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Abstract

In this paper, we study the countable compactness and pseudocompactness of the hyp&rspace 2
of a Hausdorff spac& consisting of all nonempty closed subsetsXo&quipped with the Vietoris
topology. Some open questions posed by Ginsburg in 1975 are considered. In particular, we give
partial solutions to one of them.
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1. Introduction

All topological spaces are assumed to be Hausdorff. Given a spa2&€ denotes the
collection of all nonempty closed subsets Xf One of the most important and well-
studied topologies on*®is the Vietoris topologyry, which is also known as the finite
topology. To describe this topology, we need some notation. For a sibsétX, let
E-={Ae2X: ANE #@)}, andEt ={A € 2X: A C E}. Thenty has as a subbase
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all subsets of ¥ of the formsU~ andV*, whereU andV are open subsets &f. For any
finite family V of subsets o¥, let

(V):{Fezxz Fel v FﬂV;«é(fJforanyVeV}.

It is a well-known fact that the collection of all subsets df @f the form(V), whereV is
a finite family of open subsets &, is a base foty. From now on, the hyperspacé af
X will always carry the topologyy except it is stated explicitely.

One of the fundamental problems in the theory of hyperspaces is to decide how a
topological property ofX can be transfered to*2and vice versa. For instance, the
famous Vietoris—Michael theorem [11, Theorem 4.2] asserts that a spaseompact
if and only if 2X is compact (see [2,9-11] for more results of this type). So, it is quite
natural to ask the following questioNVhat can we say about the hypersp&ie of a
countably compact or pseudocompact spaceAre there any analogs to the Vietoris—
Michael theorem for countable compactness or pseudocompatRessll that a space
X is said to becountably compadt every infinite subset has an accumulation point; and
X is said to bepseudocompadt every continuous real-valued function on it is bounded.
When it is Tychonoff, a space is pseudocompactif and only if every sequence of nonempty
open subsets has an accumulation point. It sedmat unlike those covering properties
considered in [10], the behavior of countable compactness-like properties with respect to
the Vietoris topology is not easy to handle. In 1975, Ginsburg [6] considered the above
question and discovered that the countable compactness (pseudocompactn&dsa®f 2
some nice connections to the countable compactness (pseudocompactness) of pgwers of
Note that neither countable compactness nongseompactnessis (fiely) multiplicative
in the realm of Tychonoff spaces as Novak [12] and Terasaka [14] showed independently.
What Ginsburg proved are in fact the following:

(i) Ifall powers of a spac& are countably compact, then its hypersp2&eis countably
compact

(ii) If the hyperspac@X of a spaceX is countably compact, then all finite powersXf
are countably compact

A result similar to (ii) also holds for pseudocompact Tychonoff spaces. In addition to these
mentioned results, Ginsburg also showed that there is a Tychonoff dpatieof whose

finite powers are countably compact but whose hyperspdces 2ot pseudocompact.
Indeed, X is one of spaces constructed by Frolik in [5] with the following properties:

All finite powers of X are countably compact, bK® is not pseudocompact. In this
paper, we shall provide a Tychonoff space (see Example 2.4) all of whose finite powers
are countably compact and whose countable infinite power is pseudocompact, but whose
countable infinite power is not countably compact. The main purpose of this paper is to
tackle the following question.

Question 1.1 [6, Remark 3.2].Is there any relation between the pseudocompactness
(countable compactnessf X and that of2X ?



J. Cao et al. / Topology and its Applications 144 (2004) 133-145 135

In attempting to attack Question 1.1, we obtain some partial solutions to it. More
precisely, we shall give a counterexample to this question in one direction in Section 2,
and then show some positive results in the other direction in Section 3. Furthermore,
we also show that undév A, 2°¢ is the best possible cardinal for powers of a countably
compact spac& to guarantee the countable compactness®ofSeveral remarks related
to hyperspaces of countably compact (pseudqaamt) spaces are given in the last section
of the paper.

2. Some examples

In this section, we shall extend the constructions of [6, Example 3.1] and [15,
Example 4.13] to a more general approach which not only can be used to produce examples
of countably compact spaces whose hyperspacessyitire not countably compact, but
also can be applied to prove positive results for some special classes of topological spaces.

Given any family{X;: i € A} of countably compact spaces, @){X;: i € A} be the
disjoint union ofX's. We define a countably compact spaces follows:

() If |A| < w, justletX =P{X;: i € A};

(i) If |A] > o, we pick up an arbitrary pointo ¢ @{X;: i € A}, and then endow
X = P{X;: i € A} U {o0} with a topology such that eack; with its original
topology is clopen inX, and such that every neighbourhoodaaf contains all but
finitely many of theX;. In this case, the spack¥ is usually called theone-point
countably compactificatioof B{X;: i € A}. It can be checked easily thatis regular
(Tychonoff) if and only if allX’s are regular (Tychonoff).

Theorem 2.1. Let{X;: i € A} be a family of countably compact spaces, and{dte the
space defined above.2f is countably compact, then the product spa¢exX;: i € A} is
countably compact.

To prove Theorem 2.1, we need the following general lemma which shall be used in
Section 3 as well.

Lemma 2.2. Let X be a space, and let > 0 be a cardinal. If there are twa-sequences
(Ue: &€ <) and(Ve: & < ) of nonempty open sets ii; and a closed discrete sequence
(xn: n < ) of points in thexth powerX“ of X, wherex,, = (x,(£))s <« for eachn < w,
such that

() (Ug: & <) is pairwise disjoint,
(i) Ve CUgforall & <o, and
(iii) x,(€) € Ve forall ¢ <o and alln < w, then2¥ is not countably compact.

Proof. For eacln < w, let x,, denote the closure df,(£): & < «} in X. We shall show
that(x,: n < w) has no accumulation points irf‘2and thus 2 is not countably compact.
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Suppose that it has an accumulation pding 2X. We first establish thgtF N Ug| =1 for
everyé < a. If this is not true, then there are two possible cases for us to consider.

Casel. There exists SOmg < « such thatF N Ug = ¢. In this caseF € (X \ V)T
Thus,x, € (X < \75/)+ for infinitely manyn < w. This is impossible, as, (§') € Vi for
alln < w.

Case2. There exists som&’ < o such thatFNUg| > 1. In this caseF must meet two
disjoint open set&o, G1 C Ug-. It follows that(Go)™ N (G1)~ is aty-open neighborhood
of F, and thusx, € (Go)~ N (G1)~ for infinitely manyn < w. This implies that for
infinitely manyn < w, we have bothx, (§): £ <a}NGo# P and{x,(§): E <a}NG1# D
simultaneously. Again, it is impossible, since every terymhas exactly one coordinate
contained inUg».

Now, let F N Ug = {x(§)} for eaché < «. Then, we define a point € X such that
x = (x(&))e<a. Next, we take an arbitrary basic open neighborhood

k
0:1_[05,. X H{Xg: Eea\{éo,él,---’gk}}
i=0

of the pointx in X%, wherek < min{«, w}, eachOg, (i < k) is an open neighborhood of
x(&)in X andXe; =X forall £ e o \ {&o, &1, ..., &}. Define

k
W=()WUs N Og)".
i=0
ThenW is ary-open neighborhood df . SinceF is an accumulation pointaf,: n < w),
foranyn < w, there is aj, > n such thatx ;, € W. Consequently, we have

{x,): € <a}N(Ug N Og) #0

for all i < k. It follows thatx;, (&) € Og, for all i < k. Therefore,x;, € O, and thusx
is an accumulation point ofx,,: n < w) in X%. However, this is a contradiction, since
(xn: n < w) is a closed discrete sequenceXifi. O

Proof of Theorem 2.1. Suppose thaf[{X;: i € A} is not countably compact. Then there
exists a closed discrete sequerieg: n < w) in X4, wherex, = (x,(i))ica for each

n < w, such thatv, (i) € X; foralln < w and alli € A. Note that eaclX; is clopen inX.

If we takeU; = V; = X; foralli € A, and apply Lemma 2.2, then we can conclude tHat 2
is not countably compact. 0.

Let w* = Bw \ w be the set of free ultrafilters an with the relative topology oBw,
andD € w*. We say a poink € X aD-limit of a sequenceéA,: n < w) of subsets of a
spaceX if {n < w: A, NU # ¥} € D for each open neighborhodd of x. A spaceX
is said to beD-compact(D-pseudocompagfl,6] provided that every sequence of points
(nonempty open subsets) ¥1has aD-limit. Every D-compact P-pseudocompact) space
is countably compact (pseudocoauqp). In addition, two ultrafilters, y € ™ are called
equivalentif there exists a automorphisin: Bw — Bw such thati(x) = y. Decompose
o™ into equivalence classes callgges For eachx € w*, let T (x) denote the type af.
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It is well known that for any € w*, T (x) is a dense, but not countably compact subspace
of w*. Furthermore, ift € w* is a non® point, thenT (x) is D-pseudocompact for some
D € w* [7, Theorem 5.5].

The next lemma is originated to [5], the current form is taken from [13].

Lemma2.3[5,13].For eachx € w*, letF, = {D € w*: x is theD-limit of some one-to-one
discrete sequence @iv}. Then|F,| < c.

In 1967, Frolik [5] constructed a Tychonoff spakewvhose finite powers are countably
compact, but countable infinite power is not pseudocompact (thus, not countably compact).
Ginsburg [6] further showed that'@s not pseudocompact. In our next example, we give a
Tychonoff space having the following properties: all finite powers are countably compact,
the countable infinite power is pseudocompact but not countably compact.

Example 2.4. There exists a Tychonoff spadé such that all finite powers ok are
countably compact and® is pseudocompact, b® is not countably compactet Z
be any dens®*-pseudocompact subspaceusitfor someD* € w* such tha{Z| = ¢, and
such thatZ is not countably compact (for example, takes the type of any now#- point
in *). By Lemma 2.3, we havid_J{F;: x € Z}| < ¢. Pick someéDg € o* | J{Fy: x € Z}.
Let Yo = {x € w™: x is the Dp-limit of some discrete sequence #}. ThenZ N Yo = 0.
Inductively, one can construct an-sequenceY,: o« < wj) of pairwise disjoint subsets of
w* and anwi-sequencé€D,: o < w1) in w* with distinct types such that for evety< w1,
every discrete sequence of pointsAnu | J{Yg: B < a} has aDq-limitin Y.

Select a sequendd ;. n < w) of subsets ofv; such that the intersection of any finite
subfamily is unbounded, arfd,_, A, = ¥. Foreachy < o, letX, = ZU(J{Yy: o € Ay}
be the subspace @iw. Similarly to Theorem D in [5], any finite subproductpf, _, X,
is countably compact. The diagonal pf,_, X, is homeomorphic taZz which is not
countably compact, it follows thdt[,_, X, is not countably compact. Sindg,,_,, Z
is a denseD?-pseudocompact subspace [df,_, X, then[],_, X» itself is alsoD?-
pseudocompact.

Let X = {X,: n < w} U {oo} be the one point countably compactification of the
disjoint union@{X,: n < w}. Itis easily checked that any finite power ¥fis countably
compact, but the countable infinite pow&? is not countably compact. To show that
is pseudocompact, 1€iG,: n < w) be an arbitrary sequence of basic open set¥
We shall show thatG,,: n < w) has a cluster point iX®. Without loss of generality, we

n<w

.....

increasing sequence Bf. Inductively, after taking refinements, one can define a sequence
(Bj: j <w)in[w]” and a sequendg;: j < w) of mappings such that for eagh< w,

(I) Qj . Bj — W,

(i) |Bj+1~ Bj| <w; and either
(iii) ¢; is aninjective mapping such thélt; < X, ;) forall i € Bj; or
(V) ¢, is an constant mapping such thia} € X, ;) forall i € B;.
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By using the diagonal argument, one can choose sBrae{b,: n < w} € [w]® such that
|IB \ Bj| < w for all j <w. Note that eachX,, is Df-pseudocompact. Define a point
x = (x;)j<w € X as follows: if ¢, is an constant mapping, lat; be theD*-limit of
(Up,j: n <w)in Xy, ), wherei € Bj; and letx; = oo if ¢; is an injective mapping. For
any basic open neighborhodd= [/, V; x [];-,, X of x in X, choose some < w such
thatk, > m. Since{n: U,,; N'V; # @} € D for eachi < m, then{b, € B: G, NV # @}

is infinite. This shows that is a cluster point ofG,,: n < w) in X®. Therefore X is
pseudocompact.

Remark 2.5. The referee points out that the spakein Example 2.4 is in factD*-
pseudocompact, and thus any powe* of X is DF-pseudocompact. To see this, let
L =&{Z,: n € w} be the pairwise disjoint union df,’s, whereZ, = Z for everyn € w
and putH = L U {oco}. Equip H with the induced topology fronX. ThenH is a dense
D*-pseudocompact subspaceXf This implies thatX itself is D*-pseudocompact.

In the next example, we apply a known space in [15] and Theorem 2.1 to give a negative
answer to Question 1.1 for countable compactness in one direction, evenXftes
countably compact.

Example 2.6. There exists a countably compact Tychonoff spaceuch thatXx*t is
countably compact bu2X is not countably compacFor eachD € w*, let Xp = o
{D} be endowed with the relative topology @fv. Let X be the one-point countably
compactification of the disjoint uniofp{Xp: D € »*}. It is shown in [15, Example
4.13] thatX is totally countably compact (A spaceis totally countably compadt every
sequence of points iX has a subsequence which is contained in a compact subX@t of
but notD-compact for anyD € w*. By [15, Theorem 3.3]Xt is countably compact (Recall
thatt is the minimal cardinality of towers and> w;). LetZ = [ [{Xp: D € w*}. As shown

in [15, Example 3.14]Z is not countably compact. By Theorem 2.1, we conclude that 2
is not countably compact.

The following lemma is well known.

Lemma 2.7 [7]. A spaceX is D-compact for som@® e * if and only if X2 is countably
compact.

It is shown in [6] that for any space, the hyperspace*2 is D-compact -
pseudocompact) if and only ¥ is D-compact D-pseudocompact). It follows immediately
from Lemma 2.7 that ® is countably compact provided th&€" is countably compact.
Now, a natural question which arises from this fact is:

Question 2.8. Is 2° the best possible cardinal for the power of a countably compact space
X to guarantee the countable compactnesg's?

The answer to Question 2.8 is “yes” by Example 2.6, if we assume the first two steps
of GCH (i.e.,c =2° = w31, and 2! = wp). To get a better consistency answer, we need
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an extra concept. Recall that an ultrafil®re »* is said to be aselective ultrafiltey or
a Ramsey ultrafiltef3] if whenever(A,: n < w) is a countable decomposition afand
A, ¢ Dforalln <w, thereisA e Dwith |[ANA,|<1foralln <w.

Example 2.9. AssumingV A, there exists a Tychonoff spa&esuch that for every < 2°¢,
X% is countably compact bu2X is not countably compacssumingMA, Saks [13,
Theorem 2.5] showed that there exists asquencegX.: ¢ < 2°) of subspaces of
Bw such that for every propef C 2°, there is some selective ultrafiltd? € ™ (D
depends orY) such that the partial produ¢t{{X.: ¢ € I} is D-compact, but the full
product[ [{X.: ¢ < 2°} is not countably compact. LeX be the one-point countably
compactification ofp{X.: ¢ < 2°}.

Since[]{X.: ¢ < 2} is not countably compact, by Theorem 2., & not countably
compact. Hence, we are left to show that for any cardinal 2¢, the ath power X of
X is countably compact. To this end, fix an< 2¢, and pick up an arbitrary sequence
(xn: n <) in X*, wherex, = (x,(§))s < forall n < w. We shall deduce thét,: n < w)
has an accumulation point iK“. Note that a sequence in a product space hBsliait
for someD € w* if and only if its projection on each factor hagalimit (with respect to
the sameD). Thus, it suffices to prove that there is soMe& »* such that for any < «,
(xn(§): n < w) has aD-limitin X. To do so, we first choose a proper subket 2¢ such
that

[x0(6): & <a. n < o)} gU{X;: ¢ eI} U{oo}.

Let D € w* be a selective ultrafilter such thpf{X.: ¢ € I} is D-compact. For a fixed
& < a, defineds = {n < w: x,(£) # oo}. SinceD is an ultrafilter, we have

() o~ AgeD,or
(i) Ag eD.

If (i) holds, thenoo is the D-limit of (x,(&): n < w) in X. If (ii) holds, since we assume
that all X.'s are pairwise disjoint ifp{X.: ¢ < 2}, we first define a countable subset

1) ={cel: {x,(&): ne A} N X #0)}

of I and then decomposinto a countable disjoint union as

o=@~ A)U| J{{ne A xa®) e X} ce1®)}

Now, we have the following two subcases:

(iia) There exists some € I(&) with {n € A¢: x,(§) € X} € D. In this case X is D-
compact, thugx, (§): n < w) has aD-limitin X C X.

(iip) For everyg € I(§), {n € Ag: x,(§) € X} ¢ D. In this case|l ()| = w. Since
D is a selective ultrafilter, there exists sonBe € D and an injective mapping
fiBe — I(§) with x,(§) € X ¢y for all n € B;. It is easy to see thato is the
D-limit of (x,(¢): n <w) in X.
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It follows that in any case(x,: n < w) has aD-limit in X%, which implies that it has
an accumulation point iX*. Therefore X* is countably compact.

Remark 2.10. It remains an open question whether the answer to Question 2.8 is
affirmative inZFC. Moreover, it is not clear to the authors that whether the hyperspace
of the space given in Example 2.4 or Example 2.6 is pseudocompact or not. In fact, it
is still an unsolved problem that whethet 2 pseudocompact for a Tychonoff spake
whenever all powers of are pseudocompact.

3. Positive resultsfor homogeneous spaces

In this section, we shall provide some positive answers to Question 1.1 in some
special cases. Given a spakelet idy be the identity mapping oX. The family of all
homeomorphisms oX onto itself will be denoted by Agk). Recall thatX is said to be
homogeneoui for any two distinct pointse, y € X there exists arf € Aut(X) such that

fx)=y.

Theorem 3.1. Let X be a regular homogeneous space2¥f is countably compact, then
X® is countably compact.

Proof. If X is finite, we have nothing to prove. So, we assume thas infinite. Then,
by the homogeneity ok and the countable compactness &f X must have no isolated
points. By [6, Corollary 2.3]X is countably compact.

To prove thatX® is countably compact, letx,: n < w) be an arbitrary sequence
in X?, wherex, = (x,(k))t<w for eachn < w. We shall deduce thatx,: n < w)
has an accumulation point iX®. Let z(0) be an accumulation point of the sequence
(x,(0): n < w). Then choose two open subs&ts Uy € X such that(0) € Vo € Vo C Up
andUg # X. Next, we define

Ag= {n < w: fo(xn(O)) € Vo},

where fo = idx (for the sake of unification). Lef(1) be an accumulation point of the
sequencéx,(1): n € Ag). Select anf1 € Aut(X) and two open subsetg, U1 C X such
that f1(z(1)) e VA S V1 C Uy, UoNUr =P andUoU U # X. (In casez(1) ¢ U, then
just take f1 = idx.) Then we define

A= {n € Ao: fl(xn(l)) € Vl}.

SinceX has no isolated points, we can continue this process inductively, and thus obtain
infinite sequence&(j): j <w), (U;: j <w), (Vi j<w), (Aj: j <w)and(fj: j <w)
such that

() fj eAut(X) forall j < w,
(i) (U;: j <w) is a sequence of pairwise disjoint nonempty open setX iwith
Ujcn Uj# X foralln < o,
(i) (V;: j <w) is a sequence of nonempty open setXiwith V; € U; for all j < o,
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(iv) foreachj <w, A; is aninfinite subset ab andA ;11 C A},

V) Ajja={neAj fir1ln(j+D) eV} forallj <o,

(vi) for eachj < w, z(jj) is an accumulation point afc,(j): n € A;), and
(vii) fi(z(j)) eU;forall j <w.

Now, one can pick an infinite sed = {a;: j < w} € w such thata; € A; for all
j < w. Then, by (iv),|A N\ Aj| < o for all j <. For eachn < w and j < o, let
Ya, () = [i(xa,(j)) andya, = (ya, (/) j<o-

Next, we shall show that the sequeneg,: » < w) has an accumulation point Ki“
by using Lemma 2.2. To this end, we choose an infinite sequegce: < ») in X such
that for eachj < w, |{n € w: 14,(j) # ya, ()N} < @, andz,, (j) € V; foralln, j < w. This
is possible, since for each< w, V; is infinite, andy,, (j) € V; for all but finitely many
n < w. It is easy to see that,,: n < w) has an accumulation point ik if and only
if (y4,: n < w) does. Since 2 is countably compact, the sequeneg: n < ) has an
accumulation point ik, which is also an accumulation point 0f,,: n < ).

Let y = (y(J))j<w be any accumulation point @f,,: n < w) in X“. It can be easily
checked that = <fj_l(y(j)))j<w is an accumulation point afx,,: n < w) in X*, and
thus is also an accumulation point 6f,: n < w) in X“. Therefore,X“ is countably
compact. O

By replacing the closed discrete sequence of points in Lemma 2.2 with a suitable
sequence of open sets, we obtain the following lemma.

Lemma 3.2. Let X be a space withoutisolated points. For glln < w, letV;, U; and Oy;
be nonempty open subsetsXgatisfying

() (U;: j <o) is pairwise disjoint,
(i) V;cU;forall j <w,and
(iii) foreachj <w, 0,; € V; for all but finitely many: < w.

Let (k,: n < w) be a strictly increasing sequencedn For eachn < w, define
k}l
On =[] 0m x[[1Xj: j > ka.
j=0

where X; = X for every j > k. If 2% is pseudocompact, thefO,: n < w) has an
accumulation point inY®.

Proof. After making some adjustment to the mat(@,,;) of open sets in a manner similar
to what we have done in Theorem 3.1, we may requirethatc V; forall n, j < w. Let
Gn ={0n0, ..., Ok, } for eachn < w. Since X is pseudocompact(G,): n < w) has an
accumulation poinf € 2X. We claim thatF NV ; # @ for all j < . Suppose the contrary.
ThenF NV j, = @ for somejg < w. It follows thatF € (X \ V j;)". Hence, we obtain an
infinite subset

I={n> jo (Ga)N (X~ ‘7jo)Jr # 0}
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of w. Pick anyn € I and an arbitraryF,, € (G,) N (X ~ ‘7]-0)+. Then, we havel #
F, N O,j, € Vj,. But this is impossible, sincg, € (X~ V j,)*.

Next, select a point(j) € F N \_/j for eachj < w, and letx = (x(j))j<». We show
thatx is an accumulation point @f0,,: n < w) in X®. To do this, let

k

w=[]wx[]x;:j>k

j=0

be an arbitrary basic open neighborhood:ah X, whereW; (j < k) is an open subset
in X with x(j) € W; and X; = X for all j > k. Let W = 5_o(U; N W;)~. Then
W is aty-open neighborhood of. Since F is an accumulation point of the sequence
({Gn): n < w), we have an infinite subsét= {n > k. (G,) "W # @} of w. Foranyn € J,
we pick up an arbitraryd, € (G,) N W, and decompos#,, into a finite disjoint union as
Hy =Y (H, N Oy)). Since

(Uijj)m(U{Hnmom-: i#J, 0<i<kn})=®

and (U; N W;) N H, # @, then (H, N Oyj) N (U; N W;) # @ for every j < k. Thus
0, NW #£@forall n e J, andx is an accumulation point @f0,: n <w). O

The proof our next theorem is similar to that of Theorem 3.1.

Theorem 3.3. Let X be a Tychonoff homogeneous spacgXlis pseudocompact, thext*
is pseudocompact for any cardinal

Proof. As we have done in Theorem 3.1, to avoid triviality, we assumeXhitinfinite,
and thus it has no isolated points. By [6, Corollary 2.7], all finite powersXoére
pseudocompact. It suffices to show thé&t is pseudocompact, since an infinite power
X@ of a Tychonoff spac& is pseudocompact if and only X is pseudocompact. To do
so, let(G,: n < w) be a sequence of nonempty basic open sei*ofFor eachn < w, we
may assume that

kn
Gy :HGni X H{Xi: i >k},
i=0

where eaclk, < w, eachG,; (i < k,) is a nonempty open subset &f and X; = X
for everyi > k,. Without loss of generality, we may require th@t: n < w) is strictly
increasing. (In fact, for each < w, we can always add some more open s&ts with
G,; = X if necessary.) Let(0) be an accumulation point of the sequeli€go: n < w).
By the regularity ofX, we can choose two open séts, Up of X such that;(0) € Vo C
Vo C Ug, andUg # X. Then, we define

Ao={n <o fo(Guo) N Vo# 0},

where fo = idx. For eachm € Ag, let 0,0 = fo(G,0) N Vo. Let z(1) be an accumulation
point of the sequenc@s,1: n € Ag). Select anf; € Aut(X) and two open subsetg, U;
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of X such thatfi(z(1)) € V1 S V1 S U1, UpN U1 =9 andUo U U1 # X. (In case that
z(1) ¢ Up, then just takef; =idx.) Let

Ar={n € Ao f1(Gu1) N V1 # B},

Foreach € A1, let 0,1 = f1(G,1) N V1. SinceX has no isolated points, one can continue
this process inductively, which yields infinite sequen¢e§): j < w), (V;: j < w),
Uj: j<w), (Aj: j<w), (fj: j <w)and(0,j: n € A;) (for eachj < w) such that

() fj eAut(X) forall j < w,
(i) (U;: j < w) is a sequence of pairwise disjoint nonempty open setX iwith
Ujgnl_/j # X forall n < w,
(i) (V;: j <w) is asequence of nonempty open setX iwith \_/j CUjforall j <w,
(iv) foreachj <w, A; is aninfinite subsetab andA ;11 C A},
V) Ajri={ne€A;: fi+1(Guj+1) N Vi1 # P} forall j <o,
(vi) foreachj < w, z(j) is an accumulation pointdiG,;: n € A;),
(viiy fj(z(j)) eV, forall j <w, and
(viii) foreachj <w, Onj = fi(G,;)NV;forallne A;.

Now, we can pick an infinite set = {a;: j < w} Cw such that;; € A; foreveryj < w.
For eachn < w, let O,, € X® be defined by

n kan
Oanzl_[Oaan 1_[ fj(Gan])Xl_[{X] j>ka,,}9
j=0 j=n+1

whereX ; = X for every; > k,,. Moreover, defingd,, € X as

kiln

Qa, = [ [ £i(Gup) x [[1X)1 j > ka,}

j=0

for eachn < w, whereX ; = X for all j > k.

It is clear that(U;: j < w), (Vj: j < ), (Og,j: n,j <) and (Og,: n < w)
satisfy conditions in Lemma 3.2. By the pseudocompactnessp{@,,: n < w) has
an accumulation pointiX, sayy = (y(j)) j<w- Since0,, € Qq, foralln < w, y is also
an accumulation point fQ,,: n < w). It follows that the poink = (fj‘l(y(j)))j<w isan
accumulation point ofG,,: n < w) in X, thus is an accumulation point 66,,: n < w).
Therefore X is pseudocompact.O

In contrast to counterexamples in Section 2, Theorem 3.1 and Theorem 3.3 give positive
answers to Question 1.1 for countable compactness and pseudocompactness respectively
in the class of homogeneous Tychonoff spaces in the other direction.

Remark 3.4. Recall that a spac¥ is G-pseudocompag6] if every locally finite family
of nonempty open sets is finite. Eve@¢pseudocompact space is pseudocompact. For
Tychonoff spaces, these two notions are equivalent. In the literafupsgudocompact
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spaces are also calléeebly compacWhenX is a Tychonoff space,®is pseudocompact
if and only if 2X is G-pseudocompact [Proposition 2.6].

Theorem 2.5 of [6] claims that X is regular and ? is G-pseudocompact, then all finite
powers ofX areG-pseudocompact. By applying an argument similar to that in Lemma 3.2,
one can give an alternative proof to this theorem. In fact, Theorem 3.3 is still valid when
X is regular and pseudocompactness is replaceg-pyeudocompactness.

4. Additional remarks
In [6], Ginsburg also posed the following interesting question.

Question 4.1. Characterize those spac&swhose hyperspaces are countable compact
(pseudocompay:t

In 1998, Natsheh considered Question 4.1 daiireed to provide a sufficient condition
for 2X to be pseudocompact (s€restions Answers Gen. Topolal§ (1998) 213-217
for details). According to Natsheh, a sub6ein a topological spac# is called aCs-setif
there exists a sequenck,: n < w) of nonempty open sets ik such thaiC =, _,, V.
What he claimed to prove is the followintf: X is a pseudocompact normal space and for
each sequence’,: n < w) of Cs-sets inX there exists arF € 2X such thatF N C,, # ¢
foralln <wandF C | C,, then2X is pseudocompact

n<w

Remark 4.2. There is a gap in Natsheh’s praoofn fact, he used the following false
statement in his argument: A Tychonoff spa&eis pseudocompact if and only if
My, Gn # 9 for every non-increasing sequen@®,: n < w) of nonempty “basic” open
sets ofX. Therefore, Question 4.1 remains open.

Remark 4.3. There are no analogs to Lemma 2.7 for pseudocompactness. This has been
shown in [7, Example 4.4].

Itis interesting that the countable compactness (pseudocompactness) of the hyperspace
2X of a spaceX with respect to a topology weaker than, called the Fell topology,
is completely characterized. Recall that tRall topology[4] on 2X, denoted byrg, is
generated by taking

S={U": 9+#UCcXisopenX \ UiscompactU{V~: f+#V C X is oper}

as a subbase. Note that is a Hausdorff topology on*® if and only if X is locally
compact. Hou [8], and Hol& and Kiinzi [9] showed independently that fBr spaceX

the hyperspace®2is countably compact with respect tg if and only if X is countably
compact. Moreover, Hou [8] also proved that for a locally compact spaceX is

pseudocompact with respect tg if and only if X is either pseudocompact or net

compact.
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