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and plasma theories
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A perturbative method called beatification is presented for a class of two-dimensional fluid and
plasma theories. The Hamiltonian systems considered, namely, the Euler, Vlasov-Poisson,
Hasegawa-Mima, and modified Hasegawa-Mima equations, are naturally described in terms of
noncanonical variables. The beatification procedure amounts to finding the correct transformation
that removes the explicit variable dependence from a noncanonical Poisson bracket and replaces it
with a fixed dependence on a chosen state in the phase space. As such, beatification is a major step
toward casting the Hamiltonian system in its canonical form, thus enabling or facilitating the use of
analytical and numerical techniques that require or favor a representation in terms of canonical, or
beatified, Hamiltonian variables. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4977451]

I. INTRODUCTION

The Hamiltonian formalism is a fundamental pillar of
theoretical physics, as the time evolution of every isolated
system is expected to possess Hamiltonian structure.
Although most literature on Hamiltonian systems uses canoni-
cal variables, numerous physical theories are Hamiltonian yet
naturally described in terms of noncanonical variables,' such
as many prominent fluid and plasma models,”"* the general-
ized coherent-state approach to semiclassical dynamics,'*"’
and even the time-dependent Schrodinger equation itself.'®

For such noncanonical representations, the question then
arises: How does one obtain a global transformation from
noncanonical to canonical variables in infinite-dimensional
Hamiltonian systems, which are generally described by sets
of partial differential equations? In the present paper, this
problem is partially addressed by using an analytical method
known as beatification."*

Beatification is a perturbative procedure through which
the explicit variable dependence of a noncanonical Poisson
bracket is replaced by a fixed dependence on a chosen state
in phase space, designated as the reference state. As a result
of the beatifying transformation, the Hamiltonian functional
undergoes an increase in its degree of nonlinearity, so that
the removal of the dynamical variable in the Poisson bracket
is compensated.'>*° Another important consequence of beat-
ification is that it greatly facilitates the search for canonical
variables, as can be readily verified in the case of a finite-
dimensional Hamiltonian system.'®?® Therefore, beatifica-
tion can be seen as a preparatory step toward canonization,
as implied by its name.

Considering both finite- and infinite-dimensional
Hamiltonian systems, the beatification method was first pre-
sented in Ref. 19, where the beatifying transformation was
derived, to its lowest perturbative order, by using an equilib-
rium as reference state. In a subsequent work,?® considering
specifically the Poisson bracket for vorticity-like variables in
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two-dimensional fluid and plasma theories, beatification was
extended to second order and generalized to take into
account completely arbitrary reference states. In the present
paper, considering again the case of two-dimensional fluid
and plasma models, the beatifying transformation is further
extended to infinite perturbative order, also termed complete
beatification. In this way, an appropriate setting is estab-
lished for an in-depth investigation of some important
Hamiltonian models, namely, the two-dimensional Euler
equation,” the standard'®!''"?? and modified'**® versions
of the Hasegawa-Mima equation, and the one-degree-of-
freedom Vlasov-Poisson equation.24’25 We mention that, in
essence, the equivalent of complete beatification was
obtained for the special case of expansion about shear flow
equilibria in Ref. 26 and similar ideas were explored for the
Vlasov-Poisson system by introduction of a generating func-
tion in Ref. 25.

A beatified Hamiltonian system exhibits some signifi-
cant analytical advantages over its original noncanonical
form. First, due to the removal of the explicit variable depen-
dence from the Poisson bracket, the beatified system can
have its degrees of freedom truncated without the loss of
Hamiltonian structure.”’ Such a reduction process is very
useful for obtaining a finite set of dynamical equations
from an infinite-dimensional system, while retaining the
Hamiltonian properties of the latter. Potential uses for this
Hamiltonian truncation procedure include constructing low-
dimensional models for describing specific physical mecha-
nisms®’~** and obtaining semi-discrete schemes for numeri-
cal integration of partial differential equations, as an
alternative to techniques used or derived, for example, in
Refs. 45-52. Second, as a collateral effect of beatification,
all Casimir invariants™ of a system become linear in the
dynamical variables. As an evident consequence, analytical
manipulation of these constants of motion is greatly simpli-
fied. Third, as a perturbative approach, beatification can be

Published by AIP Publishing.
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used to simplify or emphasize the local dynamics about a
particular phase-space point, chosen as reference state.

The remainder of this paper is organized as follows.
Section II briefly introduces the Hamiltonian formalism for
two-dimensional fluid and plasma theories. In this context,
the pertinent Poisson brackets, Hamiltonian functionals, and
equations of motion are presented. In Section III, the
Casimir invariants of the relevant theories are derived.
Section IV presents the beatification procedure itself, which
is composed of two key steps. First, the field variable is
rewritten as the sum of a reference state and a perturbative
field. Second, an additional transformation is imposed on the
perturbative field so that the explicit variable dependence is
eliminated in the Poisson bracket. At the end of Section IV,
the effect of the beatifying transformation on the Casimir
invariants is examined in detail. Section V analyzes the par-
ticular case of a finite-order beatification procedure and
presents a recurrence formula for the inverse of the beatify-
ing transformation. In Section VI, the main findings of the
paper are summarized and potential applications are dis-
cussed. Finally, in the Appendix, the suppression of the vari-
able dependence in the Poisson bracket as a result of the
beatifying transformation is demonstrated.

Il. HAMILTONIAN FORMULATION

In this section, we present the main elements of the
Hamiltonian formalism for four important fluid and plasma
models, namely, the two-dimensional Euler equation, the
standard and modified versions of the Hasegawa-Mima equa-
tion, and the one-degree-of-freedom Vlasov-Poisson equa-
tion. As a first step, we introduce the fundamental Poisson

bracket that connects all the Hamiltonian systems
considered™
oF oG
F.G}=| &r — — 1
{ ’ } JD 7 5w‘7(w)5w7 ( )

where w=wm(x, y; t) is a vorticity-like scalar field on the
two-dimensional domain D, d*s = dxdy, F and G are two
arbitrary functionals of w, and J is the Poisson operator,
which is defined as

for two arbitrary functions f and g on the domain D and
[f,8] = (0)(0y8) — (0f)(Oxg). Notice that, except for a
minus sign, the Poisson operator is just the Jacobian determi-
nant J(f, g)/d(x,y) or, equivalently, the z component of the
cross product between gradients, that is, (Vfx Vg).. Also
presented in Equation (1), the functional derivatives are
defined as usual

OF[w; dw] = %F[w + &0w]|,_ = J d*r g—iéw. 3)
D

For simplicity, from now on, we choose the domain D
as a normalized 2-torus, so that x, y € [0, 1) and periodic
boundary conditions are implied. This choice allows us to
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promptly get rid of boundary terms whenever an integration
by parts over D is performed.

Once the Poisson brackets of the relevant systems are
known, in order to conclude the presentation of their
Hamiltonian formalism, we also have to establish their
Hamiltonian functionals. We shall see shortly that the
required functionals are contained in the following general
formula:>

Hiol = | rinoto
* % deziﬂjpdzr’ a(r;Oha(r,r)ol's1), (4

for r=(x, y). The quantities /,(r) and h,(r, ") of Equation (4)
describe, respectively, the free-motion and two-point-interac-
tion energies of the system. For the Vlasov-Poisson equation,
considering particles with normalized mass and charge,
the Hamiltonian functional is given with A;(r) = y*/2 and
hy(r,1") = V(|x — ¥’|), where V(|x — x'|) is the Green’s func-
tion for the Poisson equation. In the cases of the Euler,
Hasegawa-Mima, and modified Hasegawa-Mima equations,
the Hamiltonian functionals are jointly specified by the
expressions hy(r) = £~ and hy(r,r') = =@ (r — )L,
where 1= A(x, y) is a specified function on the domain D and
L is a linear operator, which is also required to be self-adjoint
with respect to the following scalar product between functions
on the domain D:

f,g) = Lfg d*r. (5)

In each of the Hamiltonian models considered in this
paper, the quantities w, A, and £ perform different roles. In
the case of the two-dimensional Euler equation, @ stands
for the usual scalar vorticity, 2=0, and £ is the two-
dimensional Laplacian operator, that is, £L=A = 8? + 33.
For the standard form of the Hasegawa-Mima equation, w is a
vorticity-like field related to the electrostatic potential ¢ by
the transformation w = L¢ + A, 1 is a function depending on
the electron density at equilibrium,'' and £ = A — 1. For the
modified Hasegawa-Mima equation, @ and 4 have the same
meanings as for the standard version, while £L=A — 1+ P,
where the operator P denotes integration over the y-axis,
that is, Pf = jol fdy for any function f on the domain D.>® For
the one-degree-of-freedom Vlasov-Poisson equation, @ is the
phase-space probability distribution of a one-species plasma
and the quantities 4 and £ are not defined.

A distinguishing feature in the description of the one-
degree-of-freedom Vlasov-Poisson equation is that the two-
dimensional domain D stands for the phase space of a
charged particle restricted to a one-dimensional configura-
tion space, unlike the three other systems considered, in
which D is the actual space occupied by the fluid or plasma.
In other words, for the Euler, Hasegawa-Mima, and modified
Hasegawa-Mima equations, the coordinates x and y denote
the spatial position of a fluid or plasma infinitesimal element,
whereas, in the case of the Vlasov-Poisson equation, x and y
represent, respectively, the position and linear momentum
variables of a phase-space probability density function.
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For completeness, we now work out the equations of
motion for the four models considered here. To this end, we
write down the usual Hamiltonian relation between the time
variation of the field w and the Poisson bracket (1)

W oy =T ©

From Equation (4), we can readily calculate the deriva-
tive of the Hamiltonian functional, which is found to be
SH/w = i (r) + [pd*r hy(r, ) (r';1). By  substituting
this result into identity (6) with the appropriate values for 4,
and h,, we first obtain a general expression for the Euler,
Hasegawa-Mima, and modified Hasegawa-Mima equations

0w _
o = (o, £ (0w — 2)]. @)
Then, by considering the suitable choices for /; and
h,, we derive the one-degree-of-freedom Vlasov-Poisson
equation
ow o 0P dw
—+y————-—=0 8
o o ®
in which ¢(x) = [,V
potential.

(be =)

w(r)d*r is the electrostatic

lll. CASIMIR INVARIANTS

The Casimir invariants associated with a certain
Poisson bracket are defined as the quantities whose func-
tional derivatives belong to the null space of the corre-
sponding Poisson operator. Therefore, in the case of the
bracket (1), the Casimir invariants are determined by the
following identity:

J(w) S0 0. )

According to Equations (1) and (9), note that the

Poisson bracket between a Casimir invariant C[w] and an

arbitrary functional F[w] is identically zero, that is, {F, C}

=0 for any functional F of the field w. As a direct conse-

quence, the Casimir invariants are constants of motion for
any choice of Hamiltonian functional:

dC_ {C,H} =0. (10)

By employing definition (2), we can readily demonstrate
that the Poisson operator 7 satisfies the following equation:

J(w)g(w) =0, (11)

where g(w) denotes an arbitrary function of the vorticity-like
field . By comparing identities (9) and (11) for
g(w) = df (w)/dw, we conclude that the Casimir invariants
for the Poisson bracket (1) must take the form

qwzjf@m% (12)

D
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as the functional derivative of the above expression is simply
given by 6C/ow = df (w)/dw.

As a concluding remark to this section, we observe that,
since the null space of a canonical Poisson operator is trivial,
the existence of Casimir invariants is an exclusive property
of noncanonical Hamiltonian systems.

IV. BEATIFICATION

Note that, excluding the possible dependence on the
field w arising from the derivatives of the functionals F and
G, the Poisson bracket (1) has its own dependence on the
field variable, which is contained in the Poisson operator
J (). The removal of this explicit variable dependence con-
stitutes the primary purpose of the perturbative method
known as beatification. In this section, we present the main
result of the paper, namely, the infinite-order beatifying
transformation for the Poisson bracket (1).

The beatification procedure is composed of two stages.
First, the field w is rewritten as the sum of a reference state
o and a perturbative variable u. Second, a nonlinear change
of variables is performed on g, which is recast in terms of a
new perturbative field 7. As a consequence of this second
transformation, the Poisson operator becomes independent
of the field variable.

The first step in the beatification procedure amounts to
the following shift of the field w:

o(x,y;1) = wo(x,y) + eu(x,y;1). (13)

Here, the quantity @, designated as the reference state, is an
arbitrary time-independent function on the domain D. In
general, a specific choice for the state g is determined by
physical or mathematical features we want to introduce or
emphasize in the Hamiltonian system under study. In
Equation (13), we have also presented the new dynamical
variable p and the perturbative parameter ¢, which is used to
keep track of terms from different perturbative orders during
the beatification process.

As a preparation for our future developments, it is nec-
essary to recast the Poisson bracket (1) in terms of the vari-
able p. For this purpose, we shall make use of the chain rule
for functional derivatives®

(e "
oy \ox/ o¢
where y and & are two field variables related by the transfor-
mation &=¢&{y}.>” The quantity 5&/0y denotes the linear
operator that, when applied on the variation dy, results in the
corresponding variation 0. The operator (5¢/5%)" symbol-
izes the adjoint of 6&/dy with respect to the scalar product (5).
By applying the chain rule (14), we obtain that the func-
tional derivatives with respect to the fields w and pu are
related by 6F /5w = ¢~ '(8F/du). Upon substitution of this
result into Equation (1), a new form for the Poisson bracket
is achieved

¢{F,G} = Ldzra—F [T (@0) +eT ()] %G s

ou ou
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As we can see in the above equation, transformation
(13) divided the original Poisson operator [J(w) into two
terms. The first one is simply the operator 7 (w) calculated
at the reference state, that is, 7 (wo). The second term, given
by K(u) =eJ(u), constitutes the perturbative part of the
Poisson operator and is now responsible for all explicit vari-
able dependence of the Poisson bracket.

The second step of the beatification procedure corre-
sponds to finding a transformation n =n{u} which elimi-
nates the term /C(u) in Equation (15) while preserving the
operator 7 (o). In this way, the ultimate goal of beatifica-
tion is attained, namely, removing the dependence on the
dynamical field from the Poisson operator 7 (w) and replac-
ing it with the reference state .

According to the functional chain rule, presented in
Equation (14), the derivatives with respect the perturbative
variable p and the beatified field 5 are related by
OF /8 = (dn/dp) 0F /on, in which dn/dy is the linear opera-
tor that transforms an infinitesimal variation du into a corre-
sponding variation d7. By applying the chain rule to both
functional derivatives in Equation (15), we rewrite the
Poisson bracket in terms of the field n

oF - oG
2 2
Arch= [ e T (16)
th0) p 0N 0
where the transformed Poisson operator is given by

on

= 51/]T
\7aﬂjwm+ijﬂQ%), (17)

for p=p{n}. As previously mentioned, the beatifying trans-
formation 7 =n{u} is found by demanding that the right-hand
side of Equation (17) be reduced to the value of the Poisson
operator 7 (w) at the reference state. In short, the beatifying
transformation is defined by the following identity:

T = T(wp). (18)

By employing the above equation, the beatifying trans-
formation can be derived through an order-by-order pertur-
bative process, whose zeroth-order term is taken as the
identity transformation.'” In the present paper, we do not fol-
low this approach. Instead, we simply propose an expression
for the beatifying transformation and then prove that it
indeed satisfies Equation (18). In accordance with this plan
of action, we now present the infinite-order beatifying trans-
formation for the Poisson bracket (1)

_ N ¢ j 1
"*;gﬂyw : (19)

J

where, for notational simplicity, we have also defined an
auxiliary operator

sz—l(a L+ayL), (20)

2 * 0,y 8}, [ON)

for any function f on the domain D.’® As expected from such
perturbative expansion, expression (19) constitutes a near-
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identity transformation, that is, the perturbative series
approaches the identity transformation # = p as the parame-
ter ¢ goes to zero.

Due to its relatively high complexity and length, the
proof that transformation (19) satisfies identity (18) is left to
the Appendix. In the remainder of this section, we shall dis-
cuss the Casimir invariants of the beatified Poisson operator
and their relation to the original Casimir functionals, pre-
sented in Equation (12).

Analogous to Equation (9), the Casimir invariants asso-
ciated with the Poisson operator (18) are defined by the fol-
lowing identity:

J (@0) —-= =0, @1)

where we have introduced the tilde notation to specifically
denote the Casimir functionals of the beatified field, that is,
C = C[]. By employing definition (2) in a completely simi-
lar way to Equation (11), we can readily show that

J (w0)g(wo) =0, (22)

for any function g of the state w,. By comparing Equations
(21) and (22), we conclude that the Casimir invariants é[n]
must be linear in the field #. For this reason, we define the
following general expression for the beatified Casimir
functionals:

df (o) .

don (23)

ﬂﬂzjd%p@®+s

D
in which f corresponds to a second arbitrary function of wy.
For the purpose of demonstrating the validity of the above
definition, we present the functional derivative of this
expression

(24)

As a direct consequence of Equations (22) and (24) for
g(wo) = ¢[df (wo)/dwy], we observe that definition (23)
indeed satisfies identity (21).

Equations (12) and (23) provide general expressions for
the Casimir invariants associated, respectively, with the
Poisson operators J(w) and J(wo). However, despite
knowing the transformations connecting the fields w and 7,
the direct relation between the functionals C[w] and C|[y] has
not yet been identified. In order to precisely relate these two
equivalent sets of dynamical invariants, we now substitute
transformation (19) into definition (23)

R , 00 gt
Cln) = Ld r{f(a)o)—FZ GIT

J=0

% [(B'I')‘i df(wo)} M‘H} (25)

d(,L)O

In the above equation, we have introduced the adjoint of
operator (20), which is explicitly given by
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f o

B ~ 2, 26

f (6 o + 8y(1)() ( )

for any function f on the domain D. Equation (25) can be
greatly simplified with the aid of an important property of
the operator B’

dg(wo)

i1 _
B g(a)()) - da)o

. 27)

which follows directly from identity (26) for any function g
of the state w(. By making successive uses of property (27),
Equation (25) reduces to

= [ )+ S5 ]

dax,

= J flwo + ep)dr = J f(w)dr,

D D
= Clo]. (28)

The transition from the first to the second line of the
above equation has been accomplished by identifying the
Taylor series of the function f(wo + eut). As evidenced by
identity (28), the function f found in definition (23) is
exactly the same as that of Equation (12). In this way, the
effect of the infinite-order beatifying transformation on the
Casimir invariants becomes completely known.

V. FINITE-ORDER BEATIFICATION AND INVERSE
TRANSFORMATION

In many situations of practical interest, such as the deri-
vation of low-dimensional Hamiltonian models,w’20 the
beatification procedure is more appropriately used as a finite-
order perturbative method. In this case, the beatifying trans-
formation (19) is truncated at a predetermined power of the
parameter &

{u}—Z( ') Bt (29)

where 7 is the n-th order beatified field. By using the above
equation instead of the complete transformation (19), the
Poisson operator (17) takes the following form:

T = T (wg) + 0", (30)

that is, the beatified Poisson operator of Equation (18) is
again obtained, but this time the result holds only up to a cer-
tain perturbative order. The proof that the finite-order beati-
fying transformation provides the Poisson operator (30) is
obtained by retracing the steps of the Appendix, where the
proof for the complete beatification is given.

As a consequence of identity (30), the Casimir function-
als C [17<")} must have leading order terms, excluding con-
stants, which are linear in the field #”, in complete analogy
with Equation (23). Therefore, by repeating the reasoning of
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Section IV with the finite-order transformation (29), we can
show that the original Casimir invariants C[w], presented in
Equation (12), are related to the following beatified
functionals:

Clp] = L)dzr [f(wo) N SdJ;(coo)

™ +0(?). @3
o

According to the above expression, the Casimir invari-
ants C[w] are also linearized by the finite-order beatifying
transformation, but only if the terms of order "% and higher
are discarded.

An actual application of the finite-order beatification
procedure to the investigation of a specific dynamical system
often relies on the knowledge of the inverse of transforma-
tion (29). Among other possible purposes, the inverse trans-
formation is particularly necessary in calculating the
beatified form of Hamiltonian functionals.

The inverse of the finite-order beatifying transformation
can be obtained through a recursive order-by-order process.
That is, given that the j-th order inverse transformation
1 = u?{n} is known for j=0, 1,..., (n — 1), the n-th order
inverse transformation is determined by the following recur-
rence relation:

Wy =n - Z(]fl) Bl 32

where it is implied that 1® {1} =#. Note that the exponenti-

ation of u"7{n} on the right-hand side of Equation (32)
can give rise to terms of order greater than ¢”. These spurious
terms must be discarded so that the recurrence formula pro-
duces a consistent result for 1 {n}.

Notice that, upon substitution of expression (16) for
n>0, a Hamiltonian functional H[w] = H|[w, + &u] experi-
ences an increase in its degree of nonlinearity. This effect
constitutes a compensation for the suppression of the vari-
able dependence in the Poisson bracket so that the corre-
sponding equations of motion are not subjected to a decrease
in their degree of nonlinearity.

VI. CONCLUSION

Beatification is a perturbative method with the primary
purpose of eliminating the variable dependence of a nonca-
nonical Poisson operator by replacing it with a chosen refer-
ence state. As the main result of this paper, we present
the infinite-order beatifying transformation for the funda-
mental Poisson bracket of four important fluid and plasma
Hamiltonian models, namely, the two-dimensional Euler
equation, the standard and modified versions of the
Hasegawa-Mima equation, and the one-degree-of-freedom
Vlasov-Poisson equation. This work builds on previous
studies'?*° by extending the beatification procedure to infi-
nite perturbative order.

The noncanonical Hamiltonian formalism for two-
dimensional fluid and plasma theories was briefly outlined in
Section II. Although this discussion was focused on four
particular models, we would like to point out that the
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applicability of our central results is not restricted to the
dynamical systems explicitly considered, as the Poisson
bracket (1) takes part in the Hamiltonian description of a
fairly broad class of continuous media theories. As clearly
stated by the defining relation (18), the beatification procedure
is independent of the specific choice for the Hamiltonian func-
tional, since it depends only on the form of the Poisson opera-
tor. Consequently, the main results of Section IV, such as the
beatifying transformation (19) and the beatified Casimir invar-
iants (23), have geometrical nature and are not affected by
purely dynamical aspects of a particular Hamiltonian system.

An interesting secondary effect of beatification is the
linearization of the Casimir functionals, which is a direct
consequence of definition (18). At the end of Section IV, by
employing the infinite-order beatifying transformation, the
precise relation between the original Casimir invariants, pre-
sented in Section III, and the corresponding beatified func-
tionals was derived. The Casimir invariants have many
potential applications in the practical study of noncanonical
Hamiltonian systems. For example, the time-independent
value of a Casimir functional can be used to validate a
numerical solution.

A very common procedure in theoretical physics is the
dimensional reduction of large dynamical systems with the
purpose of enabling the application of numerical methods or
generating low-dimensional models for the description of
specific physical mechanisms. As already discussed in a pre-
vious work,?° a direct reduction in the degrees of freedom of
a noncanonical Hamiltonian system can be quite problem-
atic, as the truncated version of a noncanonical Poisson
bracket generally does not satisfy the Jacobi identity. That is,
excluding special and accidental cases, the Hamiltonian
structure of a noncanonical system is eliminated by dimen-
sional reduction. As a consequence, many fundamental prop-
erties of the dynamical system are possibly lost, such as the
incompressibility of phase-space volumes, which prevents
the occurrence of attractors.” Beatification is a useful tool in
preparing a noncanonical Hamiltonian system for proper
dimensional reduction, since the Jacobi identity is preserved
when a variable-independent Poisson operator undergoes a
truncation process.

Another relevant application of the beatification
method is as an intermediate step toward the canonization
of Hamiltonian systems. More than this, the preliminary
use of the beatification procedure can be seen as a signifi-
cant part of a systematic approach for obtaining canonical
variables in complex Hamiltonian systems. As such, beatifi-
cation provides access to a wide array of analytical and
numerical methods requiring a canonical Hamiltonian
representation.
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APPENDIX: BEATIFICATION PROOF

Here, we present the proof that transformation (19)
reduces expression (17) to the beatified Poisson operator
J (wy), as anticipated by Equation (18). As a first step toward
this goal, we perform the first variation of identity (19)

X o
5n=Zj—!lW5u-

J=0

(AD)

According to the above equation, variations in the fields
w and n are related by the following linear operator:

g—Zf =3 %Wf, (A2)
=0

where f'is an arbitrary function on the domain D. In prepara-
tion for manipulating identity (17), we now present some
special properties of the operators 7, BB, and B'. First, as a
direct consequence of Equation (26), note that the adjoint
operator B' satisfies the Leibniz’s rule, that is, B'fg =
fB'g + gB'f for any two functions f and g on the domain D.
By performing successive applications of this rule, an impor-
tant identity for the powers of the operator B' is obtained

(B'Y'fe =f(B)"g + 3 (B (BB s (a3
n=1

On account of its high relevance to our subsequent
developments, we also present an interesting relation con-
necting the operators 7, 3, and B

Bf T (wo)g = —T(f)g — T (w0)fB'g,

which is valid for any functions f, g, and @, on the domain
D, under the condition that the operators B and B are
defined in terms of the state g, in accordance with
Equations (20) and (26). Notice that, in the particular case
of a function f with constant value, identity (A4) reduces to
BJ (w9)g = =T (w0)B'g.

By employing Equations (A2) and (A4), we manipulate
the following product of operators:

(A4)

~ J (o) = T (w0) + fl:j%:BjﬂiJ(wo),

— T(wo) - Z%@—‘J(w‘)

X .
—Z;—'B”lj(wo)u’8+,
=l

= T (o) = Y T ‘ D B T ()

J=1

0 o .
3 (1Y S T (o) (B B (AS)
=

which is found on the right-hand side of Equation (17). In
elaborating the above result, we have also made use of the
identity J (i) = ji='J(u), which directly follows from
definition (2). Upon substitution of expression (AS5), the
Poisson operator (17) is readily reformulated as follows:
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J=J +§:

J=1
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(A6)

] ()

By inserting the adjoint of Equation (A2) into the above identity, further manipulations are performed on the transformed

Poisson operator

Bt 1+Z /x’BT

z<—> C

J = J (o) 1+Z
j=1

— o)1+ 35

j= Jj=1 k=1
= J(@0) + T (o) ip—'[—l BY (BT 1}+§:
:2 j

= J(wo) + T (w0)OB",

where, for notational convenience, we have introduced the
operator O, whose explicit expression is given within the
curly brackets on the right-hand side of the third equality.
For the purpose of simplifying Equation (A7), we now make
use of identity (A3) in obtaining two new auxiliary relations

(BYY ' lf = (BTY ¥
1

+Y BY BB, (ABa)

Jj—
—
(BYY Btk (B
= (BB kB B )8
WY KB BB s

-1
+i jZ (BYY ™"y

m=k+1

—_

(B (B (A8b)
in which fis again an arbitrary function on the domain D. In
deriving the above equations, we have also used the identity
B = jid~' B u, which follows from the Leibniz’s rule for
the operator B By employing Equations (A8), we recast the
operator O in a more convenient form

. j (= 1) +1 1171 (—1)k N
00 jj71 1 (_l)k

+;(—8) 2G0T G- R i

x (B (B ) (B

Seos
j=2 k=1 m=k+1 (j =Kl

(A9)

With the aid of the binomial theorem, the terms within
square brackets in the first line of the above equation are
shown to cancel one another. After making use of this fact,

,u’B —l—z -1y 'k‘ )Iilu

j=2 k=1

B (B1)"

’l_1j’ N

= BY Bk (87) T B

(A7)

the operator O can be further simplified by switching the
labels and the order of the summations over the indices k
and m in the last two lines of Equation (A9). In this way,
we obtain

oo j—1 k— m.
0= ’z:k:1 Z lml
x (_gy(zsf)’ o ‘w (zs’T )8 (A10)

The terms within square brackets in the above expres-
sion also cancel one another, as can be straightforwardly
demonstrated by induction on the index k. Therefore, identity
(A10) simply reduces to O = 0. By substituting this result
into Equation (A7), we finally arrive at the defining relation
(18), thus concluding the proof that the beatification of the
Poisson bracket (1) is provided by transformation (19).

"The term noncanonical is used to indicate a complete or overcomplete set
of dynamical variables in terms of which a Hamiltonian system is not
described by the canonical form of Hamilton’s equations, but by a
Poisson-bracket form with preserved algebraic properties. For further
information on the fundamentals of noncanonical Hamiltonian systems,
we refer the reader to Refs. 5 and 9.
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