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Abstract: Branch wood presents potential volumetry that may have several applications, and its use
may improve forest management efficiency in the Amazon. However, there is a lack of knowledge
regarding the properties of branch wood when compared to the stem or what its potential applications
might be, considering the possible variability of wood formation in branches. This study aimed
to characterize physically and mechanically the branch wood of Dipteryx odorata, Hymenolobium
petraeum and Hymenaea courbaril and to compare them with their respective stems. No significant
statistical differences were observed for the basic density between the branch and stem woods. The
branch wood of Dipteryx odorata and Hymenaea courbaril showed a lower coefficient of anisotropy (1.23
and 1.99, respectively) than the stem wood (1.62 and 2.49, respectively). D. odorata showed similar
mechanical properties between the branch and stem, except for hardness, while H. petraeum and H.
courbaril branch wood showed lower strengths when compared to the stem wood for all mechanical
tests, except for the shear strength test. Branch wood has similar potential uses to stem wood and
can be used for non-structural purposes such as small artifacts, decorative items, furniture, tools and
panels composed of short, glued pieces.

Keywords: Amazon rainforest; Hymenaea courbaril; Dipteryx odorata; Hymenolobium petraeum; logging
wastes; tropical timber; sustainable forestry

1. Introduction

There is a growing trend in using forest residues as forest management and conserva-
tion methods in tropical forests [1,2]. Studies suggest that the use of branches associated
with stems maximizes forest productivity, increasing the value of forest areas [3]. It is
estimated that for each 1 m of log harvested in management units in the Brazilian Amazon
Forest, approximately 0.3 m? of waste in the form of branches is produced [4,5].

Between 2009 and 2015, in the low Amazon region in Para state (Brazil) alone, ap-
proximately three million cubic meters of logs were produced [6]. Considering the above
estimate, that means that approximately 900,000 m® of branch wood was potentially avail-
able for use in the region. However, the use of sawn wood from branches as a secondary
product is still challenging due to the possible non-uniformity of its properties due to the
reaction wood formation or variable dimensions [1,2,7].

Branch wood has a different formation when compared to the usual wood from
straight tree stems [8,9]. Due to the gravitropic forces, tension wood is formed on the upper
side of the leaning branches [10]. Changes in the chemical and anatomical constitution
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of the tension wood xylemic tissue [2,11] can also cause changes in the properties of the
wood, such as higher density [12,13], higher longitudinal shrinkage [14], lower compressive
strength [15] and higher tensile strength than normal wood [16].

Previous studies found differences between stem and branch wood both in terms of
chemical and anatomical characteristics [9,17,18] and in technological properties [19-22].
However, there is a lack of studies on tropical Amazon wood species with commercial
potential, especially from the Brazilian Amazon, Brazil’s main tropical wood producer
and one of the world’s largest suppliers of tropical wood [23]. The research about the
technological behavior of the branches wood can support the improvement of the forest
harvesting efficiency in the Amazon.

Thus, considering the fundamental characteristic of the wood as an anisotropic and
heterogeneous material [16], knowledge of wood’s physical and mechanical properties is
essential for defining its use [24,25], especially the group of the most traded wood species
and the relevant volume of residues generated by its harvesting, as reported by Cruz Filho
and Silva (2009) [26] and Numazawa et al. (2017) [27]. The study of branch wood properties
and possibilities for its use supports the referral of this alternative wood resource [28].
In addition, it is important to highlight that removing large branches would have a low
impact on the nutrient cycling in the forest. Because of their big dimensions and high wood
durability, these branches remain above the ground for a long time. The main contribution
to litter formation, on the other hand, is the leaves, followed by thin branches [29].

The objective of this research was to evaluate whether the branch wood of three com-
mercials relevant Amazon wood species has similar physical and mechanical characteristics
to the stem and to propose the use of the material.

2. Material and Methods
2.1. Material

Branches from three species of the Fabaceae family were chosen: (i) Hymenolobium pe-
traeum (Angelim-pedra), (ii) Dipteryx odorata (Cumaru) and (iii) Hymenaea courbaril (Jatoba).
The samples were collected in a sustainable forest management area in the Mamuru—
Arapiuns plot, Santarém—PA, Brazil (3° 00’ 20" S 56° 01’ 1967 W).

The species were selected based on a list of species with the highest traded wood
volume between 2009 and 2015 [6]. During the collection, samples were identified vernacu-
larly by the Rondobel company, which supported the project and donated the material for
analysis. The species were scientifically identified by specialists from the Federal University
of Western Para (UFOPA, Santarém, Brazil).

Four trees per species were selected at random within the study area. The first branch
after the first bifurcation of each tree with a diameter above 40 cm was collected. The
branch logs were cut and split into radial pieces (10 x 10 x 200 cm). The samples contained
only heartwood (visual distinction), with greater dimension in the longitudinal direction.
Wood from the trunk of one tree was also collected as a reference value for the branch
properties. A central plank was taken from a log at 1.3 m above the ground, under the same
conditions and dimensions as the branch material.

2.2. Physical Properties

A minimum of 24 specimens from the branches and 12 from the trunk with dimensions
of 25 mm x 25 mm x 100 mm were tested for each species, as dictated in D 143 [30] standard
protocols.

The basic density (ppas) Was calculated by the ratio between the oven-dried mass
(103 £ 2 °C) and saturated volume (rehydration in deionized water to constant volume) of
the stem and branch. The apparent density at 12% moisture content (p19,) was determined
as the ratio between mass and volume in the same condition after the saturated samples
reached a moisture content equilibrium in an air-conditioned room (21 £ 3 °C; 65% H).

The samples were also measured in the saturated condition and then oven-dried for
calculation of the linear and volumetric contractions and the coefficient of anisotropy (CA),
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which is the ratio between tangential and radial contraction. The D 143 [27] standard
methods were applied to determine the physical properties.

2.3. Mechanical Properties

Compressive strength parallel to fibers (25 mm X 25 mm x 100 mm), strength and stiff-
ness in static bending (25 mm x 25 mm x 410 mm), shear strength (50 mm x 50 mm x 63 mm)
and Janka hardness (50 mm x 50 mm x 150 mm) were determined according to standard D
143 [30], with an electro-servo-mechanical universal testing machine (EMIC, model DL 30,000,
Curitiba, Brazil).

For shear strength and compressive strength parallel to the fibers in branches, a mini-
mum of 25 samples per species were tested, while for static bending and Janka hardness,
a minimum of 20 and 15 samples were tested, respectively. The exception was Hymenolo-
bium petraeum; part of the material was misplaced during the transportation between the
fieldwork and the laboratory, resulting in 15 and 8 samples for static bending and Janka
hardness, respectively. From the stem, a minimum of 10 samples per species were tested in
each analysis.

The characteristic value in the parallel compression of the branch wood and the
strength classes were determined by Equation (1), as proposed by the NBR 7190 stan-
dard [31].

f14+fH+...+fn 4
foox = P — f @
e o
where

fook is the characteristic value of resistance to parallel compression;

fn is the value of resistance to parallel compression in the nth position with the values
ordered in an increasing way;

n is the total number of samples.

2.4. Data Analysis

The study was carried out with two treatments (stem and branch) and 8-10 repetitions.
The data were submitted to the t-test (o = 0.05) for data with normal distribution and the
Wilcoxon test (« = 0.05) for data with non-normal distribution.

3. Results
3.1. Physical Properties

No significant differences were observed in basic density and apparent density when
comparing branch and stem wood for the species Dipteryx odorata and Hymenaea courbaril.
However, it was observed that for the species Hymenolobium petraeum, both basic and
apparent density were lower in the branch (Table 1).

Table 1. Branch and stem wood basic and apparent density of the evaluated species.

Species (\:Z:lljl;; Branch Stem T Value
0.929 0.949 ns
Mean 0P12% (0.822-1.005) (0.887-1.042) 0.1455
Hymenaea (min.—max.) 5.41% 4.69%
courbaril CV ’ 0.805 0.826 ns
Pbas (0.715-0.872) (0.775-0.903) 0.06859
5.54% 4.22%
1.098 1.100 ns
M P12% (0.991-1.221) (1.034-1.198) 0.8816
Dipteryx (min i?;lax ) 6.21% 4.91%
odorata ) ’ 0.941 0.964 ns
Cv Pbas (0.843-1.059) (0.907-1.032) 0.3563

7.27% 4.21%
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Table 1. Cont.
. Variabl
Species (gagflli;; Branch Stem T Value
0.712 0.777 *
Mean. P12% (0.567-0.894) (0.706-0.816) 0.03516
Hymenolobium . 14.16% 5.45%
petraeum (mm.C—\r/n ax.) 0.596 0.648 *
Pbas (0.483-0.739) (0.588-0.682) 0.03917
13.67% 5.52%

p129: density at 12% moisture content; pp,s: basic density; CV: Coefficient of variation; *: statistically significant
difference; ns: non-significant difference on the same line for each property.

H. courbaril and D. odorata branch wood presented greater radial contraction (p < 0.05)
when compared to the stem wood (Table 2). As for the branch tangential and volumetric
contraction, these values were lower only for H. petraeum. The branch wood volumetric
contraction was lower for D. odorata and H. petracum. The observed CA was also lower in
the branch wood for H. courbaril and D. odorata.

Table 2. Total shrinkage and coefficient of anisotropy for Hymenaea courbaril, Dipteryx odorata and
Hymenolobium petraeum.

Shrinkage (%) cA
Tangential Radial Axial Volumetric
Species B S B S B S B S B S
Hymenaca 437  49ns 226 2.02* 025  02lns 658  836ns  1.99 249*
courbaril
Dipteryx odorata 5.90 5.59 ns 4.98 3.58* 0.20 0.17 ns 10.80 9.12 ns 1.23 1.62*
Hymenolobium 5.18 7.04* 3.55 457 * 022  017ns 870  1144* 149  154ns
petraeum
CA: coefficient of anisotropy; B: branch; S: stem; *: statistically significant difference; ns: non-significant difference
between branch and stem for the same property and species.
3.2. Mechanical Properties
There were no significant differences between D. odorata branch and stem wood for
mechanical characteristics, except for the hardness test. H. courbaril and H. petraeum branch
wood showed statistically lower values than the stem wood in all evaluated mechanical
tests, except shear strength (Tables 3 and 4).
Table 3. Resistance to parallel compression (f.), shear strength (f(), modulus of rupture in static
bending (fy1) and modulus of elasticity in static bending (Engg) of Hymenaea courbaril, Dipteryx odorata
and Hymenolobium petraeum.
feo fvo fm Emo
Species (MPa) (MPa) (MPa) (GPa)
B S B S B S B S
Humenaea courbaril Mean 85.02 94.25* 19.23 18.23 ns 107.73 157.72 * 11.43 18.82 *
Y Ccv 14% 16% 17% 18% 24% 21% 28% 20%
165.74
Divtervx odorata Mean 89.21 91.04 ns 17.87 16.68 ns 150.86 ns 19.27 19.19 ns
prery cv 13% 8% 14% 10% 22% 139, 15% 8%
Hymenolobium vetractim Mean 48.30 65.05 * 14.65 13.49 ns 63.88 90.34 * 7.35 13.83 *
Y P cv 18% 12% 29% 18% 43% 9% 51% 11%

B: branch; S: stem; CV: coefficient of variation; *: statistically significant difference; ns: non-significant difference
between branch and stem for the same property and species.
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Table 4. Mean values for the Janka hardness test on the transverse (f.), tangential (fgg;) and radial

(fegr) face.
) fre (KN) fre (KN) fr1r (KN)
Species

B S B S B S
Humenaen courbari] Mean 14 16.70 * 11.20 16.40 * 12.40 16.60 *

Y cv 12% 17% 17% 18% 13% 21%
Divterva odorain Mean 13.21 12.06 * 12.96 14.14 * 13.05 12.84 %

prery cv 12% 6% 15% 3% 17% 14%
Humenolobium vetractim Mean 8.45 7.84 ns 6.20 5.55 ns 6.39 6.38 ns

Y P cv 16% 3% 36% 9% 35% 7%

B: branch; S: stem; CV: coefficient of variation; *: statistically significant difference; ns: non-significant difference
between branch and stem for the same face and species.

Table 5 shows the characteristic value of the compressive strength parallel to the wood
fibers from the branches of the three species, classified in the strength classes according to
the NBR 7190 classification [31].

Table 5. Characteristic value of compressive strength parallel to branch wood fibers.

Species Source f.or (MPa) Class
Hymenaea courbaril Branch 71.849 C60
Dipteryx odorata Branch 79.328 Co60
Hymenolobium Branch 38.948 C30
petraeum

4. Discussion
4.1. Physical Properties

It was observed that the basic and apparent density of H. courbaril and D. odorata
branch wood did not differ from the stem wood values. They were also similar to the values
observed in other research for stem wood of the same species [32-38]. For H. petraeum,
these values are lower than the stem wood values, although it should be noted that they
corroborate the results from the literature for stem wood of the same species [39,40].

The results indicate that the branch wood has somehow similar use to the stem
wood, such as small decorative items, tools, furniture or flooring. Density is one of the
main parameters for assessing quality and indicative of wood use. It is the product of
different wood anatomical characteristics, and it has a direct and indirect relationship
with several other wood characteristics [41], such as mechanical properties [42—45], best
energetic product [46-49] and material durability, machinability and workability [50,51].

The similarity in density values for H. courbaril and D. odorata may be due to the branch
density being an average of the tension wood and the opposite wood [52]. Thus, given
the lower proportion of tension wood, the density of this type of wood does not have a
significant influence on the mean value of wood density [14].

For H. petraum, the significant difference may be related to the heterogeneous occur-
rence of resin oil apparent exudation, more present in stem wood, which contributes to
high variation in density when compared to branch wood.

Regarding the branch wood dimensional stability, differences were observed depend-
ing on the species. The radial contraction of H. courbaril and D. odorata branch wood
was significantly greater than the stem wood. The presence of a gelatinous layer inside
the tension wood fiber influences changes in dimensional stability in relation to normal
wood [14].

However, the branch wood values for tangential contraction of these two species did
not differ from the stem wood. The isolated evaluation of these two factors is not sufficient
to qualify the dimensional stability of wood [16,53]. Thus, the ratio between tangential
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and radial contraction or coefficient of anisotropy is a more appropriate index, as it allows
us to determine the dimensional behavior of a part [54]. The farther it is, the greater the
dimensional instability, increasing the tendency to defects when drying and decreasing its
quality for uses such as flooring and window frames [55].

In comparison to normal wood, the modification of density and dimensional stability
in tension wood does not occur as evidently as in compression wood [14]; in general, it is
assumed that tension wood has a higher density than normal wood [56-58]. However, this
property is highly variable in angiosperm tension wood, in which more complex factors
affect density depending on the anatomical configuration [49], thus being differentiated
between species [59,60].

Tension wood has an excessive axial contraction due to the presence of a gelatinous
layer or a growth stress release during water flow and contraction of the wood [14]. How-
ever, due to the low microfibril angle of the tension wood, this leads to infer insignificant
longitudinal contraction and, in this case, according to Boyd [61], the high microfibril angle
of the S1 layer influences this excessive longitudinal contraction since the S2 layer, from a
smaller angle, may have less thickness in that wood. This dimensional behavior was not
verified for the branch wood since the longitudinal contraction remained insignificant.

The branch wood coefficients of anisotropy for H. courbaril and D. odorata were lower
than the stem wood and showed no differences in H. petraeum. According to the classifica-
tion proposed by Durlo and Machiori [62], H. petraeum and D. odorata branch wood can be
classified as dimensionally excellent (CA < 1.5), while H. courbaril has normal dimensional
stability (1.5 > CA <2.0).

As noted, H. petraeum wood showed lower values for basic and apparent density and
lowered tangential and volumetric contraction. Volumetric contraction is the product of
other linear contractions, more influenced by tangential contraction [63-65]. As tangential
contraction values for H. petraeum were lower, this influenced the wood’s lower total
contraction. In addition, less dense woods, in general, have lower wall thickness and,
consequently, less contraction during water outlet [66]. Nakano [67] observed that the wall
thickness is related directly to the physical properties of the wood. Andrade et al. [47] also
stated that the lower cell wall thickness associated with the lower density of the wood
decreases the wood hygroscopicity due to the decrease in free microfibrils and hydroxyls
per area, decreasing the volumetric material changes.

Both H. courbaril and D. odorata branch wood have high dimensional stability (lower
CA), which makes them desirable for uses such as window frames or higher value-added
products, such as high-end furniture or flooring. H. petraeum wood, although less dense,
presented similar contraction values to the stem, including less tangential and volumetric
contraction, and can be sold for the same uses, such as light civil construction, furniture
and decoration [39].

4.2. Mechanical Properties

The results of the mechanical properties observed for the branch are similar to those
observed by other authors for stem wood from the same species in this study [68-71].

During the wood parallel compression and static bending tests for H. courbaril and
H. petraeum, some samples apparently free from defects broke catastrophically, resulting
in values considerably below the average, which resulted in high coefficients of variation.
As previously mentioned, the branch wood presents tension wood, which has a different
mechanical behavior due to changes in its composition. In the case of compressive strength
parallel to the fibers, the lower lignin content in this type of wood may result in lower
resistance due to changes in the wood microstructure [72-74], associated with the significant
influence of the microfibril angle on the wood mechanical behavior [75].

Based on the observed results, the use of H. courbaril and H. petraeum wood for
structural purposes in solid form is not recommended since visually healthy portions of
wood may have low load capacity. It should be noted that a minority of samples had such
defects, but as this work aimed to use them commercially, these values cannot be considered
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outliers. Its exclusion from the data set could imply risks not only to the structure but
mainly to users.

In all tests, except for shear strength, H. courbaril branch wood presented statistically
lower values than stem wood. This behavior was also observed for H. petraeum wood,
except for Janka hardness and shear strength. Unlike the other two species, no statistical
differences were observed for D. odorata branch wood when compared to stem wood, except
for the Janka hardness test.

Janka hardness test values for branch wood are similar to those described in the
literature for stem wood in the same species studied here [38,40,76]. The wood hardness
can be used as an important parameter in the indication of wood for floors and decks [77],
and this property is highly influenced by wood density [72].

H. courbaril and D. odorata branch and stem wood presented high values in the Janka
hardness test both in the normal and parallel direction to the fibers, considered as high
hardness wood, according to the LPF classification [78], which indicates suitability for use
in the production of floors in general. New studies that evaluate characteristics such as
abrasion, roughness and resistance to impacts are important in this sense.

The characteristic values in parallel compression classify H. courbaril and D. odorata
wood as C60, the largest class in NBR 7190 [31], and H. petraeum as C30, the second
smaller (Table 5).

The resistance classes aim to eliminate the need for a complete wood mechanical
characterization before its structural application. With the resistance to parallel compression
(fcOk) calculation value, a sawn wood lot is classified in a resistance class, and the values of
the other mechanical properties are obtained according to each class. This classification
still depends on a visual assessment of the pieces, where pieces with defects, such as knots,
grain deviations, etc., are not in a resistance class.

ASTM D143 secondary method [30] was adopted because it proposes reduced dimen-
sions samples, which is important for obtaining parts free from defects since the branches
presented grain deviation. The studied branch wood has properties suitable for structural
use when free from defects. However, the presence of these defects, such as the reported
grain deviations or invisible internal defects, must be considered, as these can drastically
reduce the wood’s mechanical properties. As the resistance classes classification occurs
through parallel compression, and the properties in bending are more severely affected by
grain deviation, defects can be an even greater problem depending on the wood destination.

In contrast to H. courbaril and H. petraeum, D. odorata branch wood presented a
great mechanical similarity to stem wood. This result indicates that this branch wood
can be used in an equivalent way. In general, D. odorata wood can be used for heavy
civil construction or decorative purposes and for window frames and domestic floor
production [39], which points out the high value that can be added to branch wood that
remains in the post-harvest forest.

Before H. courbaril and H. petraeum branch wood is used for structural purposes, the
reason for the sudden ruptures observed in the static bending test must be understood. The
branches have three types of wood with different characteristics: reaction wood, opposite
wood and lateral wood. If the rupture is linked to any of these three types of specific wood,
it is still possible to apply this material for other uses other than structural.

H. courbaril and D. odorata branch wood presented higher density. Based on this and
their other properties, which are similar to the stem wood, and considering the difficulty of
obtaining large wood pieces with no grain deviation, they can be applied to other uses that
require smaller pieces, such as small artifacts, decorative pieces, furniture, tools, panels
composed of short, glued pieces and various utensils that would not be influenced by
inclined grain.

Another application is for parquet flooring production. As this type of floor consists of
small solid pieces, the problem of grain deviation found in branch wood is avoided, but ad-
ditional tests to determine the wood lifespan and viability on floors are also recommended.
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Branches generally show more tortuosity than the main trunk, which can have a logistic
or financial impact on their transportation out of the forest. However, Ribeiro et al. [4]
confirmed the viability of harvesting and processing these large branches from many Amazon
timber species, supporting the need for a better evaluation of this timber source.

5. Conclusions

Dipteryx odorata, Hymenaea courbaril and Hymenolobium petraeum branch wood have
similar physical characteristics to stem wood and may have the same commercial applications.

Only Dipteryx odorata branch wood presented mechanical performance similar to stem
wood. However, due to the grain deviation present on branches, it is not recommended to
use solid branch wood for structural purposes.
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