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A B S T R A C T

Chitosan (CS) is a versatile biopolymer used in the abrication o dierent types o drug delivery systems. It is
recognized mainly by its pH-responsive behavior, mucoadhesive, and membrane permeation enhancer proper-
ties, which can be explored or modulated drug release and localized delivery. Other biological properties
(immune adjuvant, and antitumoral) put this biopolymer at the oreront o raw materials or manuacturing new
multiunctional products. Their material attributes can be improved by chemical modication, resulting in CS-
based derivatives with controlled hydrophobicity, better solubility, and higher bio(mucoadhesive) capacity.
The resultant CS-based materials have been used to abricate nanoparticles (CS NPs) or the delivery o small
molecules and macromolecules into body tissues. Despite many studies that have reported the ecacy and saety
o CS NPs, there are still some important issues to be considered beore they reach the market. Herein, we
demonstrate the perceived risks o using CS NPs can be partially explained by some important gaps in basic
science, technological processes, and aspects related to quality control and regulatory aairs. This review dis-
cusses the challenges and possible solutions or each o the above-mentioned points with the perspective o
enabling CS NPs as technological platorms or the pharmaceutical industry.

1. Introduction

CS is a polycationic biopolymer derived rom the deacetylation o
chitin. It is a copolymer o glucosamine (β (1–4)-linked 2-amino-2-
deoxy-D-glucose; GlcN) and N-acetylglucosamine (2-acetamido-2-
deoxy-D-glucose; GlcNAc). The CS chemical structure coners better
physicochemical properties than chitin, due to the possibility to dissolve
the material under acidic conditions. In this regard, the presence o
amino groups coners a pH-responsive behavior, a desirable property or
dierent applications such as in ood, beverages, agrochemicals, cos-
metics, and pharmaceuticals (Aranaz et al., 2018; Bandara, Du, Carson,
Bradord& Kommalapati, 2020; Khala et al., 2023; Maleki, Woltering&
Mozaari, 2022; Shariatinia, 2019). Further, CS is extensively explored
in the abrication o drug delivery systems (DDS) (e.g., particulate sys-
tems, hydrogels, etc.) due to its low cost, easy processability at the
bench, and controlled release capacity (Kumar, Vimal & Kumar, 2016).

The physicochemical behavior o CS is well characterized in both
solid states and aqueous solutions. Particularly, the CS solution

properties are highly dependent on intrinsic structural eatures such as
the degree o polymerization (DP), degree o acetylation (DA), and
extrinsic environmental actors such as pH, ionic strength, and polymer
concentration (Blagodatskikh et al., 2013; Costa, Teixeira, Delpech,
Souza & Costa, 2015; Sorlier, Denuzière, Viton & Domard, 2001, 2003).
CS presents interesting biological activities such as immunomodulatory,
antimicrobial, antitumoral, and wound healing eects (Khala et al.,
2023; Kou, Peters & Mucalo, 2022; Shariatinia, 2019; Zhang et al.,
2019). It should be noted these interesting eects are intricately linked
to the chemical structure o CS as well as to their main qualitative at-
tributes o DP and DA.

The presence o hydroxyl and amino groups in CS makes the polymer
a useul backbone or chemical modication. The CS derivatives are
produced to improve the physicochemical properties o CS or to add new
unctionalities that can be exploited during urther manuacturing o
dosage orms (Ahmed & Ikram, 2017; Marcondes et al., 2021). The most
common derivation strategies are the quaternization, thiolation, and
alkylation o CS polymer chains. The quaternized derivatives o CS (e.g.,
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trimethyl CS) are produced by transorming the primary amine groups o
CS into quaternary salts with a permanent positive charge (Andreica,
Cheng&Marin, 2020; Pathak et al., 2021). The thiolation derivatization
consists o modiying the CS backbone with sulhydryl-bearing agents
like cysteine, thioglycolic acid, and 6-mercapto nicotinic. The reactions
proceed via amide or amidine bonds, resulting in thiolated CS with
improved adhesive properties (Federer, Kurpiers & Bernkop-schnu,
2021). The alkylated derivatives o CS are generally obtained via
reductive amination o the biopolymer. The resultant amphiphilic
properties o the alkylated derivatives are dependent on the alkyl chain
length and impact the membrane permeation properties (Ahmed &
Ikram, 2017; Pol et al., 2022).

Although CS biopolymers and their derivatives can be processed in a
variety o drug delivery systems (DDS), the development o CS NPs de-
serves attention due to its capacity to protect drugs and macromolecules
against harsh conditions. Further, CS NPs can be used to modulate drug
delivery in a pH-dependent manner (Aydin & Pulat, 2012). CS NPs can
be abricated by several methods such as ionic gelation, polyelectrolyte
complexation, emulsion-solvent diusion, reverse micellization, nano-
precipitation, and spray drying (Bashir et al., 2022). The method o
choice is generally dependent on the physicochemical properties o the
small molecules or macromolecules to be encapsulated and other syn-
thesis parameters such as the encapsulation and drug loading eciency
and %yield.

Ionic gelation and polyelectrolyte complexation are well-established
methods or the abrication o CS NPs based on associative interactions
between CS and small ions or large polyelectrolytes o opposite charge.
These techniques are requently described as mild and cost-eective
when compared to the more complex process involving emulsication
and supersaturation phenomena (Ferreira et al., 2020). At present,
several types o CS NPs could be prepared by combining CS with small
anions (e.g., tripolyphosphate) and polyelectrolytes (dextran sulate,
hyaluronic acid, sodium alginate, etc.) (Boni et al., 2018; Carvalho et al.,
2021; Moeini et al., 2018). The dierent combinations o poly-
electrolytes oer opportunities to design new unctionalities or CS NPs
that go beyond those described or CS biopolymers. Indeed, it is well
known that several types o polyanions have interesting biological
unctions such as anti-infammatory, lubrication, and wound healing
properties (Aya & Stern, 2014; Draget & Taylor, 2011).

Despite the increased interest in CS-based materials, ew marketed
medicines are using this biopolymer in their composition (e.g. LipoSan
Ultra™, Chitocare™, Axiostat™) (Frigaard, Jensen, Galtung & Hiorth,
2022). However, the regulatory status is not clearly dened. Despite
attempts by some companies to achieve GRAS status (generally recog-
nized as sae) or CS, the FDA still does not recognize it as such (FDA,
2002, 2005, 2011, 2022). The International Pharmaceutical Excipients
Council (IPEC) and other regulatory agencies propose some preclinical
tests ocusing on the short-, mid-, and longer-term clinical use o new
excipients (Baldrick, 2010). This guidance could be a starting point to
introduce CS-based materials in more marketed products, however,
more specic considerations should be addressed or CS NPs. Currently,
there are several studies demonstrating the advantages o CS NPs in both
technological and biological aspects. However, it is important to address
some unresolved questions.

This review ocuses on the current scenario o CS NPs abricated by
ionic gelation or polyelectrolyte complexation as possible technological
platorms or the encapsulation o dierent types o drugs. The unda-
mental understanding o CS NPs mechanisms o ormation and biolog-
ical interactions as well as technological barriers and regulatory issues
are discussed as the main obstacles hindering the development o mar-
keted products.

2. The global market of CS: is there an opportunity for
nanoparticulate systems?

The global CS market is projected to reach USD 47.06 billion by

2030, registering a compound annual growth rate (CAGR) o 20.1 %
rom 2023 to 2030 (GVR, 2022). This expected increase in CS values is
somewhat explained by the demands or bio-based polymers in dierent
industrial sectors. Recently, an in-depth patentology analysis o the
chitinous biomaterials was reported, aiming to provide an outlook or
the scientic background on the trends o intellectual property protec-
tion on chitinous materials (Kertmen, Dziedzic & Ehrlich, 2023a,
2023b). The patent analysis was carried out in the 2nd quarter o 2022
and identied 3650 patent amilies related to CS-based products.
Particularly, the cosmetic, pharmaceutical, and biotechnological sectors
can be the main drivers or the increased CS value.

A total o 58,329 publications were ound under the term "chitosan
nanoparticles" in the Science Direct platorm or the last decade
(2013–2023). This indicates that the science and technology behind CS
NPs evolved greatly at least quantitatively. However, most studies are
exploratory by nature, with a major ocus on evaluating possible
application possibilities without careul consideration o the mecha-
nistic understanding o how the ideas should work. Examples o distinct
applications are described in Table 1. Despite this high number o
research studies ound in periodic journals only 11 initiatives were
ound in clinical trials (ClinicalTrials.Gov, n.d.) Such a low number o
clinical trials refects the uncertainties around CS NPs, which could be
attributed not only to the CS properties but also to the uncertainty o
nanotechnology methods and claims.

The application achievements o CS-based materials put this
biopolymer at the oreront o the development o new unctional
products. Many applications in the pharmaceutical-related areas o
drugs, vaccine adjuvants, and biopharmaceuticals are now well-
established on the lab scale (Dmour & Islam, 2022; Khala et al.,
2023). The infuence o NP size and surace charge on the biological
responses is requently reported in those studies, but little is known
about how the specic ranges o values o the CS NPs physicochemical
attributes interere with the desired response. In addition, consider-
ations about stability under biorelevant conditions are not very well
documented, which creates uncertainty rom a regulatory point o view.
Thereore, it is expected the uture development o CS NPs should ocus
on conducting more systematic studies aiming to better describe these
aspects to reach market opportunities. Further, initiatives on the mass
production o CS NPs will demand new process technologies, especially
those that can be easily implemented by the industry.

3. Major challenges to establishing CS NPs as a platform
technology

Despite Chitin and CS-based materials being extensively studied in
both basic science and technological aspects, there are some ocal points
to be better understood to establish the CS as a unctional excipient and
CS NPs as a versatile technology platorm or the pharmaceutical and
biotechnological industry. We present here the three main points that
should be addressed in the next years to provide suitable scenarios or
launching CS NP-based products: i. the undamental questions related to
mechanisms o CS NPs ormation and interaction with biological in-
teraces, ii. technological advances regarding scaling up processes and,
iii. development o quality control methods and clarication o regula-
tory issues.

3.1. Fundamental science gaps o CS NPs

Most basic science questions or CS NPs revolve around developing a
greater understanding o the molecular details o the ionotropic gelation
or polyelectrolyte complexation process (Ferreira et al., 2020). The
elucidation o the predominant supramolecular orces in nanoparticle
ormation and stabilization is important to achieve nanoparticles with
adjustable properties. Furthermore, the understanding o how CS NPs
interact with biological suraces can help in the development o bio-
responsive systems. Regardless o whether such undamental questions
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have more technological or biological implications, the scientic an-
swers are crucial or the correct production o innovative products and
the implementation o personalized therapies in a lot o complex
diseases.

The understanding o the role o supramolecular interactions on the
colloidal properties o CS NPs (e.g., hydrodynamic and charge proper-
ties) is a central axis o research (Aibani, Rai, Patel, Cuddihy & Wasan,
2021). Most o this physicochemical knowledge basis was consolidated
in the last decades due to extensive research in the material properties o
CS in solid state and aqueous solution, which enabled a more rational
production o CS NPs (Schatz, Viton, Delair, Pichot & Domard, 2003;
Sorlier, Rochas, Morn, Viton & Domard, 2003).

The relationship between CS DP and DA and polymer chain conor-
mation and ionization in solution are now well characterized. It was
concluded these structural actors dictate much o CS solution behavior
during CS NP synthesis. The DP is ormally dened as the number o
monomer units in the CS polymer chain. It is calculated as the ratio o
molecular weight (Mw) o a CS and Mw o the GlcN and GlcNAc repeat
units. The degree o acetylation (DA, %) is dened as the molar raction
o GlcNAc in the copolymers o CS composed o GlcNAc and GlcN (Jiang
et al., 2017). This actor determines de overall ionization state o CS and
together with Mw can infuence the CS solution conormation and su-
pramolecular interactions with other biomolecules. In this respect, it is
known that while low Mw CS polymer chains usually extend as stier
linear chains, medium and high Mw CS polymer chains entangle due to
the increase in the length o the molecular chain. The higher the Mw, the
higher the entanglement, and the polymer chains usually adopt coil
conormation (Cho, Heuzey, Bégin& Carreau, 2006). The overall charge
o CS dependent on DA modulates this intramolecular entanglement due
to charge repulsion. It is known that CS monomers have distinct
physical-chemical properties, while GlcN provides ionic characteristics,
and the GlcNAc is hydrophobic. The distribution and size o the
sequence o comonomers aect the charge distribution, but little is
known about how this intereres with the sel-assembly o CS NPs
(Cord-Landwehr et al., 2020; Wattjes et al., 2020).

The other category o synthesis actors that infuence the mecha-
nisms o CS NPs ormation is the extrinsic or environmental variables
such as pH, ionic strength, and polymer concentration. In this respect, it
is reported that pH and ionic strength modulate the charge o CS mol-
ecules by interering with the ionization equilibria and ion-based charge
screening, respectively (Gucht, Spruijt, Lemmers& Cohen Stuart, 2011).
It has been demonstrated that pH can modulate the strength o poly-
electrolyte complexation and the ionic strength o the solution modu-
lates the kinetics o CS NPs assembly (Ferreira et al., 2023; Lalevée et al.,
2016). However, most studies were perormed with monovalent charged
ions and the infuence o ion specicity and higher valency ions has yet

to be determined. The concentration regimes aect mainly the inter-
molecular chain entanglement. The semidilute regime o CS chains is
characterized by unentangled polymeric chains and exists above the
chain’s overlap concentration c* within the polymer concentration
range c* < c < ce, where ce is the polymer concentration corresponding
to the onset o entanglements (Cho et al., 2006). For example, the de-
pendency relationship between CS entanglement and the total poly-
meric concentration o the starting solution has been shown to aect the
hydrodynamic size o the nanoparticle (Sreekumar, Goycoolea,
Moerschbacher & Rivera-Rodriguez, 2018).

CS NPs are generally administered via mucosal routes due to their
well-recognized mucoadhesive and permeation-enhancing properties.
However, the interactions o NPs with mucus barriers have proved to be
much more complex than the considerations made by mucoadhesion
theories (Mansuri, Kesharwani, Jain, Tekade & Jain, 2016). Indeed, an
opposing line o research has presented the concept omucopenetration,
which has been studied in some ormulations o CS NPs (Cheng et al.,
2021; Lai, Wang & Hanes, 2010). Both mucoadhesion and mucopene-
tration concepts are limited drug delivery strategies as they hinder some
important details o the phenomenology o mucus interactions that are
dependent on the action o combined supramolecular orces between the
CS NP and the biological system. Thereore, research studies searching
to understand and modulate the interactions at the so-called nano-bio
interace is a mandatory topic to enable more eective and saer ther-
apies with CS NPs (Nel et al., 2009). Herein, the emerging
mucus-modulating concept shares some undamentals o colloidal and
supramolecular chemistry responsible or CS NPs ormation and stabi-
lization (Fig. 1). They are dynamic and are dependent on the bio-
physicochemical characteristics o the CS NPs, the biological surace,
and the interaction environment (Ferreira et al., 2023; Nordgård &
Draget, 2018).

Nano-bio interacial interactions that occur between the synthetic
and biological worlds require a new type o approach on the part o
scientists. The concept o a static DDS whose unction is to direct the
drug to the desired location or release has been conronted with the
most recent evidence in pharmaceutical nanotechnology. Several works
report that the dynamics and structure o the system in the environment
in which the biological response occurs are essential components that
must be considered (Nel et al., 2009). Herein, the biomolecular corona
ormation around NPs is a key hallmark o events occurring at the
nano-bio interace (Biology et al., 2016; Docter et al., 2015; Maskos &
Stauber, 2017). Particularly, it has been demonstrated the serum source
aects the reliability o in vitro experiments o CS NPbreast cancer cell
interactions, which can partially explain the limited clinical success o
drug targeting by CS NPs in some types o cancer (Ezzat et al., 2022).
Other studies have pointed protein corona can signicantly aect the in

Table 1
Description o main technological attributes and unctional claims o CS NPs produced with CS or CS derivatives.
CS-based raw
material

Other components Technological attributes Perormance and unctional claims Reerence

Low Molecular
Weight CS

Poly-glutamic acid,
oligodeoxynucleotides (ODN)

DA and mannosylated
moieties o CS

The decreased charge density on the CS backbone resulted in
enhanced intracellular ODN release, which promoted in vitro
cytokine secretion. The mannose grated on the CS- backbone
promoted the uptake o CS NPs through the mannose receptor-
mediated recognition.

(Babii et al., 2020)

COS Polyelethyleglycol,
Cyclosporin (CsA)

Zeta potential and triggered
release

The charge conversion o COS NPs enabled the ecient
delivery o CsA and AZD9291 in vivo, in response to the weakly
acidic tumor environment. The presence o COS had positive
charge attributes, which enhanced the anity between tumor
cells and NPs, enhancing the cell uptake.

(Chen et al., 2022)

TMC Tripolyphosphate, protective
antigen, Poly I:C

In vitro release prole,
particle size distribution, and
zeta potential

The protective antigen-loaded TMC nanoparticles as well as
CpG and Poly I:C adjuvanted TMC-PA ormulations promoted
strong IgG antibody response via subcutaneous, intramuscular
and subcutaneous routes in mice.

(Malik, Gupta, Mani,
Gogoi & Bhatnagar,
2018)

Oleoyl-
carboxymethyl
chitosan

Hyaluronic acid Particle size distribution, zeta
potential, DNA loading and
release.

The transection eciency o hyaluronic acid modied-NPs
was 5-old higher than that o non-modied NPs under the
same conditions.

(Liu et al., 2013)
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vivo ate o CS NPs including biodistribution and hal-lie (Tekie et al.,
2020). This complexity o nano-bio interacial interactions brings DDS
remarkably close to biological systems, in which the dynamics o su-
pramolecular interactions orm the basis o the biochemical and bio-
physical processes involved in physiological or pathological events.
Thereore, studies ocused on understanding the main actors aecting
protein corona ormation on CS NPs and strategies to overcome some
deleterious eects must be a eld o intense uture research (Caprico,
Foot, Polycarpou & Calabrese, 2021; Moraru, Mincea, Menghiu &
Ostae, 2020).

Much o the knowledge o CS interactions with biological interaces
was generated by biophysical studies with mucin (MUC) and bio-
membrane models (Ferreira et al., 2023; Haugstad et al., 2015; Pavi-
natto et al., 2007; Silva, Nobre, Pavinatto & Oliveira, 2012;
Thongborisute & Takeuchi, 2008). Although conventional scientic
explanations all on the role o electrostatic interactions, recent research
indicates that other interactions must be considered. Particularly, it is
becoming more and more evident that the hydrophobic eect and
H-bonds can play signicant roles in mediating CS-MUC and
CS-biomembrane interactions (Pedro, Pereira, Oliveira & Miranda,
2020; Pereira et al., 2020). In this respect, some important gaps should
be addressed in uture research such as the role o water and environ-
mental actors o pH and ionic strength in modulating those interactions
(Ferreira et al., 2023).

3.2. Main technological demands or producing CN NPs on a large scale

The scalability o CS NPs is not straightorward, and it is highly
dependent on the properties o the raw material and on the abrication
method. The scale-up o nanomaterials is intricately linked to some
undamental science topics omolecular/nanoscale phenomena. Despite
a lot o basic research has elucidated the infuence o the molecular
eatures (DA and DP) o CS on their charge and hydrodynamic proper-
ties, and we have gained a lot o insights on how these actors aect CS
NPs ormation in the bench, little is known about how to consider this
knowledge at large scale o CS NPs production. Particularly, as discussed

beore, nanostructures are ormed and stabilized by multiple supramo-
lecular orces (e.g., electrostatics, H-bonds, hydrophobic eect, etc.) in
which the combined eects are scale-dependent (Savyasachi et al.,
2017). More specically, it is important to consider the spatiotemporal
evolution o those supramolecular interactions together with mass
transport phenomena during scale-up (Herdiana, Wathoni, Shamsuddin
& Muchtaridi, 2022; Panariello, Mazzei & Gavriilidis, 2018).

The use o scalable methods is another crucial actor in establishing
CS NPs as a technological platorm. Both ionic gelation and poly-
electrolyte complexation occur in an aqueous solution upon mixing CS
with a charged (poly)anion. There are dozens o studies demonstrating
the easibility o these processes at the bench, but the transposition o
scale requires considerations about the mixing operations in the length
and time scales o polyelectrolyte complexation (Gucht et al., 2011).
Currently, this knowledge is somewhat limited, and it is important to
investigate how the hydrodynamics, charge, heat, and mass transer can
aect the thermodynamic and kinetic parameters o CS NPs ormation
during scale-up.

The understanding omixing mechanisms as a unction o length and
timescales can lead to the optimization o industrial batches. These
mechanisms are usually employed to control crystallization processes,
but they can be applied in other types o reactions since the mixing step
is a critical operation (Abiev, Kudryashova, Zdravkov & Fedorenko,
2023). The mixing mechanism is usually divided into macro, meso, and
micromixing and, in each scale, the set o interering actors can be
dierent. The macromixing occurs on the vessel scale, which represents
the uniormity o the local concentrations o CS and other poly-
electrolytes within the entire vessel. The mesomixing reers to the
dispersion o the eed stream shortly ater it enters the intravortex. It is
characterized by a turbulent exchange o resh eed with the surround-
ing fuid. Finally, micromixing comprises the molecular diusion and
engulment o dierent fuid elements at the scale o the smallest tur-
bulent eddies, which represents molecular scale mixing.

A key issue is to understand how the main supramolecular in-
teractions responsible or CS NPs ormation behave in these dierent
mixing scales. From this knowledge, it is important to design operations

Fig. 1. Main undamental sciences gaps o CS NPs applied to mucosal delivery. (A) The CS NPs ormed by polyelectrolyte complexation are explained by associative
orces between CS and polyanions. The role o other elements during CS NPs ormation (e.g. ions and water) is not well understood. (B) Nano-bio interace in-
teractions is responsible or the mucoadhesive or mucopenetrant behavior o CS NPs. The knowledge o how to rationally manipulate these interactions is now an
advanced concept o mucus modulation.
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able to control these interactions through scalable techniques.
Currently, three possible scaling methodologies are used to obtain CS
NPs (Fig. 2). The bulk mixing operates at the macromixing scale and
requently produces unstable particles and batches with great vari-
ability. On the other hand, methodologies ocused on phenomena
occurring at the meso‑micro mixing scales are more suitable or
obtaining CS NPs with reproducible properties. In this respect, the fash
nano complexation (FNC) and microfuidic technologies enabled more
precise control o the molecular diusion processes and, consequently
slowed down the kinetics o CS NPs ormation (Ahmed et al., 2021; Hu
et al., 2021; Zhang, Chen, Ma & Sun, 2020; Zoratto et al., 2021).
Recently it was demonstrated the mixing eciency provided by FNC
promotes higher compactness and increases the aggregation number o
CS inside each NP ormed by ionic gelation with tripolyphosphate an-
ions (Yuan & Huang, 2019; Yuan et al., 2022).

Despite the outstanding results o CS NPs produced by FNC, the
transposition o scales must be accompanied by a risk assessment. This
could be done by ocusing on a systematic process that involves iden-
tiying, analyzing, and controlling hazards and risks. Currently, there
are no wide risk assessment tools dened or CS NPs production, but the
concepts o Sae by design (SbD) and Quality by Design (QbD) can bring
an important ramework or this need (Marques, Som, Schmutz, Borges
& Borchard, 2020). Both concepts share some similarities and ocus on
the systematic development o ormulation attributes by studying the
potential infuence o the material’s properties and process actors.
Usually, the development is made by the application o statistical tools
and the design o experimental methods.

3.3. Regulatory and quality control issues

The regulation o CS-based raw materials is a pressure matter to
enable its applications. Despite CS and its derivatives can be ound in
dietary supplements, the application to medicines and vaccines still
demands more research. More specically, the application o CS NPs is

subject to the same regulatory agenda as other types o nanomaterials.
Hence, the particle size, charge, and surace properties should be
extensively characterized not only with a ocus on the desired response
but also on their potential adverse eects (Foulkes et al., 2020; Mühle-
bach, 2018). This type o study should be a collaborative eort between
regulatory agencies, academia, and industry and, it will probably de-
mand articulated action on the product and analytical development
(Fig. 3).

The development o quality control (QC) tests is a critical topic that
must run in parallel with the establishment o the regulatory agenda o
CS-based materials and CS NPs. The main sources o CS come rom the
conventional means o crustacean shells, or alternative ungal and insect
biomass. The extraction process occurs through chemical or biotech-
nological methods. The last one can be categorized as ermentation-
based or enzyme-based. The chemical methods have a lot o disadvan-
tages (e.g., use o harsh chemicals and environmental pollution), but
they demonstrate more commercial viability, as the process and the
product are more controllable. On the other hand, biotechnological
methods are considered more environmentally riendly. The dierent
extraction routes demand dierent process control strategies as the risk
o microbiological contamination cannot be assumed to be the same
(Islam, Hoque& Taharat, 2023; Joseph, Krishnamoorthy, Paranthaman,
Moses & Anandharamakrishnan, 2021). Further, it is important to
establish critical microbiological parameters to be monitored, especially
o CS destined or the production o sterile ormulations. The purity o
the raw material is an important quality control attribute. Some studies
have demonstrated that protein contaminants can be the main causes o
allergic reactions o CS-based products than the CS polymer per se
(Amaral et al., 2016; Baldrick, 2010).

There are many methods or characterization o the main structural
or colloidal parameters o CS (e.g., DA and MW) and CS NP ormulations
(concentration o NPs, hydrodynamic diameter, zeta potential, poly-
dispersity index), however, there is a lack o standardization in the
protocols. One critical issue that must be evaluated is the suitability o

Fig. 2. Main technological gaps o CS NPs are concentrated in understanding the scaling processes. I – Techniques or obtaining NPs dier in their capacity to control
the properties o the particles and in the level o reproducibility o the batches: (A) Bulk complexation is usually characterized by low reproducibility and unstable
particle ormation; (B) Flash nanocomplexation and (C) Microfuidics enables better control o reproducibility and properties o NPs in distinct batches. II – Mixing
mechanisms or polyelectrolyte complexation o CS as a unction o scale: (A) macromixing occurs at the vessel scale, (B) meso‑mixing occurs at vortex scale and (C)
micromixing occurs at the molecular scale.
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the technique to measure properties o the nanometric scale as it usually
diers considerably rom macroscopic properties. Many properties o
chitin and CS-based materials are scale-dependent (Lee, Hao, Park, Oh&
Hwang, 2022). In this aspect, it should be discussed among specialists
whether method validation is an important issue to be considered and
what validation parameters should be evaluated in each case. Methods
or simple characterization o physicochemical attributes are dierent
rom perormance and stability indicating methods and, thereore,
dierent rationales must be adopted (Bellich, D’Agostino, Semeraro,
Gamini & Cesàro, 2016).

Although extensive monitoring o biological interactions is not
mandatory or the quality control o conventional products,
nanotechnology-based products must ollow a dierent path. One o the
main unctionalities o nanotechnology-based products is in the nano-
bio interace and, thereore, the reproducibility o CS NP dynamics in
these environments should be considered a potentially critical attribute
(Aibani et al., 2021). This will require a great deal o eort on the part o
the researchers, as the control methods must have a great discriminative
capacity to the point o detecting alterations in the interaction signa-
tures that could impact the perormance o the product. Here, it is also
worth mentioning that these interactions will also depend on the val-
idity o the chosen model and the main biological eatures that it can
recapitulate.

4. Conclusions and perspectives

CS NPs are excellent DDS platorms. This review pointed to the
research eorts that have been carried out to generate an overall cu-
mulative knowledge that could culminate in innovative CS-based
pharmaceutical products soon. The methods o ionotropic gelation and
polyelectrolyte complexation allow the encapsulation o biomolecules
with dierent physicochemical characteristics. There are several suc-
cessul examples o obtaining CS NPs by combining this polycation with
polyanions such as hyaluronic acid, alginates, and dextran sulate,
among others. This diversity o combinations translates into a thera-
peutic arsenal or cancer treatment, wound healing, immunomodula-
tion, etc. However, the translation o the scientic knowledge o CS NP’s
material and biological properties into useul pharmaceutical products
is not straightorward. It demands more in-depth evaluations o risk-
benet assessments as well as advances in dierent lines o research.

The perceived risk o using CS NPs in the development o pharma-
ceutical products must be mitigated by closing some important basic and

applied gaps beore consolidating CS NPs as reliable technological
platorms. Here we raised the importance o constructing robust scien-
tic knowledge combined with technological, regulatory, and CQ
rameworks. Despite decades o active research on CS-based materials
and CS NPs, a clear relationship unambiguously explaining the molec-
ular mechanisms that control the particle properties and how the nano-
bio interacial interactions infuence the biological perormance o or-
mulations has been still elusive. Further, new outstanding modern
technologies (e.g., microfuidics and fash nano complexation) can be
used or mass production o CS NPs, but it will require signicant work
to understand the scale-up rules. Advances in CQ nanoscale-specic
methods and a descriptive regulatory model should be accomplished.
This great demand or action must be articulated among the dierent
stakeholders represented mainly by the regulatory agencies, academia,
and industry.
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