̂ ¼ 2 sinðm=2Þ.
For such kinematics, it holds that

p2
1

p2
¼ p2

2

p2
¼ p1p2

p2
¼ m2

Dm2
¼ p̂2

1

p̂2
¼ p̂2

2

p̂2
¼ p̂1p̂2

p̂2
¼ m̂2

Dm̂2
¼ 1

D
:

ð16Þ

Relations (16) are equivalent to (15), if one explicitly
writes out (15) for all possible values of indices μ and ν.
Generalization of the above statements to higher dimensions
is straightforward. It should be fairly obvious that the result
(15) is discretization independent, meaning that the exact
form of p̂μ and the details of the lattice formulation are
unimportant. As we show later, for the three-gluon vertex
there are several kinematic configurations for which the
same observation holds. Regarding the results in Fig. 2, we
additionally point out that the discrepancy at p ¼ 0 is most

FIG. 1. Comparison of calculated and reconstructed gluon on a 323 lattice, for near-axis momentum p, and with jpj≡ ffiffiffiffiffi
p2

p
. Results

are in lattice units, with p given in terms of components of vector nμ of (7). Left: Propagator reconstruction according to (10).
Right: Reconstruction according to (12). Shown are data for Wilson and Oða2Þ improved actions.

FIG. 2. Comparison of calculated and reconstructed gluon on a
323 lattice, for diagonal momentum p and with reconstruction
according to (10). Results are in lattice units, with p given in
terms of components of vector nμ of (7). jpj stands for

ffiffiffiffiffi
p2

p
.

1As an example of permutations in three dimensions, one may
look at a momentum p with components p ¼ ða; b; cÞ. To each
result for p we add results for permuted versions, i.e., for
momenta p0 ¼ ða; c; bÞ, p00 ¼ ðb; a; cÞ, and three others, and
make an average of this sum.

2We are grateful to Attilio Cucchieri for pointing this out to us.
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likely due to finite-volume artifacts; see Sec. II of [53] for a
more detailed discussion. Some other effects that might also
contribute at zero momentum are discussed in Sec. V.
Before moving further, we wish to address the absence,

in Figs. 1 and 2, of any appreciable differences between
data for the Wilson action gluon and the Oða2Þ improved
one. Two main factors contribute to this result. First, in our
plots we consider the ratios of propagators, where the
correlator dressing function Dðp2Þ (which is different for
the two kinds of lattice gauge action) should drop out.
Second, the gauge field configurations coming from both
SW and SI actions have been numerically subjected to the
constraint of (8), which ensures that the two kinds of
propagator have an identical tensor structure given in (12).

IV. THE THREE-GLUON VERTEX

A. Color and tensor structure in the continuum

The lattice three-gluon vertex is defined as

Γabc
μνρðp; q; rÞ ¼

1

V
hÃa

μðpÞÃb
νðqÞÃc

ρðrÞi; ð17Þ

where r ¼ −ðpþ qÞ. Actually, the above quantity is not
the one-particle-irreducible (1PI) vertex, but simply a gluon
three-point function: to obtain the true 1PI vertex, one
needs to amputate the gluon legs; see e.g., [36]. For most
of our results, this distinction is unimportant, as we will
be looking at vertex ratios where the gluon propagators
coming from the amputation would anyway drop out.
Before presenting our results for the function of (17),
we need to discuss briefly its color and tensor decom-
position in the continuum. Let us start with the color part.
In general, the continuum three-gluon vertex has the form
(we temporarily suppress the momentum dependencies)

Γabc
μνρ ¼ fabcΓa

μνρ þ dabcΓs
μνρ; ð18Þ

with fabc and dabc the antisymmetric and symmetric
structure constants, respectively. Γa=s

μνρ are the corresponding
tensor elements. Orthogonality of the color constants (i.e.,
fabcdabc ¼ 0) can be used to project out the desired tensor
piece. When doing vertex reconstruction, the color sym-
metric and antisymmetric parts can be analyzed independ-
ently of each other. For the SUð2Þ group which we are
considering, these matters are simpler since dabc ¼ 0. It is
also possible that for other gauge groups, like SUð3Þ, the
symmetric contributions to the vertex are negligibly small
or even completely vanishing. Results that might point to
this conclusion can be found in [26,38,72–76]. In either
case, we extract the tensor part of the correlator with a
contraction Γμνρ ¼ ðfabc=6Þ · Γabc

μνρ , where Γabc
μνρ is given in

(17). The prefactor of (1=6) in the color projection takes care
of normalization: it can be deduced by applying the identity

facdfbcd ¼ Nδab, valid for arbitrary SUðNÞ groups, to the
specific case of SUð2Þ gauge transformations.
This brings us to the tensor part. For covariant gauges

and a number of dimensions greater than two, the three-
gluon vertex can be decomposed into 14 linearly indepen-
dent tensor elements. For Landau gauge with more than
two spacetime dimensions, the number of dynamically
relevant tensor structures is reduced to four, due to trans-
versality conditions. In our numerics we mostly employ the
transverse orthonormal (ON) basis, used for the first time
in [20]. That paper gives a full account on how the basis is
constructed, but we repeat the main steps in our
Appendix A 1 as well. In the same Appendix we prove,
using the ON basis, that in two dimensions a single tensor
element is adequate to describe the Landau gauge three-
gluon vertex. Summing up, for our study in three dimen-
sions we use the decomposition

Γμνσðp; q; rÞ ¼
X4
j¼1

Bjðp; q; rÞρjμνσðp; q; rÞ; ð19Þ

with elements ρjμνσ given in Eq. (A11) of [20], as well as in
Eq. (A11) of our Appendix A 1. In two dimensions, only
the tensor ρ2μνσ is needed to represent the three-gluon
coupling, as all the other ones vanish. Since the basis
ρjμνσ is orthonormal, it is straightforward to get the
corresponding form factors from the calculated vertex.
Namely, one has

Bjðp; q; rÞ ¼ ρjμνσðp; q; rÞ · Γμνσðp; q; rÞ; j ¼ 1 � � � 4:
ð20Þ

Henceforth, we employ the Einstein summation
convention, unless stated otherwise. The ON basis is useful
for numerics and vertex reconstruction, but it is not very
“friendly” for certain analytic manipulations. We are
mainly referring to our intent to demonstrate, for the
three-gluon correlator, some results akin to Eq. (15) for
the gluon propagator. Such relations can be proved with the
ON basis as well, but for calculations of this type we prefer
to use another tensor decomposition for the vertex, where
some arguments become more transparent. We refer to the
said decomposition as the “simple” one and show the
construction of corresponding elements in Appendix A 2.
The connection between the ON basis and the simple basis
is also provided there.
Finally, before moving on to the results for the three-

gluon vertex, we wish to emphasize an important part of our
numerical procedure. Namely, apart from the lattice imple-
mentation of the Landau gauge condition (8), we addi-
tionally act on the product (17) explicitly with transverse
projectors, in a somewhat continuum fashion:
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Γabc;tr
μνρ ðp; q; rÞ ¼ Tp;l

αμT
q;l
βνT

r;l
γρ · Γabc

αβγ ðp; q; rÞ: ð21Þ

In the above relation, Tp;l
αμ is a projection operator with

lattice-adjusted momentum (note the superscript l), i.e.,
Tp;l
αμ ¼ δμα − p̂αp̂μ=p̂2, where p̂ ¼ 2 sinðp=2Þ. Additi-

onally, Γabc
αβγ stands for the product (17), with renamed

Lorentz indices, and Γabc;tr
μνρ is the vertex that we will be

working with from now on.We perform the above operation
because the lattice transversality condition (5) may not be
quantitatively good enough, for certain kinematics, when it
comes to our vertex reconstruction procedure. We will
clarify this last point at the end of the following section.

B. Vertex results in two dimensions

The setup of our calculations for the three-gluon cou-
pling is an extension of the procedure we outlined for the
gluon propagator. The lattice vertex is calculated as a
product Γabc

μνρ ∼ Ãa
μÃ

b
ν Ã

c
ρ, and its color dependence is taken

care of with the fabc projection. We attempt to reconstruct
the remaining tensor piece with appropriate tensor bases
and form the ratios of index-averaged quantities. The index
average of (say) a calculated vertex is defined as

Γcalc
jhμνρij ¼

X
μνρ

jΓcalc
μνρ j; ð22Þ

where j · j again denotes a complex number absolute value.
As in the case of the gluon propagator, the values for vertex
ratios are obtained for each gauge field configuration
separately, and these results are averaged over to obtain
the final answer and the corresponding error estimate. As
noted in the previous section, in a two-dimensional theory
only the tensor element ρ2μνσ of (A11) is required for a
reconstruction in the continuum.
Owing to momentum conservation, r ¼ −ðpþ qÞ, only

two out of three momenta that enter the three-gluon vertex
are independent. In our simulations we take these vectors to
be p and q. For improved statistics we perform permutation
averages, wherein to each result for momenta ðp; qÞwe add
results where components of p and q have been permuted
in various ways. We do not consider such permutations for
each momentum p and q separately, but instead perform the
same transformation on both vectors. Thus, as in the case
of the gluon propagator, we average over a total of two
permutations in two dimensions and six permutations in
three dimensions.
One final notion we need to introduce before discussing

the results is that of the “sine improvement.” From Landau
gauge condition (8) and the definition of lattice three-gluon
vertex (17), it is clear that this correlator should satisfy [see
also (21)]

p̂μq̂νr̂ρΓμνρðp; q; rÞ ¼ 0: ð23Þ

The continuum Landau gauge vertex obeys the same
relation as above, but with ðp̂; q̂; r̂Þ replaced with ðp; q; rÞ.
The analogy suggests that, to describe the tensor structure
of the lattice correlator, one needs to use modified
momenta, such as p → p̂ ¼ 2 sinðp=2Þ, when construct-
ing the vertex tensor elements. However, for general
kinematics, the sine modification cannot be carried out
for all three momenta at once, since it would spoil the
momentum conservation condition r ¼ −ðpþ qÞ [since
in general sinðxþ yÞ ≠ sinðxÞ þ sinðyÞ]. We still want to
test if the sine correction can help with the reduction of
errors. Aside from a normal reconstruction with indepen-
dent momenta ðp; qÞ, we also consider a sine-modified
method, where vectors ðp̂; q̂Þ are used for the tensor
elements. In our plots, we refer to the second procedure
as sine. We will only display the sine results for Wilson
gauge action, to prevent the graphs from getting too
cluttered. An approach similar to our sine correction
was already used for the lattice measurements of the
three-gluon running coupling [38].
This brings us to the results. In Fig. 3 we show the

plots of our data for several kinematic configurations on a
two-dimensional lattice. In the first plot, the vector q
has relatively small components. Consequently, the sine
improvement can be applied to all momenta, while approx-
imately keeping the momentum conservation intact, i.e.,
r̂ ≈ −ðp̂þ q̂Þ. This is why the sine-adjusted reconstruction
works well in the whole examined range of p values. For
other plots in the figure, the interpretation of the data shown
is not as straightforward, but it is also not exceptionally
challenging.
First, one notes that for results in the graphs 3(b)

through 3(d), the first and the last kinematic points show
the smallest deviations between the reconstructed and
calculated vertices, with all the points in between corre-
sponding to greater discrepancies. This is because, for
the examined kinematic cuts, the first and final points
exemplify what we shall refer to as generalized diagonal
kinematics, where all the components of vertex momenta
are equal to a single scale s, or there is some combination of
a single scale s and vanishing components. To clarify, let us
take the example of the final kinematic point in plot 3(c).
The corresponding vertex momenta are

p ¼ ðπ; 0Þ; q ¼ ðπ; πÞ; r ¼ −ð0; πÞ: ð24Þ

The first component of momentum r is zero in (24), due
to periodic boundary conditions. One easily sees that, up to
a sign, the components of all the momenta in (24) are equal
to either zero or the same nonzero number s (in this case
s ¼ π). Additionally, one of the momenta is fully diagonal,
meaning that all of its components are equal to each other
[in the case of configuration (24), this is vector q]. We refer
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to kinematic choices akin to (24) as generalized diagonal
kinematics, and in Appendix B 1 we show that such
momentum points are special in terms of vertex tensor
representations. More precisely, for configurations like
(24), one can use continuum bases to describe the tensor
structure of a lattice three-gluon vertex, with virtually no
errors coming from rotational symmetry breaking. These
statements are corroborated by the data in plots 3(b)
through 3(d), and their validity does not depend on the
use of the sine adjustment for momenta (i.e., the use of the
sine modification makes no difference for such kinematics).
Concerning the sine improvement itself, the results in
3(b)–3(d) indicate that it always mitigates the discretization
errors, and for the momentum points considered in those
graphs it eliminates the errors completely. One should not
conclude from this that the sine function can entirely
remove the discretization artifacts for arbitrary kinematics.
We will show some results to this effect in the next section.
We wish to note one final thing concerning the graphs in

Figs. 3(b) through 3(d). A careful consideration of the plots
reveals that some of the data points are missing, namely
those corresponding to a situation where p ¼ q. The reason
for leaving those points out is that for such kinematics, the
reconstructed three-gluon vertex in Landau gauge identi-
cally vanishes. We demonstrate this fact analytically in
Appendix B 2.

As a final example of generalized diagonal kinematics in
two dimensions, we look at the situation defined by

p ¼ ðs; 0Þ; q ¼ ð0; sÞ; r ¼ −ðs; sÞ; ð25Þ

where s≡ 2πn=ðaNÞ, with integer n ∈ ½1; N − 1�. We refer
to the above configuration as quasisymmetric, since one
has ðp2; q2; r2Þ ¼ ðs2; s2; 2s2Þ. A fully symmetric case is
not accessible on a lattice, in less than three dimensions.
Despite the lack of a full symmetry in terms of momentum
invariants, the quasisymmetric kinematic partitioning is
interesting in its own right. According to the analysis of
Appendix B 1, for kinematic situations like (25) it should
be possible to describe the lattice three-gluon vertex exactly
with continuum tensors alone, regardless of a particular
value of s. Also, as mentioned before, the use of the sine
adjustment should make no difference for these kinds of
momentum configurations. All these conclusions are con-
firmed by our results in Fig. 4, which display an almost
perfect agreement between the reconstructed and calculated
vertices for all considered values of s.
Wewould like to conclude this section by addressing two

important issues. The first is the apparent absence of error
bars in most of our plots. The uncertainties are present in all
the graphs, but are in most cases too small to be noticed on
the overall plot scales. This comes from the use of absolute

(a) (b)

(c) (d)

FIG. 3. Ratios of calculated and reconstructed vertices on a 322 lattice, as functions of jpj ¼
ffiffiffiffiffi
p2

p
. Reconstruction was done with the

ON basis tensor ρ2μνσ of (A11). “Sine” data are for a reconstruction with modified momenta ðp̂; q̂Þ, where e.g., p̂ ¼ 2 sinðp=2Þ. Results
are in lattice units, with all momenta given in terms of components of vector nμ of (7). See text for further discussion.
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values in calculations of quantities like (22): the absolute
value makes all the contributions to Monte Carlo averages
strictly non-negative, leading to very good signal quality.
We demonstrate this explicitly in Fig. 5, wherein we
compare the data for the vertex component Γ121, obtained
in computations both with and without the j · j modifica-
tion. The signal is far noisier in the case without the
absolute value (left panel of Fig. 5), but both sets of data
points lead to the same conclusions regarding the devia-
tions between the calculated and reconstructed vertex
components. Thus, even though the absolute value average
has a big influence on the final results of our simulations,
it does not distort the overall analysis, in terms of
identification of special kinematic points on the lattice.
The second issue which we would like to comment on

here concerns the continuumlike transverse projection of
(21). We use this additional operation because the lattice
gauge-fixing condition may not be quantitatively good

enough, for certain kinematics. To clarify, with the con-
vergence criterion (5) alone, the number “0” on the RHS of
(8) is, in actual simulations, a small quantity on the order of
10−6 to 10−5. For most purposes, this is certainly “transverse
enough,” but in some cases it is desirable to perform also the
projection (21), which makes the gluon field satisfy the
transversality condition (8) within numerical precision;
i.e., the number 0 on the RHS of (8) becomes a quantity
on the order of 10−16. To illustrate the impact this may
have, in Fig. 6 we compare the reconstruction results with
and without the additional projection (21), for a particular
kinematic choice. According to arguments of Appendix B 1,
the first and the last momentum points in Fig. 6 correspond
to special kinematic configurations, and the vertex ratio
should be close to unity in both cases.However, the expected
behavior is seen only when the projection (21) is applied,
whereas in its absence the ratio goes to values far from unity,
for one of the momentum points. This means that the
reconstruction procedure itself is very sensitive to the
numerical accuracy at which the gluon transversality cri-
terion is fulfilled. Fortunately, the projection (21) is cheap to
implement numerically, and it should not introduce any
conceptual issues as it merely makes the condition (8) hold
with better accuracy.

C. Vertex results in three dimensions

In Fig. 7 we present the results of our simulations for
certain three-dimensional kinematic configurations. The
data in all the graphs essentially confirm our main con-
clusions regarding the special kinematic configurations on
the lattice, as presented in Appendix B 1. Even so, there
seem to be mild differences in signal quality between the
first two and last two plots in the figure. For instance, the
points in Figs. 7(a) and 7(b) feature an almost perfect
agreement between the standard Wilson and improved
gauge actions (without sine adjustment), which is absent
in graphs 7(c) and 7(d). Also, apart from a clearly
pronounced maximum in vertex ratio results, the data in

FIG. 5. Left: Monte Carlo average of an imaginary part of vertex component Γ121 on a 322 lattice. Right: MC average of an absolute
value of Γ121. Results are in lattice units, with momenta given in terms of vector nμ of (7).

FIG. 4. Results of vertex reconstruction on a 322 lattice,
for a quasisymmetric momentum configuration ðp2; q2; r2Þ ¼
ðs2; s2; 2s2Þ. Reconstruction was done with an ON basis tensor
ρ2μνσ of (A11). Results are in lattice units, with all momenta given

in terms of components of vector nμ of (7). jpj stands for
ffiffiffiffiffi
p2

p
,

and sine data refer to reconstruction with momenta ðp̂; q̂Þ, where
e.g., p̂ ¼ 2 sinðp=2Þ. See text for further discussion.
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the upper panel of the figure feature no additional “bumps,”
which is not true for the plots in the lower panel; see e.g.,
lower right side of Fig. 7(c).
We are not entirely sure where the aforementioned

minor differences in signal quality come from, but we
think that they have to do with the examined kinematics
and the number of relevant tensor elements in vertex
reconstruction. As discussed in more detail at the end of

Sec. A 1, the momenta considered in the first two plots of
Fig. 7 are such that the ON basis element ρ2μνσ (the only
nonvanishing one in two dimensions) dominates over all the
other ON tensor structures of Eq. (A11). On the other hand,
kinematics in the lower two graphs of the figure do not lead
to a single dominating basis element, meaning that all four
tensors have equal importance in the reconstruction process.
This last fact can arguably result in a slight increase in
fluctuations in the signal, compared to a situation with one
significant tensor, since calculations feature a greater number
of relevant “moving parts” which all contribute to the final
outcome. Whatever the reason for a mildly noisier signal
in graphs 7(c) and 7(d), these results still agree with our
analysis of B 1, within statistical uncertainties, and we will
thus not comment on them further.
Besides considerations of the lattice three-gluon vertex

of Monte Carlo simulations, it would be good to have an
alternative way to check some of the arguments made
in B 1, preferably without any statistical noise whatsoever.
One way to do this would be to apply the vertex
reconstruction procedure to the tree-level three-gluon
vertex from lattice perturbation theory. Being defined on
a discretized spacetime, this object should suffer from the
same rotational symmetry breaking effects as the three-
gluon vertex of Monte Carlo calculations. But unlike the
Monte Carlo correlator, the perturbative lattice vertex is

(a)

(c) (d)

(b)

FIG. 7. Vertex ratios for a certain kinematics 323 lattice, as functions of jpj ¼
ffiffiffiffiffi
p2

p
. Reconstruction was done with ON tensor

elements of (A11). Results are in lattice units, with momenta given in terms of vector nμ of (7). Sine data refer to reconstruction with
momenta ðp̂; q̂Þ, where e.g., p̂ ¼ 2 sinðp=2Þ. See text for further discussion.

FIG. 6. Test of the influence of transverse projection (21) on
vertex reconstruction results, for particular kinematics on a 322

lattice. For reconstruction, we use the ON basis tensor ρ2μνσ
of (A11). Results are in lattice units, with all momenta given in
terms of components of vector nμ of (7).
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inherently noise-free, and by subjecting it to vertex
reconstruction one can solidify some of the claims con-
cerning special kinematics on the lattice. In Landau gauge,
the perturbative lattice three-gluon vertex is [54]

Γlatt;Landau
μνρ ðp; q; rÞ ¼ Tp;l

αμT
q;l
βνT

r;l
γρ · Γlatt

αβγðp; q; rÞ; where

Γlatt
αβγðp; q; rÞ ¼ δαβ sin

�
pγ − qγ

2

�
cos

�
rα
2

�

þ δβγ sin

�
qα − rα

2

�
cos

�
pβ

2

�

þ δγα sin

�
rβ − pβ

2

�
cos

�
qγ
2

�
: ð26Þ

In the above expression, we have ignored all of the
multiplicative factors such as the color constants and
similar, as they do not affect the forthcoming reconstruction
results. With Tp;l

αμ we denote the lattice-adjusted transverse
projectors, introduced in (21). In Fig. 8 we give the recon-
struction results for the perturbative lattice vertex, for the
same kinematics as examined in the lower panel of Fig. 7.
Concerning the special status of certain lattice kinematic
configurations, the data of both Figs. 7 and 8 agree with the
general arguments of Appendix B 1. From results in these
figures one can also see that in three dimensions the sine
modification does not always eliminate the discretization
errors completely. Thus, one cannot rely solely on this
adjustment, when attempting to eradicate the errors due to
rotational symmetry breaking in vertex tensor elements.
This brings us to the final two examples of special

kinematics in this paper. Both can be seen as a kind of
three-dimensional extension of the two-dimensional case
given in (25). These configurations are

ðiÞp ¼ ðs; 0; sÞ; q ¼ ð0; s; 0Þ; r ¼ −ðs; s; sÞ;
ðiiÞp ¼ ð−s; 0; sÞ; q ¼ ðs;−s; 0Þ; r ¼ ð0; s;−sÞ;

ð27Þ

where s≡ 2πn=ðaNÞ and integer n takes on values
n ∈ ½1; N − 1�. The lower combination in (27) corresponds
to a symmetric situation, with momentum invariants
ðp2; q2; r2Þ ¼ ð2s2; 2s2; 2s2Þ. The symmetric configuration
is often considered in lattice and continuum studies of the
three-gluon correlator; see e.g., [19,20,38,42,47,49].
We show our reconstruction results for the kinematics of

(27) in Fig. 9, for both the lattice Monte Carlo vertex and
the perturbative one of (26). Data points in Fig. 9 clearly
indicate that the two kinematic cases in (27) are not
equivalent, when it comes to vertex tensor representations.
For the upper configuration in (27) (the nonsymmetric
one), the continuum tensor elements seem to work rather
well for all considered values of s. This does not hold for a
fully symmetric momentum partitioning, where differences
between reconstructed and calculated vertices go up to
around 30% to 40%, a clearly significant deviation. Note
that the symmetric case still has the property, shared with
truly special kinematics, that the sine momentum adjust-
ment does not change the reconstruction results. But this
fact alone does not guarantee a continuumlike tensor de-
scription, as discussed in some detail in Appendix B 1. We
note that, for the proofs carried out in B 1, the perturbative
lattice vertex (26) plays a crucial role, since for that
function (in contrast to the Monte Carlo vertex) it is
possible to show analytically why some kinematic con-
figurations are special, i.e., why the nonlinear terms present
in (26) reduce to a sum of continuum tensor structures, for
certain momentum points.
Here we wish to briefly discuss the applicability of some

of these ideas to other correlation functions of lattice QCD.
Most of the essential arguments presented in B 1 should
hold when working with vertex functions consisting purely
of gluons (e.g., a four-gluon correlator), or of ghost and
gluon fields. The situation becomes a bit more subtle for
vertices where quark and gluon degrees of freedom are
combined, since there is no a priori reason that the tensor
structures corresponding to these different kinds of fields
should get modified in the same way, when going from

FIG. 8. Reconstruction results for the perturbative lattice vertex of (26), as functions of jpj ¼
ffiffiffiffiffi
p2

p
. Reconstruction was done with ON

tensor elements of (A11). Results are in lattice units, with momenta given in terms of vector nμ of (7). Sine data refer to reconstruction
with momenta ðp̂; q̂Þ, where e.g., p̂ ¼ 2 sinðp=2Þ.
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continuum to discretized spacetimes. Even so, for any
given lattice action and any correlator of interest (for
instance, the quark-gluon vertex), it should be possible
to carry out the same steps as in Appendix B 1, which
includes taking the corresponding vertex from lattice
perturbation theory and checking if the said vertex reduces
to a sum of continuum tensor elements, for certain choices
of momenta. It is our personal opinion that the kinematics
akin to those in the first line of (27) should “work” in this
regard for any lattice correlators, but we leave explicit
demonstrations of this for the future.
One final issue worth addressing here is the evaluation

of vertex form factors. In lattice Monte Carlo simulations,
one would expect for some errors to arise when extracting
the three-gluon vertex dressing functions with continuum
tensor elements, since the use of a continuum basis on a
lattice incurs some loss of information. Obviously, it would
be good to obtain at least some estimates for these errors,
but this is generally a nontrivial task: since there are no
exact values for form factors on the lattice, one has no
benchmarks to employ when testing the sensitivity to
unreliable tensor representations. Fortunately, there are a
few kinematic exceptions to this, and one of them was
explored in Fig. 7(a): as can be seen from the corresponding
data, for certain kinematics we have both the “wrong” and
“correct” tensor descriptions, and we can test the impact

that using the wrong basis has on the values for vertex
dressing. In the aforementioned kinematic setup, correct
and wrong tensors correspond, respectively, to continuum
representations with and without the sine adjustment; see
Fig. 7(a). Using these facts as a guide, we have calculated a
particular dressing function of the perturbative correlator
(26), for kinematics resembling those of 7(a), employing
both wrong and correct tensor representations. Comparison
of vertex form factors in the two cases is given in the right
panel of Fig. 10. In the left panel of the figure, we give the
accompanying results of vertex reconstruction, to serve as a
reference point: we wish to have a rough estimate of how
discrepancies in tensor parametrizations translate to devia-
tions in the calculated form factors.
A comparison between the left and right panels in Fig. 10

leads to a somewhat unexpected conclusion, showing
that the two kinds of deviations are not comparable in
size. Namely, where the relative differences in vertex
reconstruction peak at about 4%, the ones for correlator
dressings peak at about 60% (i.e., a value of roughly −0.20,
compared to ∼ − 0.33). Of course, one should keep in mind
that these are results for a particular kinematic configura-
tion and that they hold only for the perturbative vertex of
(26): we will discuss the case of the Monte Carlo vertex
shortly. Even so, the data of Fig. 10 enable us to make
some informed guesses on uncertainties for three-gluon

(a)

(c) (d)

(b)

FIG. 9. Vertex ratios for kinematics of (27) on a 323 lattice, as functions of jqj ¼
ffiffiffiffiffi
q2

p
. Reconstruction was done with ON tensor basis

of Eq. (A11). Sine data refer to reconstruction with momenta ðp̂; q̂Þ, where e.g., p̂ ¼ 2 sinðp=2Þ. Plots (a) and (c) correspond to a vertex
of Monte Carlo calculations, and (b) and (d) correspond to a perturbative lattice vertex (26).
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correlator dressings, pertaining to Monte Carlo calcula-
tions. A quick glance at our reconstruction results in this
paper reveals that, in a majority of cases, the deviations
seen in our vertex reconstructions peak at about 5% to 10%.
On the basis of results in Fig. 10, and being somewhat
conservative in our estimations, we would say that the
corresponding errors for correlator dressings are no larger
than 40% to 50%. By extrapolation (keeping in mind that
such extrapolations can be rather “dangerous”), one could
expect for uncertainties of similar size to be present in most
of the lattice studies of the three-gluon interaction kernel.
Now, an error of about 50% is obviously a significant
number, but it needs to be put into context. Most of the
lattice investigations of vertex dressing functions, e.g.,
[42,44,45,47,49], deal with statistical errors which are
either comparable to or even significantly larger than the
expected uncertainty coming from the use of a continuum
tensor basis. Thus, even though the tensor-related issues
have an appreciable quantitative impact, from a practical
perspective they can only become important once the
signal for vertex form factors has undergone some serious
improvements, compared to the current situation. This is
also the reason why, in Fig. 10, we chose to present and
discuss the results for the perturbative lattice vertex, and not
the one of Monte Carlo calculations. The signal quality for
vertex dressings of the Monte Carlo vertex is such that no
definitive conclusions can be drawn from them, since all the
results (with and without the sine adjustment) practically
agree with each other, within very large statistical error
bars. The said results are given and further elaborated on in
Appendix C.

V. FURTHER DISCUSSION AND
CONCLUDING REMARKS

In this paper we have introduced the method of vertex
reconstruction as a means of checking the fidelity of
various tensor representations of lattice vertex functions.

We have used the method to show that, for general
kinematics, the description of the lattice gluon propagator
and the three-gluon vertex in terms of their continuum
tensor bases leads to a non-negligible loss of information.
On the other hand, we have also demonstrated that there
exist special kinematic configurations for which these
functions can be represented correctly with tensor elements
of the continuum theory. To summarize, these special
kinematics include (1) situations with all vertex momenta
pointing along the diagonal [see e.g., Fig. 7(d)], (2) con-
figurations with vertex momenta having components equal
to either zero or the same nonzero value s, arranged such
that one of the momenta is diagonal [see e.g., (25) and the
first line of (27)], and (3) kinematic choices with one
vanishing vertex momentum, wherein the last example
requires a momentum substitution p → p̂ ¼ 2 sinðp=2Þ in
order to work [see Fig. 3(a)]. We have shown analytically
why the aforementioned kinematic configurations are
special concerning the continuum tensor representations
and provided some arguments on the applicability of these
ideas to other primitively divergent vertices of lattice QCD.
In addition to the above, we attempted to provide

quantitative estimates of the impact that the use of
continuum tensor bases has on evaluations of vertex form
factors on the lattice. Our, somewhat conservative, estimate
is that the resulting uncertainties for vertex dressings do not
exceed 50%. While this is a significant figure, it is not
greater than typical statistical errors encountered in lattice
evaluations of vertex dressing functions. This means that
the tensor-related discrepancies will only become important
once the signal for vertex form factors has improved
significantly, compared to the current state.
Here we would also like to make some additional

comments on topics which are indirectly related to our
results. Let us start with the diagonal kinematic configu-
rations. One of our main conclusions in this paper is that
the evaluation of vertex functions near the lattice diagonal
can be advantageous due to a reduction of discretization

FIG. 10. Left: Reconstruction of perturbative vertex (26), for particular kinematics on a 323 lattice. Right: Dressing function of the tree-
level term τ1μνρ of basis (C1), extracted from vertex (26). Reconstruction was done with ON tensor elements (A11), and function F1 was
calculated from ON form factors via rotation R of (C4) and (C5). Sine data refer to calculations with momenta ðp̂; q̂Þ, where
e.g., p̂ ¼ 2 sinðp=2Þ.
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artifacts in vertex tensor elements. But there is yet another
reason to favor the near-diagonal configurations over some
generic lattice kinematics: close to the diagonal, there is
also a reduction in hypercubic artifacts inherent to lattice
vertex form factors. This constitutes the basis of the so-
called cylindrical kinematic cut [53], where one only
considers momentum configurations which are a certain
(short) distance away from the diagonal. Thus, computa-
tions of lattice propagators/vertices for near-diagonal
momenta can be doubly useful, as they reduce the dis-
cretization effects in both the tensor structures and dressing
functions of a given lattice correlator.
Another issue which merits a further discussion is

the zero-momentum discrepancy in Fig. 2. It is very
likely that most of this effect comes from finite volume
artifacts. But it should be mentioned that there might
exist other factors which contribute at p ¼ 0. One of the
possible “culprits” is the appearance of additional tensor
terms proportional to a Dirac delta function δðpÞ: it is
argued in [77], by means of axiomatic field theory, that
such terms may arise in tensor decompositions of gauge
field propagators in both continuum and lattice theories.
Besides this, on the lattice there are also tensor structures
that contribute to gluon correlators at zero momentum,
which have no continuum analogue and which vanish as
a → 0 [54]. In order to truly assess the influence of
either of these structures at vanishing lattice momentum,
one would need to conduct a dedicated study with a
careful consideration of finite volume and Gribov copy
effects [43,46,78–84].
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APPENDIX A: VERTEX TENSOR BASES
IN LANDAU GAUGE

1. Orthonormal transverse basis

Each of the gluon legs that comprise the three-gluon
interaction comes with its own momentum variable: in
lattice literature, these three momenta are often denoted as
p, q, and r. Due to momentum conservation at the vertex,
only two of the momenta are independent. A construction
principle for the three-gluon vertex basis proposed in [20]
starts from the following combinations:

k ¼ q − p
2

; V ¼ −r: ðA1Þ

The first step is to orthonormalize k and V with respect to
each other: this is done in a standard way as

dμ ¼ Ṽμ; sμ ¼ k̃trμ ; ðA2Þ

where ktrμ ¼ TV
μνkν is a component of k transverse to V, and

TV
μν ¼ δμν − VμVν=V2. The tilde ( ∼) in these expressions

denotes a normalized vector. For purposes of later dis-
cussion we introduce the auxiliary tensors

T1
μν ¼ δμν; T4

μν ¼ sμdν þ dμsν;

T2
μν ¼ sμsν; T5

μν ¼ sμdν − dμsν:

T3
μν ¼ dμdν; ðA3Þ

In Landau gauge the vertex is transverse with respect to
p, q, and r, or explicitly

pμΓμνρðp; q; rÞ ¼ qνΓμνρðp; q; rÞ ¼ rρΓμνρðp; q; rÞ ¼ 0:

ðA4Þ
Thus, in Landau gauge it is sufficient to retain those

linear combinations of elements in (A3) which are trans-
verse to all of the vectors p, q, and r. It turns out that there
are only four of them. To shorten the upcoming equations,
we will use the following notation for kinematic variables:

t ¼ V2

4
; η ¼ 4k2

3V2
; z ¼ k̃ · Ṽ;

a ¼
ffiffiffiffiffi
3η

p
z; b ¼

ffiffiffiffiffi
3η

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
: ðA5Þ

The above quantities are all dimensionless, except for t.
The momenta p, q and r can now be rewritten as

pμ ¼ −
ffiffi
t

p ðbsμ þ ða − 1ÞdμÞ;
qμ ¼

ffiffi
t

p ðbsμ þ ðaþ 1ÞdμÞ;
V ¼ −r ¼ 2

ffiffi
t

p
d: ðA6Þ

We now need linear combinations of quantities in (A3)
which have definitive transversality properties with respect
to p and q. These have been constructed in [83]. Here we
only provide the elements relevant for the vertex in Landau
gauge: for more general cases, consult [83] or [20]. The
important objects are

Y1
μν ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

p ðT1
μν − T2

μν − T3
μνÞ;

Y2
μν ¼

1ffiffiffiffiffiffiffiffiffiffi
n1n2

p ½ð1 − a2ÞT2
μν − b2T3

μν þ abT4
μν − bT5

μν�:

ðA7Þ
In the above expression, D denotes the number of

dimensions, and we used the abbreviations
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n1 ¼ 1þ a2 þ b2; n2 ¼ n1 −
4a2

n1
: ðA8Þ

From Eqs. (A6) and (A7), and using the properties of s
and d (s2 ¼ d2 ¼ 1 and s · d ¼ 0), it is straightforward
to show that the objects Y1

μν and Y2
μν have the following

transversality properties:

Y1
μνsμ ¼ Y1

μνsν ¼ Y1
μνdμ ¼ Y1

μνdν ¼ 0;

Y2
μνpμ ¼ Y2

μνqν ¼ 0: ðA9Þ

From Eqs. (A6) and (A9), one can see that Y1
μν is

transverse to all momenta p, q, and r, in both of its indices.
Now, vector sμ is, by construction, orthogonal to rμ, and
one thus immediately gets two fully transverse elements,
Y1
μνsρ and Y2

μνsρ. The remaining objects can be obtained by
taking the vector s and transversely projecting it with
respect to momenta p and q, i.e., sp;qμ ¼ Tp;q

μα sα. The
resulting normalized momenta are

s̃pμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 − 2a

p ½ða − 1Þsμ − bdμ�;

s̃qμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ 2a

p ½ðaþ 1Þsμ − bdμ�: ðA10Þ

From Eqs. (A10) and (A6) one can see that s̃pμ and s̃qμ are
orthogonal to p and q, respectively. We now have all the
ingredients to write down a complete, orthonormal, and
transverse basis for the Landau gauge three-gluon vertex:

ρ1μνσ ¼ Y1
μνsσ; ρ2μνσ ¼ Y2

μνsσ;

ρ3μνσ ¼ Y1
σνs̃

p
μ ; ρ4μνσ ¼ Y1

ρμs̃
q
ν : ðA11Þ

Now let us discuss the case of two dimensions. One first
notes that in two dimensions the vectors s and d, defined in
Eq. (A2), take the form

s ¼
�
e

f

�
; d ¼

�
f

−e

�
; ðA12Þ

where f2 þ e2 ¼ 1. In two dimensions, this is the only
combination that satisfies the defining characteristics of s
and d, namely that s2 ¼ d2 ¼ 1 and s · d ¼ 0. By plugging
the expressions of (A12) into the definition of Y1

μν,
component by component, one can see that the (non-
normalized) version of this tensor vanishes:

Y1
11 ¼ δ11 − s1s1 − d1d1 ¼ 1 − e2 − f2 ¼ 0;

Y1
21 ¼ δ21 − s2s1 − d2d1 ¼ fe − ef ¼ 0; ðA13Þ

and similarly for Y1
12 and Y1

22. The fact that Y
1
μν identically

equals zero in two dimensions means that three out of four

basis elements in Eq. (A11) also vanish, and the only
surviving tensor in Landau gauge is ρ2μνσ. With the same
kind of calculation one can show that for special kinematics
in three dimensions, e.g., p ¼ ðm; n; 0Þ and q ¼ ðg; l; 0Þ
(with arbitrary numbersm, n, g, l), the structure ρ2μνσ will be
the dominant one, as all the other elements of (A11) vanish
for all but a few values of their indices ðμνσÞ. For such
special three-dimensional kinematics, the contributions
of tensors ρjμνσ (j ¼ 1, 3, 4) to the index average of (22)
will be negligible, rendering the calculations essentially
two dimensional. In connection to this, one may look up the
results in Fig. 7 and compare the “quality” of data between
the upper and lower panels of the figure.

2. Simple Landau gauge basis

Due to the properties of orthonormality and manifest
transversality, the basis given in (A11) is very useful for
numerics. However, a somewhat convoluted construction
can make the transverse ON basis difficult to manage for
analytic manipulations. In this section we describe another
tensor basis for the three-gluon vertex, arguably the
simplest one (in a certain sense) which one can use in
Landau gauge. The upcoming analytic proofs, relevant for
our study, will be carried out in full only for the simple
elements. Here we will also establish a connection between
the ON and simple bases, and it will be used to argue that
all of the forthcoming results are equally well applicable to
the ON structures, or indeed to any other tensor represen-
tation that one might choose to describe the three-gluon
interaction.
We start the basis construction with an observation

that the three-gluon coupling has two independent momen-
tum variables (say, p and q) and three Lorentz indices,
meaning that the following 14 tensor elements should
suffice to parametrize the vertex (compare Appendix A
of [72]):

δμν × fpρ; qρg; δμρ × fpν; qνg; δνρ × fpμ; qμg;
pμ × fpρpν; pρqν; qρqνg; pνqμpρ;

qμ × fqρqν; qρpν; pρpνg; qνpμqρ: ðA14Þ

Full transversality, as expressed in (A4) (with
r ¼ −p − q) means that among the elements of (A14),
one can ignore those which are proportional to components
pμ and qν. Even more than that, from momentum con-
servation (rρ ¼ −pρ − qρ) and the fact that the tensor rρ is
eliminated in Landau gauge, one gets that pρ and qρ are
degenerate with pρ ¼ −qρ. Taking into account this degen-
eracy and neglecting the elements proportional to pμ and qν
in (A14), one ends up with only four fully transverse
elements in Landau gauge. In terms of dimensionless
quantities, these tensors are
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ffiffiffiffiffi
p2

q
S1μνρ ¼ Tp

αμT
q
βνT

r
γρ · δαβpγ;ffiffiffiffiffi

q2
q

S2μνρ ¼ Tp
αμT

q
βνT

r
γρ · δβγqα;ffiffiffiffiffi

p2

q
S3μνρ ¼ Tp

αμT
q
βνT

r
γρ · δγαpβ;

p2

ffiffiffiffiffi
q2

q
S4μνρ ¼ Tp

αμT
q
βνT

r
γρ · qαpβpγ; ðA15Þ

with a transverse projector Tp
μα ¼ δμα − pμpα=p2, and

similarly for others. The above structures are deceptively
simple, since we have refrained from writing out the full
expressions, with transverse projections carried out. For
most of the upcoming analytic arguments, the forms given
in (A15) are perfectly adequate.
The bases of (A11) and (A15) describe the same object,

and thus there has to be a connection between them. In
other words, there should exist a rotation operator R that
affects the transformation,

ρjμνσ ¼
X4
k¼1

RjkSkμνσ; j ¼ 1 � � � 4: ðA16Þ

The procedure to obtain the components of R can be
broken down into a few simple steps, but we shall not
provide the details here. We will just write down the
nonvanishing elements of R, for a three-dimensional
theory. In terms of kinematic variables a, b, t, and n1
defined in Eqs. (A5) and (A8), the nonzero entries of R are

R11 ¼ −4
ffiffiffiffiffi
p2

q
; R14 ¼

p2
ffiffiffiffiffi
q2

p
ða2 þ b2 − 1Þ
b2t

;

R24 ¼
p2

ffiffiffiffiffi
q2

p
b2tnþn−

; R32 ¼
−2

ffiffiffiffiffi
q2

p
n−

;

R34 ¼
p2

ffiffiffiffiffi
q2

p
ðaþ 1Þ

b2tn−
; R43 ¼

−2
ffiffiffiffiffi
p2

p
nþ

;

R44 ¼
p2

ffiffiffiffiffi
q2

p
ða − 1Þ

b2tnþ
; ðA17Þ

where n� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 2a

p
. Additionally, all of the elements

of R are to be divided by 4b
ffiffi
t

p
. The matrix transpose of R

can be used to effect a different kind of transformation,
namely to rotate the dressing functions of the ON basis
[denoted Bj and calculated via (20)] into the dressings of
the simple basis. We have used this fact to simultaneously
perform vertex reconstructions with both ON and simple
bases, and we have checked that the two methods give the
same results. With the connection between the ON and
simple elements established via (A16), we are ready to
move on with our analytic proofs.

APPENDIX B: SPECIAL KINEMATIC
CONFIGURATIONS

1. Generalized diagonal kinematics

In the following we wish to show that for certain
kinematic configurations, the three-gluon vertex of lattice
Monte Carlo calculations can be represented as a linear
combination of tensor elements from the continuum theory.
The proof, which will unfortunately turn out to be rather
lengthy, will consist of two parts. In the first part, we will
demonstrate that there exist kinematics for which the
continuum tensors do not change under a transformation

pμ → p̂μ; ðB1Þ

with p being the continuum momentum and p̂ being its
lattice-adjusted version. Following (8), which is valid for
standard lattice Landau gauge implementations, we will
look at a concrete example where

p̂μ ¼ 2 sin

�
pμ

2

�
: ðB2Þ

An invariance under the above adjustment, for certain
kinematics, is a necessary requirement for continuum
tensor bases to work on a lattice, since momenta which
enter the construction of vertex tensor elements should all
be modified according to (B2); see Eq. (23). However, the
above invariance condition alone does not guarantee an
exact representation of lattice vertices in terms of con-
tinuum tensor structures. We will discuss the reasons for
this in the second part of our proof: there we will take a look
at the perturbative lattice correlator and see what additional
prerequisites have to be met, to make this function fully
describable by tensor bases of the continuum theory. Let us
begin the arguments by looking at a specific momentum
configuration, namely the fully symmetric case in three
dimensions,

p ¼ ð−n; 0; nÞ; q ¼ ðn;−n; 0Þ; r ¼ ð0; n;−nÞ;
ðB3Þ

with n being a number consistent with lattice momentum
discretization. The first part of our proof will hold not just
for (B3), but for any configurations which satisfy the
demands that (1) the components of p and q are either
n or 0, and (2) the components of p and q are organized in
such a way that the lattice adjustment does not break
momentum conservation. In other words, from r ¼ −p − q
it should follow that r̂ ¼ −p̂ − q̂. Besides (B3), this class of
configurations would also include the two-dimensional
example of (25) and others.
One first notes that, without any loss of generality, the

lattice transformation on momenta of (B3) can be written as
a multiplicative factor, i.e.,
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p̂μ ¼ ξ · pμ; q̂μ ¼ ξ · qμ; r̂μ ¼ ξ · rμ; ðB4Þ

with ξ being some number. The above relation follows from
the special form of the vectors in (B3): since the compo-
nents of all the vectors are either �n or 0, they all get
modified in the same way, i.e., sinðn=2Þ ¼ ξ · n; sinð0Þ ¼
ξ · 0; sinð−n=2Þ ¼ −ξ · n. We shall temporarily assume that
the factor ξ is strictly positive, and the possibility ξ < 0will
be discussed in detail later. Now, one can easily see that the
transverse projectors that enter the construction of simple
elements in (A15) are invariant under the scaling trans-
formation of (B4). As an example,

p̂αp̂μ

p̂2
¼ ξ2pαpμ

ξ2p2
¼ pαpμ

p2
; ðB5Þ

and similarly for the nontrivial parts of Tq
βν and Tr

γρ. Since
these operators are unaffected by the lattice adjustment, we
will drop them from the definition of the simple basis, for
the derivation of the following expression. Let us see what
happens with the remaining parts of the Skμνρ structures
under (B4). Concretely, let us look only at S1μνρ and S4μνρ, as
it should be fairly obvious that the same thing happens with
the other elements as well,

Ŝ1μνρ ¼
δμνp̂ρffiffiffiffiffi

p̂2
p ¼ ξδμνpρ

ξ
ffiffiffiffiffi
p2

p ¼ δμνpρffiffiffiffiffi
p2

p ;

Ŝ4μνρ ¼
q̂μp̂νp̂ρ

p̂2
ffiffiffiffiffi
q̂2

p ¼ ξ3qμpνpρ

ξ3p2
ffiffiffiffiffi
q2

p ¼ qμpνpρ

p2
ffiffiffiffiffi
q2

p : ðB6Þ

Thus, even with lattice-adjusted momenta, the vertex
tensor structures remain the same as in the continuum. The
same can be shown for other tensor representations, such as
the orthonormal one. From the invariance of elements Skμνσ
and Eq. (A16) one can see that, to establish an absence of
change for the basis ρjμνσ under (B4), it should be proven
that the operator R remains unaffected by lattice momen-
tum modifications. We will not go into a detailed demon-
stration of this, but will outline the main steps. Combining
the transformation of (B4) with definitions of (A1) and
(A5) one gets

t̂ ¼ ξ2t; η̂ ¼ η; ẑ ¼ z;

â ¼ a; b̂ ¼ b: ðB7Þ

From the above results and the definition of (A8), it also
follows that n̂1 ¼ n1 and (consequently) n̂� ¼ n�. With
this, one has all the necessary ingredients to prove the
invariance of R. For instance, the lattice version of the
element R44 would be

RL
44 ¼ p̂2

ffiffiffiffiffi
q̂2

q
ðâ − 1Þ=ð4b̂3 t̂32n̂þÞ

¼ ξ3p2

ffiffiffiffiffi
q2

q
ða − 1Þ=ðξ34b3t32nþÞ

¼ p2

ffiffiffiffiffi
q2

q
ða − 1Þ=ð4b3t32nþÞ ¼ R44: ðB8Þ

Similar relations hold for other entries in R. To conclude
this part of our argument, we wish also to comment on the
case ξ < 0. While such a scenario can happen in principle,
for relatively general p̂ðpÞ dependencies, it is in fact not
possible in our current framework, with a periodic lattice
and p̂ðpÞ ¼ 2 sinðp=2Þ. The function sinðx=2Þ has the
same sign as x, for all x ∈ ½0; 2π�, with ½0; 2π� being the
relevant interval of values in standard lattice formulations.
Thus, in our present numerical setup, ξ will always be a
strictly positive factor.
This concludes the first part of our proof, where we have

shown that continuum tensor bases do not change under a
modification akin to (B2) for certain kinematics. As already
noted, the above scaling invariance does not guarantee that
the lattice three-gluon vertex can be described exactly by
continuum tensor bases, with a counterexample provided
by the configuration (B3); cf. Fig. 9. To understand why
some lattice kinematic choices are special, in terms of
continuum tensor representations, we shall take a look at
the perturbative lattice vertex of Eq. (26). We will show
that, under some additional assumptions which we have not
addressed so far, this vertex can be represented exactly with
the simple basis elements of (A15). This kind of argument
directly pertains only to the perturbative lattice correlator,
and not to the three-gluon vertex of Monte Carlo simu-
lations: however, the latter seems to behave similarly to the
former regarding the continuum tensor descriptions; see
Fig. 9. Such similarities are somewhat expected, since the
Monte Carlo correlator calculated with the Wilson gauge
action should approximately reduce to (26) in the high-
momentum region.
As an example of kinematics where the perturbative

lattice vertex can be completely described with elements
(A15), we shall look at the upper configuration in (27), i.e.,
the situation

p¼ðn;0;nÞ; q¼ð0;n;0Þ; r¼−ðn;n;nÞ: ðB9Þ

Let us begin by pointing out some special features of the
above momentum configuration, which will become impor-
tant in the following. First, at least one momentum [in the
case of (B9), it is vector r] is diagonal, meaning that it has
all the components equal to each other. In some sense, it
makes the vector r behave as if it were a constant, since
rμ ¼ −n for all possible values of index μ. The second
important characteristic of the kinematic choice (B9) is that
(no summation implied)
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pμqμ ¼ 0: ðB10Þ

In other words, whenever there is an expression
where momenta p and q appear with the same index μ,
the said expression can be set to zero. The above is a
consequence of the arrangement of zeros and nonzero
entries in vectors p and q, namely, since we have p1 ¼
p3 ¼ n and q2 ¼ n, with all the other components of p
and q vanishing.
One last trick, which we shall require for the upcoming

proofs, is the manipulation of the cosine functions of
momenta (B9), so as to get continuumlike momentum
factors. In other words, we wish to see how the terms like
cosðpμ=2Þ can be transformed to give expressions similar
to (B4). Using the fact that cosð0Þ ¼ 1, one can write [here,
the vector p is taken from (B9)]

cos

�
p
2

�
¼

0
B@

cosðn=2Þ
1

cosðn=2Þ

1
CA

¼ 1 −

0
B@

1 − cosðn=2Þ
0

1 − cosðn=2Þ

1
CA ¼ 1 − η · p; ðB11Þ

where η ¼ ð1 − cosðn=2ÞÞ=n. One can thus equate
cosðpμ=2Þ with 1 − η · pμ, with the aforegiven factor η.
The same kind of transformation works for the momentum
q of (B9), so that one has cosðqν=2Þ ¼ 1 − η · qν. With
these relations at our disposal, we are finally ready to
demonstrate that the vertex (26) reduces to a linear
combination of simple basis elements Skμνρðk ¼ 1 � � � 4Þ
for the kinematics (B9). For convenience, we repeat here
the definition of the lattice perturbative three-gluon vertex
in Landau gauge and for Wilson gauge action (an overall
factor of 2 for the perturbative vertex will be ignored in the
following):

Γlatt;Landau
μνρ ðp; q; rÞ ¼ Tp

αμT
q
βνT

r
γρ · Γlatt

αβγðp; q; rÞ; where

Γlatt
αβγðp; q; rÞ ¼ δαβ sin

�
pγ − qγ

2

�
cos

�
rα
2

�

þ δβγ sin

�
qα − rα

2

�
cos

�
pβ

2

�

þ δγα sin

�
rβ − pβ

2

�
cos

�
qγ
2

�
:

ðB12Þ

Note that, unlike in Eq. (26), in the above expression we
use the continuum definitions for transverse projectors.
This is justified by the fact that, for the kinematics of
(B9), the continuum and lattice-adjusted versions (with
Tp;l
αμ ¼ δμα − p̂αp̂μ=p̂2) become equivalent; see Eq. (B5)

and the accompanying text. We now need to analyze all of
the terms in (B12) carefully, to see how they may be
brought into the form of tensor elements (A15). We shall
start with the quantity sin½ðqα − rαÞ=2�. By means of a
trigonometric identity

sinðα − βÞ ¼ sinðαÞ cosðβÞ − sinðβÞ cosðαÞ; ðB13Þ

the said expression can be recast into a new form,

sin

�
qα − rα

2

�
¼ sin

�
qα
2

�
cos

�
rα
2

�
− sin

�
rα
2

�
cos

�
qα
2

�

¼ C1 sin
�
qα
2

�
− C2 cos

�
qα
2

�
: ðB14Þ

In the last step of (B14), we have introduced the
constants

C1 ¼ cos

�
n
2

�
; C2 ¼ − sin

�
n
2

�
: ðB15Þ

The final equality in (B14) follows from the fact that
the vector r is diagonal, for kinematics (B9). In other
words, the index α on this vector does not really matter,
since one has

cos
�
rα
2

�
¼ cos

�
−n
2

�
¼ C1 ðB16Þ

for all values of the index α. The same argument holds for
the constant C2 in (B14). Now, by using the identities (B4)
and (B11), we can further transform the final result of (B14)
as follows:

C1 sin
�
qα
2

�
− C2 cos

�
qα
2

�

¼ ðC1 · ξþ C2 · ηÞ · qα − C2 ¼ ðC1 · ξþ C2 · ηÞ
· qα − ξ · rα: ðB17Þ

For convenience, we collect here all of the definitions
we have used to arrive at (B17) [ξ and η were defined
in (B4) and (B11), respectively]:

ξ ¼ sinðn=2Þ=n; η ¼ ð1 − cosðn=2ÞÞ=n;
C1 ¼ cosðn=2Þ; C2 ¼ − sinðn=2Þ: ðB18Þ

In the last step in (B17), we rewrote the constant C2 as
C2 ¼ ξ · rα ¼ −ξ · n: we repeat that for vector r of (B9), it
holds that rα ¼ −n for all values of the index α. The same
steps which were used to arrive at the final expression
in (B17) can be applied to the remaining two sine functions
in (B12). In particular, the term sin½ðrβ − pβÞ=2� can be
transformed into
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sin

�
rβ − pβ

2

�
¼ ξ · rβ − ðC1 · ξþ C2 · ηÞ · pβ: ðB19Þ

The remaining sine factor in the perturbative lattice
vertex (B12) does not manifestly depend on the vector r,
whose “diagonality” we have used to obtain relations such
as (B17) and (B19). This is easily remedied by employing
momentum conservation r ¼ −p − q to get

sin

�
pγ − qγ

2

�
¼ sin

�
2pγ þ rγ

2

�

¼ ðτ · C1 − λ · C2Þ · pγ þ ξ · rγ: ðB20Þ

In arriving at the final form in (B20), we have introduced
new constants

τ ¼ sinðnÞ=n; λ ¼ ð1 − cosðnÞÞ=n: ðB21Þ

The final expressions which we have derived in (B17),
(B19), and (B20) are quite ungainly, but the main point is
that the sine terms of the perturbative lattice correlator can
be recast into a form which features continuumlike tensor
structures [e.g., (B17) is linear in qα and rα], with all of the
nonlinear dependence on n “stored away” in coefficients
which multiply the vectors p, q, and r.
We now wish to (arguably) simplify the above contin-

uumlike expressions by using the fact that we work in
Landau gauge. To see how this may help with simplifying
things, note that from momentum conservation it follows
that (say) rα ¼ −qα − pα. Now, the tensorial term pα is
projected out by the operator Tp

αμ in (B12), from which
it follows that rα ¼ −qα. This last identity is to be under-
stood to hold formally, when constructing vertex tensor
elements, and not as a literal equality between vectors r
and q. By exploiting the formal relations like rα ¼ −qα,
some of the above equations can be recast, in Landau
gauge, as follows:

sin

�
qα − rα

2

�
¼ ðC1 · ξþ C2 · ηþ ξÞ · qα;

sin

�
rβ − pβ

2

�
¼ −ðC1 · ξþ C2 · ηþ ξÞ · pβ;

sin

�
pγ − qγ

2

�
¼ ðτ · C1 − λ · C2Þ · pγ: ðB22Þ

As one of the final transformations of the perturbative
lattice vertex, we apply the trick (B11) to cosine factors in
(B12) and combine this with the relations (B22) to get

sin

�
qα−rα

2

�
cos

�
pβ

2

�
¼sin

�
qα−rα

2

�
ð1−η ·pβÞ

¼ðC1 ·ξþC2 ·ηþξÞ ·ðqα−η ·qαpβÞ;

sin

�
rβ−pβ

2

�
cos

�
qγ
2

�
¼sin

�
rβ−pβ

2

�
ð1−η ·qγÞ

¼−ðC1 ·ξþC2 ·ηþξÞ ·ðpβ−η ·pβqγÞ;

sin

�
pγ−qγ

2

�
cos

�
rα
2

�
¼C1 ·ðτ ·C1−λ ·C2Þ ·pγ: ðB23Þ

For the last equality in (B23), we used the definition
of the constant C1, given in (B15). With the above
identities, all of the individual terms which comprise the
vertex (B12) can be formulated as (almost) continuumlike
tensor structures, i.e.,

�
δβγ sin

�
qα−rα

2

�
cos

�
pβ

2

��
tr
¼ðC1 ·ξþC2 ·ηþξÞ

· ½ðδβγqα−η ·δβγqαpβÞ�tr;�
δγαsin

�
rβ−pβ

2

�
cos

�
qγ
2

��
tr
¼−ðC1 ·ξþC2 ·ηþξÞ

· ½ðδγαpβ−η ·δγαpβqγÞ�tr;�
δαβ sin

�
pγ−qγ

2

�
cos

�
rα
2

��
tr
¼C1 ·ðτ ·C1−λ ·C2Þ · ½δαβpγ�tr:

ðB24Þ

The superscript “tr” in (B24) indicates that objects inside
the square brackets are to be transversely projected. What
remains to be done is to demonstrate that all of the tensorial
terms in (B24) [i.e., pieces which carry the indices ðαβγÞ]
are proportional to some of the simple basis elements in
(A15), upon transverse projection. For certain quantities
in (B24), the connection with the simple basis is rather
obvious. As an example, for the tensor in the third line
of (B24), one has

C1 · ðτ · C1 − λ · C2Þ ·
X
αβγ

Tp
αμT

q
βνT

r
γρ · δαβpγ

¼ C1 · ðτ · C1 − λ · C2Þ ·
ffiffiffiffiffi
p2

q
S1μνρ; ðB25Þ

with S1μνρ being the first element of the basis (A15). Note
that in the above relation, we explicitly wrote the sum over
indices ðαβγÞ: for the remainder of this section, we shall not
be using the Einstein summation convention, and our
motivation for this will become clear shortly. Similar to
(B25), the transversely projected versions of δβγqα and
δγαpβ structures in (B24) are proportional to elements S2μνρ
and S3μνρ, respectively. However, Eq. (B24) also contains
two problematic terms, namely the tensors
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F 1
μνρ ¼

X
αβγ

Tp
αμT

q
βνT

r
γρ · δβγqαpβ;

F 2
μνρ ¼

X
αβγ

Tp
αμT

q
βνT

r
γρ · δγαpβqγ: ðB26Þ

The elements on the right-hand side of the above
relations are not Lorentz covariant, since e.g., the expres-
sion δβγqαpβ contains two instances of index β without an
implied contraction: it is because of such quantities that
we will avoid using the summation convention for the rest
of this section, and it should be understood that an index is
summed over only if the appropriate sum symbol is
present. Due to the absence of manifest Lorentz covari-
ance, it is not obvious that the structures F 1

μνρ and F 2
μνρ

can be reduced to linear combinations of simple basis
elements. Nonetheless, one can show that, for kinematics
(B9), it holds that

F 1
μνρ ¼ n2S2μνρ;

F 2
μνρ ¼ −2n2S4μνρ; ðB27Þ

with number n coming from (B9). We will now go
through a detailed proof for the first of the above
equations and simply remark that the second identity
can be shown with similar steps. The proof will consist of
a direct comparison, componentwise, between structures
F 1

μνρ and S2
μνρ. For this we first need to evaluate each of

the tensors separately. From the definition of F 1
μνρ in

Eq. (B26), one gets

F 1
μνρ ¼

X
αβγ

�
δαμ −

pαpμ

p2

��
δβν −

qβqν
q2

�

×

�
δγρ −

rγrρ
r2

�
· δβγqαpβ ¼ qμpνδρν −

qμpνrρrν
r2

:

ðB28Þ

When evaluating the sums over α and β in (B28), we
have used the property (B10), which eliminates most of the
terms. We now employ the fact that vector r of (B9) is
diagonal to make a substitution rν ¼ −n in the above
equation, and we obtain

F 1
μνρ ¼ qμpνδρν þ

nqμpνrρ
r2

: ðB29Þ

This concludes our manipulations with the structure
F 1

μνρ for now, and we turn our attention to the tensor
S2μνρ. We consider the definition of this object in (A15), and
we get for kinematics (B9) the relation (we also useffiffiffiffiffi
q2

p
¼

ffiffiffiffiffi
n2

p
¼ n)

S2
μνρ¼

X
αβγ

�
δαμ−

pαpμ

p2

��
δβν−

qβqν
q2

��
δγρ−

rγrρ
r2

�
·
δβγqα
n

¼δνρqμ
n

−
qμqνqρ
nq2

−
qμrνrρ
nr2

þqμqνrρq ·r

nq2r2
: ðB30Þ

When computing the sum over α in the above equation,
we have used the relation (B10) to eliminate some of the
contributions. Now, one can employ the relations q · r ¼
−n2 and q2 ¼ n2, valid for kinematics (B9), together with
momentum conservation p ¼ −r − q to combine the last
two terms of (B30) into

−
qμrνrρ
nr2

þ qμqνrρq · r

nq2r2
¼ qμpνrρ

nr2
: ðB31Þ

Taking the results of (B29), (B30), and (B31) we see that
the first equation in (B27) reduces to a claim that

qμpνδρν þ
nqμpνrρ

r2
¼? nδνρqμ −

nqμqνqρ
q2

þ nqμpνrρ
r2

:

ðB32Þ

The second term on the left-hand side of the above
equation obviously agrees with the third term on the right-
hand side, and we shall drop these from further comparison.
Also, we shall drop the factor qμ, which multiplies all of the
contributions on both sides of (B32). This leaves us with a
presumed identity

pνδρν ¼? nδνρ −
nqνqρ
q2

: ðB33Þ

We now transform the left-hand side by substituting
pν ¼ −rν − qν, and using rν ¼ −n to get

nδρν − qνδρν ¼? nδνρ −
nqνqρ
q2

: ðB34Þ

Neglecting the factors nδρν on both sides of the equation,
we finally end up with a comparison

qνδρν ¼?
nqνqρ
q2

: ðB35Þ

By looking at the momentum q in (B9), it is clear that
both sides of the above assumed equality are nonvanishing
only when ν ¼ ρ ¼ 2. For the particular case of ν ¼ ρ ¼ 2,
one obtains ðusing q2 ¼ nÞ

nδ22 ¼
nn2

n2
; ðB36Þ

which is an obviously true statement. This concludes our
proof of the first relation in (B27), and the second one can
be demonstrated in exactly the same way. At this point we
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want to make a comment regarding the generality of the
above results. Expressions (B27) become incorrect if
vectors p and q of (B9) are changed in any way, even if
the said change does not affect the validity of essential
arguments used in the above proofs. As an example of such
an alteration, one may consider the same kinematics as in
(B9), but with swapped momenta p and q, i.e., p ↔ q.
Another example would be a four-dimensional generaliza-
tion of (B9), with

p¼ ðn;0; n;0Þ; q¼ ð0; n;0; nÞ; r¼ −ðn;n;n;nÞ:
ðB37Þ

For both of these cases [swapped momenta p and q, four-
dimensional version of (B9)], the relations (B27) no longer
hold, but for both configurations it turns out that tensors
F 1

μνρ and F 2
μνρ can still be expressed as linear combinations

of simple basis elements. Here we shall state without proof
that for kinematics (B37), the tensors (B26) can be
written as

F 1
μνρ ¼

ffiffiffi
2

p
n2ðS2μνρ þ S4μνρÞ;

F 2
μνρ ¼

ffiffiffi
2

p
n2ðS3μνρ − S4μνρÞ: ðB38Þ

It thus “seems” that it is always possible, for kinematic
configurations akin to (B9), to (re)write the Lorentz-
noncovariant structures (B26) in terms of continuum tensor
elements. We are not aware if these facts are a consequence
of some deeper mechanism at play, or merely a coincidence
resulting when kinematics like (B9) are combined with a
Landau gauge condition for the gauge fields.
In either case, returning to the kinematics (B9), we

combine the relations (B27), (A15), and (B24), to (finally)
obtain a representation of the perturbative lattice vertex
(B12) in terms of continuum tensor structures (in the
following, we also use

ffiffiffiffiffi
p2

p
¼ ffiffiffi

2
p

n,
ffiffiffiffiffi
q2

p
¼ n):

�
δβγ sin

�
qα − rα

2

�
cos

�
pβ

2

��
tr
¼ ðC1 · ξþ C2 · ηþ ξÞ

· ð1− η · nÞ · nS2μνρ;�
δγα sin

�
rβ −pβ

2

�
cos

�
qγ
2

��
tr
¼ −ðC1 · ξþ C2 · ηþ ξÞ

· ð
ffiffiffi
2

p
nS3μνρ þ 2η · n2S4μνρÞ;�

δαβ sin

�
pγ − qγ

2

�
cos

�
rα
2

��
tr
¼ C1 · ðτ · C1 − λ · C2Þ

·
ffiffiffi
2

p
nS1μνρ: ðB39Þ

We repeat that in the above relations, “tr” denotes the full
transverse projection, number n is defined in (B9), and the
quantities ξ, η, C1, C2, τ, and λ all depend on n, via relations
(B15), (B18), and (B21). Despite the cumbersomeness of

the above expressions, they unambiguously show that the
perturbative lattice vertex can be represented via a con-
tinuum tensor basis. As a check on the validity of the above
relations, we shall evaluate numerically the following ratio:

R ¼
P

μνρjτj;lattμνρ jP
μνρjτj;contμνρ j ; j ¼ 1; 2; ðB40Þ

with j · j denoting an absolute value and tensors τj;lattμνρ and
τj;contμνρ ðj ¼ 1; 2Þ standing for certain objects on the left- and
right-hand sides of (B39), respectively. More precisely,
we have

τ1;lattμνρ ¼
�
δβγ sin

�
qα − rα

2

�
cos

�
pβ

2

��
tr
;

τ1;contμνρ ¼ Cn · ð1 − η · nÞ · nS2μνρ;

τ2;lattμνρ ¼
�
δγα sin

�
rβ − pβ

2

�
cos

�
qγ
2

��
tr
;

τ2;contμνρ ¼ −Cn · ð
ffiffiffi
2

p
nS3μνρ þ 2η · n2S4μνρÞ; ðB41Þ

with an overall factor Cn ¼ ðC1 · ξþ C2 · ηþ ξÞ. Numerical
results for the ratio are shown in Fig. 11, and they are equal
to unity (within numerical precision), as they should be.
We do not show the data for the third tensor(s) in (B39),
but simply remark that they are virtually indistinguishable
from the points in Fig. 11.
With the equalities (B39) thus confirmed numerically,

we immediately tackle the question on why the same
kind of correspondence should not be expected to hold for
some other kinematics, such as the symmetric one of (B3).
Put simply, the symmetric momentum partitioning has
almost none of the essential features that made it possible
to establish the relations (B39). For instance, none of
the momenta p, q, or r of (B3) are diagonal, making the
manipulations like (B14) inapplicable. Additionally, the

FIG. 11. Ratio of Eqs. (B40) and (B41) on a 323 lattice for
kinematics (B9). Results are in lattice units, with momenta given
in terms of vector nμ of (7).
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cosine trick (B11) does not result in continuumlike tensor
structures for either vertex momentum, since one would
have [we take the vector p of (B3) for illustration]

cos

�
p
2

�
¼

0
B@

cosð−n=2Þ
1

cosðþn=2Þ

1
CA

¼ 1 −

0
B@

1 − cosðn=2Þ
0

1 − cosðn=2Þ

1
CA ≠ 1 − η · p: ðB42Þ

With the last (in) equality above, we emphasized that the
factors like cosðpμ=2Þ cannot be recast into a form
1 − η · pμ for symmetric kinematics. Finally, the property
(B10) does not hold for kinematic choices akin to (B3), and
this identity played an important role in deriving the
relations (B39). Of course, these arguments do not con-
stitute an actual proof that equalities like (B39) are
impossible for symmetric momentum arrangements, but
they should make it clear that it is at least very unlikely that
the perturbative lattice vertex can be fully described in
terms of continuum tensor structures. It should also be clear
that it is almost a small miracle (or at least it seems to be)
that there exist any kinematic configurations, where the
above correspondences between lattice and continuum
tensor elements can be established.

2. Collinear kinematics

We now wish to show that for collinear kinematic
configurations, all of the tensor elements of the three-gluon
vertex vanish in Landau gauge. This is the reason that,
in our plots which include vertex reconstruction, we leave
out the points corresponding to p ¼ q: such a scenario is
simply a special case of collinear configurations. Collinear
kinematics are defined by

q ¼ Cq · p; Cq ¼ const: ðB43Þ

From the above relation and momentum conservation it
follows that all of the vertex vectors are multiples of a
single momentum variable, which we shall take to be p,

p ¼ p; q ¼ Cq · p; r ¼ Cr · p; ðB44Þ

where Cr ¼ −1 − Cq. When the relation (B44) is satisfied,
the different transverse projectors of (A15) become equiv-
alent, in a sense. As an example,

qνqβ
q2

¼ C2qpνpβ

C2qp2
¼ pνpβ

p2
: ðB45Þ

The same kind of equality holds for the operator Tr
ργ,

which becomes equal to Tp
ργ. Going back to the definitions

of Eq. (A15), these facts entail the vanishing of all of the
involved tensor structures, for instance,

S1μνρ¼Tp
αμT

p
βνT

p
γρ ·

δαβpγffiffiffiffiffi
p2

p ∼
�
δγρ−

pγpρ

p2

�
·
δαβpγffiffiffiffiffi

p2
p ¼0;

S4μνρ¼Tp
αμT

p
βνT

p
γρ ·

Cqpαpβpγ

Cqp2
ffiffiffiffiffi
p2

p ∼
�
δγρ−

pγpρ

p2

�
·
pαpβpγ

p2
ffiffiffiffiffi
p2

p ¼0:

ðB46Þ

Similar relations hold for the elements S2μνρ and S3μνρ. In
the above expressions, we have assumed that Cq is strictly
positive, since its sign makes no difference for the end
result. We point out that none of these considerations apply
to the case of one vanishing momentum, with either Cq or
Cr being equal to zero. This is because in such a scenario
(say, Cr ¼ 0), the corresponding transverse projector is
reduced to a Kronecker delta, i.e., Tr

ργ → δργ, meaning that
some of the vertex tensor structures will survive the
transverse projection.
With the vanishing of continuum Landau gauge three-

gluon vertex thus established, for collinear configurations,
we turn briefly to the case of the lattice correlation function.
From nonlinearity of the transformation (B2), it should be
fairly easy to see that the conditions of (B44) will in general
not survive the lattice momentum adjustment. In other
words, from Eq. (B44) it does not follow that

q̂ ¼ Dq · p̂; r̂ ¼ Dr · p̂; ðB47Þ

with some constants Dq and Dr. Even if one chooses a
configuration with p ¼ q, so that necessarily p̂ ¼ q̂, one
cannot keep both the condition of collinearity and the
momentum conservation condition. In general, then, the
lattice three-gluon correlator would not be expected to
vanish for collinear kinematic configurations.

APPENDIX C: BOSE SYMMETRIC TENSOR
BASIS AND VERTEX DRESSING FUNCTIONS

In this section we will briefly discuss the dressing fun-
ctions of the three-gluon vertex of lattice Monte Carlo
simulations. For our final results regarding the form factors,
we shall employ neither the orthonormal tensor structures
(A11) nor the simple ones of (A15). This is because we
want to have a clear separation between the continuum tree-
level term and the beyond tree-level tensor structures,
and this is a property that none of the aforementioned
bases possesses. Here we thus chose to work with man-
ifestly Bose-symmetric tensor elements, whose explicit
construction is provided in [20]. The basis elements are
[Eq. (60) of [20] ]
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τ1μνρðp; q; rÞ ¼ ðpρ − qρÞδμν þ ðqμ − rμÞδνρ
þ ðrν − pνÞδρμ;

S0τ
2
μνρðp; q; rÞ ¼ ðpρ − qρÞðqμ − rμÞðrν − pνÞ;

S0τ
3
μνρðp; q; rÞ ¼ r2ðpρ − qρÞδμν þ p2ðqμ − rμÞδνρ

þ q2ðrν − pνÞδρμ;
S0τ

4
μνρðp; q; rÞ ¼ ω3ðpρ − qρÞδμν þ ω1ðqμ − rμÞδνρ

þ ω2ðrν − pνÞδρμ; ðC1Þ

where

ω1 ¼ −q2 þ r2; ω2 ¼ −r2 þ p2; ω3 ¼ −p2 þ q2;

S0 ¼ p2 þ q2 þ r2: ðC2Þ

To be more specific, we work with transversely projected
versions of the above tensors in Landau gauge. The element
τ1μνρ in (C1) represents the continuum tree-level vertex
structure. The factor S0 was introduced in the above
relations to make all the basis elements have the same
mass dimension. To get the dressing functions pertaining to
the tensor description (C1), we use the orthonormal basis
(A11) in intermediary steps. Namely, we first obtain the

form factors of the orthonormal elements, denoted Bj and
calculated via contractions (20), and then rotate the results
into dressing functions of the basis (C1). Denoting the
coefficient functions of the Bose symmetric elements as Fk,
one has

Fk ¼
X4
m¼1

RkmBm; k ¼ 1 � � � 4: ðC3Þ

The rotation matrix R corresponding to the transforma-
tion (C3) is rather complicated, and here we shall provide
its components in a somewhat condensed notation. Writing
out the rows of R as vectors, one has

Rð1; ∶Þ ¼ 2t · ½mþn2− −m−n2þ; 0;−2n−ðm−n2þ þ aÞ;
− 2nþðmþn2− þ aÞ�;

Rð3; ∶Þ ¼ n−nþS0 · ½4ðm − 6Þn−nþ; 0; nþð6aþ 6 −mÞ;
n−ð6a − 6þmÞ�;

Rð4; ∶Þ ¼ S0 · ½2ðn2þ − n2−Þ; 0; n−ð1 − 4n2þÞ; nþð1 − 4n2−Þ�:
ðC4Þ

The remaining elements of R, which are too long to fit
neatly into the above vector notation, are

(a) (b)

(c) (d)

FIG. 12. Dressing functions of the vertex (17), for particular kinematics on a 323 lattice, as functions of jpj ¼
ffiffiffiffiffi
p2

p
. The form factors

correspond to the transversely projected version of the basis decomposition (C1). Results are in lattice units, with momenta given in
terms of vector nμ of (7). Sine data refer to calculations with momenta ðp̂; q̂Þ, where e.g., p̂ ¼ 2 sinðp=2Þ.
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Rð2; 1Þ ¼ −ð2ða − 3Þmþm2Þn2− þ ð16b2ðm − 6Þn2−
þ 2ðaþ 3Þm −m2Þn2þ;

Rð2; 2Þ ¼ −
l

ðn−nþÞ
;

Rð2; 3Þ ¼ 2n− · ðð12ðaþ 1Þb2
− 2ðb2 þ aþ 3Þmþm2Þn2þ − amÞ;

Rð2; 4Þ ¼ 2nþ · ðð12ða − 1Þb2
þ 2ðb2 − aþ 3Þm −m2Þn2− − amÞ: ðC5Þ

Additionally, all of the matrix elements of (C4) are to be
divided out with the factor Cd ¼ 4l · b · t3=2, while the
components (C5) are to be multiplied with S0=ð8b2 · CdÞ.
In the above expressions, we used the shorthand notations

n�¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�2a

p
; m¼a2þb2þ3;

m�¼2a�m∓6;

l¼ðð6aþm−6Þn2−−ð8ðm−6Þn2−þ6a−mþ6Þn2þÞ;
ðC6Þ

with quantities a, b, and n1 being defined in Eqs. (A5) and
(A8). With the details of our calculation thus specified, we
can turn to the actual results for the dressing functions of
the basis (C1). These are provided in Fig. 12. We note that
the displayed data correspond to nonrenormalized func-
tions, i.e., we have imposed no renormalization conditions
when evaluating Fkðk ¼ 1 � � � 4Þ.
One thing that one may immediately note about the

results in Fig. 12, is a rather poor signal quality for most of
the displayed functions. The dressing of the tree-level term

(i.e., the function F1 in Fig. 12) is the only one which
clearly does not vanish within the statistical uncertainties.
On the other hand, almost all of the values for the beyond
tree-level form factors are consistent with zero, within very
large error bars. Clearly, much better statistics would be
needed before any definitive statements can be made about
the functions Fk with k ¼ 2, 3, 4. In connection to this, we
would like to repeat that the results of Fig. 12 were obtained
with 9600 gauge field configurations, which is significantly
more than what most other lattice studies of the three-gluon
vertex use. It thus seems that either future Monte Carlo
investigations will have to employ many more configura-
tions than what is typically considered today or some
algorithmic improvements will have to be made to refine
the signal for the beyond tree-level tensor structures and
their dressings.
Concerning the tree-level form factor F1, with our

present data we can neither confirm nor definitely refute
the presence of the so-called zero crossing in the IR region,
which was observed in certain continuum studies of the
vertex [18–20,34]. There are also some lattice results which
support the existence of this sign change for the function F1

[45,48,49,51], but the available data are still not fully
conclusive. Our own results seem to be consistent with the
value of F1 slowly going down, as one approaches the
region of small momentum p, but at the moment we cannot
make any stronger statement in this regard. The presence of
a zero crossing and even signs of a possible collinear
divergence in F1 are topics which will have to wait for
future dedicated studies, where better statistics and larger
lattice volumes are considered. We are currently working
on some of these endeavors and hope to get some decisive
results in the near future.
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