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A B S T R A C T

On one hand, we consider two T-matrix theories, namely ‘‘Generalized Lorenz–Mie theory’’ (GLMT) and
‘‘Extended Boundary Condition Method’’ (EBCM), in which structured beams may be expanded over Vector
Spherical Wave Functions (VSWFs), with expansion coefficients expressed by using electromagnetic Beam
Shape Coefficients (BSCs). On the other hand, we consider acoustical (more generally scalar) fields which
may be expressed similarly by an expansion over basic functions, with expansion coefficients expressed using
acoustical (scalar) BSCs. We establish relationships between electromagnetic and scalar BSCs.
1. Introduction

The Generalized Lorenz–Mie Theory (GLMT) is an analytical theory
which describes the interaction between a homogeneous sphere and an
arbitrary shaped illuminating beam [1,2], while the Extended Boundary
Condition Method (EBCM) is a semi-analytical theory which may deal
with a larger set of particles, specifically nonspherical particles [3–5].
In both cases, the illuminating electromagnetic fields may be expanded
over a set of Vector Spherical Wave Functions (VSWFs), with the expan-
sion coefficients being expressed using Beam Shape Coefficients (BSCs).
The electromagnetic fields may be derived from a vector potential
satisfying Helmholtz equation. For entries to a large literature devoted
to these issues, the reader may refer to recent reviews [6,7].

We may as well consider acoustical (more generally scalar) fields
which satisfy Helmholtz equation and may be expressed in terms of
expansions with expansion coefficients expressed as well in terms of
acoustical BSCs. As a consequence, there must be a strong analogy
between electromagnetic and acoustical scatterings, so that the arsenal
developed in the field of electromagnetism may be transferred to the
field of acoustics.

In particular, several methods, already developed for electromag-
netic BSCs, have been applied, mutatis mutandis, to the case of acous-
tical BSCs. The electromagnetic quadrature technique [8,9] has been
discussed and applied to acoustical fields in [10–14].
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Another technique called the localized approximation (with vari-
ants) has been developed in electromagnetism, e.g. [15–19] for original
papers devoted to Gaussian beams and to laser sheets, [20] for a
review including the case of ‘‘arbitrary shaped beams’’, to be completed
with [21–23], and, without being exhaustive, [24,25] for limitations
of the localized approximations for beams exhibiting an axicon angle,
and [26,27] for limitations of localized approximations for beams
exhibiting a topological charge. A variant named Integral Localized
Approximation must be mentioned, e.g. [28,29].

Localization techniques have been transferred to the case of acousti-
cal beams. In [10], an acoustical localized approximation is rigorously
established in the case of an on-axis acoustical Gaussian beam, defined
as a special case of Laguerre–Gauss beams. In [11], the same issue is
considered but the on-axis acoustical Gaussian beam is borrowed from
the Davis scheme of approximation used to study electromagnetic Gaus-
sian beams, leading to the same result than previously, with however
an irrelevant change of prefactor in the expressions of the fields. The
case of off-axis Gaussian acoustical beams is available from [13], while
the case of Bessel beams, together with an ILA approach, is discussed
in [14].

Another technique used for electromagnetic beams is the finite
series technique. It has been introduced decades ago in the case of
electromagnetic beams, e.g. [30,31], before being essentially forgotten
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for decades due to the advantages in terms of flexibility and computa-
tional efficiency of localized approximations, before its recent revival
due to the limitations of localized approximations for beams possessing
an axicon angle and/or a topological angle, e.g. [32,33] for Laguerre–

auss beams freely propagating, [34,35] for Laguerre–Gauss beams
focused by a lens, see as well [36,37], for the use of different methods
nd their comparisons.

This technique has been transferred to the case of acoustical beams
in [12] for the study of Bessel, Laguerre–Gauss and Gaussian beams
under an on-axis configuration, including the use of a modified version
ecently introduced in the context of electromagnetic fields [38].

Another question, motivated by the strong analogies between the
description of electromagnetic and acoustical beams, is to ask whether
there would not be any direct relationships between electromagnetic
and acoustical BSCs. The present paper provides a first answer, al-
though not complete, to this question. The paper is organized as
follows. Section 2 presents a background to expound the strategy
used in the present paper, namely (i) a short exposition of the elec-
tromagnetic Davis scheme of approximations to the description of
electromagnetic Gaussian beams which will be borrowed to a transfer
in linear acoustics and (ii) a comparison between basic electromagnetic
and acoustical expressions allowing one to emphasize their similarities.
Section 3 expresses the radial electromagnetic fields in terms of the
acoustical field, for the electric fields in Section 3.1, and for the mag-
netic field in Section 3.2. Section 4 is the core of the paper, providing
relationships between the BSCs of electromagnetic and acoustical fields,
for the magnetic field in Section 4.1, and for the electric field in
ection 4.2. Section 5 is a discussion and Section 6 is a conclusion.

2. Background

2.1. The Davis scheme of approximations

A popular approach to the description of electromagnetic Gaussian
beams is the Davis scheme of approximations [39–41] which is briefly
recalled here, limiting ourselves to ingredients required for the sequel.
In this scheme, we consider a 𝑥-polarized vector potential propagating
in the 𝑧 -direction, with a time dependence of the form exp(𝑖𝜔𝑡), and
Cartesian coordinates (𝑥, 𝑦, 𝑧) reading as:

𝐀 = (𝐴𝑥, 0, 0) (1)

while the nonzero 𝑥-component of the vector potential is written as:

𝐴𝑥 = 𝜓(𝑥, 𝑦, 𝑧) exp(−𝑖𝑘𝑧) (2)

The vector potential satisfies the Helmholtz equation, which gen-
erates a partial differential equation for 𝜓 which is searched using an
expansion reading as:

𝜓 =
∞
∑

𝑗=0
𝑠2𝑗𝜓2𝑗 = 𝜓0 + 𝑠2𝜓2 + 𝑠4𝜓4 +⋯ (3)

in which 𝑠 is a small parameter, called the beam confinement factor
(or beam shape factor) describing the level of focusing of the beam,
reading as 1∕(𝑘𝑤0) in which 𝑘 is the wavenumber of the light and
𝑤0 the beam waist radius of the beam. The successive approximations
in the series of Eq. (3) are called the first-order, third-order, fifth-
order... approximations discussed in [41]. The highest-order known, as
far as we know, is a ninth-order mode [42], while it is known that
the scheme is eventually diverging [43], so that the series of Eq. (3) is
ctually an asymptotic series [41]. Once an approximation is obtained,
he corresponding electric 𝐄 and magnetic 𝐇 fields are deduced from
he corresponding approximation of the vector potential using classical
xpressions which will better be recalled below in a more appropriate
ontext. The contents of this subsection may be summarized as follows:
f you use an expression for the 𝑥-component of the vector potential,

then you may obtain expressions for the electric and magnetic fields.
2 
2.2. Electromagnetic and acoustical basic expressions for beam shape coef-
ficients

On one hand, in GLMT, the BSCs are related to the radial electric
and magnetic field components 𝐸𝑟 and 𝐻𝑟 respectively, according to,
e.g. Eqs.(3.39), (3.45), (3.42) and (3.48) in [2]:

𝐸𝑟 = 𝑘𝐸0

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀 [𝜓 ′′

𝑛 (𝑘𝑟) + 𝜓𝑛(𝑘𝑟)]𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (4)

𝐻𝑟 = 𝑘𝐻0

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝐸 [𝜓 ′′

𝑛 (𝑘𝑟) + 𝜓𝑛(𝑘𝑟)]𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (5)

in which we used spherical coordinates (𝑟, 𝜃 , 𝜑), 𝑘 is the wavenumber,
𝐸0 and 𝐻0 are electric and magnetic field strengths respectively, 𝜓(𝑥) =
𝑗𝑛(𝑥) are Riccati–Bessel functions with 𝑗𝑛(𝑥) being spherical Bessel
unctions of the first kind, a prime indicates a differentiation with
espect to the argument, 𝑃 |𝑚|

𝑛 are associated Legendre functions, 𝑔𝑚𝑛,𝑇 𝑀
nd 𝑔𝑚𝑛,𝑇 𝐸 are the Transverse Magnetic (𝑇 𝑀) and Transverse Electric
𝑇 𝐸) electromagnetic BSCs respectively, and 𝑐𝑝𝑤𝑛 denote plane wave
oefficients reading as:

𝑐𝑝𝑤𝑛 =
(−𝑖)𝑛+1

𝑘
2𝑛 + 1
𝑛(𝑛 + 1) (6)

We may take advantage of the Riccati–Bessel differential equation,
e.g. Eq.(2.82) and (2.87) in [2] to obtain Eq.(3.188) in [2]:

𝜓 ′′
𝑛 (𝑘𝑟) + 𝜓𝑛(𝑘𝑟) =

𝑛(𝑛 + 1)
𝑘2𝑟2

𝜓𝑛(𝑘𝑟) (7)

so that Eqs. (4) and (5) may be rewritten as:

𝐸𝑟 = 𝐸0

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (8)

𝐻𝑟 = 𝐻0

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝐸𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (9)

On the other hand, a complex scalar acoustical field (velocity poten-
tial) 𝜓𝐴 propagating in a lossless medium, neglecting nonlinear effects,
may be written as [44–47]:

𝜓𝐴 = 𝜓𝐴0
∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,𝐴𝑔

𝑚
𝑛,𝐴𝑗𝑛(𝑘𝑟)𝑃

|𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (10)

in which 𝜓𝐴0 is an acoustical field strength and 𝑐𝑝𝑤𝑛,𝐴 denotes acous-
tical plane wave coefficients reading as:

𝑐𝑝𝑤𝑛,𝐴 = (−𝑖)𝑛(2𝑛 + 1) (11)

in which the subscript 𝐴 stands for ‘‘Acoustical’’, e.g. [10,11] (with
a typo to be corrected in Eq.27).

3. Radial electromagnetic fields expressed in terms of the acous-
tical field

In the next step, we use the acoustical field 𝜓𝐴 of Eq. (10) as
being the 𝑥-component of the vector potential of Eq. (1) and express
the radial electromagnetic fields in terms of this component, which
is now rewritten as 𝐴𝑥 = 𝜓𝐴 to better enlighten the strategy used.
The 𝑥-component has been chosen to mimic the Davis scheme of ap-
proximations, furthermore due to the fact that it is sufficient to obtain
relationships between acoustical and electromagnetic BSCs that we are
looking for, omitting possibly the use of more general polarizations
which may be postponed to future works. It is furthermore important to
keep in mind that both 𝐴𝑥 and 𝜓𝐴 satisfy the same differential equation,
namely the Helmholtz equation. Then, interpreting the acoustical field
𝜓𝐴 as a component of an electromagnetic potential vector will imply a
relationship between electromagnetic and acoustical BSCs.

3.1. Electric field

The electric field may be computed using e.g. Eq.(1.120) in [2]:
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𝐄 = 1
𝑖𝜔𝜇 𝜀 cur l cur l𝐀 (12)

in which 𝜇 and 𝜀 are the permeability and permittivity respectively of
he medium supporting the wave. To evaluate the curl of 𝐀, we use a
lassical expression of the cur l in spherical coordinates reading as:

(cur l𝐀)𝑟 = 1
𝑟 sin 𝜃

(
𝜕 𝐴𝜑 sin 𝜃

𝜕 𝜃 −
𝜕 𝐴𝜃
𝜕 𝜑 ) (13)

(cur l𝐀)𝜃 = 1
𝑟
( 1
sin 𝜃

𝜕 𝐴𝑟
𝜕 𝜑 −

𝜕 𝑟𝐴𝜑
𝜕 𝑟 ) (14)

(cur l𝐀)𝜑 = 1
𝑟
(
𝜕 𝑟𝐴𝜃
𝜕 𝑟 −

𝜕 𝐴𝑟
𝜕 𝜃 ) (15)

in which:

𝐴𝑟 = sin 𝜃 cos𝜑𝐴𝑥 (16)

𝐴𝜃 = cos 𝜃 cos𝜑𝐴𝑥 (17)

𝐴𝜑 = − sin𝜑𝐴𝑥 (18)

leading to:

(cur l𝐀)𝑟 =
− sin𝜑
𝑟

𝜕 𝐴𝑥
𝜕 𝜃 −

cos 𝜃 cos𝜑
𝑟 sin 𝜃

𝜕 𝐴𝑥
𝜕 𝜑 = 𝑅𝑟 (19)

(cur l𝐀)𝜃 = 1
𝑟
cos𝜑

𝜕 𝐴𝑥
𝜕 𝜑 + sin𝜑𝜕 𝐴𝑥

𝜕 𝑟 = 𝑅𝜃 (20)

(cur l𝐀)𝜑 = cos 𝜃 cos𝜑𝜕 𝐴𝑥
𝜕 𝑟 − 1

𝑟
sin 𝜃 cos𝜑

𝜕 𝐴𝑥
𝜕 𝜃 = 𝑅𝜑 (21)

in which we conveniently introduce a notation 𝑅𝑖 = (cur l𝐀)𝑖, so that
we can now calculate cur l cur l𝐀 by using again Eqs. (13)–(15) under
he form:

(cur l cur l𝐀)𝑟 = 1
𝑟 sin 𝜃

(
𝜕 𝑅𝜑 sin 𝜃

𝜕 𝜃 −
𝜕 𝑅𝜃
𝜕 𝜑 ) (22)

(cur l cur l𝐀)𝜃 = 1
𝑟
( 1
sin 𝜃

𝜕 𝑅𝑟
𝜕 𝜑 −

𝜕 𝑟𝑅𝜑
𝜕 𝑟 ) (23)

(cur l cur l𝐀)𝜑 = 1
𝑟
(
𝜕 𝑟𝑅𝜃
𝜕 𝑟 −

𝜕 𝑅𝑟
𝜕 𝜃 ) (24)

from which, after a bit of algebra, we obtain the 𝑟-component
cur l cur l𝐀)𝑟 which is sufficient to our purpose, and hence 𝐸𝑟 according
o Eq. (12) reading as:

𝐸𝑟 = 1
𝑖𝜔𝜀𝜇

(−2
𝑟
sin 𝜃 cos𝜑

𝜕 𝐴𝑥
𝜕 𝑟 − 2

𝑟2
cos 𝜃 cos𝜑

𝜕 𝐴𝑥
𝜕 𝜃 + 1

𝑟2
sin𝜑
sin 𝜃

𝜕 𝐴𝑥
𝜕 𝜑 (25)

+ 1
𝑟
cos 𝜃 cos𝜑

𝜕2𝐴𝑥
𝜕 𝑟𝜕 𝜃 − 1

𝑟
sin𝜑
sin 𝜃

𝜕2𝐴𝑥
𝜕 𝑟𝜕 𝜑 − 1

𝑟2
sin 𝜃 cos𝜑

𝜕2𝐴𝑥
𝜕 𝜃2

− 1
𝑟2

cos𝜑
sin 𝜃

𝜕2𝐴𝑥
𝜕 𝜑2

)

As a checking, the same result is obtained by using the alternative
expression, e.g. Eqs.(1.117) and (1.120) in [2]:

𝐄 = 1
𝑖𝜔𝜀𝜇

(g r ad div𝐀−𝛥𝐀) (26)

in which we use classical expressions reading as:

(g r ad 𝑓 )𝑟 =
𝜕 𝑓
𝜕 𝑟 (27)

div𝐀 = 1
𝑟2
𝜕 𝑟2𝐴𝑟
𝜕 𝑟 + 1

𝑟 sin 𝜃
𝜕 𝐴𝜃 sin 𝜃

𝜕 𝜃 + 1
𝑟 sin 𝜃

𝜕 𝐴𝜑
𝜕 𝜑 (28)

(𝛥𝐀)𝑟 = 𝛥𝐴𝑟 −
2𝐴𝑟
𝑟2

− 2
𝑟2 sin 𝜃

(
𝜕 𝐴𝜃 sin 𝜃

𝜕 𝜃 +
𝜕 𝐴𝜑
𝜕 𝜑 ) (29)

𝛥𝐴𝑟 =
1
𝑟2

𝜕
𝜕 𝑟 (𝑟

2 𝜕 𝐴𝑟
𝜕 𝑟 ) + 1

𝑟2 sin 𝜃
𝜕
𝜕 𝜃 sin 𝜃

𝜕 𝐴𝑟
𝜕 𝜃 + 1

𝑟2 sin2 𝜃

𝜕2𝐴𝑟
𝜕 𝜑2

(30)

We then express the components 𝐴𝑟, 𝐴𝜃 and 𝐴𝜑 in terms of 𝐴𝑥 using
qs. (16)–(18) to obtain:

div𝐀 = sin 𝜃 cos𝜑𝜕 𝐴𝑥 + 1 cos 𝜃 cos𝜑
𝜕 𝐴𝑥 −

sin𝜑 𝜕 𝐴𝑥 (31)

𝜕 𝑟 𝑟 𝜕 𝜃 𝑟 sin 𝜃 𝜕 𝜑

3 
(g r ad div𝐀)𝑟 = sin 𝜃 cos𝜑𝜕
2𝐴𝑥
𝜕 𝑟2 − 1

𝑟2
cos 𝜃 cos𝜑

𝜕 𝐴𝑥
𝜕 𝜃 (32)

+1
𝑟
cos 𝜃 cos𝜑

𝜕2𝐴𝑥
𝜕 𝑟𝜕 𝜃 +

sin𝜑
𝑟2 sin 𝜃

𝜕 𝐴𝑥
𝜕 𝜑

−
sin𝜑
𝑟 sin 𝜃

𝜕2𝐴𝑥
𝜕 𝑟𝜕 𝜑 <

(𝛥𝐀)𝑟 = 2
𝑟
sin 𝜃 cos𝜑

𝜕 𝐴𝑥
𝜕 𝑟 + 1

𝑟2
cos 𝜃 cos

𝜕 𝐴𝑥
𝜕 𝜃 (33)

+ sin 𝜃 cos𝜑𝜕
2𝐴𝑥
𝜕 𝑟2 + 1

𝑟2
sin 𝜃 cos𝜑

𝜕2𝐴𝑥
𝜕 𝜃2

+
cos𝜑
𝑟2 sin 𝜃

𝜕2𝐴𝑥
𝜕 𝜑2

from which, after assembling, we recover Eq. (25).

3.2. Magnetic field

The magnetic field may be computed using e.g. Eq.(1.110) in [2]:

𝐇 = 1
𝜇
cur l𝐀 (34)

which, by using Eq. (19) immediately leads to:

𝐻𝑟 =
−1
𝜇

(
sin𝜑
𝑟

𝜕 𝐴𝑥
𝜕 𝜃 +

cos 𝜃 cos𝜑
𝑟 sin 𝜃

𝜕 𝐴𝑥
𝜕 𝜑 ) (35)

4. Relationship between electromagnetic and acoustical BSCs

4.1. From the magnetic field

We consider separately the cases (𝑛 − 𝑚) even and (𝑛 − 𝑚) odd, in
hich 𝑛 and 𝑚 refer to the subscript and superscript of the BSCs. The
istinction between these two cases is typical of the use of the finite se-
ies technique and will be found useful as well for the present problem
see quotations in the introduction for references to this technique).

4.1.1. (𝑛 − 𝑚) even.
We begin with the magnetic field which is simpler to work out. We

then start from Eqs. (9) and (35), in which we evaluate the derivatives
of 𝐴𝑥 = 𝜓𝐴 using Eq. (10), and obtain:

𝐻0

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝐸𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (36)

=
−𝜓𝐴0
𝜇

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,𝐴𝑔

𝑚
𝑛,𝐴
𝑗𝑛(𝑘𝑟)
𝑟

[𝜏|𝑚|𝑛 (cos 𝜃) sin𝜑

+ 𝑖𝑚 cos 𝜃 𝜋|𝑚|𝑛 (cos 𝜃) cos𝜑] exp(𝑖𝑚𝜑)
in which we introduce the usual generalized Legendre functions reading
as:

𝜏|𝑚|𝑛 (cos 𝜃) = 𝑑 𝑃 |𝑚|
𝑛 (cos 𝜃)
𝑑 𝜃 (37)

𝜋|𝑚|𝑛 (cos 𝜃) = 𝑃 |𝑚|
𝑛 (cos 𝜃)
sin 𝜃

(38)

We then get rid of the coordinate 𝜑 by multiplying both sides of
Eq. (36), integrating over 𝜑, and use classical orthogonality relations
o obtain:

2𝐻0

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝐸𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (cos 𝜃) (39)

−𝑖𝜓𝐴0
𝜇

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴

𝑗𝑛(𝑘𝑟)
𝑟

[𝑔𝑚+1𝑛,𝐴 𝜏|𝑚+1|𝑛 (cos 𝜃) − 𝑔𝑚−1𝑛,𝐴 𝜏|𝑚−1|𝑛 (cos 𝜃)

𝑚+1 |𝑚+1| 𝑚−1 |𝑚−1|
+ (𝑚 + 1) cos 𝜃 𝑔𝑛,𝐴 𝜋𝑛 (cos 𝜃) + (𝑚 − 1) cos 𝜃 𝑔𝑛,𝐴 𝜋𝑛 (cos 𝜃)]
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Both sides of Eq. (39) depend on the coordinate 𝑟 with the same
unction so that, due to the fact that the spherical Bessel functions are
inearly independent, we can remove the summation. Then, we simplify
he 𝑟 -dependent term and obtain, after using Eqs. (6) and (11), and
earranging:

𝑔𝑚𝑛,𝑇 𝐸 =
𝑘𝜓𝐴0
2𝜇 𝐻0

1
𝑃 |𝑚|
𝑛 (cos 𝜃)

(40)

×{𝑔𝑚+1𝑛,𝐴 [𝜏|𝑚+1|𝑛 (cos 𝜃) + (𝑚 + 1) cos 𝜃 𝜋|𝑚+1|𝑛 (cos 𝜃)]

− 𝑔𝑚−1𝑛,𝐴 [𝜏|𝑚−1|𝑛 (cos 𝜃) − (𝑚 − 1) cos 𝜃 𝜋|𝑚−1|𝑛 (cos 𝜃)]}

It is here to be noted that the BSCs apparently depend on 𝜃, in
ontrast with the fact that they should be constant. The coherency of
he theory implies that the 𝜃-dependency is only apparent, i.e. Eq. (40)
s not in contradiction with the constancy of the BSCs. This is demon-
trated in Appendix A.

It may be interesting, from a historical point of view, to remark that
a similar situation occurred when we expressed the same BSCs in the
electromagnetic context of GLMT, according to Eq.(3.20) of a textbook
([2], 3rd edition), reading as:

𝑔𝑚𝑛,𝑇 𝐸 = 1
𝐻0𝑐

𝑝𝑤
𝑛

2𝑛 + 1
4𝜋 𝑛(𝑛 + 1)

(𝑛 − |𝑚|)!
(𝑛 + |𝑚|)

𝑟
𝑗𝑛(𝑘𝑟)

(41)

∫

𝜋

0 ∫

2𝜋

0
𝐻𝑟(𝑟, 𝜃 , 𝜑)𝑃 |𝑚|

𝑛 (cos 𝜃) exp(−𝑖𝑚𝜑) sin 𝜃 𝑑 𝜃 𝑑 𝜑

in which 𝑐𝑝𝑤𝑛 are constant coefficients. In Eq. (41), the BSCs apparently
epend on the radial coordinate 𝑟. However, they should be constant
nd indeed they are, again as a consequence of the coherency of the

theory. At the beginning of the development of GLMT, it has then been
taken as granted that these BSCs were constant. What happens is that
the integral of Eq. (41) whose integrand does depend on 𝑟, is actually
proportional to 𝑗𝑛(𝑘𝑟)∕𝑟. This has eventually been demonstrated in
several papers, see page 899, second column of [48], and see as well
49–52]. Since equations like the one of Eq. (41) have been published in
982 [53], about 25 years have been required to obtain a formal proof

of the fact that the BSCs 𝑔𝑚𝑛,𝑇 𝐸 do not depend on 𝑟, although they was no
doubt about this. It is fortunate that a similar formal proof concerning
Eq. (40) was easy to establish. If this did not happened, the coherency
of the theory alone is however sufficient to establish the result.

Since 𝑃 |𝑚|
𝑛 (cos 𝜃) ≠ 0 for (𝑛 − 𝑚) even [54], we may then obtain the

 𝐸-BSCs by setting 𝜃 = 𝜋∕2 in Eq. (40) to obtain a simple relation
reading as:

𝑔𝑚𝑛,𝑇 𝐸 =
𝑘𝜓𝐴0
2𝜇 𝐻0

1
𝑃 |𝑚|
𝑛 (0)

[𝑔𝑚+1𝑛,𝐴 𝜏|𝑚+1|𝑛 (0) − 𝑔𝑚−1𝑛,𝐴 𝜏|𝑚−1|𝑛 (0)], (𝑛 − 𝑚) even (42)

It must be here noted that setting 𝜃 = 𝜋∕2 is not a way to ‘‘resolve’’
he dependency of Eq. (40) with respect to 𝜃, since this dependency is

only apparent. The only requirement is that the denominator 𝑃 |𝑚|
𝑛 (cos 𝜃)

hould not be 0. The choice of 𝜋∕2 is then only expedient and in the
pirit of the finite series approach developed to evaluate electromag-
etic BSCs, e.g. [33,55], and references therein dating back to [30,31].

Apart of that, any value would do since the dependence on 𝜃 is only
apparent. This has been demonstrated in the electromagnetic context
by introducing a modified finite series approach, see [38].

(𝑛 − 𝑚) odd.
Since 𝑃 |𝑚|

𝑛 (cos 𝜃) = 0 for (𝑛 − 𝑚) odd [54], Eq. (40) cannot be used
or this case. Instead, we start again from Eq. (35) and derive it with
espect to 𝜃 to obtain:

𝐻0

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝐸𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝜏|𝑚|𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (43)

−𝜓𝐴0
𝜇

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,𝐴𝑔

𝑚
𝑛,𝐴
𝑗𝑛(𝑘𝑟)
𝑟

× {𝑑 𝜏
|𝑚|
𝑛 (cos 𝜃)

sin𝜑 + 𝑖𝑚 cos𝜑[cos 𝜃
𝑑 𝜋|𝑚|𝑛 (cos 𝜃)

− sin 𝜃 𝜋|𝑚|(cos 𝜃)]}

𝑑 𝜃 𝑑 𝜃 𝑛

4 
× exp(𝑖𝑚𝜑)

We then may use:
𝑑 𝜏|𝑚|𝑛 (cos 𝜃)

𝑑 𝜃 = − sin 𝜃 𝜏′|𝑚|𝑛 (cos 𝜃) (44)

and:
𝑑 𝜋|𝑚|𝑛 (cos 𝜃)

𝑑 𝜃 = − sin 𝜃 𝜋′|𝑚|𝑛 (cos 𝜃) (45)

in which a prime indicates differentiation with respect to the argument,
to rewrite Eq. (43) as:

𝐻0

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝐸𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝜏|𝑚|𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (46)

=
𝜓𝐴0
𝜇

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,𝐴𝑔

𝑚
𝑛,𝐴
𝑗𝑛(𝑘𝑟)
𝑟

sin 𝜃

× {𝜏′|𝑚|𝑛 (cos 𝜃) sin𝜑 + 𝑖𝑚 cos𝜑[𝜋|𝑚|𝑛 (cos 𝜃) + cos 𝜃 𝜋′
|𝑚|
𝑛 (cos 𝜃)]}

× exp(𝑖𝑚𝜑)

Next, we use again classical orthogonality relations to obtain an
quation with a single summation over 𝑛. As previously, we can remove
he summation of Eq. (46) to obtain:

2𝐻0𝑐
𝑝𝑤
𝑛 𝑔𝑚𝑛,𝑇 𝐸𝑛(𝑛 + 1)𝑑 𝑃

|𝑚|
𝑛 (cos 𝜃)
𝑑 cos 𝜃

(47)

=
−𝑖𝜓𝐴0
𝜇

𝑐𝑝𝑤𝑛,𝐴{𝑔
𝑚+1
𝑛,𝐴 𝜏′|𝑚+1|𝑛 (cos 𝜃) − 𝑔𝑚−1𝑛,𝐴 𝜏′|𝑚−1|𝑛 (cos 𝜃)

+ (𝑚 + 1)𝑔𝑚+1𝑛,𝐴 [𝜋|𝑚+1|𝑛 (cos 𝜃) + cos 𝜃 𝜋′|𝑚+1|𝑛 (cos 𝜃)]

+ (𝑚 − 1)𝑔𝑚−1𝑛,𝐴 [𝜋|𝑚−1|𝑛 (cos 𝜃) + cos 𝜃 𝜋′|𝑚−1|𝑛 (cos 𝜃)]}

As for Eq. (40), the BSCs of Eq. (47) do not actually depend on 𝜃 due
to the coherency of the theory. We then specify 𝜃 = 𝜋∕2, use Eqs. (6)
and (11), and rearrange to obtain:

𝑔𝑚𝑛,𝑇 𝐸 =
𝑘𝜓𝐴0
2𝜇 𝐻0

1

[ 𝑑 𝑃
|𝑚|
𝑛 (cos 𝜃)
𝑑 cos 𝜃 ]𝜃=𝜋∕2

(48)

×{𝑔𝑚+1𝑛,𝐴 [𝜏′|𝑚+1|𝑛 (0) + (𝑚 + 1)𝜋|𝑚+1|𝑛 (0)]

− 𝑔𝑚−1𝑛,𝐴 [𝜏′|𝑚−1|𝑛 (0) − (𝑚 − 1)𝜋|𝑚−1|𝑛 (0)]}, (𝑛 − 𝑚) odd

Eqs. (42) and (48) are the solutions we were looking for, expressing
he electromagnetic 𝑇 𝐸-coefficients in terms of the acoustical BSCs. A
ore expedient procedure could be to introduce directly 𝜃 = 𝜋∕2 in

Eq. (35) for the case (𝑛 − 𝑚) even, and in Eq. (43) for the case (𝑛 − 𝑚)
odd, but we have preferred to expound a somewhat longer procedure
which seems more pedagogic because it is closer to the spirit of the
finite series approach.

4.2. From the electric field

4.2.1. (𝑛 − 𝑚) even
The procedure is similar to the one used for the magnetic field. We

se Eq. (25) in which we express the 𝜓𝐴-derivatives using Eq. (10), to
obtain:

𝐸𝑟 =
𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,𝐴𝑔

𝑚
𝑛,𝐴𝑒

𝑖𝑚𝜑{
𝑑 𝑗𝑛(𝑘𝑟)
𝑑 𝑟 [−2

𝑟
sin 𝜃 cos𝜑𝑃 |𝑚|

𝑛 (cos 𝜃) (49)

+1
𝑟
cos 𝜃 cos𝜑𝜏|𝑚|𝑛 (cos 𝜃) − 1

𝑟
sin𝜑
sin 𝜃

𝑖𝑚𝑃 |𝑚|
𝑛 (cos 𝜃)]

+ 𝑗𝑛(𝑘𝑟)[−
2
𝑟2

cos 𝜃 cos𝜑𝜏|𝑚|𝑛 (cos 𝜃) + 1
𝑟2

sin𝜑
sin 𝜃

𝑖𝑚𝑃 |𝑚|
𝑛 (cos 𝜃)

− 1
𝑟2

sin 𝜃 cos𝜑
𝑑 𝜏|𝑚|𝑛 (cos 𝜃)

𝑑 𝜃 + 1
𝑟2

cos𝜑
sin 𝜃

𝑚2𝑃 |𝑚|
𝑛 (cos 𝜃)]}
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We carry out integrations over 𝜑 from the r.h.s. of Eq. (49) using
again classical orthogonality relations, achieve the same treatment to
q. (8), and equate the results to obtain an equation containing a single

summation over 𝑛. We then obtain:

2𝐸0

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (cos 𝜃) (50)

=
𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴{

𝑑 𝑗𝑛(𝑘𝑟)
𝑟𝑑 𝑟 [−2 sin 𝜃 𝑃 |𝑚+1|

𝑛 (cos 𝜃)𝑔𝑚+1𝑛,𝐴 − 2 sin 𝜃 𝑃 |𝑚−1|
𝑛 (cos 𝜃)𝑔𝑚−1𝑛,𝐴

+ cos 𝜃 𝜏 |𝑚+1|𝑛 (cos 𝜃)𝑔𝑚+1𝑛,𝐴 + cos 𝜃 𝜏 |𝑚−1|𝑛 (cos 𝜃)𝑔𝑚−1𝑛,𝐴

+ 1
sin 𝜃

(𝑚 + 1)𝑃 |𝑚+1|
𝑛 (cos 𝜃)𝑔𝑚+1𝑛,𝐴 − 1

sin 𝜃
(𝑚 − 1)𝑃 |𝑚−1|

𝑛 (cos 𝜃)𝑔𝑚−1𝑛,𝐴 ]

+
𝑗𝑛(𝑘𝑟)
𝑟2

[−2 cos 𝜃 𝜏 |𝑚+1|𝑛 (cos 𝜃)𝑔𝑚+1𝑛,𝐴 − 2 cos 𝜃 𝜏 |𝑚−1|𝑛 (cos 𝜃)𝑔𝑚−1𝑛,𝐴

− 1
sin 𝜃

(𝑚 + 1)𝑃 |𝑚+1|
𝑛 (cos 𝜃)𝑔𝑚+1𝑛,𝐴 + 1

sin 𝜃
(𝑚 − 1)𝑃 |𝑚−1|

𝑛 (cos 𝜃)𝑔𝑚−1𝑛,𝐴

− sin 𝜃 𝑑 𝜏
|𝑚+1|
𝑛 (cos 𝜃)
𝑑 𝜃 𝑔𝑚+1𝑛,𝐴 − sin 𝜃 𝑑 𝜏

|𝑚−1|
𝑛 (cos 𝜃)
𝑑 𝜃 𝑔𝑚−1𝑛,𝐴

+ 1
sin 𝜃

(𝑚 + 1)2𝑃 |𝑚+1|
𝑛 (cos 𝜃)𝑔𝑚+1𝑛,𝐴 + 1

sin 𝜃
(𝑚 − 1)2𝑃 |𝑚−1|

𝑛 (cos 𝜃)𝑔𝑚−1𝑛,𝐴 ]}

As for Eq. (40), the BSCs of Eq. (50) again do not actually depend
on 𝜃 due to the coherency of the theory. We then specify 𝜃 = 𝜋∕2,
rearrange and obtain:

2𝐸0

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (0) (51)

𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴{

𝑑 𝑗𝑛(𝑘𝑟)
𝑟𝑑 𝑟 [(𝑚 − 1)𝑃 |𝑚+1|

𝑛 (0)𝑔𝑚+1𝑛,𝐴 − (𝑚 + 1)𝑃 |𝑚−1|
𝑛 (0)𝑔𝑚−1𝑛,𝐴 ]

+
𝑗𝑛(𝑘𝑟)
𝑟2

[𝑚(𝑚 + 1)𝑃 |𝑚+1|
𝑛 (0)𝑔𝑚+1𝑛,𝐴 + 𝑚(𝑚 − 1)𝑃 |𝑚−1|

𝑛 (0)𝑔𝑚−1𝑛,𝐴

+ 𝜏′|𝑚+1|𝑛 (0)𝑔𝑚+1𝑛,𝐴 + 𝜏′|𝑚−1|𝑛 (0)𝑔𝑚−1𝑛,𝐴 ]}

in which we have used:

[
𝑑 𝜏𝑝𝑛 (cos 𝜃)

𝑑 𝜃 ]𝜃=𝜋∕2 = [− sin 𝜃 𝑑 𝜏
𝑝
𝑛 (cos 𝜃)
𝑑 cos 𝜃

]𝜃=𝜋∕2 = −𝜏′𝑝𝑛 (0) (52)

To study Eq. (51), it is convenient to consider separately the l.h.s.
and the r.h.s, reading as:

𝐿𝐻 𝑆 = 2𝐸0

∞
∑

𝑛=1
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (0) (53)

𝑅𝐻 𝑆 =
𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴

1
𝑟
[
𝑑 𝑗𝑛(𝑘𝑟)
𝑑 𝑟 𝑇 (1)

𝑛𝑚 +
𝑗𝑛(𝑘𝑟)
𝑟

𝑇 (2)
𝑛𝑚 ] (54)

in which we found convenient to have 𝑛 ranging from 1 in Eq. (53),
and in which we introduced:

𝑇 (1)
𝑛𝑚 = (𝑚 − 1)𝑃 |𝑚+1|

𝑛 (0)𝑔𝑚+1𝑛,𝐴 − (𝑚 + 1)𝑃 |𝑚−1|
𝑛 (0)𝑔𝑚−1𝑛,𝐴 (55)

𝑇 (2)
𝑛𝑚 = [𝑚(𝑚 + 1)𝑃 |𝑚+1|

𝑛 (0) + 𝜏′|𝑚+1|𝑛 (0)]𝑔𝑚+1𝑛,𝐴 (56)

+[𝑚(𝑚 − 1)𝑃 |𝑚−1|
𝑛 (0) + 𝜏′|𝑚−1|𝑛 (0)]𝑔𝑚−1𝑛,𝐴

Next, we use classical relations concerning the spherical Bessel
unctions reading as [56]:
𝑗𝑛(𝑥)
𝑥

=
𝑗𝑛−1(𝑥) + 𝑗𝑛+1(𝑥)

2𝑛 + 1 (57)

𝑑 𝑗𝑛(𝑥)
𝑑 𝑥 =

𝑛𝑗𝑛−1(𝑥) − (𝑛 + 1)𝑗𝑛+1(𝑥)
2𝑛 + 1 (58)

and, inserting Eqs. (57)–(58) into Eq. (54), we obtain:

𝑅𝐻 𝑆 =
𝑘𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴

1
𝑟
[ 𝑛
2𝑛 + 1𝑇

(1)
𝑛𝑚 𝑗𝑛−1(𝑘𝑟) +

1
2𝑛 + 1𝑇

2
𝑛𝑚𝑗𝑛−1(𝑘𝑟)

𝑛 + 1 (1) 1 (2)
−
2𝑛 + 1𝑇𝑛𝑚 𝑗𝑛+1(𝑘𝑟) + 2𝑛 + 1𝑇𝑛𝑚 𝑗𝑛+1(𝑘𝑟)] (59)

5 
Modifying conveniently the summation indices, Eq. (59) can be
ewritten as:

𝑅𝐻 𝑆 =
𝑘𝜓𝐴0
𝑖𝜔𝜇 𝜀 {

∞
∑

𝑛=−1
𝑐𝑝𝑤𝑛+1,𝐴

𝑗𝑛(𝑘𝑟)
𝑟

[ 𝑛 + 1
2𝑛 + 3𝑇

(1)
𝑛+1,𝑚 + 1

2𝑛 + 3𝑇
2
𝑛+1,𝑚] (60)

+
∞
∑

𝑛=1
𝑐𝑝𝑤𝑛−1,𝐴

𝑗𝑛(𝑘𝑟)
𝑟

[− 𝑛
2𝑛 − 1𝑇

(1)
𝑛−1,𝑚 + 1

2𝑛 − 1𝑇
2
𝑛−1,𝑚]}

which may be rewritten as:

𝑅𝐻 𝑆 =
𝑘𝜓𝐴0
𝑖𝜔𝜇 𝜀 {𝑇−10 +

∞
∑

𝑛=1

𝑗𝑛(𝑘𝑟)
𝑟

[
(𝑛 + 1)𝑇 (1)

𝑛+1,𝑚 + 𝑇 (2)
𝑛+1,𝑚

2𝑛 + 3 𝑐𝑝𝑤𝑛+1,𝐴 (61)

−
𝑛𝑇 (1)

𝑛−1,𝑚 − 𝑇 (2)
𝑛−1,𝑚

2𝑛 − 1 𝑐𝑝𝑤𝑛−1,𝐴]}

in which:

𝑇−10 =
𝑗−1(𝑘𝑟)
𝑟

𝑐𝑝𝑤0,𝐴𝑇
(2)
0𝑚 +

𝑗0(𝑘𝑟)
3𝑟

𝑐𝑝𝑤1,𝐴(𝑇
(1)
1𝑚 + 𝑇 (2)

1𝑚 ) (62)

We may then show that 𝑇−10 = 0 (see Appendix B) so that, from
Eq. (51), using Eqs. (53) and (54), and Eq. (61) with 𝑇−10 = 0, we
obtain:

2𝐸0

∞
∑

𝑛=1
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1) 𝑗𝑛(𝑘𝑟)

𝑟
𝑃 |𝑚|
𝑛 (0) (63)

𝑘𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=1

𝑗𝑛(𝑘𝑟)
𝑟

[
(𝑛 + 1)𝑇 (1)

𝑛+1,𝑚 + 𝑇 (2)
𝑛+1,𝑚

2𝑛 + 3 𝑐𝑝𝑤𝑛+1,𝐴 −
𝑛𝑇 (1)

𝑛−1,𝑚 − 𝑇 (2)
𝑛−1,𝑚

2𝑛 − 1 𝑐𝑝𝑤𝑛−1,𝐴]

Both sides of Eq. (63) possess the same 𝑟-dependence and, therefore,
as for the magnetic case, we can remove the summation, leading to:

2𝐸0𝑐
𝑝𝑤
𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1)𝑃 |𝑚|

𝑛 (0) (64)

𝑘𝜓𝐴0
𝑖𝜔𝜇 𝜀 [

(𝑛 + 1)𝑇 (1)
𝑛+1,𝑚 + 𝑇 (2)

𝑛+1,𝑚

2𝑛 + 3 𝑐𝑝𝑤𝑛+1,𝐴 +
𝑇 (2)
𝑛−1,𝑚 − 𝑛𝑇 (1)

𝑛−1,𝑚

2𝑛 − 1 𝑐𝑝𝑤𝑛−1,𝐴]

leading to:

𝑔𝑚𝑛,𝑇 𝑀 =
𝑘𝜓𝐴0

𝑖𝜔𝜇 𝜀2𝐸0𝑐
𝑝𝑥
𝑛 𝑛(𝑛 + 1)𝑃𝑚𝑛 (0)

(65)

×[
(𝑛 + 1)𝑇 (1)

𝑛+1,𝑚 + 𝑇 (2)
𝑛+1,𝑚

2𝑛 + 3 𝑐𝑝𝑤𝑛+1,𝐴 +
𝑇 (2)
𝑛−1,𝑚 − 𝑛𝑇 (1)

𝑛−1,𝑚

2𝑛 − 1 𝑐𝑝𝑤𝑛−1,𝐴]

We finally use 𝑘2 = 𝜔2𝜀𝜇 [2] and Eqs. (6), (11) to obtain:

𝑔𝑚𝑛,𝑇 𝑀 =
𝑖𝜔𝜓𝐴0

2(2𝑛 + 1)𝐸0𝑃
|𝑚|
𝑛 (0)

(𝑇 (2)
𝑛−1,𝑚 − 𝑇 (2)

𝑛+1,𝑚 − 𝑛𝑇 (1)
𝑛−1,𝑚 − (𝑛 + 1)𝑇 (1)

𝑛+1,𝑚) ,

(𝑛 − 𝑚) even (66)

4.2.2. (𝑛 − 𝑚) odd
We multiply Eq. (50) by 𝑟, derive with respect to 𝜃, specify 𝜃 = 𝜋∕2,

and rearrange to obtain:

2𝐸0

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1)𝑗𝑛(𝑘𝑟)𝜏|𝑚|𝑛 (0) = (67)

𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴{

𝑑 𝑗𝑛(𝑘𝑟)
𝑑 𝑟 [(𝑚 − 2)𝜏|𝑚+1|𝑛 (0)𝑔𝑚+1𝑛,𝐴 − (𝑚 + 2)𝜏|𝑚−1|𝑛 (0)𝑔𝑚−1𝑛,𝐴 ]

+
𝑗𝑛(𝑘𝑟)
𝑟

[(𝑚2 + 𝑚 + 2)𝜏|𝑚+1|𝑛 (0)𝑔𝑚+1𝑛,𝐴 + (𝑚2 − 𝑚 + 2)𝜏|𝑚−1|𝑛 (0)𝑔𝑚−1𝑛,𝐴

− 𝜏′′|𝑚+1|𝑛 (0)𝑔𝑚+1𝑛,𝐴 − 𝜏′′|𝑚−1|𝑛 (0)𝑔𝑚−1𝑛,𝐴 ]}

in which we have used:

[
𝑑 𝑃 |𝑚|

𝑛 (cos 𝜃)
𝑑 𝜃 ]𝜃=𝜋∕2 = 𝜏|𝑚|𝑛 (0) (68)

(
𝑑2𝜏|𝑚|𝑛 (cos 𝜃)

) = 𝜏′′|𝑚|(0) (69)

𝑑 𝜃2 𝜃=𝜋∕2 𝑛
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We then proceed as for the case (𝑛 − 𝑚) odd, writing:

𝐿𝐻 𝑆 = 2𝐸0

∞
∑

𝑛=1
𝑐𝑝𝑤𝑛 𝑔𝑚𝑛,𝑇 𝑀𝑛(𝑛 + 1)𝑗𝑛(𝑘𝑟)𝜏|𝑚|𝑛 (0) (70)

𝑅𝐻 𝑆 =
𝜓𝐴0
𝑖𝜔𝜇 𝜀

∞
∑

𝑛=0
𝑐𝑝𝑤𝑛,𝐴

1
𝑟
[
𝑑 𝑗𝑛(𝑘𝑟)
𝑑 𝑟 𝑉 (1)

𝑛𝑚 +
𝑗𝑛(𝑘𝑟)
𝑟

𝑉 (2)
𝑛𝑚 ] (71)

in which:

𝑉 (1)
𝑛𝑚 = (𝑚 − 2)𝜏|𝑚+1|𝑛 (0)𝑔𝑚+1𝑛,𝐴 − (𝑚 + 2)𝜏|𝑚−1|𝑛 (0)𝑔𝑚−1𝑛,𝐴 (72)

𝑉 (2)
𝑛𝑚 = [(𝑚2 + 𝑚 + 2)𝜏|𝑚+1|𝑛 (0) − 𝜏′′|𝑚+1|𝑛 (0)]𝑔𝑚+1𝑛,𝐴 (73)

+[(𝑚2 − 𝑚 + 2)𝜏|𝑚−1|𝑛 (0) − 𝜏′′|𝑚−1|𝑛 (0)]𝑔𝑚−1𝑛,𝐴 −

to obtain, similarly as for Eq. (66):

𝑔𝑚𝑛,𝑇 𝑀 =
𝑖𝜔𝜓𝐴0

2(2𝑛 + 1)𝐸0𝜏
|𝑚|
𝑛 (0)

(𝑉 (2)
𝑛−1,𝑚 − 𝑉 (2)

𝑛+1,𝑚 − 𝑛𝑉 (1)
𝑛−1,𝑚 − (𝑛 + 1)𝑉 (1)

𝑛+1,𝑚) ,

(𝑛 − 𝑚) odd (74)

In doing so, we had to introduce (similarly as for 𝑇−10) a quantity
𝑉−10 reading as:

𝑉−10 = 𝑐𝑝𝑤0,𝐴𝑗−1(𝑘𝑟)𝑉
2
0𝑚 + 1

3
𝑐𝑝𝑤1,𝐴𝑗0(𝑘𝑟)(𝑉

(1)
1𝑚 + 𝑉 (2)

1𝑚 ) (75)

and to show that this quantity is equal to 0. This is done in the
Appendix B.

5. Discussion

Eq. (42) for (𝑛 − 𝑚) even and (48) for (𝑛 − 𝑚) odd show that the
azimuth order ‘‘𝑚’’ for the electromagnetic 𝑇 𝐸-BSCs is related to the
azimuth orders ‘‘𝑚 ± 1’’ for the acoustical BSCs. This result may be
ommented in three different (but related) ways as follows.

(i) For on-axis acoustical Gaussian beams, it has been demonstrated
hat the only nonzero BSCs are for an azimuth order equal to 0 [10,11],

that is to say for 𝑚 ± 1 = 0 for acoustical BSCs, and therefore
𝑚 = ∓1 for electromagnetic BSCs. This agrees with the fact demon-
strated elsewhere that the only nonzero electromagnetic BSCs of on-axis
electromagnetic Gaussian beams are indeed for 𝑚 = ±1, e.g. [2].

(ii) As another point of view, considering the same circumstances
than for (i) above, the only nonzero electromagnetic BSCs are for 𝑚 =
1, i.e. 𝑔1𝑛,𝑇 𝐸 and 𝑔−1.

𝑛,𝑇 𝐸 . The BSCs 𝑔1𝑛,𝑇 𝐸 are then related to the acoustical
SCs 𝑔2𝑛,𝐴 and 𝑔0𝑛,𝐴. But, since the only nonzero acoustical BSCs are for
0
𝑛,𝐴, it happens that 𝑔1𝑛,𝑇 𝐸 ’s are related to 𝑔0𝑛,𝐴. Similarly, the BSCs 𝑔−1𝑛,𝑇 𝐸
re then related to the acoustical BSCs 𝑔0𝑛,𝐴 and 𝑔−2𝑛,𝐴. But, similarly, since

the only nonzero acoustical BSCs are for 𝑔0𝑛,𝐴, it happens that 𝑔−1𝑛,𝑇 𝐸 ’s are
related to 𝑔0𝑛,𝐴. In other words, both 𝑔1𝑛,𝑇 𝐸 and 𝑔−1𝑛,𝑇 𝐸 are related uniquely
to 𝑔0𝑛,𝐴.

(iii) When we design a localized approximation for on-axis acous-
tical beams, we find that the localization procedure implies the use
of a prefactor (−𝑖)|𝑚| to evaluate 𝑔𝑚𝑛,𝐴, see again [10,11], while the
localization procedure for electromagnetic fields implies the use of a
refactor (−𝑖)|𝑚|−1 to evaluate 𝑔𝑚𝑛,𝑋 , 𝑋 = 𝑇 𝑀 or 𝑇 𝐸, e.g. [2]. For the

Gaussian beams discussed in [10,11], with the azimuth order 𝑚 = 0
corresponding to the nonzero acoustical BSCs, the prefactor becomes
(−𝑖)0 = 1. As we have seen in (ii), the 𝑚 = 0 acoustical BSCs are
related only to the electromagnetic BSCs 𝑔1𝑛,𝑇 𝐸 and 𝑔−1𝑛,𝑇 𝐸 . The prefactor
(−𝑖)|𝑚|−1 to be used for the electromagnetic localization procedure then
corresponds to a prefactor (−𝑖)|𝑚=±1|−1 = (−𝑖)0 which identifies with the
prefactor of the acoustical procedure.

The case of the 𝑇 𝑀-coefficients is discussed in a similar way since
the azimuth order ‘‘𝑚’’ for the electromagnetic 𝑇 𝑀-BSCs is related to
the azimuth orders ‘‘𝑚± 1’’ for the acoustical BSCs as it was for the 𝑇 𝐸
6 
-BSCs, see Eqs. (55), (56), (65) for (𝑛−𝑚) even and Eqs. (72), (73), (74)
for (𝑛 − 𝑚) odd.

As a last word, it is relevant to compare the results obtained in the
resent work with those available from [57]. This is postponed to a

future research. For the time being, let us just mention that the present
ork is based on a single vector potential in contrast with [57] which

elies on the use of two vector potentials.

6. Conclusion

During the last decades, a vigorous effort has been devoted to the
tudy of electromagnetic scattering by particles, using either analytical
ethods known as generalized Lorenz–Mie theories or semi-analytical
ethods like the Extended Boundary Condition Method, both of them

eing subsumable under the cover of T-matrix methods. Recently, it has
een put forward that there are strong analogies between electromag-
etic and acoustical scatterings, although one is a vectorial scattering
nd the other a scalar scattering. In the present paper, we demonstrate
hat electromagnetic BSCs can be expressed in terms of acoustical BSCs.
he interest of this result is threefold.

(i) The relationship between the electromagnetic and acoustical
BSCs allows one to insist on the strong similarity between the scalar
coustical scattering theory and the vectorial electromagnetic scatter-

ing theory. This analogy has already been indeed exploited to transfer
lectromagnetic methods of evaluation of electromagnetic BSCs to
he evaluation of acoustical BSCs, see [10,11,14,58] for the localized

approximation and [12] for the finite series technique.
(ii) Expressing electromagnetic BSCs in terms of acoustical BSCs is

 new tool which then augments the arsenal of methods available to
the evaluation of electromagnetic BSCs.

(iii) Furthermore, there is only one kind of acoustical BSCs and
two kinds of electromagnetic BSCs. These two kinds of electromagnetic

SCs may be therefore expressed in terms of one kind only of acoustical
SCs. Then, roughly speaking, we may expect that the evaluation of
lectromagnetic BSCs in terms of acoustical BSCs might be twice faster
han when working only in the electromagnetic framework.
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Appendix A

In this Appendix, we shall demonstrate that Eq. (40) actually does
not depend on 𝜃. For this, we shall examine two ratios involved in
Eq. (40), namely:

𝑇+ =
𝜏|𝑚+1|𝑛 (cos 𝜃) + (𝑚 + 1) cos 𝜃 𝜋|𝑚+1|𝑛 (cos 𝜃)

(76)

𝑃 |𝑚|
𝑛 (cos 𝜃)
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𝑇− =
𝜏|𝑚−1|𝑛 (cos 𝜃) − (𝑚 − 1) cos 𝜃 𝜋|𝑚−1|𝑛 (cos 𝜃)

𝑃 |𝑚|
𝑛 (cos 𝜃)

(77)

From Robin [54], tome 1, p. 102, with a typo corrected, we have,
ith 𝜇 = cos 𝜃:

(𝜇2 − 1)𝑑 𝑃
𝑚
𝑛

𝑑 𝜇 =
√

1 − 𝜇2𝑃𝑚+1𝑛 (𝜇) + 𝑚𝜇 𝑃𝑚𝑛 (𝜇) (78)

and, from Arfken et al. [59], Eqs.(15.91)-(15.92), we have:

(𝜇2 − 1)𝑑 𝑃
𝑚
𝑛 (𝜇)
𝑑 𝜇 = −(𝑛 + 𝑚)(𝑛 − 𝑚 + 1)

√

1 − 𝜇2𝑃𝑚−1𝑛 (𝜇) − 𝑚𝜇 𝑃𝑚𝑛 (𝜇) (79)

From Eqs. (78) and (79), we obtain:
𝑑 𝑃𝑚𝑛 (cos 𝜃)

𝑑 𝜃 − 𝑚 cos 𝜃
sin 𝜃

𝑃𝑚𝑛 (cos 𝜃) = 𝑃𝑚+1𝑛 (cos 𝜃) (80)

𝑑 𝑃𝑚𝑛 (cos 𝜃)
𝑑 𝜃 + 𝑚 cos 𝜃

sin 𝜃
𝑃𝑚𝑛 (cos 𝜃) = −(𝑛 + 𝑚)(𝑛 − 𝑚 + 1)𝑃𝑚−1𝑛 (cos 𝜃) (81)

Recalling the definition of the generalized Legendre functions
𝑚
𝑛 (cos 𝜃) and 𝜋𝑚𝑛 (cos 𝜃), Eqs. (80) and (81) may be rewritten as:

𝜏𝑚𝑛 (cos 𝜃) − 𝑚 cos 𝜃 𝜋𝑚𝑛 (cos 𝜃) = 𝑃𝑚+1𝑛 (cos 𝜃) (82)

𝜏𝑚𝑛 (cos 𝜃) + 𝑚 cos 𝜃 𝜋𝑚𝑛 (cos 𝜃) = −(𝑛 + 𝑚)(𝑛 − 𝑚 + 1)𝑃𝑚−1𝑛 (cos 𝜃) (83)

From Eq. (82), we may express 𝜏|𝑚−1|𝑛 (cos 𝜃) and, from Eq. (83), we
ay express 𝜏|𝑚+1|𝑛 (cos 𝜃), leading to:

𝜏𝑚−1𝑛 (cos 𝜃) − (𝑚 − 1) cos 𝜃 𝜋𝑚−1𝑛 (cos 𝜃) = 𝑃𝑚𝑛 (cos 𝜃) (84)

𝜏𝑚+1𝑛 (cos 𝜃) + (𝑚+ 1) cos 𝜃 𝜋𝑚+1𝑛 (cos 𝜃) = −(𝑛+𝑚+ 1)(𝑛−𝑚)𝑃𝑚𝑛 (cos 𝜃) (85)

For 𝑚 > 0, we therefore simply obtain:

𝑇+ =
𝜏𝑚+1𝑛 (cos 𝜃) + (𝑚 + 1) cos 𝜃 𝜋𝑚+1𝑛 (cos 𝜃)

𝑃𝑚𝑛 (cos 𝜃)
= −(𝑛 + 𝑚 + 1)(𝑛 − 𝑚) (86)

𝑇− =
𝜏𝑚−1𝑛 (cos 𝜃) − (𝑚 − 1) cos 𝜃 𝜋𝑚−1𝑛 (cos 𝜃)

𝑃𝑚𝑛 (cos 𝜃)
= 1 (87)

which do not depend on 𝜃, as it should since, as stated previously, the
𝜃-dependency in Eq. (40) is only apparent.

For 𝑚 = 0, Eqs. (76) and (77) become:

𝑇+ = 𝑇− =
𝜏1𝑛 (cos 𝜃) + cos 𝜃 𝜋1𝑛 (cos 𝜃)

𝑃 0
𝑛 (cos 𝜃)

(88)

while Eq. (85) become:

𝜏1𝑛 (cos 𝜃) + cos 𝜃 𝜋1𝑛 (cos 𝜃) = −𝑛(𝑛 + 1)𝑃 0
𝑛 (cos 𝜃) (89)

so that Eq. (88) leads to:

𝑇+ = 𝑇− = −𝑛(𝑛 + 1) (90)

which, again does not depend on 𝜃, as it should.
Finally, for 𝑚 < 0, Eqs. (76) and (77) become:

𝑇+ =
𝜏|𝑚|−1𝑛 (cos 𝜃) − (|𝑚| − 1) cos 𝜃 𝜋|𝑚|−1𝑛 (cos 𝜃)

𝑃 |𝑚|
𝑛 (cos 𝜃)

(91)

𝑇− =
𝜏|𝑚|+1𝑛 (cos 𝜃) + (|𝑚| + 1) cos 𝜃 𝜋|𝑚|+1𝑛 (cos 𝜃)

𝑃 |𝑚|
𝑛 (cos 𝜃)

(92)

From Eqs. (84) and (85), we then obtain:

𝑇+ = 1 (93)

𝑇− = −(𝑛 + |𝑚| + 1)(𝑛 − |𝑚|) (94)

which do not depend on 𝜃, again as it should.
7 
Appendix B

We begin with the (−1)-term in 𝑇−10 of Eq. (62) which is expressed
in terms of 𝑇 (2)

0𝑚 which, from Eq. (56), reads as:

𝑇 (2)
0𝑚 = [𝑚(𝑚 + 1)𝑃 |𝑚+1|

0 (0) + 𝜏′|𝑚+1|0 (0)]𝑔𝑚+10,𝐴 (95)

+[𝑚(𝑚 − 1)𝑃 |𝑚−1|
0 (0) + 𝜏′|𝑚−1|0 (0)]𝑔𝑚−10,𝐴

We have to consider three cases as follows.
(i) For |𝑚| ≥ 2, since 𝑃𝑚𝑛 satisfies 𝑚 = −𝑛,… , 𝑛, we have 𝑃 |𝑚±1|

0 = 0
and 𝜏′|𝑚±1|0 = 0, so that 𝑇 (2)

0𝑚 = 0.
(ii) For |𝑚| = 1, we similarly have:

𝑇 (2)
01 = [2𝑃 2

0 (0) + 𝜏′20 (0)]𝑔20,𝐴 = 0 (96)

𝑇 (2)
0−1 = [2𝑃 2

0 (0) + 𝜏′20 (0)]𝑔−20,𝐴 = 0 (97)

(iii) For 𝑚 = 0, Eq. (95) reduces to:

𝑇 (2)
0𝑚 = 𝜏′10 (0)(𝑔10,𝐴 + 𝑔−10,𝐴) = 0 (98)

because 𝜏′10 depends on 𝑃 1
0 which is 0.

Next, we deal with the (0)-term in 𝑇−10 of Eq. (62) which is ex-
pressed in terms of (𝑇 (1)

1𝑚 + 𝑇 (2)
1𝑚 ) which, from Eqs. (55)–(56), reads

as:

𝑇 (1)
1𝑚 + 𝑇 (2)

1𝑚 = [(𝑚2 + 2𝑚 − 1)𝑃 |𝑚+1|
1 (0) + 𝜏′|𝑚+1|1 (0)]𝑔𝑚+11,𝐴 (99)

+[(𝑚2 − 2𝑚 − 1)𝑃 |𝑚−1|
1 (0) + 𝜏′|𝑚−1|1 (0)]𝑔𝑚−11,𝐴

which is discussed considering four different cases as follows.
(i) For |𝑚| ≥ 3, since 𝑃𝑚𝑛 satisfies 𝑚 = −𝑛,… , 𝑛, we have 𝑃 |𝑚±1|

0 = 0
and 𝜏′|𝑚±1|0 = 0, so that 𝑇 (1)

1𝑚 + 𝑇 (2)
1𝑚 = 0.

(ii) For |𝑚| = 2, we obtain two equations, one for 𝑚 = 2 and the
ther for 𝑚 = −2, reading as:

𝑇 (1)
12 + 𝑇 (2)

12 = [−𝑃 1
1 (0) + 𝜏′11 (0)]𝑔11,𝐴 (100)

𝑇 (1)
1−2 + 𝑇

(2)
1−2 = [−𝑃 1

1 (0) + 𝜏′11 (0)]𝑔−11,𝐴 (101)

But we have 𝑃 1
1 (0) = −1 and:

𝜏′11 (0) = [ 𝑑
𝑑 cos 𝜃

𝑑 𝑃 1
1 (cos 𝜃)
𝑑 𝜃 ]𝜃=𝜋∕2 = −1 (102)

Therefore 𝑇 (1)
1±2 + 𝑇

(2)
1±2 = 0.

(iii) For |𝑚| = 1, we have again to deal with two equations reading
as:

𝑇 (1)
11 + 𝑇 (2)

11 = [2𝑃 2
1 (0) + 𝜏

′2
1 (0)]𝑔21,𝐴 + [−2𝑃 0

1 (0) + 𝜏′01 (0)]𝑔01,𝐴 (103)

𝑇 (1)
1−1 + 𝑇

(2)
1−1 = [−2𝑃 0

1 (0) + 𝜏
′0
1 (0)]𝑔01,𝐴 + [2𝑃 2

1 (0) + 𝜏′21 (0)]𝑔−21,𝐴 (104)

But we readily find or establish that 𝑃 2
1 (0) = 𝜏 ′21 (0) = 𝑃 0

1 (0) = 𝜏′01 (0)
eading to 𝑇 (1)

11 + 𝑇 (2)
11 = 𝑇 (1)

1−1 + 𝑇
(2)
1−1 = 0.

(iv) For 𝑚 = 0, we have:

𝑇 (1)
10 + 𝑇 (2)

10 = [−𝑃 1
1 (0) + 𝜏′11 (0)](𝑔11,𝐴 + 𝑔−11,𝐴) (105)

But we have 𝑃 1
1 (0) = −1 and 𝜏′11 (0) = −1, see Eq. (102), so that we

readily have 𝑇 (1)
10 + 𝑇 (2)

10 = 0.
We now consider the (−1)-term of 𝑉−10 of Eq. (75) which is ex-

pressed in terms of 𝑉 2
0𝑚 which, from Eq. (73), reads as:

𝑉 (2)
0𝑚 = [(𝑚2 + 𝑚 + 2)𝜏|𝑚+1|0 (0) − 𝜏′′|𝑚+1|0 (0)]𝑔𝑚+10,𝐴 (106)

+[(𝑚2 − 𝑚 + 2)𝜏|𝑚−1|0 (0) − 𝜏′′|𝑚−1|0 (0)]𝑔𝑚−10,𝐴

which is to be discussed with three cases as follows.
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(i) When |𝑚| ≥ 2, we have 𝜏|𝑚±1|0 (0) = 𝜏′′|𝑚±1|0 (0) = 0 because
𝑃 |𝑚±1|
0 (cos 𝜃) = 0, hence 𝑉 (2)

0𝑚 = 0.
(ii) When |𝑚| = 1, we have to consider two equations reading as:

𝑉 (2)
01 = [4𝜏20 (0) − 𝜏′′20 (0)]𝑔20,𝐴 + [2𝜏00 (0) − 𝜏

′′0
0 (0)]𝑔00,𝐴 (107)

𝑉 (2)
0−1 = [2𝜏00 (0) − 𝜏′′00 (0)]𝑔00,𝐴 + [4𝜏20 (0) − 𝜏

′′2
0 (0)]𝑔−20,𝐴 (108)

which are 0 because it is readily checked that 𝜏20 (0) = 𝜏 ′′20 (0) = 0 and
0
0 (0) = 𝜏 ′′00 (0) = 0.

(iii) When 𝑚 = 0, we have:

𝑉 (2)
00 = [2𝜏10 (0) − 𝜏′′10 (0)](𝑔+10,𝐴 + 𝑔−10,𝐴) (109)

which is 0 since 𝑃 1
0 (0) = 0.

Finally, we consider the (0)-term of Eq. (75) which is expressed in
erms of 𝑉 (1)

1𝑚 + 𝑉 (2)
1𝑚 which, from Eqs. (72) and (73), reads as:

𝑉 (1)
1𝑚 + 𝑉 (2)

1𝑚 = [𝑚(𝑚 + 2)𝜏|𝑚+1|1 (0) − 𝜏′′|𝑚+1|1 (0)]𝑔𝑚+11,𝐴 (110)

+[𝑚(𝑚 − 2)𝜏|𝑚−1|1 (0) − 𝜏′′|𝑚−1|1 (0)]𝑔𝑚−11,𝐴

which is discussed considering four different cases as follows.
(i) When |𝑚| ≥ 3, we have 𝜏|𝑚+1|1 (0) = 𝜏′′|𝑚+1|1 (0) because 𝑃 |𝑚+1|

1 = 0,
ence 𝑉 (1)

1𝑚 + 𝑉 (2)
1𝑚 = 0.

(ii) When |𝑚| = 2, we have to deal with two equations reading as:

𝑉 (1)
12 + 𝑉 (2)

12 = [8𝜏31 (0) − 𝜏′′31 (0)]𝑔31,𝐴 − 𝜏′′|1|1 (0)𝑔11,𝐴 (111)

𝑉 (1)
1−2 + 𝑉

(2)
1−2 = −𝜏′′11 (0)𝑔−11,𝐴 − +[8𝜏31 (0) − 𝜏′′11 (0)]𝑔−31,𝐴 (112)

which are indeed 0 because 𝜏31 (0) = 𝜏′′31 (0) = 0 and:

𝜏′11 (cos 𝜃) =
𝑑 𝜏11 (cos 𝜃)
𝑑 cos 𝜃

= 𝑑
𝑑 cos 𝜃

[
𝑑 𝑃 1

1 (cos 𝜃)
𝑑 𝜃 ] = −1 (113)

and, therefore 𝜏 ′′11 (0) = 𝜏 ′′11 (cos 𝜃) = 0.
(iii) When |𝑚| = 1, we obtain two equations from Eq. (100), reading

as:

𝑉 (1)
11 + 𝑉 (2)

11 = [3𝜏21 (0) − 𝜏′′21 (0)]𝑔21,𝐴 + [−𝜏01 (0) − 𝜏′′01 (0)]𝑔01,𝐴 (114)

𝑉 (1)
1−1 + 𝑉

(2)
1−1 = [−𝜏01 (0) − 𝜏′′01 (0)]𝑔01,𝐴 + [3𝜏21 (0) − 𝜏′′21 (0)]𝑔−21,𝐴 (115)

which are 0 because 𝜏21 (0) = 𝜏 ′′21 (0) and 𝜏01 (0) + 𝜏′′01 (0) = 0.
(iv) When 𝑚 = 0, Eq. (110) reduces to:

𝑉 (1)
10 + 𝑉 (2)

10 = −𝜏′′11 (0)(𝑔11,𝐴 + 𝑔−11,𝐴) (116)

which is 0 from Eq. (113).
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