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Abstract

The purpose of this manuscript associated to the Golden Jubilee of the IME-USP
is to present selected material from the author’s scientific contribution dealing with
nonlinear phenomena of dispersive type. That study has been a source for modern
research in the dynamic of traveling wave solutions of different type and it has been
disseminated through publication of scientific articles and/or books. Here, we provide
the reader with information about current research in stability theory for nonlinear
dispersive equations and possible developments. Also, I hope it inspires future devel-
opments in this important and fascinating subject. In this manuscript we consider
the following topics: stability theory of solitary waves and the applicability of the
concentration—compactness principle, the existence and orbital (in)stability of peri-
odic traveling wave solutions for nonlinear dispersive models, nonlinear Schrodinger
and Korteweg—de Vries models on star-shaped metric graphs. The use of tools of the
theory of spaces of Hilbert, the spectral theory for unbounded self-adjoint operators,
Sturm-Liouville’s theory, variational methods, analytic perturbation theory of opera-
tors, and the extension theory of symmetric operators are pieces fundamental in our
study. The methods presented in this manuscript have prospect for the study of the
dynamic of solutions for nonlinear evolution equations around of different traveling
waves profiles which may appear in non-standard environments such as star-shaped
metric graphs.
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1 Introduction

During the last 40 years the theory of stability for traveling waves solutions of non-
linear evolutions equations has grown into a large field that attracts the attention of
both mathematicians and physicists in view of its applications to real-world nonlin-
ear models and the novelty of the problems. These models emerge in various areas
of applications such as natural science (physics, biology, etc.), engineering and fluid
mechanics (optics, laser beams, water waves, Bose—Einstein condensates), as well as,
the propagation through junctions in networks (so called, metric star graphs), among
others.

Nonlinear dispersive evolutions equations for modelling waves take into account
both nonlinearity and dispersion effects. The discovery of the “great wave of trans-
lation or solitary wave” in the Edinburgh—Glasgow canal in 1834 by Russell [123],
was the birth of one of the most relevant and fascinating topics of study for dispersive
equations in the last 40 years. Fascinated with this long water wave without a change
in shape, Russell made some laboratory experiments on this phenomenon, generating
solitary waves by dropping a weight at one end of a water channel (see, for instance,
the YouTube video “Shallow water wave generation (quasi solitary wave with break-
ing), by Nick Pizzo). It was not until the 1870s that Russell’s prediction was finally
and independently confirmed by both Boussinesq [51] and Rayleigh [121]. Assuming
that a solitary wave has a length much greater than the depth of the water, they derived
from the equations of motion for an inviscid incompressible liquid that the wave height
above the mean level &, z = ¥ (x, 1), is given by

vx,t) = asechz[ﬁ(x —ct)], (1.1)

where B2 = 3a/[4h*(h + a)] for any positive amplitude ¢ > 0. Although these
authors found the sech? profile, they did not write any evolution equation that produces
(1.1) as a solution. However, Boussinesq did much more [52] and discovered that if a
water wave propagates along a flat-bottomed channel of undisturbed depth A, and has
large wavelength and small amplitude relative to &, then the elevation u = u(x, t) of
the water surface, considered as a function of the coordinate x along the channel and
the time ¢, will approximately satisfy the nonlinear evolution equation

h h 3 2+h2 =0 (1.2)
Uy — §NUxx — & 2/’lu 3 Uyxx o =0, .

where g is the gravitational acceleration and +/gh is the speed of the shallow water
waves. This equation is currently known as the Boussinesq (bidirectional) equation.
Using this equation, he obtained an explicit representation of solitary waves traveling
in both positive and negative x-directions, u(x, t) = ¢po,(x % ct), where the profile
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PBou 1s given by

3
dou(E) = a sech? [ h—‘;s} . (13)

In 1895, Korteweg and de Vries [90] formulated a mathematical model which provided
an explanation of the phenomenon observed by Scott Russell (who were apparently
unaware of the work of Boussinesq). They derived the now-famous equation for the
propagation of waves in one direction on the surface of water of density p, which in
dimensional variables can be written in the form

Jeh 3 1
v = Tg |:<8 + Ev) vy + Eavxxx:| (1.4)

where v = v(x, 1), x is a coordinate chosen to be moving with the wave, ¢ is a small
parameter and

when the surface tension 7 (<& % gph?) is negligible. This is essentially the original
form of the Korteweg—de Vries equation.

Now, the Galilean invariance is one of the fundamental properties of any mathemat-
ical model arising in classical mechanics. Nowadays, it is common to speak about this
principle in terms of a symmetry of the governing equations. Hereinbelow, the Galilean
invariance property is referred to the fact that the governing equations are invariant
under a Galilean boost transformation, in the sense that this kind of transformations
preserves the space of the solutions of the respective problem. For example, model
(1.4) posses the Galilean invariance of translation and scale, and they are giving by
the following transformation of variables:

X—>yx, x> x+x), t—0t, x > x—At, v— U,

with real constants y, xg, 6, A and 1. Thus, if v is a solution of (1.4), so is u defined
by u(x,t) = nu(y(x — At), 6t), with

3y3 =0, yn=1, 3\/ght = —2h, 3% = —2¢/y.
In this moving frame of reference (1.4) becomes to
Uy +utty + Uyyy = 0. (1.5)

We shall call it the KdV equation. We note that in the approximation used to derive
Eq. (1.4) one considers long wave propagating in the direction of increasing x. Equa-
tion (1.4) or (1.5) is one of the simplest and most useful nonlinear dispersive model
equation for solitary waves or periodic traveling waves, and it represents the long-time
evolution of wave phenomena in which the steepening effect of the nonlinear term uu
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Fig.1 Time evolution for the solitary wave solution of the KdV model (1.5)

is counterbalanced by the dispersion term uy,,. From Galilean invariance above, we
obtain that the KdV model (1.5) has the following two-parameter family of solitary
waves solutions (see Fig. 1)

ulx,t) = pgqyv (x —ct + xp), ¢Kdv($):3csech2 (%\/Eé}), c>0,xgeR. (1.6)

Some consequences of the presence of symmetries in the models are well known.
They include, for example, the Hamiltonian formulation and the generation of con-
served quantities. In the case of Galilean invariance, it is worth mentioning its influence
in the existence and stability of solitary and periodic traveling wave solutions (see e.g.,
[19]). However, the practical implications of losing the Galilean symmetry are not suf-
ficiently known. In the present study we will give recent results on this issue and its
influence on the stability and existence of traveling waves for dispersive wave models
on metric graph, i.e., a network-shaped structure of vertices connected by edges (see
Fig.2), with a nonlinear dispersive model (such as a KdV model or a Schrodinger
model) suitably defined on functions that are supported on the edges (see Sects. 5 and
6 below). These models arise as simplified models for wave propagation, for instance,
in a quasi one-dimensional (e.g. meso- or nanoscale) system that looks like a thin
neighborhood of a graph.

There are few analytic studies of soliton propagation through networks by nonlinear
flows. Results on the stability or instability mechanism of these profiles are still unclear.
One of the objectives of this work is to shed light on these themes. A central point that
makes this analysis a delicate problem is the presence of a vertex where the underlying
one-dimensional metric graph should bifurcate (or multi-bifurcate in a general metric
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graph with several vertex) and so some specific Galilean invariance can break down, by
instance, the translation symmetry. We note that not branching angles but the topology
of bifurcation is essentially the most delicate point in the analysis. Indeed, a soliton-
profile coming into the vertex along one of the bonds shows a complicated motion
around the vertex such as reflection and emergence of the radiation there, moreover,
in particular one can not see easily how energy travels across the network.

By returning to our solitary waves or periodic traveling waves study for a specific
nonlinear dispersive model, in general, it is not obvious that these profiles exist. Not
even when a particular theory shows only the existence of such solutions, itis not easy to
find an explicit formula, specially for models in high dimensions. For real applications
in several fields of the nature science, it is not only sufficient the existence of specific
profiles, but also its behavior when small disturbances of these profiles are made,
namely, its stability or instability by the nonlinear flow of the associated model. In the
papers [9,14-17,21,33,42] and in the book [19], the author has established methods
and several results in the study of the existence and stability and/or instability for
solitary waves via variational methods (the concentration—compactness principle) for
the general class of equations of the type

u; +uPu, — Mu, =0, (1.7)

where u = u(x, t) is real valued, x, t € R,/p\e N, p 2 1, and M is a linear operator
defined as a Fourier multiplier operator by Mu(£¢) = o(£)u (). Here the symbol o (§)
is a measurable, even function on R, and satisfies

allEPr < a (@) S ax(1+ 152 for £ e R (1.8)

where aj,ay > 0 and B = Bi > 0. We note that model (1.7) has the Galilean
invariance of translation.

The general equation (1.7) contains several basic dispersive models of continuous
study in the last decades:

(1) The generalized Korteweg—de Vries equation (GKdV henceforth): For «(§) =
|€|#, B > 1, the operator M is denoted by D# and we get the model

ur + uPu, — DPu, = 0. (1.9)
The case p = 1 and if we allow 8 such that § € (0, 1), the model in (1.9) is known

as the fractional Korteweg—de Vries equation (fKdV henceforth). For 8 = 2 in
(1.9), the solitary wave solutions have the following explicit profile:

1/p
b (£) = [W] sech?/? (pT‘/Es) (1.10)

For the fKdV equation explicit solutions are not known yet (see Angulo [21] and
Klein and Saut [89]).
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(2) The Benjamin—Ono equation (BO henceforth): For « (&) = |£|, the operator M =
H o, where H is the Hilbert transform, that is the convolution with the Principal
Value of L: Hf (y) = P.V.(1) % f(y). The model is

Uy +uuy — Huyy = 0. (1.11)

Via the Fourier transform we have that ﬁ? (&) = —isgn(é) f(é ). The BO equation
was first formally derived by Benjamin [44] (see also Ono [118]), to describe the
propagation of long weakly nonlinear internal waves in a stratified fluid such that
two layers of different densities are joined by a thin region where the density varies
continuously (pycnocline), the lower layer being infinite.
The solitary wave solutions for the BO equation have the following algebraic
profile:

4c
1+ 282’
For p 2 2 and B = 1 in (1.9) (the Generalized BO equation) explicit solutions
are not known.
We note that H represents a nonlocal operator, namely, the value of Hu (x) depends
on the whole solution # and not only on its behavior nearby the point x. For instance,

for f(x) = max{l — |x|,0}, x € R, we obtain Hf(y) = In ‘;%) tin y;—il

be(&) = c>0. (1.12)

yeR.

(3) The Benjamin equation: For a(£) = &2 —¢|£|, where £ € R, the linear differential
operator M is given by M = —8)% — L3, H and (1.7) is transformed into the
pseudo-differential equation

U +utty +LHuyy + tyyy = 0. (1.13)

Benjamin [46,47], introduced this relatively new model which describes the uni-
directional propagation of internal waves. This model governs approximately the
evolution of waves on the interface of a two-fluid system in which surface tension
effects can not ignored.

By considering ¢ > inf, , «(§) we obtain that M + ¢ represents a positive operator.
The shape of the solitary wave solution u(x, t) = ¢.(x — ct) of (1.7) must satisfy the
equation

M 1 p+1
¢c +cp — ——¢; ' =0. (1.14)
p+1

Moreover, by the Galilean invariance of translation for (1.7) we have that for any
xo € R, the profile ¢ (x +x) is also a solution for (1.14). The uniqueness of solutions
for (1.14) (modulo this symmetry) is in general a delicate problem for dispersive
models. Now, by depending on the complexity of the linear operator M we have that
the existence of solutions to Eq. (1.14) can become a “major headache”. Even though
we can show the existence of solutions, an explicit formula for these can become a
major complication. The Benjamin equation in (1.13) is a beautiful example of this
situation, moreover, a result of the uniqueness of the solitary waves solutions for this
model represents a very interesting open question.
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The following issue what we are interested here it is related to the stability prop-
erty of traveling wave profiles. For fixing ideas, we consider the model (1.7) and the
existence of a sufficiently smooth curve ¢ — ¢, of solutions of traveling wave type
u(x,t) = ¢c(x — ct), for a real profile ¢ : R — Rand ¢ € I C R, with ¢,
satisfying (1.14). Stability problems are related with one or more specific Galilean
invariance associated to the model in a general form. Here we will consider the sym-
metry of translation, namely, if t(r) represents the translation operator defined for
Y by t(r)¥(x) = ¥(x 4 r), we have that t(r)u(x,t) = u(x + r,t) is a solution
for (1.7) provided u(x, t) is a solution. We note that if X is a functional space (by
instance, Sobolev spaces) and ¢ € X is a traveling wave solution of (1.7), then the
map t — T.,¢ represents a trajectory in X, called by the ¢-orbit generated by ¢, and
which we will denote by g4, namely, Q4 = {¢(- +7) : r € R}. Define for any
n > 0 the set U, C X by

Up={veX: ;relﬂg [v() =@ +lx <nh

so-called a n-neighborhood of 2.

Definition 1.1 Let ¢ € X be a traveling wave solution to Eq. (1.7). We say that ¢ is
orbitally stable in X by the flow of (1.7) if

(i) there is a Banach space Y C X such that for all ug € Y, there is a unique solution
uof (1.7)in C(R; Y) € C(R; X) with u(x, 0) = up; and

(ii) for every € > 0, there exists a > 0 such that for all ug € Us N Y, the solution u
of (1.7) with u(x, 0) = ug satisfies u(t) € U forall t € R.

Inthe caseu € C((—T*,T*);Y) C C((—T*, T*); X), where T* is the maximal
time of existence of u, the property of stability is called conditional.
Otherwise the items (i)—(ii), we say that ¢ is X-unstable.

This notion of stability (items (i)—(ii) above) was called by Benjamin as stability
in shape and he was the first to give a rigorous proof of stability of the solitary wave
Pk aqv in (1.6) by the flow of the KdV equation (making an elaboration of Boussinesq’s
original ideas associated to model (1.2)).

Roughly speaking, Definition 1.1 says that the ¢-orbit, €24, is stable by the flow
generated by Eq. (1.7) if whenever the initial data u is sufficiently near to Q4 in the
X-norm, then for each instant #( there is a translation, y (ty), such that the shape of the
function x — u(x + y (f9), to) will begin to resemble and remain close to ¢ in the X-
norm. We note that the existence of Banach space Y C X in Definition 1.1 is required
by the problem of well-posedness associated the equation in question. Sometimes a
theory is not known in the space X where we want to test the stability, but it is possible
to obtain information about the initial problem in some subspace Y.

With regard to the instability property of traveling wave solution for nonlinear
dispersive models, we can say that there are at least three approach ways for studying
this fascinant topic. The first one (and the classical ones) is that obtained via blow-up
mechanics, for instance, in the case of the critical KdV equation in (1.9) (p = 4 and
B = 2) was shown in [107-109] that the orbit generated by the solution u(x, ) =
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¢c(x —ct), ¢ > 0,is H'(R)-unstable in the sense that there exists a sequence {¢,} C
H'(R) with ¢, = ¢, in H'(R), and such that the corresponding maximal solutions
u,, of the critical KdV with u,, (0) = ¢, blow-up in finite time, that means, there exists
T* = T*(¢,) > 0 such that

lim [[yu, ()[]1 = +o00.
AT+

Now, as a second instability approach, Grillakis et al. [79] set up sufficient conditions
in the case of abstract Hamiltonian equations of the form

up = JE (u(t)),

with J being an onto skew-symmetric linear operator and £’ the Frechet derivative
of a functional £ usually called of energy. So, a direct application of this theory to
evolution equations of the form (1.7) (where J = d,) is not so immediate since J is
not onto. However, in the case of the following NLS equations instability approach
can be applied once J is a matrix,

iy + Au+ u|*u=0 (1.15)

where u = u(x,t) € C,x e R",t € Rand o > 0. An improvement of the instability
theory in [79] has been made by Bona et al. [50] in the case of (1.7). As a consequence,
for the gKdV in (1.9) is obtained that the solitary wave profiles for 8 = 1 and p > 28
are H 5 (R)-unstable (see End-notes subsection 2.3 below). We note that the instability
of these profiles via a blow-up behavior is an .

Lastly, a third instability approach is that obtained via a linear instability study. For
fixing ideas with model (1.7), the strategy is the following: let ¢, be a solitary wave
solution of Eq. (1.14) and consider the new variable based on the Galilean invariance
of translation t for (1.7)

w(x,t) =u(t(ct)x,t) — ¢de(x).

Then, using Eq. (1.14) one finds that w satisfies the nonlinear equation
(8 — cd)w + By (<p5’w—Mw+0<||w||2)) —0. (1.16)

As a leading approximation for small perturbation, we replace (1.16) by its lineariza-
tion around ¢., and hence we get the linear equation

(3 — cO)w + 0y (pFw — Mw) = 0. (1.17)

In other words, we obtain the so-called linearized equation around the solitary wave

be p
w
— =JL.w, 1.18
7 w (1.18)
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J = 9, and L. is defined by
Lo=M+c—¢r. (1.19)

Assumptions for an instability study associated to (1.18) are not given on the generator
J L but rather on the linear operator L.. Now, since ¢, depends on x but not on z,
the Eq. (1.18) admits treatment by separation of variables which leads naturally to a
spectral problem. Seeking particular solutions of (1.17) of the form w (x, t) = e 1/ (x)
(so-called growing mode solution), where A € C, ¢ satisfies the extended eigenvalue
problem

JLA = MY, (1.20)

and so, we can say from (1.20) that the complex growth rate A appears as (spectral)
parameter. If Eq. (1.20) has a nonzero solution ¥ € D(L.) C HP/ 2(R) then an
bootstrapping argument shows that v € H*(R) forall s = 0, so that (1.20) is satisfied
in classical sense.

Paraphrasing classical semigroups and spectral theory nomenclature, a necessary
condition for the “stability” of ¢, is that there are not points A with Re(1) > 0 (which
would imply the existence of a solution i of (1.20) that grows exponentially in time).
If we write the spectrum o of d, L, as the disjoint union of the essential spectrum and
the discrete spectrum, 0 = 0,45 U 04isc, the last discussion suggests the utility of the
following definition:

Definition 1.2 (Linear stability and instability) A solitary wave solution ¢, of the Eq.
(1.7) is said to be linearly stable if o C iR. Otherwise (i.e., if o contains point with
Re(A) > 0) ¢, is linearly unstable.

We recall that since (1.18) is a real Hamiltonian equation, it forces certain elemen-
tary symmetries on the spectrum of o, more exactly, since J is a skew-symmetric
operator and L, is a self-adjoint operator it follows o will be symmetric with respect
to reflection in the real and imaginary axes and o.s; C iR (see [80]). Therefore, it
implies that exponentially growing perturbation is always paired with exponentially
decaying ones. It is the reason by which was only required in Definition 1.2 that the
spectral parameter A has to satisfy the condition Re(X) > 0.

The spectral problem in (1.20) for traveling wave solutions (by instance, solitary,
standing wave or periodic waves) has been the focus of many research studies in the
last two decades. In Grillakis et al. [80] were given assumptions based in that the
skew-symmetric operator J is one-one and onto, and on the Morse index associated
to a general self-adjoint operator L. In Lopes [105] has been assumed only that J
is one-to-one in order to give a convenient set of sufficient conditions for the linear
(spectral) instability. Other approaches for solving (1.20) have been given in Lin
[97], Kapitula and Stefanov [86], Angulo [21], Angulo and Natali [38] (the case of
periodic traveling waves) and Angulo and Cavalcante [26] (stationary solutions for the
Korteweg—de Vries model on metric graphs, see Sect. 6 below), among others.! In this

I An approach of nonlinear instability for solitary wave solutions, whenever these solutions are obtained
via a variational approach, can be found in Gongalves [76], Angulo [19] and recently in Corcho et al. [61].
We note that this approach does not depend on the established ones by the theories in [50,79,80], like
spectral conditions type.
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NN RN

Fig.2 A star-shaped metric graph with 6 edges

manuscript we establish a specific linear instability criterium associated to periodic
traveling waves solutions for general Benjamin—Bona—Mahoney equation in (4.24).

Other focus of our study here, it is related with the dynamic of nonlinear dispersive
equations on quantum star-shaped metric graphs G. We recall that a star-shaped metric
graph G is a structure represented by a finite or countable edges attached to a common
vertex, v = 0, having each edge identified with a copy of the half-line (—oo, 0) or
(0, +00) (see Fig.2 below). A quantum star-shaped metric graph G is a star-shaped
metric graph with a linear Hamiltonian operator (such as Schrédinger-like operator or
an Airy-like operator) suitably defined on functions which are supported on the edges.

Nonlinear dispersive models on star-shaped metric graph G arise as a simplifi-
cation for wave propagation, for instance, in a quasi one-dimensional (e.g. meso- or
nanoscale) systems that looks like a thin neighborhood of a graph. Quantum graph has
been used to describe a variety of physical problems and applications, for instance,
condensed matter, Y-josephson junction networks, polymers, optics, neuroscience,
DNA, blood pressure waves in large arteries or in shallow water equation to describe
a fluid network (see [49,53,55,67,94,111] and references therein). Recently, they have
attracted much attention in the context of soliton transport in networks and branched
structures (see [126]) since wave dynamics in networks can be modeled by nonlinear
evolution equations.

In particular, the prototype of framework (graph-geometry) for the description of
many phenomena has been a star graph G, namely, a star-shaped metric graph with
N half-lines (0, +00) connected at a common vertex v = 0, together with a nonlinear
equation suitably defined on the edges. For instance, we have the following nonlinear
(vectorial) Schrodinger model ([2,3,28-30])

i9,U(x,1) — AU(x, 1) + [U(x, )P~ U0, 1) = 0, (1.21)

where U(x, 1) = (u(x, t))ll.\':1 :Ry xR — CV, p > 1, and the nonlinearity acts by
components, i.e. (|U|?~! U); =lu; |1 u ;. The function U can be assumed to satisfy
specific boundary conditions such as either Kirchhoff, or 8, or " interactions at the
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vertex v = 0, such that the diagonal-matrix Hamiltonian operator

(0

remains a self-adjoint operator on L?(G). Here §; ;j represents the delta de Kronecker.
In the case of a §-interaction type at the vertex v = 0, we have A acting as (AV)(x) =
(—v’l.’(x))i.v:l, x > 0, with the domain Dy s5(.A) defined by « € R as (see (5.30))

N
Dy s(A) = {(v,)f’zl € HA(G) 1 v1(0) = -~ = vn (0), Y v}(0) =ozv1(0)} . (1.22)
j=1

Another model of interest here, it is that of the Korteweg—de Vries equation (KdV)
drte(x, 1) = edyute(x, 1) + Bedstte(x, 1) + 2ue(x, )dytte(x, 1), (1.23)

x # 0,t € R, on a star-shaped metric graph G with a structure represented by the
set E = E_ UE, where E; and E_ are finite or countable collections of semi-
infinite edges e parametrized by (—o0, 0) or (0, 4-00), respectively. The half-lines are
connected at a unique vertex v = 0 (see Fig.2). Here (ce) and (Be) are two sequences
of real numbers. As was seen in the first pages of this introduction, the KdV equation
was first derived as a model for long waves propagating on a shallow water surface.
Recently, the KdV model in (1.23) has been used to study blood pressure waves in
large arteries. In this way, for example, in Chuiko et al. [62] was proposed a new
computer model for systolic pulse waves within the cardiovascular system. Also, in
Crepeau et al. [63] was showed that some particular solutions of the KdV equation,
more exactly, the 2 and 3-soliton well-known solutions, seem to be good candidates to
match the observed pressure pulse waves. This new applications for the KdV model
suggest your study on star-shaped metric graphs (see Cavalcante [58]).

We note that branched networks provides a nice field where one can look for
interesting soliton propagations and nonlinear dynamics in general, and in recent years
there has been a growing interest among the scientific community in modeling and
analyzing evolution problems described by partial differential equations (PDEs) on
graphs. However, there are few analytic study of soliton propagation through networks
and so one of the objectives of this manuscript is to provide the reader with several
frontier results of this topic and new analytical tools for this study.

One of the main interest of exposition here is to establish an abstract linear instability
criterium for stationary profiles on a star-shaped metric graph G. In particular, we apply
this one to the KAV model (1.23). Novel applications of our general linear instability
criterium have been obtained recently in Angulo and Plaza [39,40] for the sine-Gordon
equation on the framework of a Y-josephson junction

OrUle = Ve, ec E = (—00,0)U (0, +00) U (0, 400),

1.24
Ve = c&&fue —sin(ue), ce € R—{0}, ( )
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which was first conceived by Nakajimaetal. [115,116] as a prototype for logic circuits.

The tools used in the next sections can be classified into classical and novel for
studying the dynamics of nonlinear dispersive equations. In general way, our approach
will be of variational and local analysis type around the objects of our interest (soli-
tary waves, periodic traveling waves and stationary solutions). One of the main tools
in our spectral study for self-adjoint operators, will be one based on the extension
theory for symmetric operators developed by Krein and von Neumann, the Sturm—
Liouville Oscillation Theorems, analytic perturbation theory, mini-max principle and
continuation arguments.

The paper is organized as follows. In Sect.2 we give a geometric overview of the
Lyapunov’s strategy of Weinstein, Grillakis, Shatah and Strauss for orbital stability
study of traveling waves. We apply this approach for studying the stability of solitary
waves solutions for a Boussinesq-type system for water waves. In Sect.3 we use the
concentraction-compactness principle for showing the existence and orbital stability of
solitary wave solutions for the Benjamin equation. Section 4 is dedicated to the study of
the existence and orbital (in) stability of periodic traveling waves solutions. A general
stability criterium is established and an application is given for the Benjamin—Ono
equation. We also give a linear instability criterium for periodic traveling waves of the
generalized Benjamin—Bona—Mahoney equation. Section 5 is devoted to the existence
and stability of standing wave solutions for nonlinear Schrodinger models on star
graphs. Section 6 is dedicated to the KdV models on star-shaped metric graphs. Here
we establish a linear instability criterium for stationary waves solutions of KdV-type
models. The linear instability of specific tails and bumps profiles for the KdV model
on balanced star-shaped metric graphs, is also established. Moreover, each section is
finished with notes which show some recent extensions of the topics covered here,
together with open problems. In “Appendix” we briefly establish some tools of the
extension theory of Krein and von Neumann used in our study.

Notation Let —co < a < b < 0o. We denote by L?(a, b) the Hilbert space equipped
b —
with the inner product (u, v) = f u(x)v(x)dx. By H"(2) we denote the classical

Sobolev spaces on 2 C R with thg usual norm. We denote by G the star-shaped metric
graph constituted by |E_| + |E4 | half-lines (JE_|-half-lines of the form (—oo, 0) and
|E|-half-lines of the form (0, +00)) attached to a common vertex v = 0. On the
graph we define the spaces

LP(@G) = P L' (—0.0) & @ L7 (0. +00), p > 1,

ecE_ ecE

and
H"(G) = @) H"(=00,0) & ) H"(0, +0)
ecE_ ecEL
with the natural norms. For instance, for u = (ue)eck € LP(G), llullrr =
Y eck lluellzr, with || - [[L» denoting the classical L?(£2)-norm. Moreover, for u =
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(tte)ecE> V = (Ve)eck € L*(G), we define the inner product

0 o)
(u, v) = Z / UeVedX + Z /0 UeVedX.
o0

ecE_ " ecE

Depending on the context we will use the following notations for different objects. By
[| - || we denote the norm in L>(R) or in L?(G). By || - ||s the norm in H*(R).

Let A be a densely defined symmetric operator on a Hilbert space H with domain
D(A), and let A* be its adjoint. We denote deficiency subspaces of A by N, (A) =
Ker(A*—i)and N_(A) := Ker(A*+1i). The deficiency indices of A are denoted by
n+(A) := dim(Nx(A)). The number of negative eigenvalues counting multiplicities
(Morse index) is denoted by n(A). The spectrum (resp. point spectrum and essential
spectrum) of A is denoted by o (A) (resp. 0, (A) and 0,5 (A)). The resolvent set of A
is denoted by p(A). By dim(I/m(A)) we denote the dimension of the imagem of the
operator A given by Im(A) = {Ax : x € D(A)}.

2 Orbital stability-local approach

In this section we will give the basic ideas of the theory of stability of traveling waves
solutions to equations of evolution in the Hamiltonian form

du(t) = JE (u()), 2.1

developed in [79,80,129]. Here J is a skew-symmetric operator and E is a real-
valued smooth functional defined on a real Hilbert space X embedding in a space of
type L. We assume that the solutions of (2.1) are invariant under the symmetry of
translations, namely, if t(r) represents the translation operator defined to ¢ € X by
t(r)Y¥(x) = ¥ (x 4+ r), we have that T(r)u(x,t) = u(x 4+ r, t) is solution of (2.1)
provided u(x, t) is solution. Our interest here will be first to give a geometric overview
of the Lyapunov’s strategy for orbital stability and second, through of specific examples
we see how this theory works for the case of solitary wave solutions (in Sect.4, the
case of periodic traveling waves will be studied). A wide variety of applications of
this theory it has been obtained in the last two decades. Moreover, the theory can also
be applied to systems which appear in the physical descriptions of phenomena, for
instance, in the dynamic of fluid; internal waves; nonlinear interactions in shallow-
water and ocean surface waves; optical; hydrodynamical systems; and plasma physics.

Our principal application here will be to establish a theory of existence and stability
of solitary wave solutions for the following Boussinesq-type system class of equations
(see [13]):

2.2)

U + vy +uu, =0,
Vp — Uyxx + Uy + (uv)y =0,

where u = u(x, t) and v = v(x, t) are real valued, x,t € R.
In the end of this section we give some notes and very interesting open problems.
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2.1 Geometric overview of the local stability theory

Suppose that (2.1) has a smooth curve ¢ — ¢, of solutions of type traveling wave
u(x, 1) = ¢c(x —ct), 2.3)

for a real profile ¢ : R — R and ¢ € I < R. Moreover, we also suppose that
there is another smooth functional F : X — R such that E and F are invariants by
translations, and are conserved quantities by the flow of (2.1). We also suppose that ¢
is a critical point for the functional H = E +cF, H'(¢.) = 0, for every ¢ admissible.
So, from the formal relation H' (7 (r)¢.) = t(r)H’(¢.), we obtain that

H'(z(r)¢.) =0 for every r € R. 2.4)

Next, since {t(r)},cr represents a one-parameter group of unitary operators on X
with infinitesimal generator t/(0) = %, it follows from (2.4) that for £ = H"(¢.)
(the second variation of H at ¢.),

d
c (aqsc) = 0. 2.5)

Therefore, we have that %q&c belongs to the kernel of the linear operator £. That
operator will be considered closed, self-adjoint, unbounded and defined on an specific
dense subspace of LZ.

Next, the main point of Lyapunov’s stability strategy for obtaining the property (ii)
in Definition 1.1, it is to get the following property: there is n > 0 and D > O such
that

E() — E(¢c) Z Dld(u; Q4,1 2.6)

Jor d(u; Qg.) = inf,cr |lu — 1¢cllx < nand F(u) = F(¢c). In other words, ¢
will be a constraint local minimum of E. So, from (2.6) and the continuity of the
functionals E, F, and of the flow + — u(¢) (supposing item (i) in Definition 1.1)
we obtain immediately the stability of €24, by initial perturbation in the manifold
M = {F(u) = F(¢c)}. For general perturbations of 4. we use the continuity of the
curve ¢ — ¢, and the triangular inequality (see [19-79,95]).

Now, for obtaining (2.6) the analysis starts with the Taylor expansion of E (u)
around the profile ¢. together with a modulation strategy, namely, there exist a e-
neighborhood, U, of the orbit Q. and a real-valued function « such that for every
u € U. we have the orthogonality property ra(u)uJ_%d)C and a(¢.) = 0. Thus, we
obtain immediately the following equality for L(u) = E(u) + cF(u) on M,

1
E(w) = E(¢) = L(ram) = L@0) = 5 (L. v) +o (l0l}) @D

where £ = L"(¢c), v = tqu)t — ¢ = ape + ¥, with Yy Lo and a = O (|| tgyu —
be ||§(). Moreover, we also have the main property 1//J_%¢c.
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The next step in the analysis for obtaining (2.6) is to give conditions for the quadratic
form (L f, f) to be positive defined. From the calculus of variations one possible
condition is that

(Lf, f)Z BIfIx forevery f € Ty M, (2.8)

where Ty M = span{F’(¢.)} is the tangent space to M = {u : F(u) = F(¢.)} in ¢.
Since the curve t — 7 ()¢, belongs to M and %r(z‘)d),:h:o = %(j}c € Ty.M then we
have Ker (L) N Ty, M # {0}. Therefore condition (2.8) is not sufficient in our cases.
So, the approach developed by Weinstein, Grillakis, Shatah and Strauss in [79,129]
show that provided the three next conditions:?

o Ker(L) = span{i ¢,

e the Morse index of £ satisfies n(£) = 1,

o ford(c) = E(¢c) + cF(¢.) we have d”(c) > 0,
we have

¢ =inf{(Ly, ¥) - ¥ € [Ker(DI, v LF' (@), ¥ ]x =1} > 0. 2.9

Thus, from (2.7) we get for ||v||x small enough the property in (2.6). In the following
we show that property in (2.6) implies the nonlinear stability property of the profile ¢..
Assume d”(c) > 0 and Qg is X-unstable (see Definition 1.1). Then we can choose
initial data wy = ux(0) € Uy NY and € > O such that

inf lwg = @e(- +r)llx = 0 but supinf [lug(t) = de(- +r)lx 2 €,
reR teRTER

where uy (¢) is the solution of Eq. (2.1) with initial datum wy. Now, by continuity in
t, we can pick the first time #; such that

inf fug(t) = g +1)llx = g (2.10)

Now, from the continuity property of the conservation laws for (2.1), E and F, and
from the translation invariance property, we get E(uy(tx)) = E(wg) — E(¢.) and
F(ur(ty)) — F(¢c) as k — oo. Next we can choose vy € Ue so that F(vg) = F(¢.)
and ||vx — ur(tx)llx — 0 as k — oo. By continuity E(vr) — E(¢.). Choosing n
sufficiently small, we may apply the analysis which gives property (2.6) to deduce
that

0 < E() — E(@0) Z Dllu(- + (i) — ¢ ()% = Dok — ¢e(- — a(ui) -

Therefore, the inequality

lluic(t) — e (- — cuiDllx = lluk () — viellx + Ik — e (- — a(ue))llx

2 For several Galilean invariance being considered in the orbital analysis, obviously the kernel of the self-
adjoint operator to be studied has a bigger dimension. Moreover, it may happen that the absence of a Galilean
invariance does not imply the trivial property of kernel (see [31]). The case of periodic traveling wave is a
nice example for showing the situation of an one-dimensional kernel and a Morse index being bigger than
one (see Theorem4.12 below).
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implies that |lug(tx) — ¢c(- — a(vk))|lx — 0 as k — oo, which contradicts (2.10).
So, we must have that 4. is X-stable. This finishes the stability statement based in
property (2.6).

Remark 2.1 Some comments on the function d(c¢) = E(¢.) + cF(¢.) need to be
established:

(1) since ¢, is a critical point for L = E(¢.) + cF (¢p.) we have that d'(c) = F(¢.).
So, the sufficient condition d”(c) > 0 in the orbital stability criterium above is
reduced to

d d
d"(c) = @) = <F/(¢c)’ %¢c> > 0. (2.11)

(2) By differentiating E'(¢.) + ¢F'(¢.) = 0 with regard to ¢, we have £ (%qbc) =
—F'(¢c). Therefore, from (2.11) we get d”(c) = —(L (£ec). L ¢c). Thus,
from the min-max principle £ must have at least a Morse index bigger or equal
to 1, provided d”(c) > 0.

(3) In general, the differential operators £ with a dense domain on L>-type spaces
are semi-Fredholm (its range is closed and its kernel is finite-dimensional), thus
we have Ker (L)t = R(L). Therefore, L2 = Ker(L£) & R(L) and so since
F ’(¢C)J_%¢c it follows the existence of ¥ € D(L) such that L = F'(Pc).
Then, £ (%gbc + ) = 0. Hence, there is 6 € R such that %q&c + = 9%4)(.
and therefore (¥, F'(¢¢)) = —(%q&c, F'(¢:)) = —d" (c). Then, the conclusion
in (2.9) remains valid if the condition d” (c) > 0 is replaced by the condition

let ¥ € L2, if Ly = F(¢.) then (¥, F'(¢.)) < O. (2.12)

Condition (2.12) is useful in situations where the family of solitary waves ¢,
does not depend smoothly on ¢ (see Albert [7] and Natali et al. [117]).

2.2 Boussinesq system for water waves

In this subsection we apply the abstract orbital stability established in the last subsec-
tion to the Boussinesq system for water waves (2.2). As we will see this application
needs delicate arguments to ensure that stability Definition 1.1 is fully fulfilled. We
star writing this system in the following Hamiltonian form

du=JE (u) (2.13)

for u = (u, v) (here we will identify the vector u with its transpose vector) and
_ (0 & _ 1 2, 2, .2, 2
J = , E(u,v)== (uy)“+u”+v°+u-v|dx. (2.14)
o 0 2 Jr

Next, for F(u, v) = fR uvdx we obtain that every solitary wave solution for (2.2)
u(x, 1) = (Ge(x — ct), ve(x —ct))
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with the profile ¢, = (¢.(x), vc(x)), satisfy the relation (E — c¢F) (¢p,) = 0. In other
words (¢, v) satisfies the following system of ordinary differential equations

{ B @.15)

—CV¢ = é‘c,/ —&e — Leve

Thus, we need to solve the nonlinear elliptic equation

¢+ %;g — %cCCZ — (1= =0. (2.16)

By using standard methods of integration and ODEs we obtain a unique solution of
(2.16) (up to translation) for |c| < 1 in the form

2(1 — ¢?)
cosh(W/T—c2x)—c

Next, for L(u) = E(u) — ¢ F (u) we have the linearized operator £ = L"(¢,) defined

by
(1= +v, t—c
£_< e ) ) (2.18)

Our stability theorem for solitary wave solutions of Boussinesq system (2.2) is the
following.
Theorem 2.2 The solitary wave ¢, = (Lc(x), ve(x)) with ¢ defined in (2.17) and
Ve = ¢l — %4"2 |c| < 1, are orbitally stable in HY(R) x LE(R) for every admissible
wave velocity c.

Le(x) = 2.17)

We start the proof of Theorem 2.2 with a global well-posedness theory for the initial

value problem associated to (2.1). This problem is actually an in the
space H!(R) x L?(R).? Here we will use the auxiliary space ¥ = H*(R) x H'(R)
where we can assure the global existence of solutions for (2.2). The next two theorems
give the necessary information for that analysis.

Theorem 2.3 Letf € X* = H*(R) x H"'(R), s > 3/2.
e There exist T = T (s, ||f||xs) and a unique solution u of (1.7) such that belongs
to the class C([0, T]; X*) N C'([0, T1; X*~2) with u(0) = f.
o T can be chosen “independently of s”.

o Consider T* the greatest positive real number such that for all T < T*, we have
that the solutionu € C([0, T]; X%). Then either, or T* = +o00 or T* < +o00 and

lim |ju(?)| y32 = 4o00.
t—T*

Proof The proof is based on the parabolic regularization method and techniques of
Bona—Smith. See [13]. O

3 The stability statement in Theorem2.2 is with Y = H 2(]R) x H! (R) in Definition 1.1.
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Theorem 2.4 Letf € X* = H*(R) x H* "' (R), s = 2, and T* the greatest positive
real number such that for all T < T* the solution u = (u, v) of (2.2) with u(0) =
f belongs to the class C([0, T1; X*). Suppose that there exists M > 0 such that
lu)|l1 + v £ M forallt € [0, T*), then T* = +o0.

Proof The proof is based in the existence of the following conservation law G for
(2.2)

Gu,v) = [ [4(14“)2 + 8(uy)? + 4u® + 4(vy)? + 402 + 6u (uy)* — 16Uty v
R
—41)(14,()2 + 10u%v + 203 + u* + 612 + u4v] dx, (2.19)

and a priori estimative of energy. O

Proof of Theorem 2.2 We start by showing the required spectral properties for £ with
domain D(£) = H3(R) x L2(R): Ker(L) = span{%(bc}, n(L) =1, and o,5(L) C
(B, +00), for some > 0. Indeed, by the Galilean invariance of translations for
system (2.2) we obtain %gbc € Ker(L). Suppose ¥ = (g, h) € Ker(L), then for

V(x)=1—c?+3cte(x) — 3¢2(x),

2
—4zg+ Vg =0 (2.20)
(e —c)g+h=0.
From (2.16), %; satisfies the first equation in (2.20). Since g(x) — 0 as |x| — oo
we obtain that the Wronskian of %{C and g, is zero. Therefore, g = O%Q and

h = Q%UC, for 6 € R. Thus, zero is a simple eigenvalue of L.
Next, we determine the Morse index of £. Let Q be the quadratic form associated

0 £, QW) = 3(LY, ¥), ¥ = (g.h) € H'(R) x L*(R). Then,

1 1 1
Qs =3 /R @+ Vgt fR [ — ) +hPdx = Q' () +5 gt ~ O +hIP. 2.21)

Now, the classical Schrodinger operator H = —j—; + V(x) with D(H) = H*(R)
has a simple kernel with eigenfunction %Q which has exactly one node em zero,
%{C (0) = 0, so from the Sturm—Liouville Oscilation Theorem the Morse index of H is
exactly one. From (2.16) and the Pohozaev identity % Iz CA(x)dx — %c Jr x)dx =
(1 —¢?) [ £%(x)dx, we obtain

(L., ¢.) = 3/ £2(x)ve(x)dx = 3 [/ e + 41— c2)¢3(x)dx} <0.
2 R 10 R

Hence, from mini-max principle it follows n(£) = 1. Next we show that n(£) < 1.
Indeed, let x € D(H) and By < O such that Hxy = Box, then from the mini-max

@ Springer



Sao Paulo Journal of Mathematical Sciences

principle follows that for gL x we have Ql(g) = 0. Thus, using one more time the
former principle, we obtain that the second eigenvalue for £ is precisely zero since

0.

2 Ql(g) + %llg(te — o) +hl?

= n o) 3
(g.m)eH" x L2 gl + llAll
(g, x)=0

1\

Then, since zero is a simple eigenvalue follows that Ay = 0 and therefore n(£) < 1.
Finally, to show that the rest of the spectrum is positive and bounded from below, it
is sufficient to find a strictly lower bound for the third eigenvalue A3 for £. Indeed,
using the previous argument, in the case of the subspace generated by f; = (x, 0) and
f, = (%{C, 0), and the inequality Ol(g) = allgll?, for gLy, gl%g}, we obtain the
existence of a number § > 0 such that A3 = 8. Hence the required spectral properties
for L are established.

In the following we check that for d(c) = E(¢,.) — cF(¢.) we have d”(c) > 0,
which is equivalent to see %F((bc) < 0. Using (2.17), ve = c&e — %;3 and a change
of variable we obtain that

—F(¢,) =81 — I —8c(1 — )31

oo I ._ (2.22)
I] = ‘/‘17C Wo{x, J = 1,2

Using [1], we obtain the equality
—F(¢,) =4c/1 —c2+4 [sin_l(c) + %] ,

and thus —%F(qﬁc) =8J1—-¢c2>0.

Now, let T* be the maximal time for the solution (u, v) of (2.2) given by The-
orem?2.3 for s = 2. From Theorem?2.4 remains to show that the solution (u, v) is
uniformely bounded in the H'(R) x L2(R)-norm. Indeed, from the abstract sta-
bility analysis in Sect.2.1, the local well-possednes em H 2(R) x HY(R) and from
the former spectral analysis we have that for € sufficiently small and some r € R,
la(®) — ()P N gixr2 <€,t €10, T] C [0, T*). Thus, since {t(r)}<Rr is an unitary
group in H'(R) x L*(R), we obtain

la@Ollgixr: <€+ 1@z =M, t€[0,T1C[0,TY),

where M is independent of every T € [0, T*), and therefore T* = 400 and the
stability Definition 1.1 is completely filled. O

2.3 End-section notes
(a) For the gKdV model (1.9) with 8 = 1, the stability condition d”(c) > 0 can

be obtained explicitly. Indeed, by supposing a smooth curve ¢ — ¢, of solitary
profiles satisfying (1.14), we have that ¢(x) = c_l/l’qﬁc(c_l/ﬂx) is solution of
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(1.14) with ¢ = 1. Thus
d d 2_1 2 2_1_
d"(c) = —llgel?> = llpl>—=c? 7 = (= == ) 2 7 g%
dc dc p

Therefore, by providing the right stability conditions established in Sect. 2.1 above,
namely, the local well-posedness associated to (1.7) and the spectral conditions
for L. in (1.19), we have the orbital stability of the profile ¢, for p < 28.

(b) For the fractional KdV model (1.9) with 8 € (0, 1) and p = 1, we obtain that
forc > 0and B < % equation in (1.14) does not admit any non-trivial solution.
For 8 € (%, 1) the existence of an even and positive solution ¢ (ground-state) for

D%p + ¢ — ¢* = 0 can be showed by solving the minimization problem (see
Frank and Lenzmann [68])

JB (@) =inf{JP () : v e HP2(R) — {0}} (2.23)

where J# is the “Weinstein” functional

€L

(e 1DE0R)” (o) #9

JP () = AT

(2.24)

For B € (%, 1), the orbital stability (conditional) of the ground-state ¢ has been
showed in Linares et al. [99] (see also Angulo [21] and Sect.3.2 below). For
B e (%, %), the spectral instability property of the ground-state ¢ has been showed

by Angulo [21]. In this case, the nonlinear instability property is an .

The case = % was also studied in [21] and the “stability of the blow-up’” around
the profile ¢ was obtained.

In Klein and Saut [89] were numerically constructed solitary waves for the frac-
tional KdV equation. Moreover, they also provided a detailed numerical study of
various issues associated to the dynamics of the model: blow-up in finite time
versus global existence, nature of the blow-up, existence for “long” times, and the
descomposition of the initial data into solitary waves plus radiation.

(¢) About the condition d”(c) < 0, it is well known that it can imply the nonlinear
(linear) instability of the orbit generated by the profile ¢.. From Grillakis et al. in
[79] will be sufficient to have that J is an onto skew-symmetric operator (obviously
with the right spectral conditions established in Sect.2.1). For the case J = 9,
in (1.7) an instability approach was studied in Bona et al. [50]. In [80] a more
comprenhensive nonlinear (in)stability theory was established by supposing J
being one-one, onto and skew-symmetric operator.
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3 Orbital stability—a global variational approach

In the latter section, we saw that the stability of solitary wave solutions to nonlinear
dispersive equations has been proved by verifying an Lyapunov inequality-type of the
form (2.6). This means that one must show that the solitary wave solution is a local
constrained minimizer of a Hamiltonian functional associated with (2.1), and this is
done basically by obtaining basic spectral information for a specific operator obtained
by linearizing the solitary wave equation. In general this spectral analysis is particularly
hard to perform. To avoid these difficulties an alternative method to prove the stability
property of specific solitary waves solutions, which does not rely on local analysis,
was developed by Cazenave and Lions [64] using Lions’s method of concentration—
compactness (Lions [100,101], Lopes [104]). In that method, instead of starting with
a specific traveling wave and trying to prove that it realizes a local minimum of a
constrained variational problem, one starts with the constrained variational problem
and looks for global minimizers.

When the method works, it shows not only the existence of global minimizers,
but also that every minimizing sequence associated with the constrained variational
problem is relatively compact up to the Gallilean invariance symmetries associated.
Moreover, if the functionals involved in the variational problem are conserved quan-
tities for the evolution model (2.1), we obtain that the set of global minimizers is a
stable set for the flow associated to (2.1) in the sense that a solution which starts near
the set of minimizers will remain near it all the time.

According to the local methods given by Weinstein, Grillakis, Shatah and Strauss
in Sect. 2, the variational approach produces (sometimes) a weaker result since it only
proves the stability of a set of minimizing solutions without providing information on
the structure of that set, or distinguishing among its different members called orbits.

For example, it is an | open problem | to know if the set of solitary wave solutions

obtained via the concentration—Compactness principle for the KP-I equation (see de
Bouard and Saut [65])
(W +2uy + tyyy)x = Uyy (3.1

withu = u(x,y,t) € Rand x, y,t € R, it contains the explicit lump solitary wave
profile

2 2
c— X 4+ X
Ye(x,y) =8 3__ e

2, 2\
(C-i—%"‘%)

Moreover, the stability properties of the lump ¥ is also an .

We refer the reader to the work of Albert [8], where is illustrated how the
concentration—compactness principle works for obtaining the stability results of soli-
tary wave solutions of nonlinear evolution equations of the general form (1.7). We
note that this approach for proving directly stability works whenever the functionals
involved in the variational analysis are conserved quantities for the evolution equa-
tion in question. For the case of a stability-framework by considering non-conserved
quantities (see Levandosky [96] and Angulo [19]). For the benefit of the reader, we
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establish the concentration—compactness principle which is the key tool in our analysis
(see Lemma 1.1 in Lions [100]).

Lemma 3.1 (The concentration—compactness principle)

Let {p}n>1 be a sequence of non-negative functions in L' (R) satisfying ffooo Pn(x)dx
=\ for all n and some ). > 0. Then there exists a subsequence {p,, }k>1 satisfying one
of the following three conditions:

(1) (Compactness) there are y; € R fork = 1,2, ..., such that p,, (- + yi) is tight,
i.e. for any € > 0, there is R > 0 large enough such that

/ Py (X)dx > X —€;
[x—yk|<R

(2) (Vanishing) for any R > 0,

lim sup / P (X)dx = 0;
lx—yI=R

k—>ooye]R

(3) (Dichotomy) there exists & € (0, A) such that for any € > 0, there exists kg > 1
and p}, p} € L'(R), with p}, pf > 0, such that for k > ko,

o ot 40)] =<

o0
’/ pldx —a
—00

Supp ,0,: N supp p,% =0, dist (supp p,l,supp p,%) — 00 as k — o0.

567

o0
<e, V pidx — (A — @)
—0Q

Remark 3.2 In Lemma3.1 above, the condition ffooo pn(x)dx = X can be replaced

by ffooo pn(x)dx = A, where A, — A > 0 asn — oo. It is enough to replace p, by
Pn/An and apply the lemma.

We finish this section with some notes and very interesting open problems.

3.1 The Benjamin equation: orbital stability of solitary waves

We consider the solitary wave solutions u(x, t) = ¢.(x —ct) for the Benjamin equation
(1.13). In this case the profile ¢ = ¢, satisfies the pseudo-differential equation

¢"(E) + IHY' (&) + ¢*(§) = cdp(£). (3.2)

The existence of explicit solutions to Eq. (3.2) with / # 0 is not known yet. The
problem of existence of solitary wave solutions was pioneered by Benjamin [46,47],
where using a Leray—Schauder degree theory he showed the existence of even solutions
for 3.2)if y = %ﬁl € (0, 1), namely, if we have that ¢ > 1/2. Later, Albert et al.
[10], by using the Implicit Function Theorem and the existence of solutions to (3.2)
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when/ = 0 (i.e. the KdV solitary wave solutions), proved the existence of a continuous
curve of even solitary wave solutions to (3.2) if / is sufficiently near zero. Afterwards,
Angulo [14] by using the concentration—compactness principle established a theory
of existence of solitary wave solutions with y close to 1.

The idea of this subsection is to give a sketch of the proof of the existence and
stability of solitary waves for (3.2) given by Angulo [14]. In other words we consider
the following variational problem

{ minimize V() = 12<M1// vy — L yddx 33)
subject to F () = 5 [p Y2 (x)dx =1 > 0,

where the linear operator M is defined by M = —3)% — I'H0y. The problem in (3.3)
is an example out of the curve for variational problems associated to the existence
of solitary waves for dispersive models. The point here is that M has not always a
nonnegative associated symbol. This situation produces serious problems in ruling-out
vanishing option in Lemma3.1.
By starting our study, for A > 0 we consider the following family of minimization
problems
L, =Inf{(V(y) : ¥ € H'(R) and F () = A > 0}. 34

Lemma 3.3 Forall A > 0, we have —o0 < I < O.

Proof Let ¥ € H'(R) be such that F(¥) = A > 0. Then ¥y (x) = 8'/2¢y(0x) for
every 6 > 0, satisfies F () = A and

2 10 oLz
V(¥e) = Enw’nz — EnD”an2 - TM%-

Hence, for 6 small enough, we get V (9) < 0 and therefore I, < 0. To prove I, >
—o0, it is sufficient to obtain a bound of the form [|y'||> < B(x,[) with F(y) = A
and V() < 0. Thus, from the Gagliardo—Nirenberg-type inequality and interpolation,
we obtain for A > 0 that [y < A/ P> and D2y )> < [¥/I1V].
Therefore,

1 ! f
5||w’||2 < EIIDWWIZ + = |x/f| lxmnw I+ ARy |12,

Since the square of ||¥'| is bounded by smaller powers, the existence of the constant
B(X, ) above is obtained. O

From Lemma 3.3 and its proof, it is clear that every minimizing sequence for (3.4)
is bounded in H!(R). Next, from Plancherel’s Theorem we obtain that the quadratic
part for V, satisfies the following relation

1 12
o) = 3 /R(w’)2 —IYyHY dx 2 —Z/\, FQ@) =, (3.5)
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Now, we find an upper bound for V which is the main ingredient for ruling-out the
cases of vanishing and dichotomy.

Theorem 3.4 There exist constants A > 0 and o > 0 and an admissible function ®
such that

12
V(®) < —ZA — AX? if A is small enough.

Proof (Sketch of the proof) For 8 = /[/2 we have

V(®) + gx < /R % [(Hax n 52) c1>]2 - %(I>3dx = G(d). (3.6)

Now, the goal is to show that G(®) can be negative. So, we consider the following
test functions ® = ¢(d, 4+ W), where for €

1 3.7

O, (x)=f(ex)cos(B*x), W(x)=f(ex), and
fO) = =2

Next, we adjust the constant ¢ such that F (W) = A and we also use that the parameters
€, 8 have the form € = Af and § = +¢ (see [14]). So, for A — 0 we can obtain the
estimative G(c®, + cS¥) < —AL°,with A > 0and o = % + B(6 + %). This proves
the theorem. O

As a consequence of Theorem 3.4, for A small we may restrict our minimization
problem (3.4) to the class of admissible functions i, such that

2
V) < —%x — AXC. (3.8)

In this class, we have that the nonquadratic part of V satisfies N(¥) = V(¢¥)—Q(¢) <
—AML°.

For ruling-out dichotomy in the concentration—compactness principle we prove the
sub-addivity of I;.
Theorem 3.5 Forall 6 > 1 and X positive and small, we have

(1) Ly S 0L, — AX° (6% —0),
2) Ly <0, and I, < I + I forall ¢ € (0, 1).

Proof We only prove (1) since (2) follows a standard argument. Choose ¢ € H LR)
with F () = A. Then for v (x) = 024 (x) we have F(1y) = A6. Suppose that yr
is part of a minimizing sequence for (3.4) and N (y) £ — AL for A small. Then

V() — OV () < (032 —0N®W) £ —AB* —6)1°.

Therefore, 1o < OV () — A3/ —0)A° and so the proof of item (1) is completed.
O
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Next, from Lemma3.3 and Theorems3.4-3.5 comes into the game the Con-
centration Compactness Principle. Indeed, let {1} be a minimizing sequence for
problem (3.3). Then we have F () = A for all n, and V(¢,) — [ asn — oo.

As we well known, because of ’ the inclusion of H!(R ) into LZ(R ) is not compact |,

one can not extract a subsequence of {y,} which converges in L2(R). This diffi-
culty will be circumvented in fact by the Lions’s Lemma3.1. Overall, this principle
provides that a subsequence of {1} can be found such that, after being suitably
translated (Galilean invariance for the model in question), each function in the
subsequence is ’concentrated on a fixed bounded interval ‘ Thus we can apply the

compactness of the inclusion of H 1() into L2(§2) when  is a bounded set |.

Now, for applying Lemma3.1 we associate with each minimizing sequence {v,}
for problem (3.4), the following sequence of nondecreasing functions: Q, : [0, c0) —
[0, A] defined by

yt+w
On(w) = sup / [ (1)1 dx.

yeRJy—w

Since ||y, || remains bounded then {Q,,} comprises a uniformly bounded sequence of
nondecreasing functions on [0, 00). A standard argument then implies that { O, } must
have a subsequence, which we denote again by {Q,}, that converges pointwise and
uniformly on compact sets to a nondecreasing limit function on [0, 00). Let Q be this
limit function, and define
a= lim Q(w). (3.9)
w—> 00

From the assumption that ||/, ||> = X it follows that 0 < o < A. The concentration—
compactness principle distinguishes three cases: a« = A, it called the case of
compactness, o = 0, it called the case of vanishing; and 0 < o < A, it called
the case of dichotomy.

As we know, the strategy of the principle consists in ruling out vanishing and
dichotomy, and so only the case of compactness can occur. It will follow, by a stan-
dard argument, that every minimizing sequence is relatively compact, after suitable
translations. Thus, we start by showing that « is positive. Indeed, let A be positive and
small and suppose thatoe = 0. Then Q, (w) — 0 forevery w. The next step is to see that
’ Y, — 0inthe LP-norm |, p > 2. In fact, the Sobolev embedding of W!-!(a, b) into

L'(a, b), the Cauchy—Schwartz inequality, and the estimative |[¥, |1 < Aj, assure
that for fixed w, there is a constant A» = A(w) such that

yt+ow P yt+w 5
/ [ (X)” dx = A2d, / 20 |” + 19, ()| dx
y y

—w —w

with §,, — 0 as n — +o0. Then, covering R by intervals of radio w such that every
point of R is contained in at most two intervals, we deduce

1 2 21
I, ll” = Asdy

o0 14
f [ (|7 dx = A3d,

—00
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and so we conclude the claim. Therefore,

2
L= lm V() 2 lminf Q) > inf O()) = 1.

n——+o00 4

On the other hand, by Theorem 3.4 we know I, < —%A. This contradiction shows
that vanishing cannot occur. Now from Theorem 3.5 and standard arguments we obtain
that @ € (0, 1) (see Angulo [14]). So, « = X and get the compactness alternative of
Lions. Then the set of minimizers for I,

Gr={y e H'®R): V) =1 and F(¥) = Al, (3.10)

is nonempty for A small. Moreover, we have the following stability theorem.
Theorem 3.6 Let A positive and small. Then we have the following.

(1) The set G, consists of solitary wave solutions \r for the Benjamin equation satis-

Jying
v IHY + Y2 =cy, ¢ > 0. (3.11)

(2) Gy, is stable in H'(R) by the flow of the Benjamin equation, in the following
sense: For every € > 0 there exists 8§ > 0 such that, if infycg, llup — ¥ll1 <
8, then the solution u(t) of (1.13) with u(0) = uq exists globally and satisfies
infyeg, lu@®) — vl <e forallt.

(3) The wave speed c in (3.11) satisfies the inequality % <c< % + AIY2)V2 vwhere
A is a positive constant that does not depend on | and A.

Proof See Theorems 2.12 and 2.14 in [14]. O

Remark 3.7 (1) Equation (3.11) is called the Euler-Lagrange equation associated to
the minimization problem (3.3) and c is the Lagrange-multiplier.

(2) The proof of item (2) in Theorem 3.6 uses strongly the invariance of the functionals
V and F in (3.3) by translations and the conservation property of these functionals
by the flow of the Benjamin equation.

(3) The global well-posedness theory for the Benjamin equation was established in
[98].

3.2 End-section notes

(a) We note that the concentration—compactness principle can still be used to prove the
stability or instability of solitary wave solutions if the functionals involved in the
variational problem are not conserved quantities. The stability approach has been
put forward by Levandosky, in [96], in which the stability of a fourth-order wave
equation is studied. In Angulo’s book [19] were established other applications of
this stability approach, in particular, it was applied to a generalization of the BO
equation in (1.11) and so it was given other demonstration of the orbital stability
property of the solitary waves in (1.12). We note that Liu and Wang [102], applied
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(b)

(©

(d)

this method with success to study the nonlinear stability of solitary wave solutions
of a generalization of the KP-I equation (3.1). In the case of orbital instability for
solitary wave solutions, a variational approach was established by Angulo [16]
(see also [19]).

Sometimes the property of sub-additivity can be very difficult to be showed for
specific functionals, and so ruling out the dichotomy case in the concentration—
compactness principle can be a big problem. In this case, a new approach has been
developed by Lopes [103], which gives us sufficient conditions to obtain that every
minimizing sequence associated with some variational problems is pre-compact
(modulo translations).

In the following we will use the variational characterization (2.23) of the ground-
state ¢ for the fKdV model (1.9) (namely, ¢ satisfying the properties ¢ = ¢(|x]) >
0 and the equation DPp+¢—¢? = 0,8 € (%, 1)), for obtaining the basic stability
inequality (2.6) for ¢, satisfying the equation

Dﬁ¢c+c¢c—¢3:0 forany ¢ > 0.

Indeed, let ¢ be a minimum for the functional J# in (2.23). Thus, the self-adjoint
operator £ = DP 4+ 1 — 2¢ satisfies the so-called non-degeneracy property,
namely, Ker (L)) = span{%gp}. Moreover, since (L1, ¢) < 0and (L1n,71) =0
for n € C§°(R) with nLe?, we have n(£1) = 1 via the min-max principle. Now,
for R = By + x¢' € L*(R) follows L1 R = —pBy (at least in the distributional
sense). Thus a bootstrapping argument shows that R € HP*!(R) and so R €
D(Ly) = HF(R).

Next, for any real number 6 # 0, define the dilation operator Ty by (Tg f)(x) =
f(6x). Then, via the elementary scaling ¢.(x) = 2¢@(c'/Px) and the relation
DA(Ty f)(x) = 0P DP f(0x), we can show that for 6 = ¢'/# we obtain that ¢,
satisfies DP ¢, + cop. — %d)f = 0, and so, we obtain its linearized operator L, =
DP +c—¢. tobe studied. Now, the relation £, = ¢Ty L Té,_l with = cé/ p implies
that spec(L.) = {cr : r € spec(L1)} and therefore £, and £ have the “same
structure”. Thus, ¥ is an eigenfunction of £ with eigenvalue A if and only if Ty
is an eigenfunction of £, with eigenvalue cA. Then, we conclude immediately that
n(L.) = 1and Ker(L,) = Span{%@}. Thus, since R, = Bd. + x¢. € D(L.)
with L. R, = —Bcg. (where we use DP (x¢') = BDP ¢ + xDP¢’) we obtain

-1 __ ! gl -1
(£ e e) = =5 (Res ) = e [zﬂc C}<0, (3.12)

where we use integration by parts (and xd)cz(x) — 0O as |x| > 4+o0)and 8 > %
Hence, from regularity properties of the curve ¢ — ¢, condition (2.12), and from
the Lyapunov property (2.6) satisfied by the energy E(u) = % fR |DA2u|? —
%u3dx, we obtain the orbital stability (conditional) of ¢,.

Depending on the model under study, the concentration—compactness principle is
a powerful tool to show the existence of solitary wave profiles. But this approach
may be incomplete to obtain some type of information about the dynamics of

@ Springer



Sao Paulo Journal of Mathematical Sciences

the set of minimizers. One example of this situation is presented in the following
Boussinesq-Full dispersion systems models for internal waves in a two-layers
system

{Jba,;+£maxv—2ﬁ8x(§v) =0 (3.13)

Jidv+ (1 —y)Jedes — B, (02) =0, B>0, ye(,]1),

where L, is the self-adjoint operator defined for uy € (0, +-00] by

VI

)/2

1
Ly, = — — Y5 |D| coth(/12| D)) + % (a - Pcothz(m\0|)> 92, >0, (3.14)

1
Y
|D| = Hoy, and the Bessel-type operators Jp, Jg, J. are defined by J, = 1 —
ubd?, Jg =1 — pdd?, Jo = 1+ pcd?, witha+b+c+d = 3, b,d 2 0,
a,c < 0. Indeed, in Angulo and Saut [42] was showed only the existence of
solitary wave profiles {(x, 1) = £(x — wt), v(x, 1) = v(x — wt) for (3.13) via the
concentration—compactness principle for a w-velocity satisfying || < (1 —1y) Ll

B
The stability of the associated set of minimizers is actually an .

(e) The geometry of the set of minimizers determined by a specific variational prob-
lem with constraint is not a very well understood part of the theory and more
studies need to be developed. The basic problem here is that “inside the minimiz-
ers set” may exist several orbits (generated by the several Galilean invariance of
the equation), each one possibly generated by different solution profiles modulo
some specific invariance. In recent years the strategy to get around this problem has
been to obtain results of uniqueness for the pseudo-differential Euler—Lagrange
equation satisfied by the profiles, a challenging problem when dealing with pseudo-
differential operators, such as those associated with the BO equation or systems
like in (3.13).

4 (in)Stability of periodic traveling wave solutions

Nowadays, the study of the existence and stability of traveling waves of periodic
type associated with nonlinear dispersive equations has increased significantly. A rich
variety of new mathematical problems have emerged, so as well as the physical impor-
tance related to them. This subject is often studied in relation to the natural Galilean
symmetries associated to the model (translation and/or rotations invariance) and to
perturbations of symmetric classes, e.g., the class of periodic functions with the same
minimal period as the underlying wave. However, it is possible to consider a stability
study with general non-periodic perturbations, e.g., by the class of spatially localized
perturbations L%(R) or by the class of bounded uniformly continuous perturbations
Cp(R) (see [71-73,110]).

In the case of shallow-water wave models (or long internal waves in a density-
stratified ocean, ion-acoustic waves in a plasma or acoustic waves on a crystal lattice),
it is well known that a formal stability theory of periodic traveling wave has started
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with the pioneering work of Benjamin [45] regarding to the periodic steady solutions
called cnoidal waves found first by Korteweg and de-Vries for the KdV equation (1.4)
(The Benjamin’s approach was only years later completed by Angulo et al. [24] (see
also [19]). The cnoidal traveling wave solution, namely, u(x, t) = ¢.(x — ct), has a
profile determined by the explicit form

wc(§)=ﬂz+(ﬂ3—ﬂz)cn2( ﬂ31_2ﬂ‘§;k), @.1)

where cn(-; k) represents the Jacobi elliptic function called cnoidal associated with
the elliptic modulus k € (0, 1), and B;’s are real constants satisfying the relations

B3 — B2
Bs—Bi

The cnoidal wave in (4.1) is periodic with a minimal period T (k) = 2K (k), where
K (k) is the complete elliptic integral of the first kind (see [56]) given by

131 <ﬂ2<ﬁ3’ ,31+,32+ﬂ3=3c, k2=

4.2)

K (k) ke (0,1). 4.3)

_/1 di
o JA = =k

Now, according to Benjamin, Weinstein, Grillakis, Shatah, and Strauss stability
framework established in Sect.2.1 above, the existence of a non-trivial smooth curve
of periodic traveling waves solutions with a same period is required. In the periodic
setting this condition presents new and delicate aspects that need to be handled. For
the general class of dispersive model in (1.7), by instance, the possibility of finding
explicit solutions will depend naturally on the form of M: if it is a differential operator
of the form M = —83, the use of the quadrature method (it means writes Eq. (1.14) in
the form [(/ﬁé.]2 = F(¢.)), and the theory of elliptic functions has showed to be a main
tool. So the solutions will depend of the Jacobian elliptic functions snoidal, cnoidal,
and dnoidal type. Now, since the period of these functions depends on the complete
elliptic integral K (k) in (4.3), we have that the elliptic modulus £ will depend on
the velocity ¢ and therefore we have that a priori the period of ¢, will also depend
on c. Hence, by using the Implicit Function Theorem, it has been obtained in many
cases the wanted smooth branch of periodic solutions with a fixed minimal period.
We note that the procedure of quadrature method in general does not work if M is a
pseudo-differential operator like the BO equation (1.11). Angulo and Natali [34] (see
also [19,36]) worked on this obstacle and they used the classical Poisson Summation
Theorem for obtaining solutions when M is a pseudo-differential operator.

With regarding to the spectral sufficient conditions for the stability study, namely,
the simplicity of the zero eigenvalue and the Morse index, the problem is very delicate.
The work of Angulo and Natali [34] established a new set of conditions that gives us
this special spectrum structure. The analysis relies upon the theory of totally positive
operators and the Fourier transform. We note that this new theory leads to a signifi-
cant simplification of the proofs of stability of periodic traveling waves solutions for
nonlinear dispersive equations.
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In this section we establish two specific applications of the theory in [34]. The
first one has relation with the stability of the periodic waves for the Benjamin—Ono
equation (1.11) and the existence and (in)stability of standind waves with a periodic
profile for the critical nonlinear Schrodinger equation:

ity 4 tyy + lul*u = 0. (4.4)

We also give in this section a linear instability criterium for periodic traveling wave
solutions for the general model of Benjamin—-Bona—Mahoney type equation

ur + ux + (f @)y + Mu), =0,

with M being a general pseudo-differential operator (see (1.8)). In particular, we show
the (non)linear instability of cnoidal waves profiles for the modified Benjamin—Bona—
Mahoney equation

Ur + uy +3u2ux — Uy = 0. 4.5)

We finish this section with some notes and some very interesting open problems.

4.1 Quadrature method and Poisson Summation formula for the existence of
periodic waves

In this subsection we apply the quadrature method and the Poisson Summation formula
(PS formula henceforth) in the theory of the existence of periodic traveling waves
solution for nonlinear dispersive model. From our point of view, the PS formula seems
to be much more flexible in comparison with the quadrature method when obtaining
specific formulas of periodic profiles. Moreover, PS formula approach can be used for
obtaining spectral informations of linear operators in a stability study.

Here we obtain the specific profiles for the periodic traveling waves profiles asso-
ciated to the BO equation (1.11) and the “critical nonlinear Schrodinger equation”
(4.4).

4.1.1 Periodic traveling waves solutions to the BO equation

We will show that the BO equation (1.11) has explicit periodic traveling wave solutions
of the form u(x, t) = ¢.(x —ct) for an arbitrary fundamental period 2/ and wave speed
c > % In fact, in [44,118] was obtained that for

1
B=2tanhy and tanhy = o7 (4.6)
c

the function .
B sinh y

é
cosh(y) — cos (7;—1)

pc(§) = 4.7
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satisfies the pseudo-differential equation

1
Hol + co. — Egof =0. (4.8)

We note that the solitary wave profile (1.12) associated with the BO equation on all
line may be obtained from (4.7). In fact, if we take the limit / — oo then y — 0 and
B — 0insuch away that/y — cm, B — 2m. Therefore, Eq. (4.7) gives us the form
(1.12) at the limit.

Next, we obtain the explicit solution (4.7) by using the PS formula. The equation

4w
, 1+ w?x?’
o > 0, and their Fourier transform is given by ¢,,(x) = dre o W, Then, by the PS
formula, we can build the following periodic profile v, with a period 2/

How + 0, — %(f)g) = 0, determines the solitary wave solutions ¢, (x) =

= 27( = —nln|  minx
Vo) = Y Gulx +2Un="- el ™
n=—00 n=—oo
2m +Oos ol Cos (_nnx) 2m Re | coth % + imx
= — e o = — L0 -
! ! ! ! 2 T
n=0
2 sinh (%
— _ﬂ (a)l) i (49)
I\ cosh (%) — cos (%)

wheree, = 1ifn =0,ande, =2ifn=1,2,3,...
Now, let W, with ¢ € R, be a smooth periodic solution of the Eq. (4.8) of

+00 inwx
]
n=—oo n€ .

period 2[. Then W, can be expressed as a Fourier series, ®.(x) =

Substituting the expression above into the BO equation we get [# + c] ap, =

. T
%Z;io—oo Ay—mam. Now, from (4.9) we consider a,, = Te vinl e 7, y € R.

Substituting a,, into the last identity we have

+o00 47_[2 400 471_2
> anmam = l—2e—V|"| nl+142) ek = l—ze—y‘"|(|n| + cothy).

m=—00 k=1

Then, we conclude that ¢ + # = 27” . %(|n| + cothy). We denote y = ll
w
b4
and consider ¢ > 7 Then, if we choose a speed-velocity @ = w(c) > 0
T g
of the solitary wave ¢, such that tanh (—1) = L we see from (4.9) that
w c

we catch the Benjamin’s periodic traveling waves ‘ profile ®. = ¥, () = ¢.. More-

b4
over, since we have that ¢, > O and y := y(c) = tanh~! (_l> is a differentiable
c

. T, . . ..
function for ¢ > 7 it follows that we obtain the following smooth curve of periodic
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ur [\ 4N N
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u;

Fig. 3 The BO-periodic traveling wave solution (4.7) with u; = 0 and up = 2c the constant solutions

whenc < T

traveling waves for the BO equation, ¢ € (%, +oo) = ¢ € H[’,“er([O, 21]) (see
Fig.3).

4.1.2 Critical nonlinear Schrédinger equation

In this section, we consider the periodic critical nonlinear Schrodinger (CNLS) given
by equation
i 4 ey + ultu =0, (4.10)

withu = u(x,1) € C, x € [0, L] and ¢t € R. In what follows, we consider solutions
of the form u, (x, t) = €' ¢, (x), and we will show the existence of a smooth family
of periodic waves ¢, (x) with a minimal period L, w € (’Z—;, —i—oo) — @u. If we

substitute this kind of solution in (4.10) we obtain the following ODE,
" 5
Py T 95 — 090 = 0. 4.11)

Next, we will use the quadrature method for finding a periodic profile of (4.11).
Indeed, by multiplying Eq. (4.11) by ¢/, and integrating once we obtain

1 6
(o, 1> = 3 (—% + 3w¢2 + 68%) , (4.12)

1
where By, is anon zero constant of integration. Now, we consider the ansatz ¢, = ¥,

this means we are considering positive solutions. Replacing ¢,, in (4.12) we obtain
the following equation in quadrature form

4 4
ol = 5 (—vi +3002 + 6By, 00) = TFyWu®).  @13)

with F (1) := Fy (1) = —1* + 3wt? + 6By t. Let us consider 51, 12 and n3, the non
zero roots of the polynomial Fy, such that F'(t) = #(t — n1)(t — n2)(n3 — t). Because
of Eq. (4.13) we must have

nm+m+n3=0, nn2+mn+mn3 =—3w, nnn3 =6By,. (4.14)
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The first of the relations above shows us that the roots 1;, i = 1, 2, 3 should satisfy
n1 < 0 < n2 < n3. Therefore ny < ¥, < 3.

Consider a wave-speed w > 0 arbitrary but fixed. We are looking for non-constant
periodic solutions 1, such that its maximum value and minimum value on its period
domain [0, L], are given respectively, by ¥,(0) = n3 and ¥,(c) = n, for some
o € (0, L). The differential equation (4.13) allow us to use Leibnitz rule and conclude
that

/'73 ar _ 2 &+ M, (4.15)
ve) Ntz =D —m)@—n)  /3g “r '
where M, 1is a constant and g is defined below. Since (4.11) is

’ invariant under translations ‘ we can conclude from Byrd and Friedman [56] (formula
257.00) that,

n3(n2 — 1) + N1 (3 — n2)sn? (%gé; k)

Vo) = , (4.16)

_ _ 2 (2 g
(m2 — 1) + (13 — n2)sn (ﬁgé,k)
where sn represent the Jacobian elliptic function snoidal and

2 2> —m(mp3—m)

8= Vi —n) - m—m)

So, using the expression for k and k2sn?+dn* = 1, we arrive at the following compact

form of ,,:
dn? (& k
3
Vo) = s £ A ) @.17)
1 + B2sn? (_ﬁgg; k)
where dn represents the Jacobian elliptic function dnoidal, B> = —n3k*/n; > 0.

Now, the periodic traveling wave solution v, has a fundamental period given by

243K (ky) 2 = -n1(n3 — n2)
N O mm2 —n)

Next, by using the Implicit Function Theorem, we can obtain the following smooth
family of periodic waves with a minimal period L (see Angulo and Natali [35]),

Ty = /3gK (ky) = (4.18)

w € (Z—j, +oo) — @, With

(60
\/1 + B2sn2 (%gg; k>’

and 13, g, k are smooth functions of w. Lastly, we can formally see the asymptotic
behavior of the solutions ,,. We start with the constant solutions: indeed, it follows

V(&) =3 (4.19)
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N\ L
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7 R SRR W

(a) (b)

Fig. 4 In a we sketch a phase portrait representation (¢, ¢,,) of (4.11) with u; = 0 and up = /4 the
constant solutions. In b we have the smooth standing wave profile / fg (homoclinic orbit) and the periodic
traveling waves ¢, in (4.19) (periodic orbit)

that if 73 — /o (o fixed) then k — 0 and so V,(z) — 13 = /o, which gives
us the non-trivial constant solution ¢, = w!/* for the CNLS. On the other hand, if
m — 3w then k — 1, and s0 ¥, (§) = f5(£) = /3w sech(2/w £). Then /fs
is the classical standing wave profile solution, ¢/’ \/Fs|, associated with the CNLS
equation on whole the line.

In Fig.4 below we show the phase portrait associated to model (4.11) (see Geyer
and Quirchmayr [75]). The internal trajectories (no-changing of sign) are given by
(4.19). The homoclinic trajectory is exactly the positive profile /fs.

4.2 Angulo and Natali’s stability approach

Next we establish the theory developed by Angulo and Natali [34] to study the stability
of positive even periodic traveling waves solutions associated to the general dispersive
equation (1.7). We start by studying the linear operator £ : D(L) — L?,er([—L, L))
defined, on a dense subspace of L%er([—L, L]), by

Lu =M+ c)u — ¢Pu, (4.20)

where ¢ = ¢, satisfies (1.14), p € N, p = 1. We will suppose that ¢ > —b, where
b satisfies (k) > b for all k € Z.* With that condition M + ¢ represents a positive
operator. Then, by using the spectral theorem for compact and self-adjoint operators
we have the following characterization of the spectrum of £ (see Theorem 11.21 in

[19D).

Theorem 4.1 The operator L in (4.20) is a closed, unbounded, self-adjoint operator on
Lfm ([0, 2L]) whose spectrum consists of an enumerable (infinite) set of eigenvalues

4 Here, the pseudo-differential operator M is acting on periodic function of period 2L. In other words, M
is defined as a Fourier multiplier operator by Mu(k) = a(k)u(k), k € Z.
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(M3 satisfying Ao < A1 < Ay < ... and Ay — o0 as k — oo. In particular, L
has zero as an eigenvalue with eigenfunction %g)c.

Definition 4.2 We say that a sequence & = (&;)nez C Risin the class P F(2) discrete
if

(i) a, >0, forall ne?,
.. 4.21)
(1) Qny—m 1 %na—my — %ny—ma@ny—m; > 0 for ny < np and my < mo.

The definition above is a discrete form of the continuous ones definition which
appears in Karlin [87]. The main result of this section is the following,

Theorem 4.3 (Angulo and Natali) Let ¢, be an even positive solution of (1.14). Sup-

pose that <Z>\c(n) > 0 foreveryn € Z, and K = (¢f (n))nez € PF(2) discrete. Then
L in (4.20) has exactly one unique negative eigenvalue which is simple, and zero is a

simple eigenvalue with eigenfunction d—(pc.
X

Proof The proof relies upon the theory of totally positive operators, the theory of
totally positive sequences of order 2 (P F(2)-class) and from the spectral theory for
compact self-adjoint operators (see Angulo and Natali [19,34]). O

Next we establish two applications of Theorem4.3 for the cases of the BO and
CNLS models.

4.2.1 Stability of periodic waves for the BO equation

The Poisson Summation Theorem and Theorem4.3 will be applied with success to
obtain the nonlinear stability of the periodic profiles in (4.7), with regard to the periodic
flow of the BO equation. We note that in this case, Definition 4.2 needs to be changed
slightly to the following one:

Definition 4.4 We say that a sequence @ = (&,),ez € Risinthe class P F(2) discrete
if

(i) a, >0, forall neZ,

(1) oy —my %y —my — Ony—myOny—m; = 0 for nj < np and my < mo,

(iii) strict inequality holds in (ii) whenever the intervals (n1, n2) and (m1, m) intersect.
(4.22)

T

Theorem 4.5 The periodic traveling waves ¢. in (4.7) with c > T, are orbitally stable

1
in H [,ze,([—l , [1) with regard to the periodic flow of the BO equation.

Proof The global possednes in H per ([=1, 1]) of the initial value problem for the BO
equation was established in [98]. Next we have the spectral structure for the self-

adjoint operator L = Hoy + ¢ — ¢.. Indeed, from (4.9) we get for y satistying (4.6),
¢L (n) = ” e V"l > 0 for all n € Z. Moreover, it is easy to verify directly that the
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sequence {e=7I"}, 7 is in PF(2) discrete in the sense of Definition 4.4. Therefore,
the Morse index for £ satisfies n(£) = 1 and Ker (L) = span{%goc}.

For the calculus of % llpc |12, it follows from the Parseval Theorem that

1d 2 d 4n’ ~2y1n| 87° —2yn|
=5l Z_ZE(ZTZe )z_mme > 0.

nez nez

1
Hence, the orbit generated by the periodic traveling wave ¢ is stable in H . ([—1, [])
by the periodic flow of the BO equation provided ¢ > 7. O

Remark 4.6 The stability of the constant solutions for the BO equation, ¥ = 2c¢, in

1
H,,ze,([—l, []) forany ! > O and ¢ < % was showed in Theorem 11.32 in [19].

4.2.2 (in)Stability of periodic traveling waves for the CNLS equation
Next we consider the smooth family w € (Z—i, +oo> — @, of periodic wave solutions

for CNLS with ¢, satisfying (4.11) and given in (4.19). In the study of stability
properties of the solution e/ ¢,, by the flow of (4.10), the notion of stability is different
from that for KdV-type equations studied in the last sections because (4.19) has at least
two Galilean symmetries: translations and rotations. So, by defining the orbit generated
by ¢, via these two invariances

Oy, =1{0u(-+y): (v,0) € R x [0,27)}, (4.23)

we have the following definition.

Definition 4.7 We say that the orbit O, is stable by the periodic flow of the CNLS
equation if for all & > 0, there is a §(¢) > 0 such that if inf(y g)erx[0,27) |40 —
e’afpw(' + ) H, < 3, then the solution u(x, ¢) associated with the CNLS equation
(4.10) with initial data ug satisfies inf(, gyerx[0,27) |11 (-, 1) — e, (- + )| IH;N <e,
forall t € R.

Next we establish the (in)stability results for the periodic wave solutions with profile
¢, defined in (4.19) (see Angulo and Natali [35]).
Theorem 4.8 The orbit O, is stable in H;er([O, L]) by the flow of the CNLS

w2 r(ko) r (ko)

fore e\ 2 2
4K2(k)vVk* — k2 + 1 and ko ~ 0.3823174965. Here K represents the complete ellip-
tic integral

) and unstable for v € < +oo>, where r(k) =

Corollary 4.9 For ugy € H;er([O, L)) sufficiently close to the orbit Oy, with v €
7% r(ko)
L2 12

to the class Cp(R; H;er).

), we see that thesolutionu = u(x, t) of (4.10) with u(x, 0) = ug belongs
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4.3 Alinear instability criterium for periodic traveling wave solutions

In this subsection we establish a linear instability criterium of periodic traveling wave
associated with some general one-dimensional dispersive models. By using analytic
and asymptotic perturbation theory, we establish sufficient conditions for the existence
of exponentially growing solutions to the linearized problem and so the linear insta-
bility of periodic profiles with mean zero is obtained. Application of this approach
will be concerned with the linear instability of cnoidal wave solutions for the modi-
fied Benjamin—Bona—Mahony (4.5) (mBBM henceforth). Our approach can also be
extended to the general model (1.7) (see [38]).

It is widely known that the spectral instability of a specific traveling wave solution
of an evolution type model is a key prerequisite to show their nonlinear instability
property (see [80,103,125] and references therein). Moreover, determining when the
spectral instability result implies nonlinear instability is a non trivial task. In [80] was
established that for getting that assertion is sufficient to show a specific inequality (see
(6.2) in [80]) associated to semigroup oA generated by A = JL,. In general, this
inequality is a nontrivial issue to be verified because of the Spectral Mapping Theorem
(o (eA) = e (A)) is present in the background (see Georgiev and Ohta [74], Cramer
and Latushkin [64] and reference therein).

On the other hand, if we use Theorem 2.2, Remark 2 in Section 2 of Henry et al. [82]
and the property that the mapping data-solution associated to the evolution equation
in question is of class C? around the traveling wave solution, we can obtain that the
spectral instability result will imply nonlinear instability (see Angulo and Natali [38]
and Angulo et al. [33] where this kind of strategy has been used for obtaining nonlinear
instability results)

4.3.1 Linear instability criterium for the generalized Benjamin-Bona-Mahony
equation

The specific dispersive models, which are the focus of our study here, are the gener-
alized Benjamin—Bona—Mahony equations (gBBM henceforth)

up +ux + (f W)y + (Mu); =0, (4.24)

with u = u(x,1), u : R x R — R, is a real valued function which is periodic
at the x—variable, M is a differential or pseudo-differential operator defined in the
framework of periodic functions defined as a Fourier multiplier operator by //\/lg(n) =
a(n)g(n), n € 7Z, where the symbol « satisfies relations in (1.8). For M = —8)%
((n) = n?), and f(u) = u? and f(u) = u’ in (4.24), we obtain the well-known
models Benjamin—Bona—Mahoney equation and modified Benjamin—-Bona—Mahoney
in (4.5), respectively. In our study, we will assume «(n) > 0 for n € Z, but our results
can be modified for cases of sign changed symbols and lower bounded.

We will suppose that Eq. (4.24) admits traveling wave solutions u(x, ) = @.(x —
ct), with the profile ¢, : R — R being an L-periodic smooth function with mean-zero
fOL ¢c(§)dé = 0,and c € I C R being called the wave-speed. Hence, from (4.24) we
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obtain after a first integration the pseudo-differential equation

1
M+ Dge — ~@c+ o)) = Ag.. (4.25)

Here ¢ # 0 and Ay, is an integration constant which will be assumed to be zero in
our approach (see Alves et al. [11] and Sect. 4.4-(f) below for the case Ay, # 0). By
considering the new variable w(x, t) = u(x + ct, t) — ¢.(x) into the gBBM-equation
and using Eq. (4.25) satisfied by ¢., one finds that w satisfies the nonlinear equation

(0 — i) (w + Muw) + 0w + ' (@w + 0 (Jw]?) =0. (4.26)

As a leading approximation for small perturbation, we replace (4.26) by its lineariza-
tion around ¢., and hence we obtain the linear equation

(3 — cd)(w + Mw) + dc(w + f'(go)w) = 0. (4.27)

Seeking particular solutions of (4.27) of the form w(x, t) = My (x) (the so-called
growing mode solution), where A € C, ¢ satisfies the linear problem

Loy =AM + 1), (4.28)

where Lo = c(M + 1) — (1 + f'(¢0)) : Hpz ([0, L]) — L3,,.([0, L]). Thus, we
are in a similar framework to that in (1.20) and so a natural extension of Defini-
tion 1.2 can be established in the case of periodic traveling waves solutions. Since 9,
is a skew-symmetric operator and L a self-adjoint operator we have that our eigen-
value problem (4.28) is reduced to show the existence of a spectral parameter A com

Re(L) > 0. Moreover, we are looking for v in the closed subspace of mean zero,
v={rer2qo.L: 1f1= 1 fy f()dx =0}.
Now we introduce our approach. If we use the expression A_B—E@ as a notation for

the linear operator (A — cd,)~19, with Re()) > 0, we obtain that the spectral problem
(4.28) is equivalent to the following one

Ox

o, (I+ f gy =0. (4.29)

M+ Dy —

Next, we consider the orthogonal projection Q on V (Q? = Q and Q* = Q), namely,
Q: L2, ([0, L]) — V defined by Qu = u — [u], and the following family of closed

per

linear operators A* : H,’fg,([o, L) NV — V,Re(A) > 0, given by

Ox
A’\vz(/\/l—l-l)v+)L

— Oy

0@ + f'(gc)v). (4.30)

Next, in order to deduce the existence of a growing mode solution for (4.29), it
is sufficient to find A € C with Re(A) > 0 such that the operator A" possesses a
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nontrivial kernel ‘ Indeed, fory € H ,é‘g,([o, L) NV, ¢ # 0, such that .A)“I// =0we
obtain

0= =M+ DY+ ((1L+ £ @)V = [+ f@e)V])
= (A = )M+ DY + 3 + (@) ). (4.31)

Our linearized instability result for the gBBM equation (4.24) is the following: For
Xp,0 = HJ% (0. L) NV we have

Theorem 4.10 (Linear instability criterium for gBBM equation) Let ¢ — ¢. € Xp, 0
be a smooth curve of periodic solution to Eq. (4.25) with ¢ > 1. We assume that
Ker(QLy) = span {[%(pc}. Denote by n(QLg) the number (counting multiplicity) of
negative eigenvalues of the operator QL defined on Xpg, o (the Morse index). Then
there is a purely growing mode " (x) with ». > 0, ¥ € Xp,,0— {0}, to the linearized
equation (4.27) if one of the following two conditions is true:

(1) n(QLy) is even and I(c) < 0.
(i) n(QLy) is odd and I(c) > 0.

Here, I(c) = — W/le %Cfl—f with F (c) =
clly2

1
3 ((M+1)@c, @) representing the momen-
per

tum evaluated in the periodic wave ¢.

The proof of Theorem4.10 is based in an extension of the asymptotic perturbation
arguments due to Vock and Hunziker [128] and Lin [97] to the periodic case (see
Angulo and Natali [38]).

4.3.2 Linear instability of cnoidal waves for the mBBM

We apply the criterium in Theorem4.10 to obtain the linear instability of cnoidal
wave profiles for the mBBM equation (4.5). Thus, for u(x, t) = ¢.(x — ct) a periodic
solution we have —(c — 1), + (pg +c¢! = 0. Then, we obtain the differential equation
in quadrature form

1
[l = 5 [~ + 26 = D2 +4B,, ] (432)

where By, is a nonzero integration constant. The periodic solutions related to (4.32)
depend of the roots to g (¢) = 4+ 2(c—Di*+ 4B, . Two Jacobian elliptic profiles
emerge (see phase-plane (a) in Fig. 4 above), the profiles dnoidal (inner trajectory with
regard to the soliton) and cnoidal (external trajectory with regard to the soliton). Indeed,
if we consider the symmetric real roots £, =£n,, such that 0 < 1 < 1y, we have

positive and negative periodic solutions given explicitly by ¢, (x) = +n1dn (%x; k)
where dn(-; k) represents the dnoidal Jacobi elliptic function with modulus & € (0, 1).

The orbital stability of these dnoidal profiles was just established by the flow of the
mBBM in [18,23] for the cubic Schrodinger equation.
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Next, we suppose that ¢ has the two symmetric real roots, —b < 0 < b and two
symmetric imaginary roots =ia, then we obtain for ¢ > 1 a cnoidal profile solution
given by (see [18,32])

@c(x) = ben <%x; k) . (4.33)
H h jori the relations k% = b PP—a?=2(c—1), B =,/ 2t
ere, we have a priori the relations k~ = pranyoL a=2(c B ==

We note that for ¢ > 1 we get b> > 2(c — 1) and so our cnoidal-trajectories in the
phase-plane (a) in Fig.4, lie outside the homoclinic orbit (soliton profile given by

o (x) = /2(c — l)sech(,/cz—,lx)). Now, since k2(b) = 21;2—() we must have
k* e (%, 1). Moreover, since the cnoidal profile has real fundamental period equal to

4K (k) we obtain that the fundamental period T, for ¢ in (4.33) can be seen as a
function of b, namely,

Ty.(b) = 4—\/EK(k(b)). (4.34)

b2 —(c—1)
Then, the Implicit Function Theorem implies the following result,

Theorem 4.11 Let L > 0 be fixed and k* € (3, 1) satisfying L* > 16K>(k)(2k> —1).
Then,

(1) For every ¢ > 1 there is a unique b = b(c) € (/2(c — 1), +00) such that the
map ¢ € (1,400) +— b(c) is a strictly increasing smooth function and L =
\/bj—fﬁl((k) The modulus k = k(c) is given by k2 > 0.

(ii) For every ¢ > 1 the cnoidal wave ¢.(x) = ben(y/ 7(° ])x k) has fundamental
period L and satisfies Eq. (4.32). Moreover, the mappmg ce(l,400) —~ ¢ €

([0, L)) is a smooth function for all n € N.

= 2D and § %

per

In Figs.5 and 6 we show the cnoidal profiles cn(-; k) for k ~ % and k € (k*, 1),
k* ~ 0.909, respectively.
Next, we consider the linearized operator Ly around the cnoidal wave ¢, given by

d? 1\ 3
Lo = i + <1 — —) — —(pcz. Our goal is to study initially the eigenvalue problem
x c c

in Hy,, ([0, L])

Loy = ny,
{ Y (0) =y (L), ¥'(0) =1y (L). (4.35)

In the following theorem we collect all the spectral informations needed to apply the
instability criterium in Theorem4.10.

Theorem 4.12 It considers the eigenvalue in (4.35).

(a) Letk* € (%, 1). Then for D(Ly) = per([O L1]) we have that the Morse index of
Lo satisfies n(Ly) = 2 and Ker(Ly) = span{ﬁwc}.

@ Springer



Sao Paulo Journal of Mathematical Sciences

Fig.5 Cnoidal profile cn(x; @)

Fig.6 Cnoidal profile cn(x; 0.909 + €)

(b) For D(Ly) = ngr([O, L)) NV we have that Ker(QLy) = span{%wc}for all
ke (%, 1), and the Morse index of QL satisfies

1, for ke (‘/Té,k*),

n(QLy) = {
2, for ke (k*, 1)

with k* = 0.909.

Proof Initially we have the existence of an enumerable set of eigenvalues {1, };>¢ for
(4.35). From (4.33) and the transformation ® (x) = v (,/cx/B) we obtain the Lame’s
eigenvalue problem,

PO =—0" 4 6k’sn*(x; k)® = 0D, ® € Hy, ([0, 4K (k). (4.36)
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Here 6 will be an eigenvalue satisfying

=5 [31;2 (c — 1) +enl. (4.37)
Now, from Floquet theory one has that the set of eigenvalues {6;};>0 associated to
(4.36) has the distribution 6y < 681 < 0 < 63 < 04 < 05 < 6 < - - -. Here,

inequalities mean that the first five eigenvalues are simple and all other eigenvalues
have multiplicity two (see [106]). Next, the exact value of those five eigenvalues, as
well as the associated eigenfunctions, will be useful for the subsequent calculations.
Indeed, we have (see [18])

0o =2(1+k*—r()]; ®o(x) = k2sn*(x: k) — (1 + k> + r(k))

0 =1+ k% Di(x) = dpsn(x; k) = cn(x; k)dn(x; k)
0r = 1 + 4k>; Dy (x) = dyen(x; k) = —sn(x; k)dn(x; k) (4.38)
03 = 4 + k% ®3(x) = dydn(x; k) = —k>sn(x; k)en(x; k)

s =201 + K> +r(0)];  ®a(x) = k2sn*(x: k) — (1 + &% — r(k)),

where r(k) = ~/1 — k% + k*. Moreover, for j # 0 and j # 4 we have that the
eigenfunctions ®; has mean zero. Indeed, P®; = 6;®; implies

—_

0j(®), 1) = 6(k%sn?, @;) = 2(1 + k*)(®;, 1) = 3(®;, g + a) = 2(1 + k) (P

Thus, we conclude ®; € V forall j # 0, 4.

On the other hand, the simple eigenvalues 6, 61 and 6, determine the same property
for no, n1 and ny = 0 (see (4.37)), respectively, and n9 < n; < n2 = 0. Thus, on

pe,([O L]) we deduce that n(Lo) = 2 and Ker(Ly) = span{dx Oc).

Now, since dx ¢ has two zeros on the interval [0, L) and QLO( I o) = 0, one
has from the Floquet theory (oscillation theorem for Hill’s equation, [106]) that 1 <
n(QLp) < 2. Next, we prove that n(QLy) = 2 for a specific range of the elliptic
modulus k. In fact, let {;};>0 be the complete orthonormal system of eigenfunctions
associated with the periodic problem (4.35). We see from the analysis above that for

ai = 1/1®illz2, (0.4

Yi(x) = a,-,/4TK<D,'(,3x/\/E), i=0,1,2,..., (4.39)

where [¢;] = 0 for all i # 0, 4. Then, for ¥ € D(QLy) =
that Q Loy = A, we obtain the following three relations:

per([O L]) NV such

e¢]

¥=> W v QLoy = mew, VWi + [(pu/f]=)»w, and

i=0

A=), ¥i) = — <Pc / Yidx, (4.40)

o | W
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Since the sums in (4.40) are taken over the set (y, ¥;) # 0,i > 0 and [y;] = 0O for
alli # 0, 4, we obtain that A = n;, foralli # 0, 4. So, by considering A # n; one has
from (4.40)

v="[0v] ;0 %df (4.41)

Therefore, since %[goczw] # 0 and [¢] = 0, we can integrate expression (4.41) over
[0, L] to obtain that A # n; must be a zero of the function

[¥0]? N [¥a]?

J) = .
A—mno  A—4

(4.42)

It is important to note that J is a two variables function depending on A and
k € (0, 1), and that we are interested in the zeros of the function J(A). Thus, since
hmk—mf{ J(A) = 400, limk_m; J(A) = —ocoand J'(A) < O, for all A ¢ {no, n4},
we conclude that every (real) zero of J must be simple and that there is a unique
zero A* € (no, n4). Moreover, from [38] there is a unique k* such that J(0) < 0 for
k e (k*, 1) and J(0) > O for k € (0, k*] (k* ~ 0.909). Next, since A := 7 is also a
negative eigenvalue related to the linear operator Q£ and A # A*, we can conclude
from the previous analysis that

2, for k € (k*, 1),
n(QLo) = 1, for k € (*/Té,k*).

Next, we see that Ker(QLy) = span{%gac}. By Lemma 2.5 in [38] it is sufficient
to show that if Log = 1 then [g] # 0. Suppose that [g] = 0. Then, from (4.40) we

obtain 3[¢2g] = —1 and so n (g, Vi) = —2le2g] fy widx = LIyl fori = 0, 4.
Therefore,

0= (g, Yo)l¥ol + (g, Ya)[ya]l = —=LJ(0). (4.43)
This is a contradiction since J(0) # O for all k # k*. This finishes the proof. O
Now, from Theorem4.11 we have for ¢ > 1 the relation ¢ = L2(L2 —

16K2(k)(2k2 — 1))_1 with k2 € (%, 1). Thus we guarantee the following result.

Theorem 4.13 The cnoidal solution ¢, obtained in Theorem4.11 is linearly unstable
for the mBBM equation (4.5), provided that the wave speed ¢ € (c*, +00), where

L2
* = , 4.44
C T 16K (k*)2(2k** — 1) (449

with k* ~ 0.909. Moreover, the Qg -orbit is nonlinearly unstable.

Proof From Theorems4.10 and4.12 we only need to see that 7 (c) is strictly negative.
Indeed, by using the explicit cnoidal profile of ¢., Theorem4.11 and the theory of
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Jacobian elliptic functions it is possible to see that (see [38]),

dFe _1d
de  2dc¥e

i% >0 forevery ¢ > 1 (k* € (1/2,1)). (4.45)

Thus ¢, is linearly unstable.

Now, from Theorem 3.4 in [38] we have that the initial value problem associated
to (4.5) is globally well-posed in H lier([O, L]). Moreover, since the mapping data-
solution associated to the mBBM equation is smooth we obtain from the approach of
Henry et al. in [82] that the linear instability property of ¢, implies that the €2, -orbit
generated by this profile will be nonlinearly unstable (see Theorem 3.6 in [38]). This
finishes the proof. O

Remark 4.14 (1) We can determine numerically that ¢* &~ #;277 in Theorem4.13
and the minimal period L in Theorem 4.11 must satisfy a priori the lower bounded
L? > 56.277.

(2) The results due to Henry et al. in [82] and applied in Theorem4.13, are a simpler
way to get that the spectral instability implies nonlinear instability. We note that the
classical instability approaches in [50,79,80] can not be applied for the generalized
BBM or KdV type equations since the linear operator d in (4.28) is not invertible
and the periodic framework induces serious obstacles to apply these techniques
(see also Bronski and Johnson [54], Deconinck and Kapitula [66] and Haragus
and Kapitula [81], and Remark 1.1 above).

Next, Theorem4.13 shows that ¢* is a threshold value for the stability problem of
¢, namely, for ¢ € (1, ¢*) they are stable in X o. Indeed, from the analysis above we

have Ker(QLg) = span{%wc}, df;g”) > 0,and n(QLy) = 1 fork € (*/75, k*), thus
from the general stability framework established in Sect.2.1 above (by changing £ by
QL in the analysis with D(QLy) = H ; ([0, L]) NV, we have the following orbital

stability theorem for cnoidal profiles.

Theorem 4.15 The cnoidal solution ¢ obtained in Theorem4.11 is orbitally stable in

H;er([O, L) NV forc € (1, c*) by the mBBM equation (4.5).

Remark 4.16 (1) We note that the quantity H(u) = fOL u(x)dx is a conserved func-
tional by the periodic flow of the mBBM equation. Thus, we have that the initial
value problem associated to mBBM is globally well-posed in Hll,er([O, L)NV.

(2) From Figs.5 and 6 we can interpret that the cnoidal waves ¢, will be stable when

it represents a “cosine wave-profile” (k € (\L@, k*)) and it will be unstable when

it represents a “soliton-localized wave-profile” (k € (k*, 1)). Here, we recall that
cn(-; k) — sech(-) as k — 17 and sech represents the classical soliton-profile
associated to the mBBM on all the line and that by the way they are orbitally stable.

4.4 End-section notes

(a) The orbital stability of cnoidal-type profile in (4.1) for the KdV model (1.5) in

H ;e,([O, L]) was showed in [24] (see also [34]). The orbital stability of these
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(b)

(©

(d)

(e)

cnoidal profiles in the case of perturbations that are periodic with period n L, where
n is any nonzero positive integer, was proved later by Deconinck and Kapitula [66].
The Poisson summation formula can also be used for obtaining the cnoidal profile
in (4.1) and so to study its stability properties (see [19,24,34]). A similar approach
of stability can be applied for the case of the dnoidal profiles associated to the
modified Korteweg—de Vries equation u; + 3uu, + uyy, = 0 and to the cubic
Schrodinger model iu; + uyy + |u|2u = 0 (see [18,19]).

A study about the existence and stability of periodic traveling waves for the
Korteweg—de Vries type model u; + 4ulu, + uger = 0is an .
The Intermediate Long Wave equation (Kubota et al. [93]) in a periodic framework
is given by the model

1
u,+2uux+gux—’fg(u”)20, § >0, (4.46)

where the linear operator 7 is defined by

L/2

1
T f(x) = ZP‘V'/ o =)y,

—L/
here P.V. stands for the Cauchy principal value of the integral and
2nné :
r - i | 2= 2mn{/L.
5.L(0)=—i) co ( 2 >e
n#0

In Angulo et al. [25] (see also [11]) has been studied the existence and stabil-

ity (linear and nonlinear) of periodic traveling waves solutions of mean zero in

H ;éf([o, L]), namely, solutions for the pseudo-differential equation

L
Tsp —cp + ¢> = A, with A, = % / ¢ (x)dx. (4.47)
0

By following Parker’s arguments [120] (see also Nakamura and Matsuno [114])
it was obtained the even-periodic profile with mean zero for (4.47)

¢e(x) = 2K &) |:Z (ZKL(k) (x —id); k) -Z (@(}c +i9); k>i| , (4.48)

L

where K (k) denotes the complete elliptic integral of the first kind, Z(-; k) is the
Jacobi Zeta function and k € (0, 1) (see [56]). For fixed L and §, the wave speed ¢
and the elliptic modulus k must satisfy specific restrictions. For the orbital stability
theory (conditional), the Angulo and Natali’s Theorem 4.3 and the Poisson Summa-
tion theorem were used for obtaining the spectral information of £ = 759y —c+2¢.
A similar (in)stability result to that established in Theorem 4.8 for the CNLS equa-
tion in (4.10) with regard to the periodic profile (4.19), is also true to the critical
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Korteweg—de Vries equation (CKDV) (see [34])
ur + 5utty 4 tyyr = 0. (4.49)

At this point in the analysis, attention should be drawn to the peculiar behavior of
the positive profiles ¢, in (4.19). Indeed, for k — 17 we have the convergence
V(&) = S(&) for S(&) = (3a))1/4sech% (2/wé&). S represents the classical soli-
tary wave solution for the critical Korteweg—de Vries equation on all the line.
From Martel and Merle [107—109] we know that this profile is nonlinearly unsta-
ble. Therefore, this dynamic picture can tell us that the unstable behavior of the
soliton S spreads in its vicinity at least to periodic traveling waves within the homo-
clinic orbit determined by S and vice versa for the case of the periodic profiles ¢,,
with k & 1.|It is an open question ‘ to know which of the two profiles of traveling
waves is inducing an unstable behavior in the other one.

(f) Recently Amaral et al. [12] have determined spectral stability results of periodic
waves associated with the CKDV equation (4.49). They obtained the existence of

zero mean periodic waves with a cnoidal profile, v € (4LL2, 4+00) — ¢, (that
is, periodic trajectories external to the homoclinic trajectory determined by the
soliton-profile S defined in the previous item), such that there is a threshold value
for the speed-velocity w* for which ¢,, is spectrally stable if w € (4LL22, *) and
spectrally unstable if w € (@*, +00).

Now, from the local well-posednes theory for (4.49) in [35] and from the proof
of Theorem4.13 we can conclude the nonlinear instability of the cnoidal profiles
¢ From item (e) above, we have the scenario that the unstable soliton profile S
is surrounded by unstable periodic profiles.

(g) Inthe case of the stability of periodic traveling wave solutions for the general model
(1.7) such that the profile ¢ satisfies the equation M¢ + c¢p — #qﬁp"’l +A=0
where A is a constant of integration not necessarily zero, has been established in
Alves et al. [11]. The strategy of the method is to extend the Lyapunov approach
given in Sect.2.1 above. More exactly, for the following conserved quantities

associated to (1.7)

1 /L 1
E(u) = —/ uMu — —up+2dx,
2 Jo (p+D(p+2)

e L
Fu) = —/ u*dx, Mo(u) = / udx,
2 Jo 0

we consider the new quantities G(u) = E(u) + cF(u) + AMy(u) and Q(u) =
uMoy(u) + vF (u) (The constants u, v are chosen appropriately in order to obtain
the assumption (iii) below). Thus G'(¢) = 0 and G"(¢) = L = M + ¢ — ¢”
represents the linearization around the profile ¢ with domain H, ,’fgr ([0, L]). In this
case, the Lyapunov function associated to the orbit € is defined by V(1) =
Gu)—G@)+o(Qu) — Q(¢))2, for some specific o > 0, with V(¢) = 0, and
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so we are looking for an inequality of the form (see (2.6))
V) — V(@) =Vwu) = cldu; §2¢)]2, for d(u; Q¢) < 6. (4.50)

The sufficient conditions for obtaining the basic stability-inequality (4.50) are:

(i) The self-adjoint operator £ has only one negative eigenvalue which is simple
and zero is a simple eigenvalue whose eigenfunction is ¢’.
(i1) There exist constants ¢, ca > 0 such that (Lv, v) = ¢ ||v||252 — ca|lv|?,
7

(iii) There exist constants ¢3 > 0 such that (Lv,v) = c3||v|?, for vle' and

vl Q' ().

This approach has been applied for the case of the gKdV equation (M = —8)?)
and the gBBM model (4.24) (see [11]). Moreover, the results do not depend on
the parametrization of the periodic wave itself. In Stuart [127] the case of solitary
and standing waves solutions have been studied.

(h) The linear instability criterium for the gBBM in Theorem4.10 can be extended
in a similar form to the general models of Korteweg—de Vries type in (1.7) (see
[37,38]).

5 The nonlinear Schrédinger equation on star graphs

In this section we study the existence and orbital stability of standing wave solutions
for the following vectorial nonlinear Schrodinger equation on a star graph G,

io;U(x,1) — AU(x, 1) + F(U(x,1)) =0 6D

where U(x, 1) = (u;(x, t))?/:1 : RT x R — CV, the nonlinearity F(U) satisfies

F(U) = ¢?F(U), 6 € [0, 2). The star graph G will be composed by N positive

half-lines attached to the common vertex v = 0, and A is a self-adjoint operator such

that D(A) C L*(G), which represents the coupling conditions in the graph-vertex.
The standing wave solutions for (5.1) are solutions of the form

Ux,t) = " ®(x), (5.2)

with the profile ® € D(A). By substituting this profile in (5.1) we arrive to the
nonlinear (vectorial) system

A® + w® — F(®) = 0. (5.3)

The equality in (5.3) should be understood in a distributional sense.

In the following subsections we study the so-called | NLS-§ model |in (5.1), namely,

FU) = |UP7'U, p > 1, A = H} acting for V = (v,-)j.vzl as (HV)(x) =
(—v;-’(x))}\/:l, x > 0, and with domain D(HS) = Dy 5(A) defined in (1.22) for
a € R. The nonlinearity acts componentwise, i.e. (|U|”_1U)j = |uj|”_1uj. The
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strategy which will be put forward can be applied to several choices of the self-adjoint
operator .4 and the nonlinearity F.

We finish this section with some notes and with some very interesting open prob-
lems.

5.1 Standing wave for NLS-6 model

We consider the NLS-§ model in (5.1). In Adami and Noja [2] was obtained the

following description of to equation
H® 4 0® — |07 '® =0, ®c DH)). (5.4)
Theorem 5.1 Let [s] denote the integer part of s € R, and a # 0. Then Eq. (5.4)

has [NT_I] + 1 (up to permutations of the edges of G) vector solutions ®, =

(gpf,‘l’j);v:l, m=20,..., [NTfl] which are given by

1

(p+Do 2((p=DJo p-1 S
o () = [—2 sech ( R am)] 1 , j=1,....m 5.5)
m,j 1 )
[Wsechz(wx—i—amﬂp*l, j=m+1,...,N,
where
_ a 2
@y = tanh™! (m> and o > (Nf‘—zm)z (5.6)

Remark 5.2 (1) Note that in the case « < 0, the vector ®% = (Q"gl, j)yzl has m bumps
and N — m tails. ®f is called the N-tail profile. Moreover, the N-tail profile is
the only symmetric (i.e. invariant under permutations of the edges) solution of Eq.
(5.4). For instance, in the case N = 5 we have three types of profiles: 5-tail profile
(Fig.7), 4-tail/1-bump profile (Fig.8) and 3-tail/2-bump profile (Fig.9).

(2) In the case a > 0, the vector ®% = ((pfr‘l)j)?]:l has m tails and N — m bumps
respectively. @7 is called the N-bump profile. For N = 5 we have: 5-bump profile
(Fig. 10), 4-bump/1-tail profile (Fig. 11), 3-bump/ 2-tail profile (Fig. 12).

Proof Let ® = (¢ j)?/ | € D(Hg) satisfying the vectorial elliptic system (5.4). Thus

every component of ® on every edge must seek L2 (0, +00)-solution to the equation

v 4oy —YP 'Yy =0, »=>0. (5.7)
The most general L?(0, +00)-solution is Y(x) =o0¥s(x —y)witho € C, |o] =1,
y € Rand
1
1 =T 2 —1
Vs(x) = [Q} " sech7T <pTﬂx) ) (5.8)

Therefore, the components ¢; are given by
@j(x) =0 (x — y)). (5.9
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Fig.7 5-tail profile

Fig.8 4-tail/l1-bump profile

Fig.9 3-tail/2-bump profile
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Fig. 10 5-bump profile

Fig. 11 4-bump/1-tail profile

In order to have a solution for (5.4) it is sufficient to impose boundary conditions in
(1.22). The continuity condition in (1.22) implies 01 = - - - = oy and y; = y;a with
yj = £1 and a > 0. We can consider o1 = 1 without losing generality. Now, we
determine y;. The second boundary condition in (1.22) (Kirchoff type-condition or
delta-type interaction) rewrites as

p—1 N o«
tanh (Tﬂa> ; V= (5.10)

Equation (5.10) implies that Zf;’zl v; must have the same sign of «. Moreover, under

a choice of the set {y; }9':1, condition (5.10) fixes uniquely a. Now, by referring to the
bell shape of the function s, we say that in the j-th edge there is a bump if y; > 0,
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Fig. 12 3-bump/2-tail profile

thatis y; = 1; thereis a tail if y; < 0, that s, if y; = —1. Then we choose to index
the solutions by the number j of bumps. Thus, we obtain a unique solution to (5.10)
which we call a;. In this way we arrive at (5.5) and (5.6). This finishes the proof. O

It was shown in [2] that for —N/o < o < o* < 0, the vector tail-solution
®F = (¢0,/)}_,, with ¢, j = @0 ¢ for all j and

1

o, (x) = [m sech? <W}C + tanh ™! <N_—j5>>] " ,  (5.11)

it is the ground state associated to (5.4). The parameter o™ guarantees the minimality
of the action functional

Sa(V) = LIVIP + 4IVIP = S IVIEL + Sl 0, (5.12)
for V = (vj)?’:1 e &G ={VeHG :vi(0)=-..= v;(0)} at @7 with the

constraint given by the Nehari manifold

N ={Ve&@)\{0}: [IVIP+ ol VI? = [IVII)T] + ol (0)* = 0}.

Note that ®¢, € A for any m. In [2] was also proved that for m # 0 and & <
0 we have Sy (@) < Se(®;) < So(®) ;). This fact justifies the name excited
states for the stationary states ®%, m # 0. For « > 0 and any m nothing is known
about variational properties of the profiles ®% . In particular, one can easily verify that
S(@g) > S(®;,) > S(®;, ), m #0.

We will see in Sect. 5.4 that when the profile ®!, has mixed structure (i.e. has bumps
and tails, excited states), they are “almost always” nonlinearly unstable.
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5.2 Stability framework for the NLS on star graphs

The NLS model (5.1) is invariant under the Galilean invariance determined by the
rotation-symmetry of the group T(0)¥ = €!?W, for any 6 € [0, 27r), namely, if
U is solution of (5.1) then ¢/?U is also solution. Thus, the standing wave solu-
tions in (5.2) can be written as U(x, ) = T (wt)®(x). We note that the classical
translation-symmetry does not hold on G ‘ Thus, we have the following orbital sta-
bility definition.

Definition 5.3 The standing wave U(x, 1) = ¢!/ ®(x) for model (5.1) is said to be
orbitally stable in a Hilbert space X C L*(G) if for any & > 0 there exists n > 0 with
the following property: if Uy € X satisfies ||Ug — ®||x < 7, then the solution U(z)
of (5.1) with U(0) = Uy exists for any r € R and

sup inf [|U(t) — ¥ ®||x < .
teR 0€R

Otherwise, the standing wave U(x, t) = ' P (x) is said to be orbitally unstable in
X.

In particular, for the NLS-§ model the space X coincides with the continuous
energy-space £(G), where

£@) =) e H'@ 0@ =+ =y O] (5.13)

Next, we assume the existence of a C2(X, R)-conserved functional E : X — R
(interpreted as the “energy” in certain applications) i.e., for V = (v;) ?’:1 eX

EU(t)) = E(Uy), for t € [-T,T], (5.14)

and Q : L?(G) — R (interpreted as the “charge” in certain applications) defined by
Q(V) = ||V]|? it is also a conserved functional, i.e., Q(U(r)) = |[U®)||?, for ¢ €
[T, T]. Moreover, we also assume that E is invariant under the rotation-symmetry
T, that is E(T(0)V) = E(V) for 6 € [0,27), V € X (obviously Q satisfies this
property).

Now, let ® € D(A) a distributional solution for (5.3) and suppose that it is a
critical point of the action functional S = E + @ Q. For a stability study of ® a main
information will be given by the second variation of S at ®, S”(®). We suppose that
forU=U; +iU; and V = V| +iV;, where the vector functions U;, V;, j € {1, 2},
are assumed to be real valued, we have the following equality

$"(®)(U, V) = (LU, Vi) + (LaUz, V2), (5.15)

here (-, -) represents for us the inner product in L2(G), and L; are self-adjoint operators
with D(L;) = D(A) C L*(G). Formally S”(®) can be considered as a self-adjoint
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(L 0
H_<0 Lz). (5.16)

Next, we suppose the existence of C! in w standing wave solutions for (5.3),
weJCR— &, Define

2N x 2N matrix operator

(00) = 1 if9,||®y]1? > 0at w = wy,
PRI =00 if 8,]|®,|% < 0 at @ = wp.

Lastly, we suppose the well-posedness of the associated Cauchy problem for (5.1) in
the energy space X. The next stability/instability result follows from Grillakis et al.
[80].

Theorem 5.4 Let n(H) be the number of negative eigenvalues of H in (5.16) (the Morse
index ). Suppose also that

(1) Ker(Lp) = span{®,,},

(2) Ker(Ly) = {0},

(3) the Morse index of L1 and Ly consists of a finite number of negative eigenvalues
(counting multiplicities),

(4) the rest of the spectrum of Ly and Ly is positive and bounded away from zero.
Then the following assertions hold.

() Ifn(H) = p(w) = 1, then the standing wave ¢'®' ®,,, is orbitally stable in the
energy space X. A

(i1) Ifn(H) — p(w) is odd, then the standing wave e'®' ®,, is orbitally unstable in
the energy space X.

Remark 5.5 The instability part of the above theorem needs some additional comments.

(1) It is known frqm [80] that when n(H) — p(w) is odd, we obtain only spectral
instability of ¢'®’ ®,,. Namely, that the spectrum of the linear operator

0 I 0 L,

= (G o) F)
associated to the linearization of the time-dependent NLS model around ®,,, con-
tains an eigenvalue with positive real part. To conclude orbital instability due to
[801, it is sufficient to show estimate (6.2) in [80] for the semigroup e’ A generated
by A. In the case of Schrodinger models on star graphs it is not clear how to prove
that estimate (6.2). However, we conjecture that for the operator A we have the
spectral mapping theorem (that is, o (e4) = ¢®4)), which would imply estimate
(6.2) in [80].

(2) When n(H) = 2 (which usually happens in many applications), we can apply the
results in [119] to get the instability part of the above Theorem. We note that in
this case the orbital instability follows without using spectral instability.

(3) Generally, to imply the orbital instability from the spectral one, the approach by
Henry et al. [82] can be used . The key point of this method, is to use that in many
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cases we have that the mapping data-solution associated to the model is of class
C?. We note in particular, for the NLS-§ model in (5.1)=(1.22), that the mapping
data-solution is of class C* as p > 2 (see Theorem 5.6 below). The approach by
[82] has been applied successfully in [33] for systems of KdV-type or in [38] for
models of KdV-type (1.7) and of BBM-type (4.24) .

5.3 Global well-posedness for the NLS-J on star graphs

Next we establish a local and global well-posedness theory on a star graph G of the
initial value problem for the NLS-§ equation (5.1) in the space

£@) =) e H'@ v = =y O],

with F(U) = [UP"U, p > 1, A = Hf and D(HY) being defined in (1.22). We
note that £(G) emerges naturally as being the energy space associated to the NLS-§
equation. Thus by the Stone’s Theorem we have that the linear flow,

{ 4U(t) = —iHYU(1) (5.17)

U(0) = Uy € D(HY)

is determined by the unitary group on L*(G), W (1) = e~ A To determine an explicit
formulation for the group {W (¢) };cr is not an easy task, because on a star graph we do
not have the useful tools of Fourier analysis (Fourier transform), thus we need to use an
abstract approach based on the functional calculus of operators (see [30]). Moreover,
the boundary conditions on the vertex v = 0 will produce different behavior of the
group in a general framework. For more general coupling conditions on a star graph
such as that given by Nevanlinna pairs, the local well-posedness theories in either
L%(G) or in the energy space can be seen in Theorem B and Theorem C of [78] (see
End-section notes 5.5 below).

The following local well-possedness result in £(G) follows from standard argu-
ments of the Banach fixed point theorem applied to non-linear Schrédinger equations
(see [30,59)).

Theorem 5.6 Let p > 1. Then for any Uy € E(G) there exists T > 0 such that the
NLS-8 model has a unique solution U € C([—T,T1,£(G)) N C'([-T,T1, E(G))
satisfying U(0) = Uy. For each Ty € (0, T) the mapping Uy € £(G) — U €
C([—To, Tol, £(9)), is continuous. In particular, for p > 2 this mapping is at least of
class C%. Moreover, for m € N,

L2 =(VeL*Q) :vi(x) = = 0y(x), g1 (x) = - - = vy (x), x > 0}, (5.18)

and £,(G) = £(G) N Li(g), we have for Uy € &,(G) that U(t) € &,(G) for all
tel|-T,T]
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The following global well-posedness result for the NLS-6 model is an immediate
consequence of Theorem5.6 and the existence of the conservation of charge and
energy, i.e., for V = (vj)?/:1 € £(9) the quantities

1
Eq(V) = SIVIP = S IVIPEL + % ni ()1,

and
Q(U(®1) = UM,

satisfy Q(U(t)) = ||Up||? and E,(U(t)) = E,(Uyp), fort € [T, T].

Theorem 5.7 Let 1 < p < 5. Then for any Uy € E(G), the NLS-§ model has a unique
global solution U € C(R, £(G)) N CN(R, £(G)) satisfying U(0) = Uy. Similarly for
Up € & (9).

Remark 5.8 (1) Using the Sobolev embedding theorem and Gagliardo—Nirenberg
inequality on star graphs, one can see that £y, : £(G) — R is well defined and
Eq € C2(E(G), R) since p > 1.

(2) The property of the data-solution mapping to be of class C2 for p > 2, it will deep-
tool for showing that the linear instability property of standing wave solutions for
the NLS-§ equation (and other models) will be indeed nonlinear instability (see
Theorems 5.9 and 5.10 and Remarks 5.5 and 5.21).

5.4 Stability theory for the NLS-5 on star graphs

In this subsection we study the orbital stability of the standing wave U(x, 1) =
'@ (x) of the Schrodinger model (5.1) for the case of the NLS-§ model (1.22),
with the profile ®%, m =0, ..., [%] determined in Theorem5.1. We will inves-

tigate orbital stability in the energy space X = £(G) defined in (5.13). Thus the
functional E, : £(G) — R defined for V = (vj)jyzl € £(G) by

Ey(V) = JIVI2 = SHIVIPE, + 4 i O)F, (5.19)
is well defined by the Sobolev embedding theorem and Gagliardo—Nirenberg inequal-
ity. Moreover, by using Theorem 5.6 (continuous dependence property) it follows that
Eq and Q(V) = ||V||? are conservation laws for the NLS-8. Moreover, for the action
Se = Eq + @Q follows from (5.4) the critical point property of ®%, S, (®%) = 0,
forany o« # O0andm =0, ..., [NT_I] Also, for ®§ = ((pm,j)j.v:l, we consider the
following two self-adjoint diagonal matrix operators

d? ool
Lije = I + o — p(@m,j) 8ij ),

d? ool
L2,m,a = _W +w— ((pm,j) (Si’j ’
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D(Ll,m,o{) = D(L2,m,ot) = D(X,Bv (520)

where Dy s = D(HY) is defined in (1.22) and §; ; is the Kronecker symbol. The
operators L; ,, o are associated with the second variation sg(<1>f;,) and satisfy the
relation in (5.15).

We will see below that when the profile ®, has mixed structure (i.e. excited states),
they are “almost always” unstable. More exactly, for the space &, (G) = £(G) DL%I 9,
with L%l (G) defined in Theorem 5.6, we obtain the following orbital stability/instability
result of the excited states. The case of tail and bump profiles (m = 0) will be estab-
lished separately.

Theorem 5.9 Leta #0, m € {1, cee [NT_I]} and w > ﬁ. Let also the profile
@2 be defined by (5.5), we consider the spaces £ = E(G) and &, = £, (G). Then the
following assertions hold.

(1) Leta < O, then

(1) for 1 < p <5 the standing wave e”‘”@f‘n is orbitally unstable in &E;

2 .
(2) for p > 5 there exists ), > (wa such that the standing wave €' ®%, is

orbitally unstable in £ with v € ((wa, ).

(i1) Let a > 0, then

(1) for 1 < p < 3 the standing wave €' ®% is orbitally stable in E,,;

(2) for3 < p < 5there exists oy > B such that the standing wave '’ ®°,

_ar
(N—2m

is orbitally unstable in € with o € ( Om), and €' ®% is orbitally

o
(N—2m)2’
stable in &, with w € (Op, 00);

(3) for p > 5 the standing wave ' ®% is orbitally unstable in £.

In the case of p > 5, ¢ < 0 and w > o}, | our approach does not provide any

information about the stability of the excited states @, ‘ The proof of Theorem 5.9 is

based on the extension theory of symmetric operators, the analytic perturbations theory
and on Weinstein—Grillakis—Shatah—Strauss approach established in Theorem 5.4.
Next we establish the results of stability for the cases of tail and bump profiles.

Theorem 5.10 Let a # 0 and ®( be defined by (5.11).

(1) Bump case: Leto > 0,1 < p < S5and w > @ Then the following assertions

N2
hold.
1) If 1 < p <3, then ei‘”’<1>8‘ is orbitally unstable in £(G).

2 P . .
& such that e'®' ®{ is orbitally unstable

(i) If3 < p <5, then there exists w2 > 1

in E(G) for o > w;.

(2) Tail case: Let @ < 0 and o > ]‘1‘1—22 Then the following assertions hold.

1) If 1 < p <5, then e”‘”@%‘ is orbitally stable in £(G).
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@ii) If p > 5, then there exists w; > @ uch that ' @ is orbitally stable in
N2

E(G) for w < wi, and ' @G is orbitally unstable in £(G) for w > wy.

In the bump case, we have that for the conditions p > Sand3 < p < 5 (withw €

sz , @2)), ’ our method does not provide any information about orbital stability of
el o7 |

The proof of Theorems 5.9 and 5.10 will be developed in the following subsections.
We start with the conditions in Theorem 5.4.

5.4.1 Kernel of operators L; . q,i = 1, 2,in (5.20)

Let the profile ®,, = ®¢, be defined by (5.5), including the case m = 0 (tail and bump
profiles), and we consider the domain D, s defined in (1.22).

Proposition5.11 Let o # 0, m € {O, 1,..., [NT_I]} and o > Then the

Sfollowing assertions hold for L; o = L; i -

(1\72)2

(1) Ker(La,y) = span{®,,} and L o > 0.
(i) Ker(Liq) = {0}
(iii) The positive part of the spectrum of the operators L; o, i = 1, 2, is bounded away
from zero.

Proof (i) It is clear that ®,, = (¢n, j)y:1 € Ker(Lpzy). To show the equality

Ker(Ly4) = span{®,,} let us note that any V = (vj)j.\’:1 € H?(G) satisfies
the following identity

_ -1 d d v
—v +wv; — p.l- 2~ (=L )], x>o.
/ * ! (pm’] Pm, j dx (pm’] dx Pm,j
Thus, for V € Dy s we obtain
2l (v
L2 «V, V) X::/((ﬂm,j) dx (‘Pm,j)

Using boundary conditions (1.22), we get

2 N

o, (0)
dx + |:v Oy} (©0) — |v,<0)|2 i }
,Zl . 0)

O NV

N e ()
Z[v;(0>vj<0)—|v](0)|2 - ]=a|v1(0>|2+\/5|v1<0)|2(1v—2m)(m_“=o,

which induces (L2 4V, V) = 0. Moreover, since (L2,V, V) = 0 if and only if
V = ¢®,, we obtain immediate that Ker (Ly o) = span{®,,} and L, , = 0.
(i1) Concerning the kernel of L o, the only L2 (R )-solution of the equation —v;’ +

wvj — pgof:l’_jlvj =0isv; = gojn,j up to a factor (see [48]). Thus, any element
of Ker(Liq) has the form V = ()| = (¢;¢), )., ¢; € R. Continuity
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condition v{(0) = - -- = vy (0) induces that c; = - -- = ¢y, i1.€.
, .
- ., j=1,...,m;
v<(x)=c{ mJ . , ceR
J ;/n, j=m+1,...,N

Condition Zﬁ-v:l v;. (0) = av;(0) is equivalent to the equality

ol=p) , p=1 2 _
C( ) +T(N—a2m)2) =0.

The last equality induces that either w = ﬁ (which is impossible) or ¢ = 0,
and therefore V = 0.

(iii) By Weyl’s theorem (see [122]) the essential spectrum of L; , coincides with
[w, 00). Thus, there can be only finitely many isolated eigenvalues in (—o0, »’)

for any ' < w. Then (iii) follows easily.
]

5.4.2 Morse index for Ly, o in (5.20) withm # 0

Let L,zn (G) be defined in (5.18) and consider the matrix operator H defined in (5.16)
associated with operators L; ,,, = L; o in (5.20). The main theorem of this subsection
is the following.

Theorem 5.12 Leto #0,m € {1, ..., [E]}anda) >
assertions hold.

(1) Ifa <0, thenn(H) =2 in Lfn(g), ie. ”(H|L§l(g)) =2
@) Ifa >0, thenn(H) = 1in Li(g),i.e. ”(H|L,2n(g)) =1.

#. Then the following

The proof of Theorem 5.12 will be based on the perturbation analytic theory and the
extension theory of symmetric operators. For this purpose let us define the following
self-adjoint matrix Schrodinger operator on L2(G) with Kirchhoff condition at v = 0

0 d? p—1
L= — 2 TP i),

N
DALY =1V e H*G) : v1(0) = --- = vy(0), Zv;(O) =0y, (5.21)
j=1

where ¢q represents the half-soliton solution for the classical NLS model,

1
Po(x) = [@ sech? (WO]” ; (5.22)

Next, from definition of the profiles ®, in (5.5) it follows ®,, = &% —
&), as o — 0, on H!(G), where ®; = (¢0, ..., 90). As we intend to study
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negative spectrum of L; ., we first need to describe spectral properties of L(l) (which
is “limit value” of Lj 4 as @ — 0).
Theorem 5.13 Let L(l) be defined by (5.21) and m € {1, e [N 1]} Then
@) Ker(L(l)) = span{<i>o,1, R &)O,N—l}; where <i>07j =(0,...,0,¢5 —¢).0,...,0).
JjoiH
(i) Inthe space ern (G) we have Ker(L(l)) = span{®o m}, i.e. foranym K er (L(1)|L,2,,(Q)) =
span{® ,,,}, where

@), = (Nmmgo(), Al ), ...,—%) : (5.23)
1 m m+1 N

(iii) The operator L0 has one simple negative eigenvalue in Lz(g) ie. n(LO) = 1.
Moreover, L has one simple negative eigenvalue in L (G) for any m, ie.
”(L1|L,2n(g)) =1

(iv) The positive part of the spectrum of L(l) is bounded away from zero.

Proof The proof repeats the one of Theorem 3.6 in [30]. We give here the highlight

points of the analysis.

(i) Any element of Ker(L(f) has the form V = (vj);\’:l = (cjgo(’))j.v:l, cj € R.
Condition Z?’:] v} (0) = 0 gives rise to (N — 1)-dimensional kernel of L(l). It is
obvious that functions <i>0 i Ji=1, , N — 1 form basis there.

(i1) Arguing as in the previous 1tem we can see that K er(LO) is one-dimensional in
L2 (G), and it is spanned on <I>0 -

(iii) Consider the symmetric operator (LY, D(L )) with L= ((—%—i—a)— pgog _l) 3i. j),
and

N
DAY ={VeH @ :vi0) = =vy @) =0, Y ;) =0¢,
j=1

where deficiency indices satisfy n4 (L3) = 1. Moreover, (LY, D(L?)) in (5.21)
belongs to the one- parameter family of self-adjoint extension of the symmetric
operator (LO, D(L )). Next, we show that operator L0 is non-negative on D(L ).
First, note that every component of the vector V = (v ]) | €H 2(G) satisfies the
following identity

" p—1 —1d 2 d d (v
v +ov; — = , 0.
v +wvj — pey v, o dx [( 0) = e ( )] x>

Using the above equality and integrating by parts, we get for V D(Lg)

o0
(U—f> dx +Z|:—v v]+v2(p—0:| >0,
Yo (pO 0

NOO
LIV, V) =Zf( 0% |—

Jj=1 0
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where the non-integral term becomes zero by the boundary conditions for V and
from the fact that x = 0 is the first-order zero for ¢, (i.e. ¢;(0) # 0). Indeed,

N /1100 N ’ 7" 2 "

Z % . 20 () v () gy () +v5 ()’ (x)
I:—U}Uj + U?—(/)i| = — Z hmx_>0+ / L (;)”(x) . 0 =0.

j=1 %o do j=l1 0

Since ni(Lg) = 1, by Proposition7.3 in “Appendix”, it follows that n(L(l)) <1

Taking into account that (L(l)<I>0, by = —(p — 1)||<I>0||€—p:1

the mini—max principle at n(L(l)) = 1. Finally, since ®¢ € L,zn (G) for any m, we
have n(L(l)| L2 (g)) = 1. Item (iv) follows from Weyl’s theorem.

. < 0, we arrive via

O

Remark 5.14 Observe that, when we deal with deficiency indices, the operator L8
is assumed to act on complex-valued functions which however does not affect the
analysis of negative spectrum of L(l) acting on real-valued functions.

Theorem5.13 gives us a good framework for
applying tools from analytic perturbation theory on space L,zn (G) for
operator L(l) , and so the main point will be to determine which is

the direction that the simple eigenvalue zero for L(l) will jump, to the right or to

(we recall from Proposition5.11 that Ker (L ) is trivial for any o # 0).
We start our ’ analytic perturbation theory framework ‘ with another characteri-

zation to the self-adjoint operators in (5.20). Indeed, for U,V € & written like
U=U;+iUyand V = V| +iVy,itis easy seen that §” (®,,)(U, V) can be formally
rewritten as

S"(®,)(U, V) = B, (Ut, V) + BS,,(Ua, V2). (5.24)

Here the bilinear forms B‘l’"m and Bg"m are defined for F = (fj)j.vzl, G= (gj)j\':1 €&
by

=

B E.G) =" | (fig) +ofigi — pon. )" f18;) dx + @ fi(0)g1(0),

1

~
I

M=

0\8 0\8

B2, 0.6 =" [ (fig) +wfig — @)™ fig;) dx +a fi0)g1(0).

1

~
I

(5.25)

Next, we determine the self-adjoint operators associated with the forms B‘?"m in
order to establish a self-contained analysis. First note that the forms B;?"m, je{l,2},
are bilinear bounded from below and closed. Thus, it appears self-adjoint operators
L1,m.« and Ly ,, o associated (uniquely) with Bf" n, and B‘z"’ . Dy the First Representa-
tion Theorem (see Kato [88]), namely,

LjmaV =W, jell,2}
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D(Ljma)={VeE:IWe L*G) s.t. VL E, BY, (V.Z)= (W, Z)}.
(5.26)

In the following theorem we describe the operators Ly ,, o and L ,, «, in more
explicit form, and its relation with the operators L; ,,, o, j = 1, 2, in (5.20), which
emerge from the extension theory (see [30]).

Theorem 5.15 The operators L1 . o and Lo .« defined by (5.26) are given on the
domain D(H-‘j,m,oz) = Dy s and by ILl,m,ot =Lima IL2,m,ot = Lo ma.

The following lemma states the analyticity of the family of operators L ,,; «.

Lemma 5.16 Asfunctionof«, (L1 . «) is real-analytic family of self-adjoint operators
of type (B) in the sense of Kato.

Proof By Theorem 5.15 and [88, Theorem VII-4.2], it suffices to prove that the family
of bilinear forms (B?"m) defined in (5.25) is real-analytic of type (B). Indeed, it is
immediate that it is bounded from below and closed. Moreover, the decomposition of
Bﬁm = B% + Bl,m,

N °° N ©°
BY(U,V) = Z/u'jv}dx + au(0)v1(0), By u(U, V)= Z/(a)— P@m, )P Dujvjdx.
J=10 i=10
implies that « — Bf"m(V, V) is analytic. O

Combining Lemma5.16 and Theorem5.13 in the framework of the perturbation
theory, we obtain the following proposition.

Proposition 5.17 Let m € {1, R [%4]} Then there exist ag > 0 and two analytic

functions Ay, : (—ao, og) = Rand Fp, : (—ag, og) — L,zn (G) such that

(i) A (0) = 0 and F,,(0) = @, where B, is defined by (5.23).
(i1) Forall @ € (—ap, ap), A (@) is the simple isolated second eigenvalue of L o
in Li (G), and F,(«) is the associated eigenvector for A, (o).
(iii) g can be chosen small enough to ensure that for a € (—ag, ag) the spectrum of
Limein L,zn (G) is positive, except at most the first two eigenvalues.

Proof See [30]. O

Now we investigate how the perturbed second eigenvalue moves depending on the
sign of «. Indeed, by using Taylor’s theorem for the two analytic functions A,, and F
we obtain the following theorem (see [30] for the proof).

Theorem 5.18 There exists 0 < a; < g such that Ay, (o) < O for any a € (—«y, 0),
and Ay () > Oforanya € (0, ay). Thus, in L%n (G) fora small, we haven (L1 ;.o) = 2
asoo <0, andnLy o) =lasa > 0.

Now we can count the number of negative eigenvalues of L ,, o in L; (G) for any
«, using a classical continuation argument based on the Riesz projection.
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Theorem 5.19 Letm € {l, R [#]} and w > Then the following asser-

tions hold.

_ o
(N—2m)?"

(i) Ifa > 0, then n(Ll,m,a|L,2n(g)) =1
(i) Ifa <O, then n(LLm,alL'zn(g)) =2

Proof We considerthecasea < 0.Recallthat Ker (L, ) = {0} by Proposition5.11.
Define o, by

Qoo = inf{e < 0 : Ly, has exactly two negative eigenvalues for all & € (&, 0)}.

Theorem 5.18 implies that o, is well defined and o € [—00, 0). We claim that
Qoo = —00. Suppose that oo > —00. Let M = n(Lj ,q,,) and I' be a closed
curve (for example, a circle or a rectangle) such that 0 € I' C p(L1 ,0,,), and all
the negative eigenvalues of Ly ;,; o, belong to the inner domain of I'. The existence
of such I' can be deduced from the lower semi-boundedness of the quadratic form
Bf"m in (5.25) associated to L ¢, . Next, from Lemma5.16 it follows that there is
€ > 0 such that for & € [0 — €, 000 + €] we have I' C p(Li o) and for & € I,
a — Linae — E)’l is analytic. Therefore, the existence of an analytic family of
Riesz-projections « — P («) given by

1
P =5 7§F(L1,m,a _ 6y de

implies that dim(/m(P(«))) = dim(Im(P(2x))) = n(Lime,) = M for all
a € [ax — €, a0 + €] (recall Ly ;, o, 1s self-adjoint). Next, by definition of s,
L1 ;. aq+¢ has two negative eigenvalues and M = 2, hence L ,, o has two negative
eigenvalues for o € (xso — €, 0), which contradicts the definition of «,. Therefore,
Qoo = —00. O

Lastly, we evaluate p(w) defined in Sect. 5.2 (see [30]).

Proposition5.20 Let o« # 0, m € {1,....[*]} and 0 >

I (@) = 0y P2 | |§ Then the following assertions hold

ﬁ. Let also

(i) Leta < O, then
(1) for1 < p <5, we have J,(w) > 0;
(2) for p > 5, there exists o}, such that J,(}) = 0, and Jy(w) > 0 for
w € (ﬁ w;kn), while J,,,(w) < 0 for w € (w*, 00).

m>
(i1) Leta > 0, then

(1) for1 < p <3, we have J,(w) > 0;

(2) for 3 < p < 5, there exists &y, such that J,,,(w,,) = 0, and J,,(w) < 0O for
we (ﬁ &)m), while J(@) > 0 for @ € (&m, 00);

(3) for p =5, we have J,,,(w) < 0.

@ Springer



Sao Paulo Journal of Mathematical Sciences

5.4.3 Proof of Theorems 5.9 and 5.10

In this subsection we proof the Theorems 5.9 and 5.10 via the framework established
in Sect.5.2.

Proof of Theorem 5.9 From Theorem 5.6 we obtain the local well-posed in £ and &,
of the Cauchy problem for the NLS-§ for any p > 1.

(i) Let @« < 0. From Theorem5.12, we have n(H) = 2 in Lfn (G). Therefore, by
Proposition5.20-item (i) we obtain n(H}) — p(w) = 1forl < p <5, o >

7 and for p > 5, w € ( w;)). Thus, from Theorem 5.4 we get the

Ol2 o

(N—2m (N=2m)2’
assertions (i) — 1) and (i) — 2) in &,,. Since &,, C &, we get the results in £.

(i1) Let ¢ > 0. Due to Theorem5.12, we have n(H) = 1 in L,zn (G). Therefore, by

Proposition 5.20-item (ii) we obtain n(H) — p(w) = 1 for p > 5, w > ﬁ
@ ). Therefore, we obtain instability of elet L8
052
(N—2m)?
and3 < p < 5, w € (&, 00), we have n(H) = p(w), which yields together with
Theorem 5.7, the stability of etot @7 in &£,,. Thus, (ii) is proved. This finishes the

proof. O

and 3 <p<5,we(ﬁ,

in &,, and consequently in £. From the other hand, for 1 < p <3, w >

Proof of Theorem 5.10 By following the same strategy as in Theorems5.18 and 5.19
we have for Ly o, = L1, associated to the tail and bump profiles ®f = (gao,a)j.v: h

defined in (5.11) and m € {1, ..., [%4]}, a # 0 withw > /"\‘,—22, that for @ > 0 we
have n(L14) =2 in L%n (9), and that for « < 0, we have n(Lj ) = 1 in Lﬁl (@) and

in L2(G) (in this last case, we use the extension theory for symmetric operator as in
the proof of Theorem5.13). Next, form = 0, ® > “—22 and J(w) = 8w||<I>g||2, we

N
have from [30] that the following assertions hold,
(i) Leta < 0, then

(1) for1 < p <5, we have J(w) > 0;
(2) for p > 5, there exists w; such that J(w;) = 0, and J(w) > 0 for w €

(;—22 w1>, while J (@) < 0 for @ € (w, 00).
(i) Leta > 0, then

(1) for1 < p < 3, we have J(w) > 0;

(2) for 3 < p < 5, there exists wy such that J(w;) = 0, and J(w) < O for
w e (g—i wz), while J (@) > 0 for w € (w2, 00);

(3) for p > 5, we have J(w) < 0.

112
m7
p € (3,5), o > wy. Then, from Theorem 5.4 we get orbital instability of e_“‘” @ in
Ex(G) and consequently in £(G). For a < 0, we obtain the orbital stability ¢'“* &g for

Thus, for « > 0 we obtain "(H|L,2,,(g)) —plw)y=Tlaspe (1,3, 0 > and

l <p<5andany w > ]"\‘,—22, and for p > Sand w € (1"\‘,—22, w1) (in this case the global
existence of solutions U(¢) for U(0) = Uy = Qq)g is deduced from Theorem 5.6, and
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from the uniform estimative ||U(t)||_ gl < €+ @Gy fort € [0, Tay)). Moreover,
we have the orbital instability of ¢’ ®§ for p > 5 and @ > w;. This finishes the
proof. O

Remark 5.21 From Remark 5.5 we recall that when n(H) — p(w) is odd, we obtain
initially from [80] only spectral instability of ¢/’ ®% . To conclude orbital instability
from spectral instability we use from Theorem 5.6 that the mapping data-solution is
of class C? for p > 2.

5.5 End-section notes

(a) The study of the NLS model (5.1) for other choices of .4 and F have been made
in [28-30]. By instance, for the NLS-log-6 where A is the §-interaction defined
by (1.22) and F = ULog|U|? or for A being a §'-interaction, namely, (AV)(x) =
(o], x >0,

N
D, 5(A) ={VeHG) :v](0)=--=vp(0), Y v;(0)=2rv](0) ¢, (5.27)
j=1

and F = [U|”~'U, p > 1.

(b) In this section we have seen some of the classical results of the extension theory
for symmetric operators developed by von Neumann and Krein, and several appli-
cations have been given for the Laplacian operator on metric star graphs, where
the matching (boundary) conditions at the vertex v = 0, were of §-interaction type
in (1.22). Next, we will see other way to parametrize all self-adjoint realizations
L of —A in L?(G)-space on a metric star graph G with N half-lines of the form
(0, +00) attached to the common vertex v = 0. We will make use of the notion of
Nevanlinna pairs given in the following definition [91],

Definition 5.22 A pair {A, B} of N x N matrices is said to be a Nevanlinna pair if;

(a) AB* = BA™,
(b) The horizontally concatenated N x 2N matrix [A, B] has maximal rank N.

Next, let u : G — C and it writes u as a column-vector u = (uq, ..., uy)" where
each u; is defined on the interval (0, +00). We express the conditions at the vertex
v=0asu(0) = (u1(04),...,un(0+))" and u’(0) = ) (0+),...,u)y(0+))". In
the following we introduce the Laplacian —A (A, B) as

— A(A, B)u= (—u/{, e, —u/l(,)t ,

; (5.28)
D(—=A(A, B))={u € H*(G) : Au(0) + Bu'(0)=0}.

A crucial result concerning the parametrization of all self-adjoint extensions of the
Laplace operator in L2(G) in terms of the boundary conditions, it was obtained in
[91]. Indeed, we have the following proposition.
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Proposition 5.23 Let A, B be N x N matrices. The next two assertions are equivalent:
(1) The operator —A(A, B) defined in (5.28) is self-adjoint;
(2) {A, B} is a Nevanlinna pair.

For instance, the §-coupling in (1.22) is obtained for the Nevanlinna pair {A, B} defined
by A = As, B = B;s as

I -1 0 ... 0 0 ... 0
1 -1 0 0 0
A= ], B=| : ]l 529
0 0 0 -1
g £ & £ o . |

(c) The existence and stability of standing waves profiles for (5.1) with A =
—A(A, B) in (5.28) and arbitrary Nevanlinna pair {A, B}, is an .

(d N=2in(5.1) and G = (—00, 0) U (0, +00) represent the simplest case of the
nonlinear Schrodinger equation posed on a metric graph. The case of F (1) = |u|’u
and a §-condition at the vertice, A = Ajs 4, is defined by

As qv(x) = =v"(x), x #0, (5.30)
D(Ase) = {ve H'®) NH2®R — {0} : v/(0+) — v'(0—) = av(0)} . )

The operator Aj o is formally defined by the expression As o = —dd—; + ad(x),
where 6 (x) is the Dirac delta distribution centered at x = 0. This case has been
studied in a series de papers (see [5,6,20,22,41,57,69,70,77,83—-85,95]). Moreover,
we have only two standing wave profiles; foro < 0 the tail-profile and fora > 0the
bump-profile. In this case, Theorem 5.10 with £ = H'! (R) recovers the conditions-
parameters of (in)stability obtained in [95] for these profiles.

() For N =2in(5.1)and G = (—o00, 0) U (0, +00), in Adami et al.[4] and Angulo et
al. [31], was studied the NLS with F («) = |u|”u and a §’-interaction [43], namely,
the case of A = Ay _g with

{A,;r,_ﬁv(x) =—v"(x), x #0,
D(Ay,—g) = {1‘12(R — {0} : v(0+) — v(0—) = =BV (0), V' (0+) = U/(O—)} .

The study of the (in)stability of the odd discontinuous tail-like profile with 8 > 0
(Fig. 13) was established in Adami et al. [4]. The case of the odd discontinuous
bump-like profile with 8 < 0 (see Fig. 14) was recently studied in Angulo et.al
[31].

6 The KdV equation on metric graphs
In this section we continue our study of nonlinear dispersive equations on metric

graphs. Our focus will be the model Korteweg-de Vries in (1.23) defined on a star-
shaped metric graph G with the notation for the edge’s set E as E = E_ UE_, where
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Fig. 13 NLS-§' tail-profile, 8 > 0

Fig. 14 NLS-8’ bump-profile, 8 < 0
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E_ represents the collection of negative semi-infinite edges (—o0, 0), and E_ the
positive semi-infinite edges (0, +00). We use the notation |EL| for the number of
edges. For the case |[E_| = |E.|, the metric graph is called a balanced star-shaped
metric graph.

The main interest of exposition here is to establish a linear instability criterium
for stationary profiles of the KdV model on general graph G. A starting point is to
determine when the Airy type operator

d? d
Ap : (Ue)ecE — Oe——=lUe + Be——ue (6.1)
dx dx ") eck

will have extensions A,y on L2(G) such that the dynamics induced by the linear
evolution problem
{Zt = A2, 6.2)

2(0) =up € D(Aext),

is given by a Cop-group. In this point the theory in Mugnolo et al. [112] and Schubert
et al. [124] give that properties of the induced dynamics can be obtained by studying
boundary operators in the corresponding boundary space induced by the vertice of
the graph. In Sect.6.1 below we give a brief description of this theory. In particular,
we construct a family of skew-self-adjoint extensions (Hz, D(Hz))zer of §-type
interaction for Ag in the case of a general balanced star-shaped graph, such that in the
case of two half-lines is defined by:

d d
Hzu = (aed?ue + ﬁeﬁue)eeE’ u = (ie)ecE

D(Hyz) = {u = (u—, uy) € H3(—00,0) @ H3(0, +00) : tu—(0—) = u4 (0+),
Wy (0+) —u’ (0—) = Zu—(0-), ZTzuf(O—) + Zu' (0-) = u/p (0+) —u” (0—)] ,
(6.3)
where for ae = (0_, ay) € RT x RT and B = (B_, B+) € R x R we need to have
o =04 and /37 = /3+.
The first formal study of stationary solutions for the KdV model (1.23) and its
dynamic, was made in Angulo and Cavalcanti [26]. A stationary solution for (1.23) is
a solution of the form

(e (x, 1))ecE = (Pe(X))ecE,

where for e € E_ the profile ¢ : (—00, 0) — R satisfies ¢pe(—00) = 0, and for e €
E4, ¢e : (0,00) — R satisfies ¢e(4+00) = 0. The existence of profiles of stationary
type for the KdV, namely, solutions of the following nonlinear elliptic equation

2
Oted—2¢e(x) + Betpe(x) + p2(x) =0, ecE, (6.4)
dx
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(—oc,0) (0, 4-00)

Fig. 15 Tail profiles for the KdV

(—o00,0) (0, +o0)

(—o0,0) (0, 4+00)
Fig. 16 Bumps profiles for the KdV

are well know and will depend of the profile of the classical soliton associated to the
KdV on the full line (see (1.6)), namely, for specific conditions on « and B¢, we have

Pe(x) = c(ae, ﬂe)sec}l2(d(ae» Be)x + pe), ec€E. (6.5)

The specific value of the shift p, will depend on other (or others) condition(s) imposed
on the profile ¢, in the vertex of the graph v = 0. In [26] was considered the case
for (¢e)ece € D(Hz) on balanced star-shaped metric graph and it was showed that
the tails and bumps stationary profiles in Figs. 15 and 16, respectively, are linearly
unstable.

Novel applications of our general linear instability criterium in Sect. 6.3 have been
obtained recently in the case of kink-profile for the sine-Gordon equation (1.24) on
Y-josephson junction in Angulo and Plaza [39,40] (see End-notes of this section)

6.1 Extension theory and the KdV model on metric graphs

We consider the Airy operator Ag in (6.1) as an unbounded operator on a certain
Hilbert space belonging to L (G). Here we want to obtain skew-self-adjoint extensions
(Aext, D(Aext)) of Ag and for then the generated dynamics induced by (6.2) is given
by a Cp-unitary group. Since the Airy operator Ay has odd order, changing the sign
of each constant « it is equivalent to exchange the positive and negative half line and
so without loss of generality we can choose e > 0 foreverye e E=E_UE,.

The following proposition from [112] gives us an answer about the problem asso-
ciated to (6.2).
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Proposition 6.1 Let G be a star-shaped metric graph consisting of finitely many half-
lines E = E_ UE, and let (¢te)ecE, (Be)ecE be two sequences of real numbers with
ae > 0 for all e € E. Consider the operator Ag defined in (6.1) with

D(Ag) = P CZ(—00,0) @ ) (0, +00).

ecE_ ecE

Then, i Ag is a densely defined symmetric operator on the Hilbert space

L*G) = P L (—00,00 @ ) L*(0, +00),

ecE_ ecE

with deficiency indices (n4+(Ag), n—(Ao)) = Q|E_|+|E+]|, |[E_|+2|EL]). Therefore,
Ao has skew-self-adjoint extension on L*(G) if and only if |[E_| = |E4| (n4+-(Ag) =
n—(Ao)).

We recall from the classical Krein—von Neumann extension theory for symmetric
operators (see Chapter 4 in Naimark [113] and Theorem X.2 in Reed and Simon [122])
and Proposition 6.1, that the operator (Ag, D(Ap)), on the case of balanced star graphs,
admits a 9|E ; |>-parameter family of skew-self-adjoint extension generating each one
a unitary dynamics on L2%(G) associated to the linear evolution equation (6.2). We
note that every skew-self-adjoint extension, (A, D(A)), is obtained as a restriction of
(—A§, D(A()) with —Af = Ap and

D(Ay) = EP H (—00.0) & @) H(0. +00). (6.6)

ecE_ ecE

The main idea in [112] (see also [124]) to parametrize the skew-self-adjoint
extensions of (Ag, D(Agp)) is through relations between boundary values, a strategy
very similar to that established in the case of the Laplacian operator via Nevan-
linna pairs (see End-notes section5). Indeed, for 1 = (ue)ecE € D(AE;) we
denote u(0—) = (#e(0—))ece_ and u(0+) = (ue(0+))eck, , and so we consider
the following space of vectors boundary values in C*, (1(0—), u’(0—), u” (0—))
and (u(0+), u’(0+), u”(0+)), spanning respectively subspaces G_ and G, with
n = |E+|. The boundary form of the operator Ay is easily seen for u, v € D(A) to
be (where we are identifying a vector with its transpose)

0 u(0—) u(0+) u(0+)
(Aéu, v) + (u, Av) = | B- ( u,’/(Of) ) u'(0-) —| B+ | WO || ¥OH)
u’ (0-) W0-)) ) o u” (04) W0+ ) ) ¢ N

(6.7)
where for I = I, representing the identity matrix of order n x n, we have
—I,B_ 0 —lo_ —I,3+ 0 —IO[+
B_ = 0 To_ 0 , By= 0 Toay 0 (6.8)
—Ja_ 0 0 —lay O 0
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and a4+ = (de)ecE.> P+ = (Be)eck.. Thus by considering the (indefinite) inner
product (-|)+ : G+ x G+ — Cby (x|y)+ = (Bxx, y)g,, x,y € G+, we obtain
that (G4, (-]-)+) are Krein spaces and (-|-)+ is non-degenerate (for x € G4 with
(x]x)+ = 0 follows x = 0). Then from Theorem 3.8 of [112] we have that for a linear
operator L : G_ — Gy, the operator (Ar, D(AL)) defined by

{ Apu = —Aju = Aou (6.9)

D(Ap) = {u € D(Ap) : L(u(0-),u'(0—),u"(0-)) = (u(0+), u'(0+), u" (0+))},

is a skew-self-adjoint extension of (Ag, D(Ap)) if and only if L is (G_, G )-unitary,
that means,

(Lx|Ly)+ = (B+Lx, Ly)g, = (x|y)- = (B-x, y)G_» (6.10)

or equivalently, | L*B. L = B_ | Indeed, For u, v € D(Ap) it follows from (6.7)

(—Apu,v) + (u, —ALv) = (Agu, v) + (u, Agv) = @ (O0—)[v(0-)) - — O+ |v(+H)+
= W(0-)[v(0-)) - = (Lu(0=)|Lv(=))+.

Then, (Ap)* = —Ay ifand only L is (G_, G )-unitary.

Next, we establish our family of interest of skew-self-adjoint extension of
(Ao, D(Ap)) on a balanced metric star graph G with [Ex| = n, n = 1, and with
a d-interaction type at the vertex. It will be used in the existence and stability
of specific stationary solutions for the KdV model. We consider B4 in (6.8) and
L = L3,x3, : G- — G4 of order 3n x 3n, Z € R, defined by

I 0 0

L=zt 1 of. (6.11)
ZZ
Zr o711

Thus, for a4 = (e)ecEy> B+ = (Be)ecE.., We obtain L*B, L = B_ if and only if
ay = o— and B+ = B_. Then, in this case (and only in this one) we obtain that L is
(G_, G4)-unitary. Therefore, the operators (Hz, D(Hz)), Z € R, defined by

: Hzu = —Afu = Aou (6.12)

D(Hz) = {u € D(AE) : L(0—), u'(0—), u"(0=)) = u(O+), u'(0+), u” (0+))}

will be skew-self-adjoint extensions for (Ao, D(Ap)), where for u = (ue)ecE €
D(Hyz) we use the abbreviations

u(0—) = (ue(0—))ece_, ' (0—) = (up(0—))eck_, u”(0—) = (ug(0—))ecE_,

(similarly for the terms u(0+), u’(0+) and ©”(0+)). Thus, we obtain the following
system of conditions for u = (ue)ecg € D(Hz)
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u(0=) = u(04), ' (0+) —u'(0—) = Zu(0—), (8-interaction type for every two half-lines)

2
%M(O—) + Zu' (0—) = u” (04+) — u” (0-). (6.13)

It will be of our interest to consider stationary-profile ¢z € D(Hz) N C with

C = {(edeer € L2@) 11,0 =+ =~ (0) = £ O4) =+ = un 00} . (6.14)

that is, the continuity of ¢~ at the vertex v = 0. Therefore, from (6.13) follows that
for u = (ue)ecg € D(Hz) N C we have the §-type condition

w(0—-) =u(0+) and Y ug(0+) = Y uy(0-) = Znuy +(04).  (6.15)

ecE ecE_

Lastly, specific formulas for unitary groups associated to the possible skew-self-
adjoint extensions of the Airy operator Ag is an open problem in general. In Lemmas
7.5-7.6 and Propositions 7.8—7.10 in Angulo and Cavalcante [26], the Green functions
and specific formulas for the unitary groups associated to the one-parameter family of
skew-self-adjoint extensions of é-type (Hz, D(Hz)), were established.

6.1.1 Stationary solutions for the KdV model with a §-type interaction

Next, we build a’ family of continuous (at zero) stationary profiles ‘for the KAV model
on balanced graph G such that ¢ = (¢e)eck € D(Hz). We consider initially the case
of constants sequences (¢e)ecE = (@+), (Be)ecE = (B+), with vy > 0 and 4 < O.
Thus we obtain from (6.5) for Z # 0 and _ﬁ_i > 272, the half-soliton profile ¢ 7z

d1,z(x) = —3"%sech2 [ 2\;5_;: x — tanh™! (;Ji%)] , x>0 (6.16)

and ¢_ z(x) = ¢+ z(—x) for x < 0, such that satisfy (6.4) for x # 0.

Then, the following constants sequences of functions (¢e) = (¢— z) fore € E_ and
(¢e) = (¢+,7) for e € E satisfy the continuity in zero and ¢z = (¢p— 7z, P+ 7)ecE €
D(Hz). ¢z represents a family of bumps profiles for Z > 0 (see Fig. 16) and for
Z < 0 the family of tails profiles (see Fig. 15).

For the general case of sequences (@e)ecE = (01, @2) and (Be)ecE = (B1, B2), With
o = (0 4, ..,y q) =a1 = (a1 —,...,0p-)and Bo = (B1,4,...Bu+) = P1 =

(B1,— ... Bn.—) see [206].

6.2 Angulo and Cavalcante’s linear instability for KdV on a start graph
In this section we establish a linear instability criterium of stationary solutions for the

KdV model (1.23) on a start-shaped metric graph G with |[E| = n and |[E_| = m. Let
us consider an extension (A.yr, D(Acyr)) of the Airy operator Ag in (6.1) on L%(G),
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such that the dynamic induced by the linear evolution problem (6.2) is given by a
Co-group (see [112]).

Suppose for (¢e)ecE € D(Acx:) We have that each component of (ie(x, 1))ecE =
(¢he(x))ecE is anontrivial solution of (6.4). Next, we suppose fore € E, that u, satisfies
formally equality in (1.23) and it defines

Ve(x, 1) = ue(x, 1) — Pe(x). (6.17)

Then, for (ve)ecE € D(Acx:) We have for each e € E the system
0rve(x, 1) = ted ve(x, 1) + Pedyve(x, 1) + 20 (ve(x, 1)ge(x)), (6.18)
which represents the linearized equation for (1.23) around ¢,. Our objective in the
following will be to give sufficient conditions for obtaining that the trivial solution
ve = 0, e € E, is unstable by the linear flow of (6.18). More exactly, we are interested

in finding a growing mode solution of (6.18) with the form ve(x, ) = e“@lfe and
Re(A) > 0. In other words, we need to solve the formal system for e € E,

d2
AMe = —0x LeWe, Le = _aeﬁ — Be — 2¢e (6.19)

with ¥e € D (95 Le)-

Now, we write our eigenvalue problem in (6.19) in a matrix form. Indeed, let
¥ = (Ye)eck and write ¥ = (Y, ¥y)" with Yy = (Ye)eck_ and ¥y = (Ve)eck, »
then we can write (6.19) as

NEy = Ay, Re(A) >0, v € D(E), (6.20)

with N and E being (m + n) x (m + n)-diagonal matrix defined by

N ) (L0
N_( 0 _Mn), E_<0 £+) (6.21)

where [; denotes the identity matrix of order k, and

d? d?
L_ = dlag (—Olly_ ﬁ — /31_ — 2(1)]'_, ey —Olmv_ W — ﬂm,— — 2¢m’_) (622)
where (0te)ecE. = (o1, =y C(m,f)a (Be)ecE_ = (,31,7, cees ﬂm,f)’ and (¢e)ecE_ =
(P1,—» ..., G, ). L is defined similarly for (ce)ecE, » (Be)ecE. and (Pe)eck, -

Thus, we are in a similar framework to that in (1.20) and so a natural extension of
Definition 1.2 can be established in the case of stationary vector solutions for the KdV
model (1.23) on metric graphs (Fig. 17).

Next, we establish our theoretical framework and assumptions for obtaining a non-
trivial solution to problem in (6.20):

@ Springer



Sao Paulo Journal of Mathematical Sciences

(S1) Let (Agxs, D(Acy;)) be an extension of (Ag, D(Ag)) such that the solution of the
linearized KdV model (6.2) is given by a Cy-group.

(82) Suppose 0 # ¢ = (¢e)ecE € D(Acxs) such that (ie(x, 1))ecE = (Pe(X))ecE is a
stationary solution for the KdV model (1.23).

(S3) Let E be defined on a domain D(E) C L%(G) on which E is self-adjoint and
such that D(A.y;) C D(E).

(S4) Since for every u € D(A.y;) we have Eu € D(N), we suppose (N Eu, ¢) =0
for every u € D(Aext).

(S5) Suppose E : D(E) — L*(G) is invertible with Morse index n(E) such that:

(a) forn(E) =1,0(E) = {Ao} U Jo with Jy C [rg, +00) for ryp > 0 and Ay < O,

(b) for n(E) = 2, o(E) = {A1, A2} U J with J C [r,+00) for r > 0 and
A1, A2 < 0. Moreover, for &1, ®, € D(E) — {0} with E®; = 1;®; (i =1, 2)
we have (N¢, 1) # 0 or (N¢, Do) # 0.

(S¢) For ¢y € D(E) with Evr = ¢, we have (i, ¢) # 0.
(S7) Suppose the operator N : D(N)ND(E) — L%(G)isa skew-symmetric operator
and also that N on D(N) is one-to-one.

Next, we give the preliminaries for establishing our instability criterium in Theo-
rem6.2 below. The main idea in the following is to reduce our eigenvalue problem
(6.20) to the orthogonal subspace [¢]- by Assumption S4). Thus we consider the
orthogonal projection Q : L%(G) — L%,

¢

W (6.23)

Qu) =u—(u,¢)

associated to the nontrivial stationary solution ¢, and we also consider X, =
Q(L*(G) = {f € L*(G) : fLp} = [¢]+. We also define the closed skew-adjoint
operator No : D(Ng) C X2 — X2, D(Ng) = D(N) N X», for f € D(Ny) by

¢

W, (6.24)

Nof = QONf =Nf—(Nf,®)

and the | reduced self-adjoint operator ‘ for E, F: D(F) — X, D(F)=D(E)N X,
by

¢
o112

Now, we have the following basic assumption in the case n(E) = 2 in Assumption
(S5).

(H) There is a real number 7, satisfying n > 0, such that F : D(F) — Xy, D(F) =
D(E) N X», it is invertible and with Morse index equal to one. Moreover, all the
remainder of the spectrum is contained in [, +00).

Ff=QEf=Ef —(Ef.9) (6.25)

Theorem 6.2 (1) Suppose the Assumptions (S1)—(S7) hold withn(E) = 2 in Assump-
tion (Ss), and the basic Assumption (H). Then the operator N E has a real positive
and a real negative eigenvalue.
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(2) Suppose (S1), (52), (83), (S5), (S7) hold with n(E) = 1. Then the operator N E
has a real positive and a real negative eigenvalue.

The proof of Theorem 6.2 is based in ideas from Lopes [105] and from Krasnoel-
skii’s result on closed convex cone in [92] (see Angulo and Cavalcante [26,27]).

6.3 Linear instability of tail and bump solutions for a balanced general star graph

g

The main result of this subsection is the following.

Theorem 6.3 It considers the profiles ¢+ in (6.16)withay = 1, B+ = —land1 > ZTZ.

It defines 7 = (Pe)ecE € D(Hz) with ¢pe = ¢— fore € E_ and pe = ¢ fore € E.
Then,

Dz (x,1) = dz(x)

defines a family of linearly unstable stationary solutions for the Korteweg—de Vries
model (1.23).

The linear instability of the continuous (at zero) tail and bump profiles ¢z, Z # 0,
in Theorem 6.3, it will be a consequence of Theorems 6.2 applied with a framework
determined by the space D(Hz) NC.

For the general case of the sequences (tte)ecE = (1, @2) and (Be)eckE = (B1, B2),
withay = (a4, ..., ¥ +) = a1 = (a1, —, ...,y ) and B = (B1 +, ... Bu+) =
Bi = (B1,—. ... Pn,—), see [26].

We start our analysis by considering the 2n x 2n-matrix skew-symmetric operator
N in (6.21) and the 2n x 2n-matrix Schrédinger operator

_(Lz- 0
Ez = ( 0 £z,+) (6.26)
with
. d? d?
L7 + = diag (—Wﬂ—zm,...,—ﬁﬂ—zm) (6.27)

being n x n-diagonal matrices. Via the extension theory for symmetric operators
(2, D(Ez)) is a family of self-adjoint operators whose domain is D(£z) = Dz s N
C c H*(G), with (see (6.15))

weDzs s u@0-)=u0+), > ug0+) — > up(0—-) = Znuj 4 (0+).

ecE ecE_

It is immediate from (6.13) that D(Hz) NC C D(Ez) and so Assumption (S3) holds.
We also we obtain Assumption (S4). Assumption (S7) is immediate by the continuity
property at zero of each element in D(Ez). Moreover, from Proposition 7.10 in [26] we
have that subspace D(Hz) N C is invariant by the unitary group {W (¢)},;cr generated
by Hyz.
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The following lemma shows part of Assumption (.S5).

Lemma 6.4 Let Z # 0 and the operator £z : D(Ez) — L%(G) defined in (6.26) with
D(Ez) = Dz.s NC. Then, Ez is invertible with 0,55(E7) = [1, +00).

Proof 1t is sufficient to consider the case of two half-lines, E = (—o0, 0) U (0, 00).
Thus, let u = (u—,uy) € D(Ez), Ezu = 0. Since L1¢/, = 0, we need to have
u_(x) = ag’_(x), x < 0,and uy(x) = bg/ (x), x > 0 (see [48]). Next, from the
continuity property at zero for u, ¢/, (0+) = —¢’ (0—), and ¢} (0+) = ¢” (0—) it
follows

a=—b and —2a¢/(0+) = Zuy (0+) = Zu_(0—) = Zag' (0—) = —§a¢+(0+).
(6.28)

Suppose a # 0. Then, from (6.28) we have ¢/| (0+) = ZTZ¢+(O+) and so from (6.4)
and (6.16) we arrive to

ZZ
1=¢:00) = - = 7> =4,

which does not happen (1 > ZTZ). Then,a =b=0andu = 0.
Next, by Weyl’s theorem (see Theorem XIII.14 of [122]), the essential spectrum of
&z coincides with [1, +00). Then £7 is an invertible operator. This finishes the proof.
O

Proposition 6.5 Let £7 : D(E7) — L*(G) defined in (6.26) with D(E7) = Dz sNC.
Define the following closed subspace on L*(G),

L,%(Q) ={u = (Ue)ecE : Ue = [ foralle e E_, and ue =g foralle € E}}

Then, n(Ez|L%(g)) =2forZ >0, andn(€Z|L%(g)) =1forZ <.

The proof of Proposition 6.5 will based in the analytic perturbation theory and the
extension theory of symmetric operators. We note that in the case Z < 0 (tail case) can
be given an argument based exclusively in the extension theory of symmetric operators
to be obtained that n(£7) = 1 on L?(G) (see Angulo and Cavalcante [26]).

In the case n = 1 in Proposition 6.5 (two half-lines), we have L%(Q) = L%(G). The
proof of Proposition 6.5 will be divided in several lemmas.

Lemma 6.6 Define the following self-adjoint matrix Schridinger operator in L*(G)
with Kirchhoff’s type condition at v = 0

(Lo_ O
50_( 0 Eo,+) (6.29)

where

a? d?
Lo+ = diag <—W+1—2¢0,...,—W—i—1—2¢0>, (6.30)
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being n x n-diagonal matrices, ¢q is the classical one soliton solution for the KdV
equation on the full line,

do(x) = %sech2 (%x) x €R, (6.31)

and

D(Ep) = {ue H* G NC:u0-) =u@0+), Y ugO0+) — > up(0—)=0¢. (6.32)

ecE ecE_

(1) In the space L% (G) we have Ker (&) = span{®,}, where ®(; = (§())ecE-

(2) The operator (&, D(&y)) has one simple negative eigenvalue in L%(G). Moreover
we also have ”(50|L%(g)) =1

(3) The rest of the spectrum of & is positive and bounded away from zero.

Proof The proof of item (1) follows from a similar analysis as in Lemma 6.4.
For item (2), we use extension theory for symmetric operators. Indeed, we consider
the 2n x 2n-diagonal matrix operator

, d? d?
fozdlag <—ﬁ,...,—ﬁ>, (633)

with domain

D(Fo) = {u e H*(G) : u(0—) = u0+) =0, Y uy(0+) — Y up(0-) = o’ . (6.34)

ecE ecE_

Then (Fo, D(Fop)) represents a closed symmetric operator densely defined on L%(G)
(we note that Pecg €27 (=00, 0) & Pecg, C7(0, +00) C D(Fo)). Moreover, the
adjoint operator (F, D(F()) is given by (see Proposition7.4 in “Appendix”)

Fe=Fo, DF)) ={ueH G :uecl). (6.35)

Next, from (6.35), the deficiency indices for (Fy, D(Fg)) are n4(Fp) = 1. Then, from
the Krein—von Neumann extension theory for symmetric operators we obtain that all
self-adjoint extension of (Fo, D(Fy)), denoted by (L7, D(Lz)), can be parametrized
by Z e Ras Lz = Fyp,andu € D(Ly) if and only if u € C and satisfies (6.15). Next,
we define the following bounded operator on L?(G)

30=(MO’+ 0 > Mo, + = diag (1 —2¢o, ..., 1 — 2¢0)
0 My, — ’

with My + being n x n-diagonal matrices. Then, from [113]-Chapter IV-Theorem 6,
it follows that the symmetric operators Fo and Fo = Fo + By with D(Fy) = D(Fp),
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have the same deficiency indices, ni(fo) = ny(Fo) = 1. Thus (&, D(&y)) belongs
to the family of the self-adjoint extensions of Fy.

Now we see that the symmetric operator .7-'0 with domain D(.7-"0) D(Fp) in (7.3)
is non-negative. Indeed, it is easy to verify that for u = (ue)ecE € H?(G) the following
identity holds

! e — 2oue = — =L [(¢ )2d (”e)} (6.36)
e e OlUe = ¢0 0 ¢0 .

forx <Oife € E_, x > 0if e € E;. Using the above equality and integrating by

parts, we get for u = (Ue)ecE € D(fo) that
dx + Z / (¢0)* <—/)

(Fou, u) /(cbo (;’70)
- leen G- 2 [l i GOl

ecE_ ecE
(6.37)

2
dx

The integral terms in (6.37) are non-negative and equal zero if and only if u = 0.
Since u(0—) = u(0+) = 0 and ¢ '(0£) # 0, the non-integral term vanishes and we
obtain Fy > 0.

Due to Proposition7.3 in “Appendix”, we have that the self-adjoint extension &
of Fy satisfies n(Ey) < 1. Taking into account the notation ®g = (@g)eck for the
“solitary wave profile” we have Eg®g = W, ¥ = (—d)g)eeE, and so

0 +00
(E9®@o, Pp) = —n / ¢5_(x)dx —n / ¢}, (x)dx <0,
—00 0

then from minimax principle one gets n(&y) = 1. Moreover, since ®g = (¢o)ecE €
Item 3) is an immediate consequence of Weyl’s theorem (see [122]). This finishes
the proof. i

Combining Lemma 6.6 and the framework of the perturbation theory as in Sect. 5.4.2
above (see [26]) we obtain the next result. We note initially that is not difficult to see
the convergence ¢z = (¢_, ¢ )ecE — Po = (¢0)eck as Z — 0,in H'(G) ﬂL (9).

Lemma 6.7 There exist Zy > 0 and two analytic functions © : (—Zy, Zo) — R and
Y :(—Zy, Zo) — L%(g) such that

(i) ®(0) = 0and T(0) = ®, where D, = (¢())ecE-
(i) For all Z € (—Zy, Zy), O(Z) is the simple isolated second eigenvalue of £z in
L% (G), and Y (Z) is the associated eigenvector for © (Z).
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(ili) Zo can be chosen small enough to ensure that for Z € (—Zy, Zo) the spectrum of
Ezin L% (G) is positive, except at most the first two eigenvalues.
(iv) Since limz_o(N¢z, Y(Z)) = || Po||*> > 0 we obtain that

(Noz, Y'(2)) #0 (6.38)

at least for Z small. Thus, a continuation argument shows (6.38) for all Z.

We note that relation (6.38) shows part (b) in Assumption (S5). Now, by using the
Taylor’s theorem and by following a similar argument as in Lemma 5.3 in [26] we
establish how the perturbed second eigenvalue moves depending on the sign of Z.

Lemma 6.8 There exists 0 < Z1 < Zg such that ©(Z) > 0 for any Z € (—Z1,0)
and O(Z) < 0 for any Z € (0, Z1). Thus, in the space L,% (G) for Z small, we have
n€z)=1asZ <0,andn(Ez) =2as Z > 0.

Proof of Proposition 6.5 From Lemma6.8 we have for Z small that n(£7) = 1 as
Z < 0,and n(£z) = 2 as Z > 0. Thus for counting the same Morse index of £z for
any Z we use a classical continuation argument based on the Riesz-projection as in
Theorem5.19 (see Lemma 5.3 in [26]). This finishes the proof. O

The following lemma shows Assumption (Sg). Initially, we consider v = —f4 ~
1 in (6.16). Then, we have the differentiable family of stationary solutions a one-
parameter ¢z, = (U— 7,0, U+,Z,0)ecE With —_ 7,0 = (¢— 7 w)ecE_ and U4 7,» =
(P+,7,0)ecE, > With ¢ 7, defined in (6.16), ¢— 7., (x) = ¢4 7,0(—x), x < 0 and
w > ZTZ. Then, for ¢, = (—diwu_,z,w, —%u%z,w)eel@ we have ¢ = ¢ylo=1 €
D(Ez) and Ez¢ = ¢z. Thus with the former notation, we obtain immediately the
following result.

Lemma 6.9 Let Z # 0. The smooth curve of profiles w € (Z—z, +00) = ¢z =
(D—. 7.0+ D+ Z.0)ecE satisfies for ¢ = _j_w‘ﬁZ,w'w:l the relations

Ez¢ =¢z and (p,¢z) <0. (6.39)

Proof of Theorem 6.3 Let Z > 0. From Lemmas 6.4-6.9, Proposition 6.5, relation
(6.38) and Theorem 6.2 we obtain the linear instability property of the bump’s profiles
¢z for the KdV model (1.23). Let Z < 0, then from Lemmas 6.4-6.9 and Proposition
6.5 we obtain via Theorem 6.3-(2) the linear instability of the tail’s profiles ¢z. This
finishes the proof. O

6.4 End-section notes

(a) Thecasen = 1in Theorem 6.3 can be showed via the analytic perturbations theory
of operators, while the case of n = 2, analytic perturbation and the extension theory
of symmetric operators of Krein and von Neumann are required.

(b) The orbital instability implication from the spectral one established by Theo-
rem 6.3, is a open problem.
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(=00, 0)

Fig. 17 Y-Josephson junction

(©

(d)

The existence and stability of other families of stationary profiles for the KdV
model (1.23) defined on a different graph-geometry (balance or non-balanced
graphs) are the objective of several works in progress. Moreover, the existence and
stability of stationary profiles for the generalized KdV model 9;ue = oceafue +
BeOxUe + pug_laxue, ecE, p e N, p =2, are also very interesting problems.
In Angulo and Plaza [39,40] was studied recently the sine-Gordon model (1.24)
in the case of Y-Josephson junction geometry (see Fig. 16). We recall that model
(1.24) was first conceived by Nakajima et al. [115,116] as a prototype for logic
circuits. In [39,40] was obtained the linear instability (also nonlinear instability) of
kink-profile for (1.24) of the form (ue(x, 7))ecE = (Pe(X))ecE and (ve(X, 1))ecE =
(0)eck, with

1
¢e(x) = 4arctan (eW(XME)) ecE, (6.40)

satisfying —c2¢! + sin(¢e) = 0, e € E = (—00, 0) U (0, +00) U (0, +00). Here,
the shift ae will depend of the conditions determined on the vertex v = 0 of the
Y-junction. Between the several domains worked in [39,40], we have the §-type
interaction in the vertex v = 0,

3
Wiy € H*(G) : v1(0-) = 12(04) = v3(04), Y 50 (04) — v} (0-) = Zv; (0-)
j=2

(6.41)

with Z € R.
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7 Appendix

Next, for convenience of the reader and because of non-standard results used in the
body of this manuscript we formulate the following results of the extension theory
(see [113]). The first one reads as follows.

Theorem 7.1 (von-Neumann decomposition) Let A be a closed, symmetric operator,
then
D(A*) = D(A) @ N_; @ N4, (7.1)
with Ny = Ker(A* Fil). Therefore, foru € D(A*) andu = x +y +z €
DA)®N_; & N,
Afu = Ax + (—i)y +iz. (7.2)
Remark 7.2 The direct sum in (7.1) is not necessarily orthogonal.

Our second result of the extension theory of symmetric operators, it gives us a
strategy for estimating the Morse-index of the self-adjoint extensions.

Proposition 7.3 Let A be a densely defined lower semi-bounded symmetric operator
(that is, A = m1) with finite deficiency indices n+(A) = k < oo in the Hilbert space
'H, and let A be a self-adjoint extension of A. Then the spectrum of A in (—oo, m) is
discrete and consists of at most k eigenvalues counting multiplicities.

The following result was used in the proof of Lemma6.6 (see [26]).

Proposition 7.4 Let G be a balanced star-shaped metric graph with a structure repre-
sented by the set E=E_ UE, and |[E_| = |E+| = n. The 2n x 2n-diagonal-matrix
Schrédinger operator on L*(G)

()

with domain

ecE ecE_

D(Fy) = {u € HA(G) 1 u(0—) = u(0+) =0, Y uy(0) — Y ug(0) = 0} , (7.3)

is a densely defined symmetric operator with deficiency indices ny(Fo) = 1. There-
fore, all the self-adjoint extensions of (Fo, D(Fo)) can be parametrized by Z € R,
namely, (Lz, D(Lz)), with the action L; = Fo and u € D(Lyz) if and only if
ueCnDgs,

Dzs={ueH*G) :uO0-)=uO+), Y u(0+) = > up(0—) = Znuy 4 (0+)
ecE, ecE_

(7.4)
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