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Abstract

Organelles juxtaposition has been detected for decades, although only recently gained importance due to a pivotal role in
the regulation of cellular processes dependent on membrane contact sites. Endoplasmic reticulum (ER) and mitochondria
interaction is a prime example of organelles contact sites. Mitochondria-associated membranes (MAM) are proposed to
harbor ER-mitochondria tether complexes, mainly when these organelles are less than 30 nm apart. Dysfunctions of proteins
located at the MAM are associated with neurodegenerative diseases such as Parkinson’s, Alzheimer’s and amyotrophic lateral
sclerosis, as well as neurodevelopmental disorders; hence any malfunction in MAM can potentially trigger cell death. This
review will focus on the role of ER-mitochondria contact sites, regarding calcium homeostasis, lipid metabolism, autophagy,
morphology and dynamics of mitochondria, mainly in the context of neurodegenerative diseases. Approaches that have been
employed so far to study organelles contact sites, as well as methods that were not used in neurosciences yet, but are promis-
ing and accurate ways to unveil the functions of MAM during neurodegeneration, is also discussed in the present review.
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but several other contact sites have been studied in the past
decades (Cohen et al. 2018).

Interaction between the ER and mitochondria occurs
through a specialized region known as mitochondria-associ-
ated membranes (MAM), which is also called mitochondria-
ER contact sites (MERCs). It was thought that the physio-
logical role of MAM was only limited to lipid, calcium, ions
and proteins transfer between these two organelles; however,
recent studies shed light on the importance of contact sites
in many other different biological processes, such as inflam-
masome formation, autophagy, ER stress and mitochondria
morphology (Friedman et al. 2011; Paillusson et al. 2016).

In mammalian cells, lipid and protein complexes con-
trol the machinery underlying the contact sites. Proteins
located on the ER surface, such as mitochondrial fusion
GTPase mitofusin 1 and 2 (MFN2), BAP31, IP3R, VAPB
and ORP5/8, interact with their counterparts on the outer
mitochondria membrane, like MFN1 and 2, FIS1, VDAC,
and PTPIP51 (Lee and Min 2018).

Malfunction in the mitochondria-ER communication can
cause metabolic and neurodegenerative diseases (Stoica
et al. 2014). Several studies have documented the structural
and functional role of MAM in neurodegeneration (Area-
Gomez et al. 2018; Rodriguez-Arribas et al. 2017; Stoica
et al. 2014; Tambini et al. 2016).

Mitochondria-ER Contact Sites

Mitochondria-ER contact sites have pivotal roles in a variety
of cellular functions, for this reason it is reasonable to expect
that its dysfunction is associated to several neuropathologies.

MAM and Ca?* Storage: A Crosstalk Between ER
and Mitochondria

ER and mitochondria have been considered the major Ca®*
storage sites within the cell. Efflux of Ca** from ER via
inositol 1,4,5- triphosphate receptors (IP3R) stimulates its
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uptake by mitochondria via VDAC channels (Rowland and
Voeltz 2012). Fine-tuning of intracellular Ca** concentra-
tion is vital for proper mitochondrial trafficking and ATP
generation. Nonetheless, uncontrolled uptake of Ca* leads
to increased mitochondrial permeability and signaling for
apoptosis (Paillusson et al. 2016; van Vliet et al. 2014).

Mitochondria
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P56S-VAPB

Presenilin mutant PTPIP51

Presenilin

VAPB

Fig. 1 a ER-Mitochondria contact sites illustration and mitochondria-
associated membranes (MAM) influence on Ca** homeostasis in neu-
rodegenerative disease. b—b’ In Alzheimer’s disease (AD) mutation
in Presenilin (PSEN1) located at the MAM:s tightens contact sites and
increases Ca’* flux into the mitochondria. ¢c—¢’ In Parkinson’s dis-
ease, a-syn interacts with VAPB-PTPIP51, disturbing this tethering
complex and decreasing MAM and Ca* shuttling into the mitochon-

Several studies have shown the importance of MAM in
Ca”* shuttling for neurodegenerative diseases as depicted
in Fig. 1.

In Alzheimer’s disease (AD), which is defined by pro-
gressive neuronal loss in the hippocampus and cortex, with
extracellular deposits of amyloid-beta (Ap) plaques, pro-
duced by the unusual processing of amyloid precursor pro-
tein (APP); and intracellular accumulation of neurofibrillary

R ~ 7

TDP-43 a-Synuclein Parkin Calcium

dria. Parkin overexpression increases the contact sites and elevates
the Ca?* flux into the mitochondria. d—=d’ In ALS, TDP-43 reduces
the binding of VAPB-PTPIP51; therefore, reducing Ca®" shuttling
into mitochondria. Mutation in VAPB (P56S) leads to a higher affin-
ity to other tethering counterpart of PTPIP5 that triggers Ca’" trans-
fer to mitochondria
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tangle mainly formed by hyperphosphorylated microtubule-
associated protein tau (Goedert and Spillantini 2006), com-
ponents of the y-secretase Presenilin 1 (PSEN1) and Pre-
senilin 2 (PSEN2) are present in the MAM (Zampese et al.
2011). Catalytic loss-of-function mutations in these genes
have been linked to modulation of the ER-mitochondria con-
tact sites and mitochondrial Ca>* uptake (Area-Gomez et al.
2018; Area-Gomez et al. 2012; Sepulveda-Falla et al. 2014).
Presenilins mutation change ER-mitochondria dynamics
contributing to amyloidogenic processing of APP as well as
Ca”" imbalance between the two organelles (Area-Gomez
et al. 2012; Sepulveda-Falla et al. 2014). It is noteworthy
to remember that mutations in APP, PSENI or PSEN2 are
associated with familial AD, although other genes have been
considered risk or protective factors for AD (Dorszewska
et al. 2016), and the involvement of MAM for the AD must
be taken into acount.

In mouse embryonic fibroblast (MEF) lacking PSEN1
and in fibroblasts from AD patients the number of ER-mito-
chondria contact sites is increased (Fig. 1b, b’); it was pro-
posed that the Presenilin might affect the same pathway that
MFN?2 does. A point mutation in PSEN1 (E280A) resulted
in decrease of ER-mitochondria tethering, down-regulation
of the Ca®* channels IP3Rs and CACNA1A, and reduction
of the Ca®*-dependent mitochondrial transport proteins
MIROI1 and KIF5C (Sepulveda-Falla et al. 2014).

PSEN?2 is also associated with ER-mitochondria contact
sites. In SH-SYSY cells models, overexpression and down-
regulation of PSEN2 resulted in increase and decrease of
the contact sites, respectively, which is directly related to
the capacity of mitochondria to uptake Ca>* (Zampese et al.
2011). It is proposed that the number and distance of con-
tact sites are not associated with the enzymatic activity of
PSEN?2 itself, but the ability of maintaining together the two
membranes (Zampese et al. 2011).

In Parkinson’s disease (PD), the second most prevailing
neurodegenerative disease after Alzheimer’s disease, a-syn,
Parkin, PINK1, VPS35, DJ-1, and LRRK2 proteins can alter
MAM and influence Ca** balance, all these proteins are
encoded by genes associated to dominant or recessive-inher-
ited PD (Gomez-Suaga et al. 2018). PD symptoms appear as
a result of the dopaminergic neurons loss in substantia nigra
pars compacta, and intraneuronal proteinaceous inclusions
called Lewy bodies (LB), which are composed mainly of
a-syn (Kalia and Lang 2015).

It has been documented that a-syn interacts with vesicle-
associated membrane protein (VAMP)—associated protein
B (VAPB) in ER, thus disturbing the contact between VAPB
and tyrosine phosphatase—interacting protein 51 (PTPIP51).
Therefore an abnormal increase in a-syn levels can alter
the number of contact sites and disrupt the Ca>* transfer to
mitochondria (Fig. 1c, ¢’) (Guardia-Laguarta et al. 2014;
Paillusson et al. 2017; Vicario et al. 2018).
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In the SH-SY5Y cell model, Parkin overexpression
resulted in the maintenance of ER-mitochondria tethering
and Ca®>" homeostasis, while Parkin knockdown leads to
mitochondrial fragmentation, dysfunction in mitochondrial
Ca’* handling, and reduced the ER-mitochondria contact
sites (Cali et al. 2013).

Consistent with the previous study it has been shown
that Parkin knockdown in the S2R + Drosophila cell line,
MEF, and also human Parkin mutant fibroblasts, impaired
tethering between ER and mitochondria (Basso et al. 2018).
The absence of Parkin resulted in decreased ubiquitylation
of MFN2 ending up with impaired tethering between these
organelles (Basso et al. 2018).

In HeLa cells, DJ-1 down-regulation can alter the Ca**
transferring from ER to mitochondria, which is associated
to changes in mitochondria morphology that influence the
contact sites (Ottolini et al. 2013). It has been shown that
DJ-1 in the M17 cell lines physically interacts with the teth-
ering complexes IP3R-GRP75-VDAC (Liu et al. 2019). DJ-1
knockout resulted in reduced ER-mitochondria association,
increased levels of IP3R type 3 and its aggregation that end
up to MAM dysfunctions (Liu et al. 2019). In the brain of
DJ-1 knockout mice, similar deficits were confirmed; fur-
thermore, in the substantia nigra of sporadic PD, diminish-
ing ER-mitochondria association is linked to DJ-1 level and
IP3R3-DJ-1 interaction (Liu et al. 2019).

In Drosophila PD model, dopaminergic neurons harbor-
ing PINK1 mutation present strengthen ER-mitochondrial
contact sites, and consequently raise in the levels of mito-
chondrial Ca*; alteration in the contact sites is probably
due to impaired control of MIRO1 abundance, that resulted
in increased Ca* transfer from the ER to mitochondria
(Lee et al. 2018). The mitochondrial Rho GTPase MIRO1
(RHOT1) has been studied as an adaptor protein for mito-
chondrial transport; in fibroblast of PD patients, RHOT1
dominant mutation promotes decreases in MAM and causes
calcium dyshomeostasis (Grossmann et al. 2019).

Missense mutations in the leucine-rich repeat kinase
2 (LRRK?2) gene is one common cause of familial PD. It
has been shown that MEF carrying G2019S and D1994A
LRRK2 mutations have impaired mitochondrial Ca*
transferring (Toyofuku et al. 2020). Interestingly the num-
bers of ER-mitochondrial contact sites are reduced in the
LRRK2~'~ and LRRK2 (G2019S). Since LRRK2 regu-
lates the activities of E3 ubiquitin ligases such as MITOL,
MULAN, and Parkin, which are enriched in the MAM,
depletion or loss-of-function mutation of LRRK2 leads to
missing of MAM integrity that results in calcium imbalance
(Toyofuku et al. 2020). Contrary to MEF study, in astrocytes
isolated form G2019S-LRRK?2 mice the number of ER-mito-
chondria contact sites are increased, which resulted in incre-
ment of Ca®" transfer from ER to mitochondria (Lee et al.
2019a). It is proposed that this may happen due to change
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in the redistribution pattern of proteins such as MFN2, cal-
nexin, IP3R that are located to MAM (Lee et al. 2019a).

In amyotrophic lateral sclerosis (ALS) that is distin-
guished by progressive degeneration of lower and upper
motor neurons in the brainstem, spinal cord, and motor cor-
tex, most cases of familial disease are linked to mutations of
superoxide dismutase-1 (SODI), VAPB, TAR DNA-binding
protein 43 (TDP-43) and C9ORF72 genes, that are respon-
sible for about 50% of familial ALS patients (DeJesus-Her-
nandez et al. 2011; Rosen et al. 1993; Sreedharan et al. 2008;
Turner et al. 2013).

Disruption in VAPB-PTPIP51 tethering plays an essen-
tial role in ALS autosomal-dominant form; the mutation
P56S-VAPB has higher affinity for PTPIP51 that can lead
to increase in Ca’* transfer to mitochondria (De Vos et al.
2012; Moustaqim-Barrette et al. 2014). Also, TDP-43 can
modulate the VAPB-PTPI51 interaction by activation of gly-
cogen synthase kinase-3 beta (GSK-3p) (Fig. 1d, d’). Over-
expression of TDP-43 resulted in GSK-3p activation that
leads to decreased VAPB-PTPIS1 interaction and reduced
ER-mitochondria association (Stoica et al. 2014).

Sigma-1 receptor (Sig-1R) is an ER chaperone that
resides mainly at MAM. Sig-1R interacts with and stabilizes
IP3R3s, playing a significant role in the regulation of the
Ca”* signaling between the ER and mitochondria (Hayashi
and Su 2007). Mutation in Sig-1R is associated with juvenile
ALS (Al-Saif et al. 2011). Homozygous frameshift mutation
(p-L95fs) of Sig-1R resulted in inability to bind to IP3R3;
loss of this interaction leads to Ca** deregulation at MAM
in Sig-1R linked ALS (Watanabe et al. 2016).

In cortical pyramidal neurons, the PDZ domain-contain-
ing protein 8 (PDZDS) is essential for the ER and mito-
chondrial membranes tethering and is required for Ca>*
transferring from ER to mitochondria (Hirabayashi et al.
2017). In the axon injury model, overexpression of the
glucose-regulated protein 75 (GRP75) leads to increase in
ER-mitochondria tethering, which consequently elevates the
mitochondrial Ca®* and enhances ATP generation (Lee et al.
2019b).

Many proteins are enumerated that are part of and can
change MAM and Ca** homeostasis. However, it remains
to be elucidated the role of other tethering proteins in the
context of neurodegenerative disease. Isolation of MAM,
followed by proteomic studies, can provide other potential
targets, which modulate MAM in physiological and patho-
logical conditions such as neurodegeneration.

MAM:s in Lipid Metabolism

Lipid molecules are associated with multiple cellular pro-
cesses, such as cell membrane formation, cell signaling,
transduction and synaptic transmission (Mesa-Herrera et al.
2019). Organelles demonstrate a unique lipid profile, which

directly relates to their function and physical properties. The
substantial lipid classes elucidated in the organelles’ mem-
branes are phospholipids, sterols, and sphingolipids (van
Meer et al. 2008). However, endoplasmic reticulum plays a
paramount role in lipid synthesis, storage and distribution
within the cells.

Synthesis of two most abundant phospholipids phos-
phatidylcholine (PC) and phosphatidylethanolamine (PE)
is dependent on trafficking between ER and mitochondria,
because of the location of the required synthesizing enzymes
(Kojima et al. 2016; Tatsuta and Langer 2017). In fact, since
most of the organelles have limited capacity to produce their
lipids, lipid transport via specific proteins or tethering is
mandatory for the correct lipid composition of each orga-
nelle (Flis and Daum 2013).

The MAM harbors diverse lipid trafficking proteins and
synthesizing enzymes, such as diacylglycerol O-acyltrans-
ferase 2 (DGAT?2), fatty acid CoA ligase 4 (FACL4/ACS4),
phosphatidylserine synthases 1 and 2 (PSS1 and PSS2),
phosphatidylethanolamine N-methyltransferase 2 (PEMT2),
and cholesterol acyltransferase/sterol O-acyltransferase 1
(ACAT1/SOAT1) (Lewin et al. 2002; Stone et al. 2009;
Stone and Vance 2000).

Level of cholesteryl-ester (CE) is directly associated with
Ap production in AD; the ACATI, which is responsible
for CE synthesis, modulates AP generation via a balance
between free cholesterol and cholesteryl esters (Puglielli
et al. 2001). The C99, the 99-aa C- terminal domain of the
amyloid precursor protein (APP) that is produced by cleav-
age of APP with p-secretase, is associated with familial AD
and is involved in the lipid homeostasis and regulation of
MAM activity. In cell models of AD and cells from AD
patients, the unprocessed C99 accumulates in the MAM,
which resulted in alteration of lipid profile in MAMs and
elevated sphingolipid turnover (Pera et al. 2017).

The presence of apolipoprotein E4 allele (APOE4) is
one of the main genetic risk factors for AD. APOE4 can
modulate MAM function, in human fibroblasts treated with
astrocyte-conditioned media obtained from APOE4 and
APOE3 transgenic mice. This alteration in MAM resulted
in an increase of phospholipids and cholesteryl esters in cells
treated with APOE4 (Tambini et al. 2016). As previously
mentioned, Presenilin is enriched in the MAM in Presenilin-
deficient cells and cells from AD patients; this accumulation
resulted in increased phospholipid and cholesteryl ester syn-
thesis (Area-Gomez et al. 2012).

In induced peptidergic neurons from Parkinson’s dis-
ease patients and ventral lateral neurons from mutant flies,
loss of Parkin resulted in a higher number of contact sites
compared to control groups; this excessive interaction can
cause dysfunction of lipid trafficking that depletes phos-
phatidylserine from ER (Valadas et al. 2018). Moreover, in
PD, a-syn mutation or its triplication change MAM; a-syn
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overexpression or mutation E46K can increase the level of
oleic acid (OA, 18:1) diglycerides, and triglycerides level
in the whole-cell lipidomic profiling (Fanning et al. 2019).
Interestingly, overexpression or knockdown of a-syn is asso-
ciated with alteration of lipid metabolism (Alza et al. 2019).
In SNCA knockout mice, the docosahexaenoic acid (DHA),
phosphatidylethanolamine and phosphatidylinositol are
increased compared to control (Golovko et al. 2007). Fur-
thermore, overexpression of a-syn resulted in lipid droplet
accumulation and an increase in triacylglycerol (Alza et al.
2019). These modulations may be correlated with the enrich-
ment of a-syn in MAM.

It has been shown in fibroblasts of ALS patients that 220
lipids isolated from MAM were changed compared to con-
trol, such as phosphatidylcholine PC (36:4p), phosphatidyl-
cholines (42:2), ceramide (d18: 2/22:0), phosphatidyletha-
nolamines (18:0p/22:6) and triglycerides (16:1/14:0/16:1)
(Veyrat-Durebex et al. 2019). Further combined omic
approaches are required to elucidate the interaction of
enriched proteins in MAM and their association with the
lipid composition of this multifunctional platform. Lipid
alterations in the MAM probably change the distribution
and contribute to aggregation of proteins that are associated
to neuropathological conditions.

MAM in Autophagy

Autophagy is a conserved cellular process that may be clas-
sified as macroautophagy, chaperone-mediated autophagy
and microautophagy, in which organelles and free compo-
nents are delivered to lysosomes for degradation.

In macroautophagy, the transport of cargoes occurs via
double-membrane vesicles called autophagosomes, in con-
trast to the other two autophagy pathways. The autophagic
flux involves a series of steps, such as autophagosome for-
mation, maturation, and closure; the process entails crosstalk
among autophagosome biogenesis, lysosomal degradation
and dynein machinery on microtubules (Bento et al. 2016;
Kimura et al. 2008; Rubinsztein et al. 2012).

An emerging body of evidence demonstrates the pivotal
role of MAMs in autophagy and a possible participation
during the accumulation of oligomers and aggregates of
misfolded proteins in neurodegenerative diseases (Menzies
et al. 2017).

The ER-mitochondria contact sites participate of pha-
gophore assembly, as it has been documented that the
autophagosomes may form at the MAM in mammalian
cells. Following autophagy triggering the pre-autophago-
some and autophagosome markers autophagy-related 14-like
(ATG14L), double FYVE domain-containing protein 1
(DFCP1), and autophagosome-formation marker ATGS relo-
calizes to the MAM (Hamasaki et al. 2013). Furthermore,
ATG2A can interact with ATG9A at the ER-mitochondrial
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contact sites to promote phagophore growth (Tang et al.
2019).

Recently it has been shown that the tethering complex
VAPB/PTPIP51 regulates autophagy, since overexpres-
sion of either proteins tightens ER-mitochondria contacts
and decrease autophagosome formation, on the other hand,
depletion of VAPB or PTPIP51 stimulates autophagy flux
(Gomez-Suaga et al. 2017).

The etoposide-induced protein 2.4 (EI24) is anchored at
the MAM via its C-terminal domain. In pancreatic f3 cells,
this protein is vital for MAM integrity and autophagy flux
through regulation of IP3R-GRP75-VDACI1 complex (Yuan
et al. 2019). In the neuronal context, EI24 is also a main
component of the autophagy pathway; since the EI24 con-
ditional knockout mice present massive axon degeneration
and extensive neuron loss in the brain and spinal cord (Zhao
et al. 2012), although the contribution of EI24 for MAMs
integrity in neuronal cells is still an open question.

In the SH-SYS5Y cells, proteins related to mitophagy are
located at MAM such as PINK1 and BECN1; and promote
the enhancement of contact sites and autophagosome for-
mation followed by mitophagy (Gelmetti et al. 2017). In
neuronal cells, Mull (Mitochondrial E3 ubiquitin protein
ligase 1) is anchored in the outer mitochondrial membrane;
knockdown of MUL in cortical neurons resulted in reduc-
tion of ER-Mito contact sites, mitochondrial fragmentation
and Parkin-mediated mitophagy (Puri et al. 2019). MULI
deficiency resulted in increase of MFN2 activity, which can
perturb the ER-Mito contact site (Puri et al. 2019).

As detailed earlier, mutation in VAPB (P56S) resulted
in an autosomal-dominant form of ALS; this mutation
increases the binding to PTPIP51, which causes inhibition of
autophagy by reducing the ULK1/FIP200 interaction (Zhao
et al. 2018).

Due to the importance of MAM in autophagy, it seems
possible to postulate that malfunction in the MAM or any
tethering protein may trigger cell death to the majority of
organs, including the nervous system.

MAM and Mitochondria Dynamics

Although to date little is known about the reciprocal relation-
ships between MAM and organelles morphology and motil-
ity, emerging data shed light on a new aspect of organelles
contact site. Motor proteins are tightly regulated by Ca>*
and control mitochondrial movement along microtubules.
Reduced mitochondrial movement is related to increase in
ER-mitochondrial contact sites (Pizzo and Pozzan 2007).
MIRO1 and MIRO2 form complexes with TRAK
adaptors and molecular motors kinesin/dynein to orches-
trate mitochondria transport. It has been shown in mouse
embryonic fibroblasts that MIRO proteins are required for
mitochondria and endoplasmic reticulum contact sites,
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and also for mitochondrial cristae architecture (Modi et al.
2019). Besides, in fibroblast of PD patients, MIRO1 muta-
tions T351A or T610A disturb the calcium homeostasis
and reduce the amount of ER-mitochondrial contact sites
(Berenguer-Escuder et al. 2019). Autosomal dominant muta-
tion in MIRO1 (R272Q, R450C) in PD patient fibroblasts
reduced mitochondrial mass and ER-mitochondrial contact
sites (Grossmann et al. 2019). Interestingly number of ER-
mitochondrial contact sites is increased, but the mass of the
mitochondria did not change in iPSC-derived neurons har-
boring MIRO1 (R272Q); the alteration in the contact site
is associated to the localization of MIRO1 (R272Q) to the
MAM, which collaborates to reduced mitochondrial move-
ment and calcium dyshomeostasis in these cells (Berenguer-
Escuder et al. 2020).

Disruption in calcium homeostasis has a direct influence
on mitochondrial morphology. Mitochondrial ubiquitin
ligase (MITOL) is an integral mitochondrial outer mem-
brane protein that regulates mitochondrial dynamic via fis-
sion proteins such as Drpl and Mid49 (Xu et al. 2016). Fur-
thermore, it is documented that MITOL is partially located
to MAM and intervene mitofusin 2 (MFN2) ubiquitylation.
Therefore, MITOL can mediate MFN2 activation enabling
MAM formation (Sugiura et al. 2013).

Depletion of MITOL in neurons leads to reduction of
ER-mitochondria contact sites and absence of branched
mitochondria, which is probably associated to accumulation
of mitochondrial fission proteins (Nagashima et al. 2019).
Moreover, in the absence of MITOL, the level of cardiolipin
(major phospholipid in the mitochondrial inner membrane)
becomes lower; this may happen due to MAM malfunction
that resulted in disruption of phospholipids transfer, which is
necessary for cardiolipin biogenesis (Nagashima et al. 2019).

MFN2 is one of the well-studied proteins involved in
mitochondrial fusion, it is located on outer mitochondrial
membranes (OMM) and the ER membranes in MAM, pro-
viding stability to MAM structure. In murine fibroblasts,
depletion of MFN2 promotes an increase in distance
between two organelles, which leads to morphology change
of ER and mitochondria (de Brito and Scorrano 2008).

Mutation in MFN2 has been linked to Char-
cot—Marie—Tooth type 2A (CMT2A) disease, an axonal
sensorimotor neuropathy. In patient fibroblasts harbor-
ing the mutation MFN2 (R94C), a significant decrease in
contact between mitochondria and ER has been reported.
The CMT2A mouse model manifests impairment of several
MAM linked processes such as calcium handling defects,
mitochondria morphology, transport changes and ER stress
(Bernard-Marissal et al. 2019).

Recently, it has been shown that mutation in VPS13A, a
peripheral membrane protein localized at membrane con-
tact sites, is associated with the neurodegenerative disorder
Chorea Acanthocytosis; in VPS13A-depleted cells, not only

the number of MAM but also the mitochondria size and
mitophagy are decreased (Yeshaw et al. 2019). Both mito-
chondrial motility and morphology are directly involved in
MAM formation and function. Although, molecular events
underlying mitochondrial movement and morphology are
well studied, further investigation is necessary to understand
how they control MAM structure and function in different
neuropathological conditions.

MAM Detection Methodologies

Several methodologies have been developed since early as
the 1950s to quantify the nanometric distance between mito-
chondria and ER in different experimental, physiological,
and pathological conditions. Most of the findings related to
MAM visualization in healthy neurons and during neurode-
generative diseases are included in Table 1 and discussed in
the following subtopics.

Confocal Microscopy

The most readily available approach to measure organelles
contact sites is confocal microscopy, often coupled to super-
resolution devices. Confocal microscopy was first applied
to detect the ER-mitochondria contacts in living HeLa cells
(Rizzuto et al. 1998).

The methodology is based on fluorescent detection in
live and fixed cells, in immunostained structures or cells
expressing fluorescent tag proteins, and different barcod-
ing strategies (Hu et al. 2018; Scorrano et al. 2019). Like
all methodologies, confocal microscopy approach suffers
some limitations, the axial resolution is approximately
500-700 nm, and the lateral resolution is around 200 nm
(Jing et al. 2019), which is not enough to detect the orga-
nelle’s contact sites accurately.

In the case of immunostaining for different tethering
proteins, the output relies on antibodies specificity. Also,
chemical fixation can disrupt the contact site. To overcome
this issue, Cryo-Confocal microscopy can be a great alter-
native. In the Cryo approach the materials are frozen under
high-pressure freezing or plunge freezing, then samples are
imaged in a frozen state (Elgass et al. 2015).

Confocal or fluorescent microscopy can be combined
with several biochemical techniques to improve the limita-
tions. The majority of these approaches are based on prox-
imity-driven fluorescent signal generations such as fluores-
cence resonance energy transfer (FRET), bioluminescence
resonance energy transfer (BRET), bimolecular complemen-
tation (BiC), dimerization-dependent fluorescent protein
(ddFP) and proximity ligation assay (PLA). The descriptions
of these techniques are illustrated in Fig. 2.
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Table 1 Methodologies available for detection of in situ ER-mitochondria contact sites in neurosciences

Approaches Organelles Cell types

References

Confocal Mito-ER  Neurons from animal models of neurodegeneration, AD
patient fibroblasts, Postmortem AD human brain, mice
brain, M17 cells, MEF cells, PD hiPS, Fly dopaminer-
gic neurons, SH-SYS5Y cells

PLA Mito-ER  SH-SY5Y, PD hiPS, HT22 cells, neuron, NSC-34 cells,

TEM Mito-ER  AD patient fibroblasts, Postmortem AD human brain,
mice brain, SH-SYS5Y, PD hiPS, Fly neurons, NSC-34
cells

SBF-SEM  Mito-ER  Mice hippocampal neurons

FIB-SEM Mito-ER  Cortical neurons, Cerebral cortex

#*ET Mito-ER ~ COS-7 cells

*CLEM _ Mice brain

*Cryo-ET  _ Hippocampal neurons, Neocortex

*Cryo-EM  _ AD tissue from frontal and temporal cortex

*BiolD Hippocampal neurons

*APEX Mito-ER ~ HEK239T cells, mice brain

Area-Gomez et al. 2012; Guardia-Laguarta et al. 2014;
Guardia-Laguarta et al. 2015; Hedskog et al. 2013; Lee
et al. 2019b; Cali et al. 2013; Grossmann et al. 2019;
Lee et al. 2018; Moustagim-Barrette et al. 2014; Ottolini
et al. 2013; Paillusson et al. 2017

Bernard-Marissal et al. 2019; Gomez-Suaga et al. 2019;
Honrath et al. 2017; Paillusson et al. 2017; Stoica et al.
2016

Area-Gomez et al. 2012; Hedskog et al. 2013; Moustaqim-
Barrette et al. 2014; Paillusson et al. 2017; Stoica et al.
2016

Nagashima et al. 2019

Hirabayashi et al. 2017; Wu et al. 2017

Elgass et al. 2015

Hirabayashi et al. 2018

Fischer et al. 2018; Guo et al. 2018; Tao et al. 2018
Arakhamia et al. 2020; Fitzpatrick et al. 2017
Spence et al. 2019

Hung et al. 2017; Hirabayashi et al. 2018

Detailed discussion of these methods is found in Sect. 3. Recently developed approaches (*) still need to be optimized for visualization and map-

ping contact sites

**ET was not applied to neurosciences studies yet. Abbreviations were defined in abbreviation list

Electron Microscopy

Electron microscopy (EM) is a gold standard technique
that provides nano-scale resolution to visualize cell struc-
tures such as MAM.

Transmission electron microscopy (TEM) and its com-
bination with immunogold labeling using different gold
particle sizes, is an acceptable approach to detect the
tethering proteins (Scorrano et al. 2019). On the other
hand, the TEM has limitations such as the impossibility
of handling live cells, chemical fixation procedures that
may interfere with the native state of MAM, and the pos-
sibility of single plane only (Scorrano et al. 2019; Stac-
chiotti et al. 2018).

Scanning electron microscopy (SEM) provides the capa-
bility of high-resolution 3D imaging of large volume speci-
mens (Scorrano et al. 2019). Different SEM approaches,
such as serial block-face scanning electron microscopy
(SBF-SEM) has now been initially used in neuroscience
(Lippens et al. 2019). This technique is based on collect-
ing hundreds of sequential serial sections producing three-
dimensional views of the specimen (Lippens et al. 2019).

In focused ion beam-scanning EM (FIB-SEM) an
ion beam is used to remove a thin layer of the sample
(15-50 nm), followed by electron beam SEM image capture.
With this approach, the series of images are reconstructed
ion of in three-dimension (3D) for better visualization of the
specimen (Hirabayashi et al. 2017).
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Electron Tomography

Electron tomography (ET) can generate 3D reconstructions
of cellular structures. ET is based on multiple imaging,
while the sample is tilting along the axis, followed by 3D
reconstruction of the images (Scorrano et al. 2019).

Like other EM-based approaches, samples preparation
procedure with chemical fixation may disrupt the intact
architecture of the cells. Thus, electron cryo-tomography
(Cryo-ET) offers the advantage of immobilizing samples in
non-crystalline ice and imaging under cryogenic conditions
(Tocheva et al. 2010). The combination of cryo-focused ion
beam (Cryo-FIB) milling and Cryo-ET can overcome the
sample thickness and so far make this approach as a unique
methodology to visualize cell structures (Collado and Fer-
nandez-Busnadiego 2017; Schaffer et al. 2019).

Correlative Light and Electron Microscopy

Correlative light and electron microscopy (CLEM) is a
combination of fluorescence microscopy with different high-
resolution electron microscopy, which provides a powerful
technique to answer both structural and functional questions
in different fields of neuroscience (Begemann and Galic
2016; Hirabayashi et al. 2018).

Taking advantage of utilizing specific genetic tags such
as MiniSOG (mini Singlet Oxygen Generator) makes
CLEM a more robust approach (Shu et al. 2011). MiniSOG
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Fig.2 a Representation of endoplasmic reticulum (ER)-Mitochondria
contact sites. Magnified area (dashed circle) illustrates tethering com-
plexes and the methods using fluorescent approaches employed to
study interaction between mitochondria and ER are exemplified in B
to F. b Proximity ligation assay (PLA) is a broadly used method to
detect the endogenous protein—protein interactions in fixed samples.
It is based on the labeling of the target proteins with primary anti-
bodies, followed by secondary antibodies conjugated to specific oli-
gonucleotides; in close proximity targeted proteins can hybridize with
connector oligonucleotides that serve as templates for rolling circular
amplification by using fluorophore-labeled nucleotides (Soderberg
et al. 2006). This technique has potential to detect MAM via tether-
ing proteins in the presence of specific antibodies. ¢ Fluorescence
resonance energy transfer (FRET) is based on the transfer of energy
between two fluorophores (donor/acceptor) fused to membrane pro-
teins that has been used to visualize organelles’ contact site, FRET
provides high-resolution detection (approximately 10 nm) and is
compatible to live cells analysis (Csordas et al. 2010; Scorrano et al.
2019). d Bioluminescence resonance energy transfer (BRET) is a new
methodology that has been recently developed to quantify the con-
tact site between mitochondria and ER using the so-called MERLIN
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ddFP-A

ddFP-B

(Mitochondria—ER Length Indicator Nanosensor). The Renilla Lucif-
erase 8 (RLuc) acts as a donor linked to a truncated non-functional
variant of calnexin (sCal) and mVenus as an acceptor fused to alpha-
helical C-terminal domain of Bcl-xL (Hertlein et al. 2020). BRET
provides higher resolution than fluorescence microscopy, it is appli-
cable to live cell imaging and has limited phototoxicity as compared
with FRET. e Biomolecular fluorescence complementation (BiFC) is
based on split-fluorescent proteins such as split Venus or GFP com-
poses of two complementary non-fluorescent residues fused to N or
C terminal fragment of membranes bounded proteins, while targeted
membranes locate in proximity the split fragments bind to each other
and allowing the fluorescence to bright (Cieri et al. 2018; Kakimoto
et al. 2018; Miller et al. 2015). The complementation is stable in this
approach; therefore, it is not suitable to study the dynamic of the con-
tact sites (Scorrano et al. 2019). The split probes irreversibly bind,
which may alter the function of contact sites; on the other hand, it is
applicable to live imaging. f Dimerization-dependent fluorescent pro-
tein (ddFP) works similar to BiFC, this approach is based on a revers-
ible binding of weak or non-fluorescent protein monomers (Alford
et al. 2012; Scorrano et al. 2019). Due to reversibility, the dynamic of
contact sites can be monitored when using this approach
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is a 106 amino acid flavin-binding protein that becomes
fluorescent and produces reactive oxygen species (ROS)
when excited at the correct wavelength (Shu et al. 2011).
When tissue slices or fixed cells are exposed to diamin-
obenzidine (DAB), it reacts with the ROS and polymerizes
at the site of MiniSOG, the polymerized DAB is stained
with osmium tetroxide and visualized with EM (Shu et al.
2011). Recently, split-MiniSOG was developed to detect
in vitro protein—protein interactions allowing the study
of a-syn aggregation (Boassa et al. 2019). It seems that
split-MiniSOG will be an invaluable strategy to detect the
ER-mitochondria contact sites, which was not applied yet.

Proximity Biotinylation Labeling

The proximity-based biotin identification (BioID) and
ascorbate peroxidase (APEX) methods are based on
enzymes that turn a substrate into a reactive radical that
tags neighboring proteins with biotin. BioID has been used
to map protein—protein interaction based on the mutant
form of the biotin ligase BirA (Scorrano et al. 2019).
APEX is an engineered ascorbate peroxidase, which can
catalyze the oxidation of biotin-phenol in the presence of
H,0,. APEX catalyzes the oxidation of biotin phenol into
short-lived radicals that can attach to electron-rich amino
acids (Tyr, Trp, His, and Cys) in nearby endogenous pro-
teins. Following the H,0, removal, the reaction will stop
and biotinylated proteins can be purified using streptavi-
din beads and identified through mass spectrometry (Hung
et al. 2017; Scorrano et al. 2019).

Isolation of MAM

Organelle interface fraction is another widely used bio-
chemical approach. Mitochondrial-associated ER mem-
branes fraction was first separated and characterized in
1990 (Vance 1990). This methodology is based on sequen-
tial gradient (Percoll) ultracentrifugation that is applicable
for both tissues and cells, which results in subcellular frac-
tionation of microsomes (endoplasmic reticulum), crude
mitochondria, pure mitochondria, and MAM (Lewis et al.
2016; Wieckowski et al. 2009). A combination of frac-
tionation with sodium dodecyl sulfate—polyacrylamide
gel electrophoresis (SDS-PAGE) for particular protein
detection or multi-omic approaches is commonly used
(Liu et al. 2019; Ma et al. 2017; Veyrat-Durebex et al.
2019). The purity of the subcellular fractions is the main
concern. For this reason, normalization with several sub-
cellular markers such as Sig-1R, calnexin, VDAC, GRP75
is mandatory.

@ Springer

Conclusion

The interplay between ER and mitochondria is an emerg-
ing field that undeniably plays a crucial role in maintain-
ing and regulating several cellular essential pathways in
neuronal cells. Although evidence suggests that disrup-
tion of MAM function can perturb calcium homeostasis,
autophagy, lipid metabolism, and organelles motility,
many questions remain unclear. Therefore, a meticulous
investigation is necessary to gain better insights into the
mechanisms of tethering in brain cells. Hence, the compo-
sition of all tethering complexes still needs to be elucidated
in different neurodegenerative diseases by implementing
new approaches that were not done in neurosciences yet.
Moreover, a clear understanding of MAM by means of
development of new methodologies to manipulate the teth-
ering and in vivo barcoding of tethering complexes may
contribute to early detection, prevention and treatment of
neurodegenerative diseases in the future.
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