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Abstract
Organelles juxtaposition has been detected for decades, although only recently gained importance due to a pivotal role in 
the regulation of cellular processes dependent on membrane contact sites. Endoplasmic reticulum (ER) and mitochondria 
interaction is a prime example of organelles contact sites. Mitochondria-associated membranes (MAM) are proposed to 
harbor ER-mitochondria tether complexes, mainly when these organelles are less than 30 nm apart. Dysfunctions of proteins 
located at the MAM are associated with neurodegenerative diseases such as Parkinson’s, Alzheimer’s and amyotrophic lateral 
sclerosis, as well as neurodevelopmental disorders; hence any malfunction in MAM can potentially trigger cell death. This 
review will focus on the role of ER-mitochondria contact sites, regarding calcium homeostasis, lipid metabolism, autophagy, 
morphology and dynamics of mitochondria, mainly in the context of neurodegenerative diseases. Approaches that have been 
employed so far to study organelles contact sites, as well as methods that were not used in neurosciences yet, but are promis-
ing and accurate ways to unveil the functions of MAM during neurodegeneration, is also discussed in the present review.

Keyword  Mitochondria-associated membranes (MAM) · Contact sites methodologies · Autophagy · Lipid metabolism · 
Calcium · Neurodegeneration

Abbreviations
α-syn	� Alpha-synuclein
Aβ	� Amyloid-beta peptide
ACAT1	� Cholesterol acyltransferase/sterol 

O-acyltransferase 1 (same as SOAT1)
AD	� Alzheimer’s disease
ALS	� Amyotrophic lateral sclerosis
APEX	� Ascorbate peroxidase
APOE4	� Apolipoprotein E4
APP	� Amyloid precursor protein
ATG2A	� Autophagy-related protein 2 homolog 

A
ATG9A	� Autophagy-related protein 9 homolog 

A
ATG14L	� Autophagy-related 14-like
BAP31	� B-cell receptor-associated protein 31
BECN1	� Beclin-1

BiC	� Bimolecular complementation
BioID	� Proximity based biotin identification
BRET	� Bioluminescence resonance energy 

transfer
CACNA1A	� Calcium Voltage-Gated Channel 

Subunit Alpha1 A
CE	� Cholesteryl-ester
CLEM	� Correlative light and electron 

microscopy
CMT2A	� Charcot–Marie–Tooth type 2A
Cryo-ET	� Electron cryo-tomography
Cryo-FIB	� Cryo-focused ion beam
ddFP	� Dimerization-dependent fluorescent 

protein
DFCP1	� Double FYVE domain-containing 

protein 1
DGAT2	� Diacylglycerol O-acyltransferase 2
DRP1	� Dynamin-Related Protein 1
EI24	� Etoposide-induced protein 2.4
EM	� Electron microscopy
ER	� Endoplasmic reticulum
FACL4	� Fatty acid CoA ligase 4 (same as 

ACS4)
FIB-SEM	� Focused ion beam-scanning EM
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FIP200	� Focal adhesion kinase (FAK) family 
interacting protein of 200 kDa

FIS1	� Mitochondrial fission 1 protein
FRET	� Fluorescence resonance energy 

transfer
GRP75	� Glucose regulated protein 75
GSK-3β	� Glycogen synthase kinase-3 beta
hiPS	� Human-induced pluripotent stem cell
IP3R	� Inositol 1, 4, 5-trisphosphate receptor
KIF5C	� Kinesin Family Member 5C
LB	� Lewy bodies
LRRK2	� Leucine-rich repeat kinase 2
MAM	� Mitochondria-associated membranes
MEF	� Mouse embryonic fibroblasts
MERCs	� Mitochondria-ER contact sites
MFN1 and MFN2	� Mitochondrial fusion GTPases mito-

fusins 1 and 2
MID49	� Mitochondrial dynamics protein of 

49 kDa
MIRO1 and 2	� Mitochondrial Rho GTPase 1 and 2 

(same as RHOT1 and 2)
MITOL	� Mitochondrial ubiquitin ligase (same 

as MARCH5)
Mul1	� Mitochondrial E3 ubiquitin protein 

ligase 1
ORP5/8	� Oxysterol-binding protein related-

protein 5 and 8
PC	� Phosphatidylcholine
PD	� Parkinson’s disease
PDZD8	� PDZ domain-containing protein 8
PE	� Phosphatidylethanolamine
PEMT2	� Phosphatidylethanolamine N-methyl-

transferase 2
PINK1	� PTEN-induced kinase 1
PLA	� Proximity ligation assay
PSEN 1 and 2	� Presenilin 1 and 2
PSS 1 and 2	� Phosphatidylserine synthases 1 and 2
PTPIP51	� Protein tyrosine phosphatase interact-

ing protein 51 (same as RMDN3)
ROS	� Reactive oxygen species
SBF-SEM	� Serial block-face scanning electron 

microscopy
SEM	� Scanning electron microscopy
Sig-1R	� Sigma-1 receptor
SNCA	� Alpha-synuclein gene
TDP-43	� TAR DNA binding protein 43
TEM	� Transmission electron microscopy
TRAK	� Trafficking kinesin protein (same as 

Milton)
ULK1	� Unc-51 like autophagy activating 

kinase
VAPB	� Vesicle-associated membrane protein 

(VAMP)-associated protein B

VDAC	� Voltage-dependent anion-selective 
channel protein 1

VPS13A	� Vacuolar Protein Sorting 13 Homolog 
A

Introduction

Membrane-bound organelles are a distinctive feature of 
eukaryotic cells; proper compartmentalization enables cells 
to process incompatible biological reactions simultaneously. 
Organelles can communicate through vesicles as well as cel-
lular structures by which surfaces of two different organelles 
are closely apposed (10–30 nm). Organelles contact was first 
described between the endoplasmic reticulum (ER) and mito-
chondria (Bernhard et al. 1952; Bernhard and Rouiller 1956); 
but several other contact sites have been studied in the past 
decades (Cohen et al. 2018).

Interaction between the ER and mitochondria occurs 
through a specialized region known as mitochondria-associ-
ated membranes (MAM), which is also called mitochondria-
ER contact sites (MERCs). It was thought that the physio-
logical role of MAM was only limited to lipid, calcium, ions 
and proteins transfer between these two organelles; however, 
recent studies shed light on the importance of contact sites 
in many other different biological processes, such as inflam-
masome formation, autophagy, ER stress and mitochondria 
morphology (Friedman et al. 2011; Paillusson et al. 2016).

In mammalian cells, lipid and protein complexes con-
trol the machinery underlying the contact sites. Proteins 
located on the ER surface, such as mitochondrial fusion 
GTPase mitofusin 1 and 2 (MFN2), BAP31, IP3R, VAPB 
and ORP5/8, interact with their counterparts on the outer 
mitochondria membrane, like MFN1 and 2, FIS1, VDAC, 
and PTPIP51 (Lee and Min 2018).

Malfunction in the mitochondria-ER communication can 
cause metabolic and neurodegenerative diseases (Stoica 
et al. 2014). Several studies have documented the structural 
and functional role of MAM in neurodegeneration (Area-
Gomez et al. 2018; Rodriguez-Arribas et al. 2017; Stoica 
et al. 2014; Tambini et al. 2016).

Mitochondria‑ER Contact Sites

Mitochondria-ER contact sites have pivotal roles in a variety 
of cellular functions, for this reason it is reasonable to expect 
that its dysfunction is associated to several neuropathologies.

MAM and Ca2+ Storage: A Crosstalk Between ER 
and Mitochondria

ER and mitochondria have been considered the major Ca2+ 
storage sites within the cell. Efflux of Ca2+ from ER via 
inositol 1,4,5- triphosphate receptors (IP3R) stimulates its 
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uptake by mitochondria via VDAC channels (Rowland and 
Voeltz 2012). Fine-tuning of intracellular Ca2+ concentra-
tion is vital for proper mitochondrial trafficking and ATP 
generation. Nonetheless, uncontrolled uptake of Ca2+ leads 
to increased mitochondrial permeability and signaling for 
apoptosis (Paillusson et al. 2016; van Vliet et al. 2014).

Several studies have shown the importance of MAM in 
Ca2+ shuttling for neurodegenerative diseases as depicted 
in Fig. 1.

In Alzheimer’s disease (AD), which is defined by pro-
gressive neuronal loss in the hippocampus and cortex, with 
extracellular deposits of amyloid-beta (Aβ) plaques, pro-
duced by the unusual processing of amyloid precursor pro-
tein (APP); and intracellular accumulation of neurofibrillary 

Fig. 1   a ER-Mitochondria contact sites illustration and mitochondria-
associated membranes (MAM) influence on Ca2+ homeostasis in neu-
rodegenerative disease. b–b’ In Alzheimer’s disease (AD) mutation 
in Presenilin (PSEN1) located at the MAMs tightens contact sites and 
increases Ca2+ flux into the mitochondria. c–c’ In Parkinson’s dis-
ease, α-syn interacts with VAPB-PTPIP51, disturbing this tethering 
complex and decreasing MAM and Ca2+ shuttling into the mitochon-

dria. Parkin overexpression increases the contact sites and elevates 
the Ca2+ flux into the mitochondria. d–d’ In ALS, TDP-43 reduces 
the binding of VAPB-PTPIP51; therefore, reducing Ca2+ shuttling 
into mitochondria. Mutation in VAPB (P56S) leads to a higher affin-
ity to other tethering counterpart of PTPIP5 that triggers Ca2+ trans-
fer to mitochondria
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tangle mainly formed by hyperphosphorylated microtubule-
associated protein tau (Goedert and Spillantini 2006), com-
ponents of the γ-secretase Presenilin 1 (PSEN1) and Pre-
senilin 2 (PSEN2) are present in the MAM (Zampese et al. 
2011). Catalytic loss-of-function mutations in these genes 
have been linked to modulation of the ER-mitochondria con-
tact sites and mitochondrial Ca2+ uptake (Area-Gomez et al. 
2018; Area-Gomez et al. 2012; Sepulveda-Falla et al. 2014). 
Presenilins mutation change ER-mitochondria dynamics 
contributing to amyloidogenic processing of APP as well as 
Ca2+  imbalance between the two organelles (Area-Gomez 
et al. 2012; Sepulveda-Falla et al. 2014). It is noteworthy 
to remember that mutations in APP, PSEN1 or PSEN2 are 
associated with familial AD, although other genes have been 
considered risk or protective factors for AD (Dorszewska 
et al. 2016), and the involvement of MAM for the AD must 
be taken into acount.

In mouse embryonic fibroblast (MEF) lacking PSEN1 
and in fibroblasts from AD patients the number of ER-mito-
chondria contact sites is increased (Fig. 1b, b’); it was pro-
posed that the Presenilin might affect the same pathway that 
MFN2 does. A point mutation in PSEN1 (E280A) resulted 
in decrease of ER-mitochondria tethering, down-regulation 
of the Ca2+ channels IP3Rs and CACNA1A, and reduction 
of the Ca2+-dependent mitochondrial transport proteins 
MIRO1 and KIF5C (Sepulveda-Falla et al. 2014).

PSEN2 is also associated with ER-mitochondria contact 
sites. In SH-SY5Y cells models, overexpression and down-
regulation of PSEN2 resulted in increase and decrease of 
the contact sites, respectively, which is directly related to 
the capacity of mitochondria to uptake Ca2+ (Zampese et al. 
2011). It is proposed that the number and distance of con-
tact sites are not associated with the enzymatic activity of 
PSEN2 itself, but the ability of maintaining together the two 
membranes (Zampese et al. 2011).

In Parkinson’s disease (PD), the second most prevailing 
neurodegenerative disease after Alzheimer’s disease, α-syn, 
Parkin, PINK1, VPS35, DJ-1, and LRRK2 proteins can alter 
MAM and influence Ca2+ balance, all these proteins are 
encoded by genes associated to dominant or recessive-inher-
ited PD (Gomez-Suaga et al. 2018). PD symptoms appear as 
a result of the dopaminergic neurons loss in substantia nigra 
pars compacta, and intraneuronal proteinaceous inclusions 
called Lewy bodies (LB), which are composed mainly of 
α-syn (Kalia and Lang 2015).

It has been documented that α-syn interacts with vesicle-
associated membrane protein (VAMP)—associated protein 
B (VAPB) in ER, thus disturbing the contact between VAPB 
and tyrosine phosphatase–interacting protein 51 (PTPIP51). 
Therefore an abnormal increase in α-syn levels can alter 
the number of contact sites and disrupt the Ca2+ transfer to 
mitochondria (Fig. 1c, c’) (Guardia-Laguarta et al. 2014; 
Paillusson et al. 2017; Vicario et al. 2018).

In the SH-SY5Y cell model, Parkin overexpression 
resulted in the maintenance of ER-mitochondria tethering 
and Ca2+ homeostasis, while Parkin knockdown leads to 
mitochondrial fragmentation, dysfunction in mitochondrial 
Ca2 + handling, and reduced the ER–mitochondria contact 
sites (Cali et al. 2013).

Consistent with the previous study it has been shown 
that Parkin knockdown in the S2R + Drosophila cell line, 
MEF, and also human Parkin mutant fibroblasts, impaired 
tethering between ER and mitochondria (Basso et al. 2018). 
The absence of Parkin resulted in decreased ubiquitylation 
of MFN2 ending up with impaired tethering between these 
organelles (Basso et al. 2018).

In HeLa cells, DJ-1 down-regulation can alter the Ca2+ 
transferring from ER to mitochondria, which is associated 
to changes in mitochondria morphology that influence the 
contact sites (Ottolini et al. 2013). It has been shown that 
DJ-1 in the M17 cell lines physically interacts with the teth-
ering complexes IP3R-GRP75-VDAC (Liu et al. 2019). DJ-1 
knockout resulted in reduced ER-mitochondria association, 
increased levels of IP3R type 3 and its aggregation that end 
up to MAM dysfunctions (Liu et al. 2019). In the brain of 
DJ-1 knockout mice, similar deficits were confirmed; fur-
thermore, in the substantia nigra of sporadic PD, diminish-
ing ER-mitochondria association is linked to DJ-1 level and 
IP3R3-DJ-1 interaction (Liu et al. 2019).

In Drosophila PD model, dopaminergic neurons harbor-
ing PINK1 mutation present strengthen ER-mitochondrial 
contact sites, and consequently raise in the levels of mito-
chondrial Ca2+; alteration in the contact sites is probably 
due to impaired control of MIRO1 abundance, that resulted 
in increased Ca2+ transfer from the ER to mitochondria 
(Lee et al. 2018). The mitochondrial Rho GTPase MIRO1 
(RHOT1) has been studied as an adaptor protein for mito-
chondrial transport; in fibroblast of PD patients, RHOT1 
dominant mutation promotes decreases in MAM and causes 
calcium dyshomeostasis (Grossmann et al. 2019).

Missense mutations in the leucine-rich repeat kinase 
2 (LRRK2) gene is one common cause of familial PD. It 
has been shown that MEF carrying G2019S and D1994A 
LRRK2 mutations have impaired mitochondrial Ca2+ 
transferring (Toyofuku et al. 2020). Interestingly the num-
bers of ER–mitochondrial contact sites are reduced in the 
LRRK2−/− and LRRK2 (G2019S). Since LRRK2 regu-
lates the activities of E3 ubiquitin ligases such as MITOL, 
MULAN, and Parkin, which are enriched in the MAM, 
depletion or loss-of-function mutation of LRRK2 leads to 
missing of MAM integrity that results in calcium imbalance 
(Toyofuku et al. 2020). Contrary to MEF study, in astrocytes 
isolated form G2019S-LRRK2 mice the number of ER-mito-
chondria contact sites are increased, which resulted in incre-
ment of Ca2+ transfer from ER to mitochondria (Lee et al. 
2019a). It is proposed that this may happen due to change 
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in the redistribution pattern of proteins such as MFN2, cal-
nexin, IP3R that are located to MAM (Lee et al. 2019a).

In amyotrophic lateral sclerosis (ALS) that is distin-
guished by progressive degeneration of lower and upper 
motor neurons in the brainstem, spinal cord, and motor cor-
tex, most cases of familial disease are linked to mutations of 
superoxide dismutase-1 (SOD1), VAPB, TAR DNA-binding 
protein 43 (TDP-43) and C9ORF72 genes, that are respon-
sible for about 50% of familial ALS patients (DeJesus-Her-
nandez et al. 2011; Rosen et al. 1993; Sreedharan et al. 2008; 
Turner et al. 2013).

Disruption in VAPB-PTPIP51 tethering plays an essen-
tial role in ALS autosomal-dominant form; the mutation 
P56S-VAPB has higher affinity for PTPIP51 that can lead 
to increase in Ca2+ transfer to mitochondria (De Vos et al. 
2012; Moustaqim-Barrette et al. 2014). Also, TDP-43 can 
modulate the VAPB-PTPI51 interaction by activation of gly-
cogen synthase kinase-3 beta (GSK-3β) (Fig. 1d, d’). Over-
expression of TDP-43 resulted in GSK-3β activation that 
leads to decreased VAPB-PTPI51 interaction and reduced 
ER-mitochondria association (Stoica et al. 2014).

Sigma-1 receptor (Sig-1R) is an ER chaperone that 
resides mainly at MAM. Sig-1R interacts with and stabilizes 
IP3R3s, playing a significant role in the regulation of the 
Ca2+ signaling between the ER and mitochondria (Hayashi 
and Su 2007). Mutation in Sig-1R is associated with juvenile 
ALS (Al-Saif et al. 2011). Homozygous frameshift mutation 
(p.L95fs) of Sig-1R resulted in inability to bind to IP3R3; 
loss of this interaction leads to Ca2+ deregulation at MAM 
in Sig-1R linked ALS (Watanabe et al. 2016).

In cortical pyramidal neurons, the PDZ domain-contain-
ing protein 8 (PDZD8) is essential for the ER and mito-
chondrial membranes tethering and is required for Ca2+ 
transferring from ER to mitochondria (Hirabayashi et al. 
2017). In the axon injury model, overexpression of the 
glucose-regulated protein 75 (GRP75) leads to increase in 
ER-mitochondria tethering, which consequently elevates the 
mitochondrial Ca2+ and enhances ATP generation (Lee et al. 
2019b).

Many proteins are enumerated that are part of and can 
change MAM and Ca2+ homeostasis. However, it remains 
to be elucidated the role of other tethering proteins in the 
context of neurodegenerative disease. Isolation of MAM, 
followed by proteomic studies, can provide other potential 
targets, which modulate MAM in physiological and patho-
logical conditions such as neurodegeneration.

MAMs in Lipid Metabolism

Lipid molecules are associated with multiple cellular pro-
cesses, such as cell membrane formation, cell signaling, 
transduction and synaptic transmission (Mesa-Herrera et al. 
2019). Organelles demonstrate a unique lipid profile, which 

directly relates to their function and physical properties. The 
substantial lipid classes elucidated in the organelles’ mem-
branes are phospholipids, sterols, and sphingolipids (van 
Meer et al. 2008). However, endoplasmic reticulum plays a 
paramount role in lipid synthesis, storage and distribution 
within the cells.

Synthesis of two most abundant phospholipids phos-
phatidylcholine (PC) and phosphatidylethanolamine (PE) 
is dependent on trafficking between ER and mitochondria, 
because of the location of the required synthesizing enzymes 
(Kojima et al. 2016; Tatsuta and Langer 2017). In fact, since 
most of the organelles have limited capacity to produce their 
lipids, lipid transport via specific proteins or tethering is 
mandatory for the correct lipid composition of each orga-
nelle (Flis and Daum 2013).

The MAM harbors diverse lipid trafficking proteins and 
synthesizing enzymes, such as diacylglycerol O-acyltrans-
ferase 2 (DGAT2), fatty acid CoA ligase 4 (FACL4/ACS4), 
phosphatidylserine synthases 1 and 2 (PSS1 and PSS2), 
phosphatidylethanolamine N-methyltransferase 2 (PEMT2), 
and cholesterol acyltransferase/sterol O-acyltransferase 1 
(ACAT1/SOAT1) (Lewin et al. 2002; Stone et al. 2009; 
Stone and Vance 2000).

Level of cholesteryl-ester (CE) is directly associated with 
Aβ production in AD; the ACAT1, which is responsible 
for CE synthesis, modulates Aβ generation via a balance 
between free cholesterol and cholesteryl esters (Puglielli 
et al. 2001). The C99, the 99-aa C- terminal domain of the 
amyloid precursor protein (APP) that is produced by cleav-
age of APP with β-secretase, is associated with familial AD 
and is involved in the lipid homeostasis and regulation of 
MAM activity. In cell models of AD and cells from AD 
patients, the unprocessed C99 accumulates in the MAM, 
which resulted in alteration of lipid profile in MAMs and 
elevated sphingolipid turnover (Pera et al. 2017).

The presence of apolipoprotein E4 allele (APOE4) is 
one of the main genetic risk factors for AD. APOE4 can 
modulate MAM function, in human fibroblasts treated with 
astrocyte-conditioned media obtained from APOE4 and 
APOE3 transgenic mice. This alteration in MAM resulted 
in an increase of phospholipids and cholesteryl esters in cells 
treated with APOE4 (Tambini et al. 2016). As previously 
mentioned, Presenilin is enriched in the MAM in Presenilin-
deficient cells and cells from AD patients; this accumulation 
resulted in increased phospholipid and cholesteryl ester syn-
thesis (Area-Gomez et al. 2012).

In induced peptidergic neurons from Parkinson’s dis-
ease patients and ventral lateral neurons from mutant flies, 
loss of Parkin resulted in a higher number of contact sites 
compared to control groups; this excessive interaction can 
cause dysfunction of lipid trafficking that depletes phos-
phatidylserine from ER (Valadas et al. 2018). Moreover, in 
PD, α-syn mutation or its triplication change MAM; α-syn 
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overexpression or mutation E46K can increase the level of 
oleic acid (OA, 18:1) diglycerides, and triglycerides level 
in the whole-cell lipidomic profiling (Fanning et al. 2019). 
Interestingly, overexpression or knockdown of α-syn is asso-
ciated with alteration of lipid metabolism (Alza et al. 2019). 
In SNCA knockout mice, the docosahexaenoic acid (DHA), 
phosphatidylethanolamine and phosphatidylinositol are 
increased compared to control (Golovko et al. 2007). Fur-
thermore, overexpression of α-syn resulted in lipid droplet 
accumulation and an increase in triacylglycerol (Alza et al. 
2019). These modulations may be correlated with the enrich-
ment of α-syn in MAM.

It has been shown in fibroblasts of ALS patients that 220 
lipids isolated from MAM were changed compared to con-
trol, such as phosphatidylcholine PC (36:4p), phosphatidyl-
cholines (42:2), ceramide (d18: 2/22:0), phosphatidyletha-
nolamines (18:0p/22:6) and triglycerides (16:1/14:0/16:1) 
(Veyrat-Durebex et  al. 2019). Further combined omic 
approaches are required to elucidate the interaction of 
enriched proteins in MAM and their association with the 
lipid composition of this multifunctional platform. Lipid 
alterations in the MAM probably change the distribution 
and contribute to aggregation of proteins that are associated 
to neuropathological conditions.

MAM in Autophagy

Autophagy is a conserved cellular process that may be clas-
sified as macroautophagy, chaperone-mediated autophagy 
and microautophagy, in which organelles and free compo-
nents are delivered to lysosomes for degradation.

In macroautophagy, the transport of cargoes occurs via 
double-membrane vesicles called autophagosomes, in con-
trast to the other two autophagy pathways. The autophagic 
flux involves a series of steps, such as autophagosome for-
mation, maturation, and closure; the process entails crosstalk 
among autophagosome biogenesis, lysosomal degradation 
and dynein machinery on microtubules (Bento et al. 2016; 
Kimura et al. 2008; Rubinsztein et al. 2012).

An emerging body of evidence demonstrates the pivotal 
role of MAMs in autophagy and a possible participation 
during the accumulation of oligomers and aggregates of 
misfolded proteins in neurodegenerative diseases (Menzies 
et al. 2017).

The ER-mitochondria contact sites participate of pha-
gophore assembly, as it has been documented that the 
autophagosomes may form at the MAM in mammalian 
cells. Following autophagy triggering the pre-autophago-
some and autophagosome markers autophagy-related 14-like 
(ATG14L), double FYVE domain-containing protein 1 
(DFCP1), and autophagosome-formation marker ATG5 relo-
calizes to the MAM (Hamasaki et al. 2013). Furthermore, 
ATG2A can interact with ATG9A at the ER-mitochondrial 

contact sites to promote phagophore growth (Tang et al. 
2019).

Recently it has been shown that the tethering complex 
VAPB/PTPIP51 regulates autophagy, since overexpres-
sion of either proteins tightens ER-mitochondria contacts 
and decrease autophagosome formation, on the other hand, 
depletion of VAPB or PTPIP51 stimulates autophagy flux 
(Gomez-Suaga et al. 2017).

The etoposide-induced protein 2.4 (EI24) is anchored at 
the MAM via its C-terminal domain. In pancreatic β cells, 
this protein is vital for MAM integrity and autophagy flux 
through regulation of IP3R–GRP75–VDAC1 complex (Yuan 
et al. 2019). In the neuronal context, EI24 is also a main 
component of the autophagy pathway; since the EI24 con-
ditional knockout mice present massive axon degeneration 
and extensive neuron loss in the brain and spinal cord (Zhao 
et al. 2012), although the contribution of EI24 for MAMs 
integrity in neuronal cells is still an open question.

In the SH-SY5Y cells, proteins related to mitophagy are 
located at MAM such as PINK1 and BECN1; and promote 
the enhancement of contact sites and autophagosome for-
mation followed by mitophagy (Gelmetti et al. 2017). In 
neuronal cells, Mul1 (Mitochondrial E3 ubiquitin protein 
ligase 1) is anchored in the outer mitochondrial membrane; 
knockdown of MUL1 in cortical neurons resulted in reduc-
tion of ER-Mito contact sites, mitochondrial fragmentation 
and Parkin-mediated mitophagy (Puri et al. 2019). MUL1 
deficiency resulted in increase of MFN2 activity, which can 
perturb the ER-Mito contact site (Puri et al. 2019).

As detailed earlier, mutation in VAPB (P56S) resulted 
in an autosomal-dominant form of ALS; this mutation 
increases the binding to PTPIP51, which causes inhibition of 
autophagy by reducing the ULK1/FIP200 interaction (Zhao 
et al. 2018).

Due to the importance of MAM in autophagy, it seems 
possible to postulate that malfunction in the MAM or any 
tethering protein may trigger cell death to the majority of 
organs, including the nervous system.

MAM and Mitochondria Dynamics

Although to date little is known about the reciprocal relation-
ships between MAM and organelles morphology and motil-
ity, emerging data shed light on a new aspect of organelles 
contact site. Motor proteins are tightly regulated by Ca2+ 
and control mitochondrial movement along microtubules. 
Reduced mitochondrial movement is related to increase in 
ER-mitochondrial contact sites (Pizzo and Pozzan 2007).

MIRO1 and MIRO2 form complexes with TRAK 
adaptors and molecular motors kinesin/dynein to orches-
trate mitochondria transport. It has been shown in mouse 
embryonic fibroblasts that MIRO proteins are required for 
mitochondria and endoplasmic reticulum contact sites, 
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and also for mitochondrial cristae architecture (Modi et al. 
2019). Besides, in fibroblast of PD patients, MIRO1 muta-
tions T351A or T610A disturb the calcium homeostasis 
and reduce the amount of ER-mitochondrial contact sites 
(Berenguer-Escuder et al. 2019). Autosomal dominant muta-
tion in MIRO1 (R272Q, R450C) in PD patient fibroblasts 
reduced mitochondrial mass and ER-mitochondrial contact 
sites (Grossmann et al. 2019). Interestingly number of ER-
mitochondrial contact sites is increased, but the mass of the 
mitochondria did not change in iPSC-derived neurons har-
boring MIRO1 (R272Q); the alteration in the contact site 
is associated to the localization of MIRO1 (R272Q) to the 
MAM, which collaborates to reduced mitochondrial move-
ment and calcium dyshomeostasis in these cells (Berenguer-
Escuder et al. 2020).

Disruption in calcium homeostasis has a direct influence 
on mitochondrial morphology. Mitochondrial ubiquitin 
ligase (MITOL) is an integral mitochondrial outer mem-
brane protein that regulates mitochondrial dynamic via fis-
sion proteins such as Drp1 and Mid49 (Xu et al. 2016). Fur-
thermore, it is documented that MITOL is partially located 
to MAM and intervene mitofusin 2 (MFN2) ubiquitylation. 
Therefore, MITOL can mediate MFN2 activation enabling 
MAM formation (Sugiura et al. 2013).

Depletion of MITOL in neurons leads to reduction of 
ER-mitochondria contact sites and absence of branched 
mitochondria, which is probably associated to accumulation 
of mitochondrial fission proteins (Nagashima et al. 2019). 
Moreover, in the absence of MITOL, the level of cardiolipin 
(major phospholipid in the mitochondrial inner membrane) 
becomes lower; this may happen due to MAM malfunction 
that resulted in disruption of phospholipids transfer, which is 
necessary for cardiolipin biogenesis (Nagashima et al. 2019).

MFN2 is one of the well-studied proteins involved in 
mitochondrial fusion, it is located on outer mitochondrial 
membranes (OMM) and the ER membranes in MAM, pro-
viding stability to MAM structure. In murine fibroblasts, 
depletion of MFN2 promotes an increase in distance 
between two organelles, which leads to morphology change 
of ER and mitochondria (de Brito and Scorrano 2008).

Mutation in MFN2 has been linked to Char-
cot–Marie–Tooth type 2A (CMT2A) disease, an axonal 
sensorimotor neuropathy. In patient fibroblasts harbor-
ing the mutation MFN2 (R94C), a significant decrease in 
contact between mitochondria and ER has been reported. 
The CMT2A mouse model manifests impairment of several 
MAM linked processes such as calcium handling defects, 
mitochondria morphology, transport changes and ER stress 
(Bernard-Marissal et al. 2019).

Recently, it has been shown that mutation in VPS13A, a 
peripheral membrane protein localized at membrane con-
tact sites, is associated with the neurodegenerative disorder 
Chorea Acanthocytosis; in VPS13A-depleted cells, not only 

the number of MAM but also the mitochondria size and 
mitophagy are decreased (Yeshaw et al. 2019). Both mito-
chondrial motility and morphology are directly involved in 
MAM formation and function. Although, molecular events 
underlying mitochondrial movement and morphology are 
well studied, further investigation is necessary to understand 
how they control MAM structure and function in different 
neuropathological conditions.

MAM Detection Methodologies

Several methodologies have been developed since early as 
the 1950s to quantify the nanometric distance between mito-
chondria and ER in different experimental, physiological, 
and pathological conditions. Most of the findings related to 
MAM visualization in healthy neurons and during neurode-
generative diseases are included in Table 1 and discussed in 
the following subtopics.

Confocal Microscopy

The most readily available approach to measure organelles 
contact sites is confocal microscopy, often coupled to super-
resolution devices. Confocal microscopy was first applied 
to detect the ER-mitochondria contacts in living HeLa cells 
(Rizzuto et al. 1998).

The methodology is based on fluorescent detection in 
live and fixed cells, in immunostained structures or cells 
expressing fluorescent tag proteins, and different barcod-
ing strategies (Hu et al. 2018; Scorrano et al. 2019). Like 
all methodologies, confocal microscopy approach suffers 
some limitations, the axial resolution is approximately 
500–700 nm, and the lateral resolution is around 200 nm 
(Jing et al. 2019), which is not enough to detect the orga-
nelle’s contact sites accurately.

In the case of immunostaining for different tethering 
proteins, the output relies on antibodies specificity. Also, 
chemical fixation can disrupt the contact site. To overcome 
this issue, Cryo-Confocal microscopy can be a great alter-
native. In the Cryo approach the materials are frozen under 
high-pressure freezing or plunge freezing, then samples are 
imaged in a frozen state (Elgass et al. 2015).

Confocal or fluorescent microscopy can be combined 
with several biochemical techniques to improve the limita-
tions. The majority of these approaches are based on prox-
imity-driven fluorescent signal generations such as fluores-
cence resonance energy transfer (FRET), bioluminescence 
resonance energy transfer (BRET), bimolecular complemen-
tation (BiC), dimerization-dependent fluorescent protein 
(ddFP) and proximity ligation assay (PLA). The descriptions 
of these techniques are illustrated in Fig. 2.
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Electron Microscopy

Electron microscopy (EM) is a gold standard technique 
that provides nano-scale resolution to visualize cell struc-
tures such as MAM.

Transmission electron microscopy (TEM) and its com-
bination with immunogold labeling using different gold 
particle sizes, is an acceptable approach to detect the 
tethering proteins (Scorrano et al. 2019). On the other 
hand, the TEM has limitations such as the impossibility 
of handling live cells, chemical fixation procedures that 
may interfere with the native state of MAM, and the pos-
sibility of single plane only (Scorrano et al. 2019; Stac-
chiotti et al. 2018).

Scanning electron microscopy (SEM) provides the capa-
bility of high-resolution 3D imaging of large volume speci-
mens (Scorrano et al. 2019). Different SEM approaches, 
such as serial block-face scanning electron microscopy 
(SBF-SEM) has now been initially used in neuroscience 
(Lippens et al. 2019). This technique is based on collect-
ing hundreds of sequential serial sections producing three-
dimensional views of the specimen (Lippens et al. 2019).

In focused ion beam-scanning EM (FIB-SEM) an 
ion beam is used to remove a thin layer of the sample 
(15–50 nm), followed by electron beam SEM image capture. 
With this approach, the series of images are reconstructed 
ion of in three-dimension (3D) for better visualization of the 
specimen (Hirabayashi et al. 2017).

Electron Tomography

Electron tomography (ET) can generate 3D reconstructions 
of cellular structures. ET is based on multiple imaging, 
while the sample is tilting along the axis, followed by 3D 
reconstruction of the images (Scorrano et al. 2019).

Like other EM-based approaches, samples preparation 
procedure with chemical fixation may disrupt the intact 
architecture of the cells. Thus, electron cryo-tomography 
(Cryo-ET) offers the advantage of immobilizing samples in 
non-crystalline ice and imaging under cryogenic conditions 
(Tocheva et al. 2010). The combination of cryo-focused ion 
beam (Cryo-FIB) milling and Cryo-ET can overcome the 
sample thickness and so far make this approach as a unique 
methodology to visualize cell structures (Collado and Fer-
nandez-Busnadiego 2017; Schaffer et al. 2019).

Correlative Light and Electron Microscopy

Correlative light and electron microscopy (CLEM) is a 
combination of fluorescence microscopy with different high-
resolution electron microscopy, which provides a powerful 
technique to answer both structural and functional questions 
in different fields of neuroscience (Begemann and Galic 
2016; Hirabayashi et al. 2018).

Taking advantage of utilizing specific genetic tags such 
as MiniSOG (mini Singlet Oxygen Generator) makes 
CLEM a more robust approach (Shu et al. 2011). MiniSOG 

Table 1   Methodologies available for detection of in situ ER-mitochondria contact sites in neurosciences

Detailed discussion of these methods is found in Sect. 3. Recently developed approaches (*) still need to be optimized for visualization and map-
ping contact sites
**ET was not applied to neurosciences studies yet. Abbreviations were defined in abbreviation list

Approaches Organelles Cell types References

Confocal Mito-ER Neurons from animal models of neurodegeneration, AD 
patient fibroblasts, Postmortem AD human brain, mice 
brain, M17 cells, MEF cells, PD hiPS, Fly dopaminer-
gic neurons, SH-SY5Y cells

Area-Gomez et al. 2012; Guardia-Laguarta et al. 2014; 
Guardia-Laguarta et al. 2015; Hedskog et al. 2013; Lee 
et al. 2019b; Cali et al. 2013; Grossmann et al. 2019; 
Lee et al. 2018; Moustaqim-Barrette et al. 2014; Ottolini 
et al. 2013; Paillusson et al. 2017

PLA Mito-ER SH-SY5Y, PD hiPS, HT22 cells, neuron, NSC‐34 cells, Bernard-Marissal et al. 2019; Gomez-Suaga et al. 2019; 
Honrath et al. 2017; Paillusson et al. 2017; Stoica et al. 
2016

TEM Mito-ER AD patient fibroblasts, Postmortem AD human brain, 
mice brain, SH-SY5Y, PD hiPS, Fly neurons, NSC‐34 
cells

Area-Gomez et al. 2012; Hedskog et al. 2013; Moustaqim-
Barrette et al. 2014; Paillusson et al. 2017; Stoica et al. 
2016

SBF-SEM Mito-ER Mice hippocampal neurons Nagashima et al. 2019
FIB-SEM Mito-ER Cortical neurons, Cerebral cortex Hirabayashi et al. 2017; Wu et al. 2017
**ET Mito-ER COS-7 cells Elgass et al. 2015
*CLEM _ Mice brain Hirabayashi et al. 2018
*Cryo-ET _ Hippocampal neurons, Neocortex Fischer et al. 2018; Guo et al. 2018; Tao et al. 2018
*Cryo-EM _ AD tissue from frontal and temporal cortex Arakhamia et al. 2020; Fitzpatrick et al. 2017
*BioID _ Hippocampal neurons Spence et al. 2019
*APEX Mito-ER HEK239T cells, mice brain Hung et al. 2017; Hirabayashi et al. 2018
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Fig. 2   a Representation of endoplasmic reticulum (ER)-Mitochondria 
contact sites. Magnified area (dashed circle) illustrates tethering com-
plexes and the methods using fluorescent approaches employed to 
study interaction between mitochondria and ER are exemplified in B 
to F. b Proximity ligation assay (PLA) is a broadly used method to 
detect the endogenous protein–protein interactions in fixed samples. 
It is based on the labeling of the target proteins with primary anti-
bodies, followed by secondary antibodies conjugated to specific oli-
gonucleotides; in close proximity targeted proteins can hybridize with 
connector oligonucleotides that serve as templates for rolling circular 
amplification by using fluorophore-labeled nucleotides (Soderberg 
et al. 2006). This technique has potential to detect MAM via tether-
ing proteins in the presence of specific antibodies. c Fluorescence 
resonance energy transfer (FRET) is based on the transfer of energy 
between two fluorophores (donor/acceptor) fused to membrane pro-
teins that has been used to visualize organelles’ contact site, FRET 
provides high-resolution detection (approximately 10  nm) and is 
compatible to live cells analysis (Csordas et al. 2010; Scorrano et al. 
2019). d Bioluminescence resonance energy transfer (BRET) is a new 
methodology that has been recently developed to quantify the con-
tact site between mitochondria and ER using the so-called MERLIN 

(Mitochondria–ER Length Indicator Nanosensor). The Renilla Lucif-
erase 8 (RLuc) acts as a donor linked to a truncated non-functional 
variant of calnexin (sCal) and mVenus as an acceptor fused to alpha-
helical C-terminal domain of Bcl-xL (Hertlein et  al. 2020). BRET 
provides higher resolution than fluorescence microscopy, it is appli-
cable to live cell imaging and has limited phototoxicity as compared 
with FRET. e Biomolecular fluorescence complementation (BiFC) is 
based on split-fluorescent proteins such as split Venus or GFP com-
poses of two complementary non-fluorescent residues fused to N or 
C terminal fragment of membranes bounded proteins, while targeted 
membranes locate in proximity the split fragments bind to each other 
and allowing the fluorescence to bright (Cieri et al. 2018; Kakimoto 
et al. 2018; Miller et al. 2015). The complementation is stable in this 
approach; therefore, it is not suitable to study the dynamic of the con-
tact sites (Scorrano et  al. 2019). The split probes irreversibly bind, 
which may alter the function of contact sites; on the other hand, it is 
applicable to live imaging. f Dimerization-dependent fluorescent pro-
tein (ddFP) works similar to BiFC, this approach is based on a revers-
ible binding of weak or non-fluorescent protein monomers (Alford 
et al. 2012; Scorrano et al. 2019). Due to reversibility, the dynamic of 
contact sites can be monitored when using this approach
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is a 106 amino acid flavin-binding protein that becomes 
fluorescent and produces reactive oxygen species (ROS) 
when excited at the correct wavelength (Shu et al. 2011). 
When tissue slices or fixed cells are exposed to diamin-
obenzidine (DAB), it reacts with the ROS and polymerizes 
at the site of MiniSOG, the polymerized DAB is stained 
with osmium tetroxide and visualized with EM (Shu et al. 
2011). Recently, split-MiniSOG was developed to detect 
in vitro protein–protein interactions allowing the study 
of α-syn aggregation (Boassa et al. 2019). It seems that 
split-MiniSOG will be an invaluable strategy to detect the 
ER-mitochondria contact sites, which was not applied yet.

Proximity Biotinylation Labeling

The proximity-based biotin identification (BioID) and 
ascorbate peroxidase (APEX) methods are based on 
enzymes that turn a substrate into a reactive radical that 
tags neighboring proteins with biotin. BioID has been used 
to map protein–protein interaction based on the mutant 
form of the biotin ligase BirA (Scorrano et  al. 2019). 
APEX is an engineered ascorbate peroxidase, which can 
catalyze the oxidation of biotin-phenol in the presence of 
H2O2. APEX catalyzes the oxidation of biotin phenol into 
short-lived radicals that can attach to electron-rich amino 
acids (Tyr, Trp, His, and Cys) in nearby endogenous pro-
teins. Following the H2O2 removal, the reaction will stop 
and biotinylated proteins can be purified using streptavi-
din beads and identified through mass spectrometry (Hung 
et al. 2017; Scorrano et al. 2019).

Isolation of MAM

Organelle interface fraction is another widely used bio-
chemical approach. Mitochondrial-associated ER mem-
branes fraction was first separated and characterized in 
1990 (Vance 1990). This methodology is based on sequen-
tial gradient (Percoll) ultracentrifugation that is applicable 
for both tissues and cells, which results in subcellular frac-
tionation of microsomes (endoplasmic reticulum), crude 
mitochondria, pure mitochondria, and MAM (Lewis et al. 
2016; Wieckowski et al. 2009). A combination of frac-
tionation with sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (SDS-PAGE) for particular protein 
detection or multi-omic approaches is commonly used 
(Liu et al. 2019; Ma et al. 2017; Veyrat-Durebex et al. 
2019). The purity of the subcellular fractions is the main 
concern. For this reason, normalization with several sub-
cellular markers such as Sig-1R, calnexin, VDAC, GRP75 
is mandatory.

Conclusion

The interplay between ER and mitochondria is an emerg-
ing field that undeniably plays a crucial role in maintain-
ing and regulating several cellular essential pathways in 
neuronal cells. Although evidence suggests that disrup-
tion of MAM function can perturb calcium homeostasis, 
autophagy, lipid metabolism, and organelles motility, 
many questions remain unclear. Therefore, a meticulous 
investigation is necessary to gain better insights into the 
mechanisms of tethering in brain cells. Hence, the compo-
sition of all tethering complexes still needs to be elucidated 
in different neurodegenerative diseases by implementing 
new approaches that were not done in neurosciences yet. 
Moreover, a clear understanding of MAM by means of 
development of new methodologies to manipulate the teth-
ering and in vivo barcoding of tethering complexes may 
contribute to early detection, prevention and treatment of 
neurodegenerative diseases in the future.
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