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' degeneracy happens for equivalent continuous flows [3] and equivalent differential
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flows [6]) if and only if all ergodic invariant measures with positive measure-theoretic
entropy degenerate to fixed points. Whenever ¢ is assumed to be topological

ggﬁ:ﬁ;;:st fAow transitive, the measure degeneracy implies that the resulted equivalent flow 1 is
Measure degeneracy topologically chaotic but statistically trivial, meaning that all ergodic invariant
Entropy degeneracy measures are supported on fixed points. Using different approaches in different areas
Topological chaos people constructed examples of topological chaotic but statistical trivial systems,
Statistical triviality see [3] for C° flows, see [6] for C", r > 1, flows, see [1] [11] for C° homeomorphisms,

see time one map in [6] for C", r > 1 diffeomorphisms. We point out it is non-
hyperbolic singularity causes the degeneracy while changing one flow equivalently
to another.

© 2023 Elsevier Inc. All rights reserved.

1. Preliminaries

Two flows defined on a compact metric space are equivalent if there exists a homeomorphism of the space
that sends each orbit of one flow onto an orbit of the other flow while preserving the time orientation. The
topological entropy (measure-theoretic entropy) of a flow is defined as the entropy of its time-1 map. While
topological entropy is an invariant for equivalent homeomorphisms (see Theorem 7.2 in [10]), finite non-zero
topological entropy for a flow cannot be an invariant because its value is affected by time reparameterization.
However, 0 and oo topological entropy are invariants for equivalent flows without fixed points (see [3][7][8][9])-
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In equivalent continuous flows with fixed points, Ohno [3] constructed a counterexample, showing that
neither 0 nor co entropy is preserved by equivalence. In equivalent differential flows with singularities Sun,
Young and Zhou constructed a counterexample in [6], showing that 0 topological entropy is not preserved
by equivalence. Note that a differentiable flow on a compact manifold cannot have co entropy (see Theorem
7.15 in [10]).

In the examples in [3] [6], the phenomena that positive topological entropy degenerates to 0 (entropy
degeneracy) and that all ergodic invariant measures with positive measure-theoretic entropy degenerate to
the atomic measures supposed on fixed points or singularities (measure degeneracy) happen simultaneously,
while shifting homeomorphically one flow to its equivalent flow on a compact metric space or compact
smooth manifold. We then ask naturally: is the entropy degeneracy characterized by measure degeneracy
for any given equivalent continuous (or differential) flows with fixed points (or singularities)? In the present
paper we give a positive answer. Now we introduce this result.

For a flow ¢ : M x R — M denote by ¢; : M — M the homeomorphism given by ¢:(z) = ¢(z,t). A
Borel probability measure (measure for short) u is called ¢s-invariant if for any Borel set B it holds that
w(@¢(B)) = p(B). It is called ¢-invariant if it is ¢s-invariant for all ¢. A ¢-invariant measure is called ergodic
with respect to ¢ if any Borel set ¢4-invariant for any ¢ has measure 0 and 1. The set of all ergodic ¢-invariant
measures is denoted by Mg 4. We denote by M, 4 the set of ¢-invariant measures. We use h(¢) := h($1)
and h,(¢) := h,(¢1) to denote the topological entropy and measure-theoretic entropy, respectively. Set

M:rg,(j) = {/”’ € Merg,(b; hu((b) > 0}7 and Mgrg,¢ = {M € Merg,¢; hu((b) = O}

We use {fized points} to denote both the set of all fixed points for a continuous flow and the set of all
atomic measures supported on fixed points. And we use the terminology {singularities} similarly for a
differential flow.

Definition 1.1. Let two continuous flows ¢, ¥ : M x R — M on a compact metric space be equivalent and
let m: M — M denote a homeomorphism preserving the time orientation such that

w(Orb(z, ¢)) = Orb(w(x),¢), Ve e M.

If h(¢) > 0 and h(1)) = 0 hold simultaneously, we say that the positive entropy of ¢ degenerates to 0, or that
the phenomenon of entropy degeneracy happens, while transferring ¢ to ¢ by «. If M:T% " #0, M;rrg,d) =10
and W*M;g ¢ M Mergyp = () hold simultaneously, we say that all measures in ./\/l:rg » degenerate to fixed

points, or that the phenomenon of measure degeneracy happens, while transferring ¢ to ¥ by =.
The follow lemma is from [4].

Lemma 1.2. Let two continuous flows ¢, ¢ : M x R — M on a compact metric space be equivalent and let
w: M — M denote a homeomorphism preserving the time orientation such that

w(Orb(z, ¢)) = Orb(w(x),v), Vz e M.
Set My = {fized points of ¢}. There exists a continuous function 0(x,t), x € M \ My, t € R such that
1) 6(z,0) =0 and 0, = 0(x,.) : R — R is strictly increasing; and

2) 0z(s +1t) =0.(s) +05,,,(t); and
3) 7o ¢i(x) = Yg(a) o T(T).

We call §(z,t) : M \ My x R — R a reparameterization while transferring ¢ to ¢ by .
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Theorem 1.3. (Main Theorem) Consider two equivalent continuous flows ¢, 1 : M x R — M on a compact
metric space M with transferring homeomorphism m: M — M, that is,

w(Orb(z, ¢)) = Orb(w(x),v), Yz € M.

Then the following are equivalent.

(1). The positive entropy of ¢ degenerates to 0, while transferring ¢ to 1 by «;

(2). The ¢ invariant ergodic measures with positive measure-theoretic entropy degenerate to fixed points,
while transferring ¢ to ¢ by w;

Corollary 1.4. If the phenomenon of measure degeneracy or the entropy degeneracy happens while trans-
ferring ¢ to v by w, then limsup,_, , Q(IT’t) — 00 for p—a.a.x € M, Vu € MT where O(x,t) is the

erg,¢’
reparameterization while transferring ¢ to ¢ by .

In Section 2 we will show explicitly how the phenomenon of measure degeneracy happens. We will prove
in Section 3 Main Theorem, by using which we will classify all the probability systems in Section 4.

2. Time reparameterization and measure degeneracy

While transferring one flow ¢ to its equivalent flow v, time reparameterization 6(z,t) (see Lemma 1.2)
may increase very quickly as t — +oo. In this section we show explicitly how an invariant ergodic measure
i€ Merg ¢ degenerates, provided

lim 0z, 1)

t——+o00 t

=00, p—a.a € M.

Proposition 2.1. Denote by My the set of fixed points of a given continuous flow ¢ on a compact metric
space M. Suppose

O(x,t), =€ M\ My, teR

s a continuous function satisfying the following properties:
1) 0(x,0) =0 and 0, = 0(x,.) : R = R is strictly increasing; and
2) 0 (s +t) = 0,(s) + 6¢s(.’1:) (t).

Then it holds for a given p € Mepg ¢ that either

Oty [y 0(pw,1)ds
t_l}gloo .= tl}llloo = /O(x, 1 du, for p—aa. xe M,
or
O(z,t
lim () =00, p—a.a x€ M.
t—+4o0

Proof. For ¢ > 0 take integer n such that n <t <n+ 1, then

n 9(x,n)<9(a:,t) <n+19(x,n+1)
n+l n — t T n n+1

Since O(x,n) = 0(x,1)+0(d12,1)+- - -+ 60(¢dn—12,1), applying Birkhoff ergodic theorem for ¢; the following
limits exist
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1
lim 20 iy b(z,4) = lim f(z,n+1)
n—4o00 n t—+oo t n—-+oo n—+1
for 4 — a.a.x € M. Moreover, this limit is a constant b for u — a.a.x € M, this is because lim;_, 4 Ot) jq
¢ invariant and p is ergodic for ¢. For any ¢; ergodic measure 7 we have
0 Y 19(gx, 1
b= tim 2B g, Zmeblél) /G(x, 1)dr.
n—-+oo n n—-+4oo n
By the ergodic decomposition theorem it holds that
/H(x,l)dﬂ: /(/H(x,l)dT)du:/bdu:b.
So we have
O(x,t
lim () = /G(x,l)d,u, for p—a.a. xe M.
t—+oo t
Applying Birkhoff ergodic theorem to (¢, i) it holds that
O(z,t 0(psx,1)d
lim (z,1) = /9(%1) dp = lim M, ©—aa x € M. (2.1)
t—4o0 t t—+oo t

Next we consider the case that 6(.,1) is not integrable with x, meaning f O(x,1)du = oo. We will show
that lim; 4 oo M = +00, §t —a.a. x € M, by showing that liminf;_, ; - ( ) — =+o0, p—a.a.x € M.
Let us mtroduce a new function

0~ (x) = lim inf —f ($2,1) ds

t—+o00 t

, vE€M.

Since

[ 0(¢s6rw,1) ds t+7ft+T (¢sz,1)ds  J) O(¢sw, 1) d
t t t+7 t ’

we have 0~ (¢,z) =0~ (z), 7 € R, x € M. Note p is both ¢-invariant and ¢-ergodic, 8~ (x) = ¢ a constant
u—a.a. x € M. It suffices from (2.1) to complete the proposition by showing the following

Assertion. ¢ = 4o00.
Let N > 1 be a given big integer and let
Ay ={x e M| 6(z,1) > N}.

Ap is measurable since 0(x, 1) is continuous. Define

0(x,1), > M\A
m,n:{ D), a3 M\ A

Then {fy(x,1)}1>, is an increasing sequence of integrable functions and

NLHEOO On(x,1) = 6(x,1).
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Since [0(z,1)dp = +oo, [On(x,1)du — 400 by using the Monotone Convergence Theorem. For given
positive real R take Np such that [6On,(z,1)du —1 > R. Since by the Birkhoff ergodic theorem

limg s 400 M = [0n,(y,1) dp, there exists T > 0 such that for all ¢ > Tx it holds that

fg Ony (dsz,1)ds
t

> /HNR(y,l)du— 1> R.
So,

Jo 0(bsa,1)ds _ [y Onn(ész,1)ds
t - t

> R.

This implies that assertion, c =o00. O

Proposition 2.2. Consider a continuous flow ¢ on a compact metric space M. Suppose
O(x,t), zeM, teR

s a continuous function satisfying the following properties:
1) 0(x,0) =0 and 0, = 6(z,.) : R = R is strictly increasing; and
2) 0:(s+1) = 0.(s) + 0y, (t).
Let B={x € M | @ — 0o(t = +00)}. Then B is ¢s-invariant, for all s € R.

Proof. Note 0(x,s+t) = 0(x,s) +0(¢ps(x),t), M — 0o(t — +00) if and only if M — 0o(t — +00).
This implies that ¢s(z) € B, Vo € B. O

Proposition 2.3. Consider two equivalent flows ¢, v : M x R — M on a compact metric space M with
transferring homeomorphism w: M — M, that is,

m(Orb(z, ¢)) = Orb(w(x),¢), Yo e M.

We suppose that limg_, oo M = oo for p-a.e. x € M for a given non-atomic measure p € Mepg ¢
and suppose that Supp(p) N {fized points} = {p} consisting of exact one fized point of ¢, where 0 :
M\ My xR — R is the reparameterization while transferring ¢ to ¥ by w. Let v := m,pu. Then v is not
a Y-invariant measure, v ¢ Miny  (remark: v is p-ergodic but not y-invariant), or in other words, the
Y-ergodic invariant measure v degenerates to the fized point q := w(p) in the sense that v(B(gq,n)) — 1 as

n — 0, where B(q,n) ={y € M | d(q,y) <n}.

Proof. When v;(A) = A, ¥V t € R for some Borel set A, it follows that ¢;(m~*A) = 7~1(A), Vt € R. Since
p is ¢ ergodic, pu(m=1(A)) = 0, 1 and thus v(A4) = 0,1. So v is ¥ ergodic. v is not atomic on fixed point
because  is not. Now we show that v is not ¥-invariant. In fact, otherwise, we could deduce as follows that
v is atomic on the fixed point ¢, a contradiction.

Since p € Supp(u), ¢ € Supp(v). Take arbitrarily two reals n; > n > 0 and consider two balls B(g,n) =
{y € M | d(q,y) <n}and B(g,m) ={y € M | d(q,y) < m} centered at q. Their boundaries are denoted
by 0B(gq,n) and 0B(q,n1), respectively. Clearly, 0B(q,n) and 0B(q,n1) are compact. We take n; small
such that u(m='B(q,m1)) < 1. We take 7 small enough such that the time used to go from 7~'9B(q,7) to
7~Y0B(q,n1) or vice versa along any orbit of ¢ is bigger than 2. This can be down because the fixed point
p is inside 771 B(q,n) and 7~'B(q,m1), and near p every orbit goes slowly.
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Denote by My the set of fixed points of ¢. By Lemma 1.2 the reparameterization 6(z,t) is continuous
and satisfies 7¢:(z) = Yg(z,¢)(7(x)), Vo € M \ My. Take C > 0 such that 0(z,t) < C, V1 <t < 2,
Vo € M\ 7 1B(q,n). For 7 > 2 we write 7 = r + ¢, where r € N, 1 < ¢ < 2. Then

e(xv T) - 9(1‘, 1) + 0(¢1 (93), 1) +oeet 0(¢T—1xa 1) + 9((157’(1')7 6)
<C(r+1) (2.2)
< CT7

provided ¢(x,[0,7)) C M \ 7~'B(q,n).
Since p is both ¢ invariant and ¢ ergodic, there exists a Borel set D of y full measure such that

t
wd) = tEI—Poo M7 Vo e D

holds for any Borel set A, where x4 denotes the characteristic function of A. Similarly, there exists a Borel
set E of v full measure such that

t
v(4) =t£+mmw7 Vi€ E

holds for any Borel set A. Since v = m,u, 7(D) N E is of v full measure. Take x € Supp(p) N D and
y € Supp(v) N E with y = w(z). Since v(B(g,n)) > 0, the orbit Obt(y,)) starting at y will pass through
B(q,n) infinite times. Without loss of generality we assume y € M \ B(q,n) and thus € M \ 7~ B(q, 7).

Take a; such that ¢(x,[0,a1)) N7 B(p,m) = 0 and ¢, (x) € O7 1B(g,m). Take by > a; such that
é(x,la1,b1)) N7 1B(p,n) = 0 and ¢y, (x) € On 'B(q,n). Because the orbit starting at ¢, (z) enters
77 'B(q,n) with positive u measure and thus enters infinite times, the above b; exists. Take by > by
such that ¢(x, [by,bs]) C 7 'B(p,n) and ¢(z, (b2, by + 7)) N7 B(p,n) = O for some small » > 0. Be-
cause the orbit starting at ¢, () enters m#=*(B(q,m) \ B(g,n)) with positive u measure and thus enters
infinite times, the above by exists. If it happens that the orbit starting at ¢y, () stays 7= 1B(q,m) for-
ever, then p(m~'B(q,m)) = 1, which contradicts to the choice of n;. So we can take as > by such
that ¢(z, [ba,as]) € 7 'B(p,m) and ¢(z, (az,az + 7)) N7 B(p,m) = 0 for some small r > 0. Take
asz > ag such that ¢(z, (az,a3)) N7 1B(p,m) = 0 and ¢,,(x) € Or~*B(g,n1). Take b3 > a3 such that
é(x, (a3, b3)) N7 B(p,n) = 0 and ¢y, () € O7~'B(q,n). Take by > bz such that ¢(z, [b3,bs]) C 7~ B(p,n)
and @(x, (by, by + 1)) N7 B(p,n) = 0 for some small » > 0. Take ag > by such that ¢(z,[bs,a4]) C
7~ B(p,m) and é(z, (ag,as + 7)) N7 1 B(p,m1) = O for some small r > 0. One can show the existence of
as, bs, by, a4 by similar argument as showing the existence of ay, b1, az, bs. By repeating this procedure
we get two sequences

ay,a2,03,04,05," ", and b17b27b37b4ab57”'

such that the segments Orb(z, [aox_1, agi]) are inside the closed set 7~ B(p, n1) and Orb(z, (azg, azky1)) are
outside the open set 7' B(p,n;), and the segments Orb(x, [bay,_1,bax]) are inside the closed set 7= B(p,n)
and Orb(x, (bag, bar+1)) are outside the open set w1 B(p, n), for all k € N. We note that

7T¢($, a"i) = 1p<y7 9(‘%‘7 ai))’ and 7T¢($> b’L) = 7/)(317 9(I7 b’L))ﬂ 1= 1u 27 e

We also note that asp, > 2k, k=1,2,3,---.
Note that 0(z, ask—1) — 0(z, a2x—2) = 0(Gay,_,(x), ask—1 — azk—2) and ¢g,, ,(z) € M\ 7 1B(q,n). When
agk—1 — Qog—2 < 2, then 0(pa,, , (), a26-1 — a2k—2) < O(dar—2(z),2) < C. It follows when n — 400
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OSEazk_razk_zgz[@(%azkfl)—9(%@%72)]< nC__ ag nC |

0(x, asn) T 0(z,a2,)  O(x,a2,) asn 0

Recall by our assumption v € Mgpq.5. Then

VBlon) >t P02) =0 a)] 4 [B(.a2) 0. 09)] & -+ [B(r,a2,) — Bl 0z

n—-+4o0o 0 x, a2n>
— 1 lim [0(x,a3) — O(x,a2)] + [0(z,a5) — O(z,a4)] + - - + [0(z, a2n—1) — O(x, a2n—2)]
n—-+oo 0(x, azn)
—1— lim Ean—l*GZk—2>2[9(‘fI;7 a21€*1) - 9(1‘, a2k*2)]
- n——+00 9($, agn)
_ lim Eazk—l_azk—z SQ[G(JC’ an—l) - 9(37’ a2k—2)]
n—-+o0 0(x, asn)
—1— lim Zazk—l*a%—2>2[6(‘r7 a2k*1) - 9(1‘, a2k*2)]
o n—-+4oo 9(.%‘, agn)
>1- lim a2, lim Cl(az —az2) + -+ (a2n—1 — a2n—2)]
- n—+oo O(x, agy) n—+oo [(az — ag) + -+ (a2n—1 — a2n—2)] + [(a2 — a1) + - - - (a2n — a20n—1)]
(by (22))
>1— lim 2"

n—+oo 0(x, asy,)
which tends to 1 as n — 400. By taking 11 — 0 arbitrarily small, this implies that v = d4, the atomic
measure supported on the singularity ¢, a contradiction. O

3. Entropy for equivalent probability flows

In this section we prove the Main theorem. We adapt Katok’s definition of measure theoretic entropy [2]
in the proof.
Given a flow ¢; on a compact metric space M, g € M, t € R and € > 0, we set a (t, ¢, ¢)-ball

D(g,t,e,¢) ={w e M| d(psw, psq) < e, 0 < s <t}

Definition 3.1. Given a ¢ invariant and ¢ ergodic measure p and given ¢ € (0, 1), let R(d,t,¢, ¢) denote the
smallest number of (¢,&, ¢)-balls needed to cover a set whose p-measure is greater than 1 — §. Then the
measure theoretic entropy of ¢, denoted by h,(¢), is defined by

1
hyu(¢) := lim lim sup i In R(4,t, ¢, ).

e=0 o0

This definition is a flow version of what Katok defined for homeomorphism in [2], where he pointed out
by the Shannon theorem that the limit in definition is independent of the choice of §. The following lemma
talks about the relation between the entropy in Definition 3.1 and the entropy defined by time-1 map.

Lemma 3.2.

(1). For p € Mepg ¢ it follows that h,(¢) = h,(¢1);
(2). h(@) = h(¢r) = sup{hyu(¢1) | p € Merg.o}-

Proof. This is Theorem A in [5]. O
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Observe by definition that a ¢i-invariant measure is not necessarily ¢-invariant and a ¢-ergodic measure
is not necessarily ¢1-ergodic, the variational principle given in the second term in the above lemma thus
differs from the usual one for homeomorphisms.

Definition 3.3. Let ¢, ¢ : M x R — M be two flows on a compact metric space and let y € M54 and
v € Merg.. We say that two probability flows (¢, 1) and (¢, v) are equivalent, if there exist a p-full measure
¢-invariant set A C M and a homeomorphism 7 : A — 7(A) and a continuous map 6 : A x R — R such
that the following holds:

1. w(A) is with v-full measure; and

2.0 < limy_ 400 9(?) < 400, Vz € A; and
3.0, : R — R is strictly increasing, V = € A; and
4. 0,(s +1) =0:(s) +0s,,,(t), Vo € A Vs,t€R; and
5. mo¢y(x) =gy om(z), Ve A VteR.

As in Lemma 1.2, we call §(z,t) a reparameterization while shifting (¢, i) to (¢, v) by .

One may compare the equivalent probability flows in Definition 3.3 with the measure-theoretic equivalent
flows defined in [7], where the reparameterization 6(z,t) was assumed to be extended continuously to the
whole support of p. Observe 6(x,t) can not be extended continuously to Supp(p) in general provided
Supp(u) contains a fixed point, the measure-theoretic equivalence defined in [7] contains only parts of cases
in Definition 3.3. The following Theorem 3.6 points out that zero entropy and infinity entropy are preserved
for equivalent probability flows defined in Definition 3.3, which generalizes the same result for equivalent
flows defined in [7]. Instate of Supp(u) in [7] we need here to deal with a p-full measure set not compact.
We have to argue in a new approach due to the lack of compactness. Now we start by a lemma.

Lemma 3.4. Suppose there exist 1 € Merg ¢ and v € Meygy such that the two probability flows (¢, 1) and
(¢, v) are equivalent. Then

0(x,1)

[ fiv = m JO [ swtondodn, v e ctor),
0

where 0(z,t) denotes the reparameterization while transferring (¢, p) to (¥, v) by .

Proof. Set
t
Qu¢)={ze M| tim 7 [ flo.ayis= [ fduto), vF e COOLR)
0 M

By the Birkhoff ergodic theorem, @, (¢) is a ¢-invariant and p-full measure set. One can define similarly
Q. (¥). Take x € Q,(¢) such that w(x) € Q,(¢). Since x € Q,(¢) it holds by Proposition 2.1 and its proof
that

lim 57506064 (2),1) = [ 0.1 du(y) = lim bz.t)

n——+oo n t—+o0 t

Note 0(x,t) = +o00 as t — +00 and w¢y(x) = Yg(ypm(2), it follows for a given f € C°(M,R) that

t
1
[ v = 3 [ i) s
0
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S0 0(¢i(x),1)
1

1
= li — dt
wse TN T0(i(x), 1) flitme)
0
) ) 0(¢i(x),1)
— n—1 .
S o T [ i)
0
) 0(¢i(z),1)
SR E— / f(Wstby (i) (mx)) ds
0(y,1)d, n—00 ’
J 0y, 1) du(y) noo m )
) 0(¢i(x),1)
=———— lim E” o / fWsmoi(z))ds, p—a.a xe€X.
O(y,1)d n—00 ’
[0, 1 duly) e =
Denote
) 0(¢i(x),1)
F) = lim s [ fmoo)ds
0

Since p is ¢p-invariant, by the Birkhoff ergodic theorem F'(x) is defined for p — a.a. x and

0(y,1)

[ran= [ / F(smy) ds) du(y).

Observe that both [ fdu and [6(y,1)du(y) are constants and remain unchanged when taking integral, so

0(y,1)

1
fdv = ——r—— [ ( f(Wsmy) ds) du(y). O
/ J6(y, 1) du(y) / 0/

Corollary 3.5. Let two ergodic and invariant probability flows (¢, ) and (v,v) are equivalent, see Defini-
tion 3.1, with corresponding reparameterization 6(x,t) and homeomorphism . Then

w(A)=0<v(n(A)) =0  for any Borel set A.

Proof. If the sufficient part does not hold, there would exist a Borel set A with pu(A) > 0 and v(7(4)) = 0.
We denote by xr(a) the characteristic function of 7(A) and take a sequence {f,} of positive and bounded
continuous function with f, = Xr(a). S0 [ fadv — [ Xr(a)dv = v(r(A)) = 0. We have by (4) in Defini-
tion 3.3 and Lemma 3.4

0(x,1)

/fndy Tdu/ / fr(e(mz)) dt)dp
0
1
B O(x, 1 d,u/ /fn méu(@

0

- m / ( / (f 0 1) (n()) dt)ds
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Observe that f, om — x4, n — co. Since [ f,dv — 0, then f(fol(fn om)(¢e(x)) dt)dp — 0 as n — oo. So
f(fol xa(¢e(z))dt)dp — 0, which implies that u(A) = [ xadp = 0, a contradiction. So the sufficient part
holds. One can show the necessary part similarly. O

Theorem 3.6. Let ¢, v : M xR — M be two continuous flows on a compact metric space and let pr € Meyg.¢
and v € Merg - If two probability flows (¢, 1) and (,v) are equivalent with reparameterization 6(z,t) for
w—a.a. x € M while transferring ¢ to 1, then

hy(¢) =0 < h,(¥) =0, and h,(¢) =00 & h,(¢) = oc.
Proof. Let n > 0 and take € > 0 such that

d(yhyQ) <e = d(’]rilylaﬂ—ilyQ) <n, VylayZ € M.

By Proposition 2.1 and Lemma 3.4 lim, o e(ﬁ’t) = [0(z,1)dp = a < o, p— a.a. x € M. Note that
O(z,t) > 0, a > 0. Define for big T
t
A(T)={x e M | (x 0@t _ o1, we> ).

Then u(A(T)) tends to 1 as T tends to oco. For given 0 < ¢ << 1 we take Ty > 0 large such that
w(A(Th)) > 1— 6 and thus v(7(A(Tp))) > 0 by Corollary 3.5. Without loss generality (taking Tp large when
necessary) we assume that v(m(A(7p))) > 1 — 4. Denote 8 = sup,c 4(r,) 0(x,1). Then 0 < 8 < oco.

Set N := R(d,t,¢€,v) for t > Ty and take

D(y17t,€71,/)),D(y2,t,€7¢),"' 7D(yN7t7€;¢)

to cover a subset of M of v measure large than 1 — §. Then

V(U D(ys, t, €,4)) N (wA(Tp))) > 1 — 26.

Assertion.

B

W#( L Dlyist,e,9)) N A(To).

v(U;Z 1D(yl,t e, ) NwA(To))
Set P = UN D(yi,t,e,v) N wA(Tp). Take a sequence of closed sets C} and a sequence of open sets
Uy such that Cp, € P C Uy and pu(Uy \ Ck) < k, and take a sequence of continuous functions fj such

that fr(z) = 1 on C, and fr(x) = 0 on M \ Ug, and 0 < f < 1. It is clear that limg— 400 fx = XP,
limys 4o [ frdv = [ xpdy, and limg_, 4 o ka_\P frdv = 0. By using Lemma 3.4 it follows that

v(P) = /Xpdl/
= lim /fkdu—l— lim / frdv
k—4o00 k— 400
U\ P
= lim /fkdu
k—400
0(x,1)

1
:kgg}wm /(0/ Ji(Wu(ma)) dt)dp
T—1lP
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0(z,1)
1 .
~ [0z, V)dp / kgr—i{loo(/ fr(i(m)) dt)dp
T=1p 0
0(x,1)
1 .
:W /(/ kgrfoofk(wt(WI'))dt)dﬂ
=P 0
SupxeAU(TO) 0(‘7:7 1) 1
S o nae TP
s

This proves the Assertion.
Arranging order when necessary we may assume the existence of N, N < N, such that the first N
(t,€e,7)— balls

D(y17ta€7w)7D(y27ta€7w)7"' aD(yﬁata67w>

are exactly the ones that intersect with m(A) with positive v measure. By moving the centers slightly we
may assume that all the centers y1,- -+ ,yy are in mA(Tp), which makes sense for (7~ 1y;, t),i =1, ,N.
Observe that

D(Trily% a777¢) N A(TO) D) ﬂ-il(D(yiatgw) N T(A(TO))’ 1= 1a27 e 7Na Vt Z TO'

t
a+1
We thus have by the Assertion that

v t
UM D(r Yy, ——,m, ) N A(T,

PO Dby, — 1,0 N A(TY))

>p(r" ULy Dy, t,e,) N wA(To))

>2 (U, Dyt 9) A R A(T)

>(1—20) =:§".
Thus we have
R((S/ —»777¢> S N S N = R(5at,€>1/))7 Vt Z TO-

By Definition 3.1 we have

1
ho () = lim lim — log R(3,1,€,))

e—0t—00

1 t
> lim lim -1 5
> lim lim og R( ,a+1ﬂ77¢)

n—0t—o0

1 1 t
_ lim lim —— 1 ot
a+ Lnoottee L g RO, =7 @)

1

- a+1h”<¢)'

This shows that h, (¢) > Ch,(¢), where C' = a—}rl > 0. One can show similarly that h, () < C’h,(¢) for
some positive constant C’. Therefore,
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hu(6) =0 hy(¢) =0,  hu(¢) =00 hy(¢) =oc0. O

Proof of Main Theorem. (1) — (2). Assume (1), that is by Definition 1.1 we assume that h(¢) > 0 and

h(v)) = 0. By Lemma 3.2(2), these deduce M # () and M} v = (). By Theorem 3.6 and Proposition 2.3

erg,¢ erg,
ﬂ'*/\/ljrgw N Merg.p = 0. So the phenomenon of measure degeneracy happens.
(2) — (1). Since ./\/l:rg s 7 0 and /\/l:;,g‘w = () by assumption, it holds by Lemma 3.2(2) that h(¢) > 0

and h(¢) = 0. So the phenomenon of entropy degeneracy happens. O

Proof of Corollary of Main Theorem. Now by Main Theorem 1.3 h(¢) > 0 and h(y)) = 0. To get the
corollary let us suppose, on contradictory, that

lim Li’ )

t——+oo

< oo, h—aax €M

+

for some p € M_./ ..

Define a v ergodic invariant measure v by

0(x,1)

/ fdu—w JO [ stondodn, v e coor),
0

Clearly (¢, ) and (¢, v) are measure-theoretic equivalent. By Theorem 3.6 h, (¢) > 0. And by Lemma 3.2(2),
h(1) > 0, a contradiction. O

4. Probability systems in natural time-changed flows

Based on Theorem 1.3, we make an analysis in this section for probability systems in natural time-changed
flows described as follows.

Let ¢ : M x R — M be a C" flow induced by a C” vector field X, r > 1 and let My denote the set of
singularities of X. Let 0(x,t), x € M \ My, t € R be a continuous function satisfying the following:

1) 6(z,0) =0 and 6, = 6(z,.) : R — R is strictly increasing Vo € M \ My; and

2) 0x(s+1) =0.(s) +05,,,(t), Vs, t €R, Yz € M\ Mo.

Define a flow ¢ : M xR — M,

Ve(1) = Po(zpy(x), Vo€ M\ My, tekR,
() =z, Vo € My, Vt € R.

We call ¢ to be a time-changed flow from ¢ by 6(z,t). (M, ¢) and (M,v) are clearly equivalent, with
transferring homeomorphism 7 := id : M — M. If further the function 6(x,t), * € M \ My, t € R is C*
differentiable in both variables, then we call ¥ a natural time-changed flow from ¢ by 6(z,t). In this case
there is a C'! vector field Y on M such that 1 is induced by Y.

Remark. If both ¢ and ¥ are C" and x is not a fixed point, then the Implicit Function Theorem immediately
implies that 6(z,t) is C” in both variables.

Proposition 4.1. For a natural time-changed flow from ¢ to ¢ by 0(x,t) it holds

V@)

Y= Xl

ds, VteR, x€ M\ M.
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Proof. From
Vi(Ys) = Vst (T) = Po(2,54+4)(T) = Po(poa,t) (Po(,5)T)s
we get

_ d¢0(¢sa:7t)(¢9(z,s)x)|  dO(¢sw, 1)
d0(psz,t) 70 dt

Y(¢sx) = quex) ‘t:O

y =0 = X (do(2.5)2)8(¢52,0),

where (¢,z,0) = %hzo, and z € M \ My. Note 6(z,t) is increasing with ¢, 8(¢x,0) > 0. So

o s o Y@ Y@
00:,0) = 600 Ol = x5, oo ~ X @)

Observe that

b(o.0,0) = o2y, o)) )
and 6(z,0) = 0, we have
t
O(z,t) = %d& VteR, xe M\ My, O
0

As showed in 1.3 and [6] it is singularity that causes measure degeneracy. And one singularity is enough
to cause such degeneracy, see [1] [11] for discrete case. We show in the next theorem that the singularity
that causes measure degeneracy is not hyperbolic.

Theorem 4.2. Let M be a compact manifold and let ¢ : M x R — M be a C" flow induced by a C" vector
field X (r > 1) with exact one singularity p. Let 1 be a natural time-changed flow from ¢ by 0(x,t) and
denote Y the vector field of 1. If the entropy degeneracy happens while changing ¢ to ¢, that is, h(¢) > 0
and h(y)) = 0, then p is not hyperbolic.

Proof. p is the unique singularity for both ¢ and . We denote f(z) = ”};ESH, x € M\ {p}. Denote by
A1, -+ Ay, the eigenvalues of D¢|, and by 71, - - -, 7y, the eigenvalues of Dv|,, where n = dimM. Since p is
a hyperbolic singularity for both X and Y, non eigenvalue is zero. There exist a neighborhood N of p, four
positive numbers a, b, ¢, d such that for x € N it holds that

av[MP 4 Pl <X (@) ] S DVIAL A+ - A2
VImlP -l <Y (@) < dyvimP + - lml?

il T Toal? dy/P Py l? "
Denote A = Z&I:\Yi — anQ’ B= a\\;\:\yi — ;Y\nlz. Then A < f(z) < B, x € N. By Proposition 4.1

t

1Y (%)
0(x,t) :/7&9, VteR, ze M\ {p}.
| X

So At < O(x,t) < Bt, = € N, t > 0. Observe there is no singularity in M \ N, Ct < 0(x,t) < Dt, z €
M\ N, t>0. Set E =min{A,C} and F = max{B, D}, then
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Bt <0(z,t) < Ft, x M, t>0.

This implies by a standard argument that entropy degeneracy does not happen, a contradiction. So the
singularity p is not hyperbolic. O
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