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ABSTRACT

This paper presents a combination of signal processing and
machine learning techniques for classification of bird song
recordings. Our pipeline consists of filters to enhance the
bird song signal with respect to environmental noise, fol-
lowed by machine learning algorithms that exploits various
acoustic features. The filtering stage is based on the as-
sumptions that bird songs are tonal and sporadic, and that
noise, present along the entire recording, has large band-
width. We present and discuss the results of an experi-
ment on a dataset containing recordings of bird songs from
species in the Southern Atlantic Coast of South America.
This experiment compares the use of several acoustic fea-
tures (RMD, ZCR, MFCC, spectral centroid/bandwidth/roll-
off and syllable duration), extracted from pre-filtered record-
ings using three proposed filters, combined with traditional
classification strategies (KNN, NB and SVM), in order to
identify useful filter/feature/classifier combinations for this
bird song classification task. This strategy produces im-
proved classification results with respect to those reported
in a previous study using the same dataset.

1. INTRODUCTION

Bird song classification is an important task for ornithol-
ogists and biologists in general. Due to their relative easy
detection, responsiveness to change, and relationships with
lower trophic levels, birds have been widely used as indi-
cators of biodiversity trends [1]. Their vocalizations have
been used to monitor the abundance and composition of
bird communities in several different habitats [2] [3]. How-
ever, manual classification of songs by ornithologists can
be an expensive field work task. Recently, biologists have
introduced the use of autonomous recording units (ARU’s)
for collection of environmental audio recordings, but the
quantity of data generated by these devices makes manual
inspection prohibitive [4]. Automation of this process is
hindered by the acoustic diversity of bird songs, quality of
recordings, noisy environments, and simultaneity of vocal-
izations of different species. These challenges and possi-
bilities motivate the development of an automatic bird song
classification system. The classification could then control
the ARUs recording or guide the segmentation of continu-
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ous recordings, discriminating quiet frames or sounds that
do not belong to a vocabulary.

Bird vocalizations are divided into calls and songs. In
general, songs are spontaneous vocalizations produced by
males in the breeding season and tend to be longer and
more complex than calls. Calls are usually related to spe-
cific functions such as flight or threat. They are acous-
tically simpler and shorter, and produced by both sexes
throughout the year. It is important to note that these are
general definitions with plenty of exceptions to every char-
acteristic presented [5]. The present work focuses solely
on songs.

Each different bird song can be divided in the following
descending hierarchical levels: phrases, syllables and ele-
ments. Elements can be defined as the inseparable compo-
nents (straight lines, for example) of a song’s spectrogram.
Elements are the building-blocks of syllables, which can
be composed of one or more elements. Finally, a phrase
is defined as a group of syllables, and a song is composed
of a group of phrases [5]. Ornithologists extract the du-
rations of these structures and employ them as metrics to
distinguish different bird songs, leading to a manual clas-
sification strategy which is very time-consuming [6].

Most automatic bird song classification systems can be
divided in four stages: pre-processing, segmentation, fea-
ture extraction and classification. In the pre-processing
stage, recordings are filtered as to enhance the bird songs
present. Segmentation can then be applied to slice a song
into its syllables or phrases. From individual syllables or
full-length recordings some acoustic features such as
MFCCs are then extracted and used to classify the song
as pertaining to a certain species.

Lopes et al. [7] developed a bird song classification sys-
tem based on SVM and Naive-Bayes classifiers and stan-
dard acoustic features such as MFCC, spectral centroid and
spectral rolloff. The study presented here extends their
work by considering other features, including melodic fea-
tures that are considered state-of-the-art in the type of man-
ual classification still performed by ornithologists [5, 6],
and by developing a more robust pre-processing stage, de-
veloping specific filtering strategies that enhance the bird
song and thus ease the classification task. We use the same
dataset and the same methodology of [7], in order to pro-
vide a clear comparison between our results and theirs.

The design of our study, including the choice of a par-
ticular methodology and dataset, is not meant to imply
that other approaches to bird song classification are not ac-
knowledged. To cite a few, other classification strategies
used in bird song classification include Hidden Markov
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Models [4] and transfer learning from music genres [8],
and other features based on wavelet decomposition have
been used in the classification of inharmonic and transient
bird songs [9]. Other recent approaches employed deep
learning for the detection of bird songs using binary
masks [10], and convolutional neural networks to classify
spectrogram segments [11].

One of our main goals is to develop strategies that estab-
lish a clear dialogue with the manual classification tech-
niques employed by ornithologists for the differentiation
of bird species. Because of that, we focused on acoustic
features with a clear physical interpretation and relation-
ship to human hearing, and classification strategies which
are explainable in terms of the perceptual representations
employed, so that the whole process can be accompanied
and iteratively improved in collaboration with ornitholo-
gists, and benefit from their expertise. Another motiva-
tion for preferring less computationally intensive feature
extraction and classification schemes is the perspective of
embedding them in ARUs as previously mentioned.

Regarding the pre-processing stage, several techniques
for filtering environmental recordings have also been ex-
plored in the context of bird song recognition. Due to the
diversity in types of bird songs, some techniques take ad-
vantage of specific traits of the bird songs being analyzed,
such as their periodicity or frequency range. In [12], the
periodicity of Antbird chirps is leveraged in the develop-
ment of a correlation-maximization denoising filter that
enhances the target call while suppressing other bird calls
that don’t follow the same structure. Lasseck [13] presents
a filtering method based on image processing of grey-scale
spectrograms: a binary mask is built where each pixel ex-
ceeding 3 times the median value of its corresponding row
(frequency band) and 3 times the median of its correspond-
ing column (time frame) in the spectrogram is set to 1,
while the remaining pixels are set to 0. Another exam-
ple of a generalistic approach is shown in [14], where a
whitening filter utilizes low energy spectrogram frames to
estimate the frequency profile of noise and attenuate each
row of the spectrogram accordingly.

In this work, we present novel filtering techniques for
the enhancement of bird song recordings with a promi-
nent tonal quality, followed by a comparative classification
study using several individual acoustic features and classi-
fiers. Our goal is to identify useful combinations of filters,
acoustic features and classifiers that produce best classifi-
cation results for a dataset of tropical birds from the South-
ern Atlantic Coast of South America, created, labeled, and
shared by Lopes et al. [7].

The paper is organized as follows: section 2 introduces
the developed pre-processing filtering techniques based on
spectral contrast and temporal variance masks. Section
3 presents the features and classifiers used, including an
energy-based segmentation algorithm. Section 4 shows the
obtained classification F-scores for the different features,
classifiers and filtering techniques of our system. The re-
sults are discussed in the closing section 5.

2. FILTERING STRATEGIES FOR BIRD SONGS
2.1 Bird songs and environmental noise

As recordings are registered in the presence of environ-
mental noise, a strategy for increasing the signal-to-noise
ratio is needed. In order to do so, we first need to prop-
erly characterize our signal of interest and the noise usually
present in such recordings. Bird songs are difficult to char-
acterize because they can assume very different spectral
characteristics, from melodic sequences of notes to peri-
odic repetition of broadband noise-like chirps or screeches.
Most bird songs are classified as tonal, consisting of a sin-
gle fundamental frequency or several harmonically or non-
harmonically related frequencies [15].

In this context, we define noise as anything but the signal
of interest: a bird song. Environmental recordings often
present insect sounds, rain, sounds from microphone ma-
nipulation, wind, and other animal utterances. The most
common type of noise present in the analyzed recordings
were insect sounds that were persistent throughout most of
the recordings’ duration and that occupy a broad frequency
range.

The proposed filter intends to be as flexible as possible,
while noting the difficulty being flexible because of the
great variety in bird songs and types of noise existent in
the environment. Because of the considerations above, we
limit the development of our filter to a scenario where the
following assumptions hold, regarding the signal of inter-
est and the types of environmental noise present:

e Bird songs are tonal;
e Noise usually has a large frequency bandwidth;

e Bird songs are sporadic (they appear intermittently
throughout a recording);

e Noise is usually present throughout a recording.

In the sequel the technical details of the filtering strategies
will be presented.

2.2 The spectral mask approach

Mask filtering has been used in source separation prob-
lems such as single-channel speech separation [16], source
separation in reverberant two-channel recordings [17] and
speech music separation [18].

In our approach, the recording to be filtered is analyzed
and a soft mask represented by a matrix of coefficients with
values between O and 1 is composed. This matrix is devel-
oped so as to have the same dimensions as the spectrogram
of the original recording. Filtering is then performed as an
element-wise multiplication of both matrices. Such mask
has to assume values close to 1 for bins containing bird
songs and values close to O for the rest of the STFT bins.
The filtering stage is concluded with the ISTFT of the re-
sulting matrix.

The filtering mask can be thought of as a matrix of con-
fidence scores for the presence of a bird song in each of
the STFT bins. In the approach presented here, the final
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filtering mask is composed of two different masks that in-
tend to measure confidence scores for the presence of bird
songs along the frequency and time axis separately. We
then present and evaluate three different ways to combine
these two partial masks.

2.3 Spectral contrast mask

Octave-based spectral contrast is an audio feature presented
in [19] designed to capture the relative distribution of the
harmonic and non-harmonic components of a signal. This
feature is a descriptor of a spectrum’s variability inside
each octave, and its extraction is implemented in the li-
bROSA Python library [20] as follows: a spectrogram is
received as input, and its frequency axis is split into oc-
taves. For each time frame, the linear difference between
the spectrogram’s energy peak and valley inside each oc-
tave is computed. This results in an S x T matrix, where S
is the (user-defined) number of octaves and T is the number
of time frames of the original spectrogram.

Higher values in the spectral contrast matrix are thus as-
sociated to octaves which contain strong spectral peaks,
whereas lower values represent octaves with relatively con-
stant energy within its frequency range. Based on our as-
sumption that bird songs are tonal, they would appear in
the spectrogram as clear and isolate spectral peaks, while
noise would occupy a large bandwidth, and so the spec-
tral contrast of octaves containing bird songs will be higher
than those containing noise. Fig. 1 shows the spectral con-
trast matrix for a snippet of a recording taken from [7].
This snippet contains a Trogon surrucura song concen-
trated around 1250 Hz and (undesired) cicada vocaliza-
tions that span from about 2500 Hz to 15000 Hz.

In order to transform the spectral contrast matrix into
a confidence mask, we first expand the matrix delivered
by 1ibROSA to the same dimensions of the original spec-
trogram, replicating every octave row for the appropriate
number of frequency bins. After that, we normalize this
M matrix producing a soft mask M such that

- M;; — min(M) .
M, = i i
7 max (M) — min(M)’ Virg

This way, areas that have a higher spectral contrast (as-
sumed to be areas containing a bird song) will have M,;
values close to 1, and areas with lower spectral contrast
(presumably noise) will have M;; values close to 0.

2.4 Temporal variance mask

The second confidence mask developed explores the differ-
ence between the assumed temporal distributions of noise
and signal. This difference can be illustrated in the fol-
lowing example: in a typical 10-second excerpt of a bird
song recording, we would expect the bird to chirp inter-
mittently between 2 and 4 times, while the environmental
noise will remain unaltered during the whole excerpt. In
order to explore this difference in the statistical distribu-
tions of signal and noise, we analyze the energy variance
over time for each frequency band given by the STFT spec-
trogram. Bands containing a bird song will present large

Log-frequency power spectrogram Spectral contrast mask
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Figure 1: a) The power spectrogram of a recording taken
from [7] containing a Trogon surrucura song and cicada
vocalizations. b) The composed temporal variance mask.
¢) The composed spectral contrast mask.
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Figure 2: Temporal variance mask: a) Power spectrogram
of a snippet of a recording taken from [7] containing a Tro-
gon surrucura song and cicada vocalizations. b) Plotted
standard deviation for every frequency line given by the
STFT.

variations in energy between song frames and background
noise frames, whereas frequency bands dominated by en-
vironmental noise would not display such large variations.
Figure 2 shows this variation as a function of frequency in
a 200-frame snippet of the same recording shown in Fig-
ure 1.

The following procedure is used to transform this analy-
sis into a confidence mask: for each frequency band given
by the STFT, the energy variance is computed for snip-
pets of L consecutive time frames, resulting in an F x 1
vector where F is the number of rows of the original spec-
trogram. This vector is used as the confidence score for
all L columns of the corresponding snippet. This process
is repeated for all snippets of L frames until we reach the
end of the spectrogram, so that we have an energy variance
matrix with the same dimensions as the original spectro-
gram matrix. Finally, we normalize this matrix in the same
way as the spectral contrast mask. This way, high energy
variance areas (assumed to be areas containing a bird song)
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will have values close to 1. Figure 1 shows the temporal
variance mask for the presented recording snippet.

The choice of the default value for L=200 takes into ac-
count the STFT parameters used with libROSA, i.e. sam-
pling rate = 44100 Hz, and 4096-sample FFTs with 512-
sample hops, so that the L consecutive frames span around
2.32 seconds. This duration was chosen based on the aver-
age note duration in bird songs of the species contained in
the dataset [7], to correspond to roughly two to three times
the duration of the average note, so that whenever a note is
present some silence is also included in the snippet where
the energy variance is computed, increasing the variance
for snippets containing the bird song.

2.5 Composition of the final filtering mask

Finally, the overall filtering mask is composed from the
temporal variance and spectral contrast masks, using three
different approaches:

e Filter A: the filtering mask is computed by a sim-
ple element-wise multiplication with equal weights
given to the two partial masks;

e Filter B: the original spectrogram is pre-filtered with
the variance mask via element-wise multiplication.
Then, the spectral contrast mask of this pre-filtered
spectrogram is computed. Finally, the spectral con-
trast mask is used to further filter the signal.

e Filter C: we first set to 1 all bins pertaining to the
95th percentile of each mask, resulting in two binary
masks. We then compose the final mask as the inter-
section (logical AND) between both masks. Thus,
Filter C corresponds to a binary filtering mask.

3. REPRESENTATION AND CLASSIFICATION OF
BIRD SONGS

In an audio classification system, after the filtering stage
we need to generate relevant parameters for the classifi-
cation algorithm. In this work, we employed well-known
acoustic features and a custom feature to capture a domain-
specific parameter: the syllable duration of a bird song.
We now present each feature used and an interpretation of
which characteristics of a bird song they may capture.

e Mel Frequency Cepstral Coefficients (MFCC):
MFCCs capture properties related to a signal’s tim-
bre [21]. We can think of it as a general picture
or fingerprint of the characteristics of a bird song’s
spectrogram. Because of that, it is a promising dif-
ferentiator of bird songs.

e Spectral centroid: usually, spectral centroids are re-
lated to the perception of “brightness” of a given
sound, and so it is a potentially good distinguisher
of bird songs that span different spectral regions.

e Spectral bandwidth: it captures the variability of fre-
quencies in a given spectrogram. Although not a
noisiness measure itself, it allows the differentiation

of broadband noise-types from simple melodic bird
songs, which typically have few prominent overtones.

e Spectral roll-off: measures the rate of spectral en-
ergy decay, serving as a complementary feature to
both spectral centroid and bandwidth.

e Zero-crossing rate (ZCR): for tonal signals, ZCR is a
pitch-related measure which, like spectral centroid,
may be used to distinguish bird songs with different
fundamental frequencies. Noisy signals tend to dis-
play a much higher ZCR than tonal signals, which
is also useful to distinguish bird songs from environ-
mental noise.

e Root mean square (RMS): RMS captures the mean
energy of a signal over a given time window. Al-
though not a reliable distinguisher for bird species
(since energy also reflects the relative position of
the microphone), this feature is useful for detection
of bird presence and corresponding segmentation of
audio signals.

e Syllable duration: it is a direct temporal measure of
constituting elements of a bird song, frequently used
by ornithologists in manual classification of record-
ings. We developed a method to extract this fea-
ture for general bird song recordings, based on the
auto_detec function available in the warbleR
library [22]. The algorithm is implemented as fol-
lows: first the mean RMS energy o over the entire
duration of the signal is obtained; then each frame
n is selected as part of the bird song according to
the conditions RMS[n];o and RMS[n + 1];0, pro-
ducing a binary frame-mask ¢[n]; next, we apply a
morphological dilation operator to ¢ to link together
close but separated bird song frames; finally, we es-
timate the duration of each syllable from contiguous
frames with ¢[n] = 1.

It is common in ornithology datasets to associate each
recording to a particular species; bird presence annotations
on a frame-by-frame basis are usually not available. This
prompted us to generate global features to represent each
recording, by applying statistical operations (mean, stan-
dard deviation, maximum and minimum) to summarize lo-
cal (frame-based) features. Classification is then performed
using global feature vectors that describe each one of the
above individual features by its statistical summary.

In order to increase both the computational efficiency and
the classification performance of the classification methods
used, we propose an energy-based frame selection strat-
egy that aims to eliminate from the representation frames
that are too weak to contain useful bird-related informa-
tion. This frame selection strategy simply rejects frames
with energy lower than the mean energy of each record-
ing. Global features obtained by statistical summaries are
thus computed by considering only selected frames. This
simple strategy yielded better results in all experiments.

We considered the following algorithms for the classi-
fication stage: k-Nearest Neighbors (kNN), Naive-Bayes
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(NB), and Support Vector Machines (SVM). These are well-
known and widely used strategies for machine learning
in general and for classification of bird songs in particu-
lar [7,23]

4. EXPERIMENTS AND DISCUSSION

The dataset used in the experiments consists of bird songs
of species in the Southern Atlantic Coast of South Amer-
ica. This dataset was created and shared by Lopes et al. [7],
and contains 1631 song recordings and 674 calls of 77
species. Some species have a small number of record-
ings in the dataset, so in our experiments we selected the n
species with the highest number of recordings, for several
n values. Experiments were conducted for every combina-
tion of the following variables:

o filtering techniques: filters A, B, and C;

e Jocal features: RMS, MFCC, spectral centroid, spec-
tral bandwidth, spectral roll-off, zero-crossing rate
and syllable duration;

e global features: mean, std, min and max of all local
features;

e number of species: 3, 5, 8, 12, 20;
e classifiers: KNN, NB, SVM.

The results reported below were obtained with the follow-
ing parameters: 5-fold cross-validation; k = 3 for the kKNN
algorithm; linear kernel for SVM; Gaussian distribution for
NB; p = 2 for the spectral bandwidth and p = 85% for the
spectral roll-off.

In order to demonstrate the effect of the filters in the clas-
sification, Figures 3 through 6 depict the variability on
performance of various pairs of features and filtering stage,
for a dataset containing 5 species. Some of the features
are significantly affected by the usage of filtering as pre-
processing technique, prior to training, while others are
less sensitive to it.

kNN NB SVM

rmse

mfcc

spec_band

spec_cent

spec_roll

syllable_dur

zcr

Figure 3: F-scores for each classifier/feature pair tested and
5 species, using non-filtered recordings.

kNN NB SVM

rmse

mfcc

spec_band

spec_cent

spec_roll

syllable_dur

zcr

Figure 4: F-scores for each classifier/feature pair tested and
5 species, using recordings processed with filter A.
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spec_cent
spec_roll
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Figure 5: F-scores for each classifier/feature pair tested and
5 species, using recordings processed with filter B.
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Figure 6: F-scores for each classifier/feature pair tested and
5 species, using recordings processed with filter C.

Figures 7 through 10 present in a compact way the F-
scores for all pairs of individual features used and clas-
sifiers. In order to save space only the filter options that
achieved the highest results have been shown, which in all
cases correspond to Filter B. Results with Filter A have in
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general reached close but slightly lower highest values, and
Filter C have performed poorly in general.

kNN NB SVM

0.8
rmse

0.7

mfcc
0.6

spec_band 0.5

spec_cent 0.4

spec_roll 03

0.2
syllable_dur

0.1
zcr

0.0

Figure 7: F-scores for each classifier/feature pair tested and
3 species.
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<1030 022 005"
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Figure 8: F-scores for each classifier/feature pair tested and
8 species.
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Figure 9: F-scores for each classifier/feature pair tested and
12 species.

kNN NB SVM

mse1 0,11 0.09 0.01

mfcc
0.6

seecband1 0,09 0.10  0.09 05

spec_cent1 (.16 0.12 0.14 0.4

secroliy 0,19  0.15 0.16 03
sisble ] 0.07 0.07  0.03 02
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Figure 10: F-scores for each classifier/feature pair tested
and 20 species.

These results clearly point to MFCC being the best fea-
ture for this application, with all classifiers, and its advan-
tage over the other features increases with the number of
species being classified. This possibly indicates that the
bird’s timbre is an acoustic feature that distinguishes them
well. On the other hand, the worst results were obtained
by the syllable duration feature. We have two hypotheses
for this: the syllable duration is not a good discriminator
of bird songs of the specific species that were selected in
this experiment, and/or our method is not robust enough,
in the sense that the method employs heuristics that reflect
certain assumptions about the song structure, which may
not hold for this data.

Regarding the other tested features, it is hard to say which
classifier works best in this context because of the gener-
ally small variance of the F-measure results. Classifier per-
formance was highly dependent on the feature being used.
As an example, spectral bandwidth and centroid paired
best with k-NN while MFCC paired best with SVM. Even
S0, this best pairing sometimes changed with the number
of species being classified and the filter used as the pre-
processing stage. The only clear and consistent results
were the poor pairing of SVM with RMS, syllable du-
ration and zero-crossing rate. Because of its good pair-
ing with MFCC, SVM obtained the best F-measure results
amongst those tested. In fact, this classifier/feature pairing
used along with Filter B as the pre-processing algorithm
attained the best F-measure for every n species number
tested.

Filter performance was also highly dependent on the acous-
tic feature being used. Classification based on spectral
centroids and spectral bandwidth was highest when paired
with Filter A, while zero-crossing rate and syllable du-
ration paired best with Filter C. Root mean square actu-
ally showed its best results when applied to the unfiltered
recordings, and the remaining features paired best with Fil-
ter B. The most notable F-measure gains attributed solely
to filtering for classification amongst 5 species were: 8%
for MFCC and NB (filter A), 9% for zero-crossing rate and
k-NN (filter C), and 10% for MFCC and NB (filter B). One
interesting result is that, while using MFCC as the descrip-
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tor, Filter C actually performed worst than the unfiltered
recordings. This is the most “agressive” filter tested, in
that, being a binary mask, it will completely filter out most
of the recording’s information. A hypothesis for its poor
pairing with MFCC is that in most cases it will filter out
important components of a bird song timbre.

For each n tested, we report below the names of the species
included, the best classifier/feature pair for unfiltered record-
ings and also the best classifier/feature/filter combination:

e n = 3 (species classified: Gnorimopsar chopi, Sit-
tasomus griseicapillus, Lathrotriccus euleri)

Best unfiltered result: SVM and MFCC.
F-measure = 0.71 (+/- 0.11)

Best filtered result: SVM, MFCC and Filter B.
F-measure = 0.74 (+/- 0.14)

e n = b (species classified: Pseudoleistes guirahuro,
Saltator similis, Gnorimopsar chopi, Sittasomus gri-
seicapillus, Lathrotriccus euleri)

Best unfiltered result: SVM and MFCC.
F-measure = 0.62 (+/- 0.09)

Best filtered result: SVM, MFCC and Filter B.
F-measure = 0.67 (+/- 0.14)

e n = 8 (species classified: Chiroxiphia caudata, Dysi-
thamnus mentalis, Mimus saturninus, Pseudoleistes
guirahuro, Saltator similis, Gnorimopsar chopi, Sit-
tasomus griseicapillus, Lathrotriccus euleri)

Best unfiltered result: SVM and MFCC.
F-measure = 0.57 (+/- 0.10)

Best filtered result: SVM, MFCC and Filter B.
F-measure = 0.59 (+/- 0.08)

e n = 12 (species classified: Xiphorhynchus fuscus,
Vanellus chilensis, Batara cinerea, Camptostoma ob-
soletum, Chiroxiphia caudata, Dysithamnus mentalis,
Mimus saturninus, Pseudoleistes guirahuro, Salta-
tor similis, Gnorimopsar chopi, Sittasomus grise-
icapillus, Lathrotriccus euleri)

Best unfiltered result: SVM and MFCC.
F-measure = 0.48 (+/- 0.08)

Best filtered result: SVM, MFCC and Filter B.
F-measure = 0.54 (+/- 0.06)

o n = 20 (species classified: Certhiaxis cinnamomeus,
Leucochloris albicollis, Thamnophilus ruficapillus,
Phleocryptes melanops, Piprites chloris, Myiophobus
fasciatus, Poospiza nigrorufa, Pyriglena leucoptera,
Xiphorhynchus fuscus, Vanellus chilensis, Batara
cinerea, Camptostoma obsoletum, Chiroxiphia cau-
data, Dysithamnus mentalis, Mimus saturninus, Pseu-
doleistes guirahuro, Saltator similis, Gnorimopsar
chopi, Sittasomus griseicapillus, Lathrotriccus eu-
leri)

Best unfiltered result:
F-measure = 0.47 (+/- 0.04)

Best filtered result: NB, MFCC and Filter B.
F-measure = 0.53 (+/- 0.04)

SVM and MFCC.

No. of classes | Lopes (2011) Figueiredo et al. (2018)
3 0.73 0.74
5 0.73 0.66
8 0.57 0.61
12 0.48 0.54
20 0.47 0.54

Table 1: Comparison between F-measures obtained in our
experiment and [7]

Table 1 compares our best results with those in [7]. We
can see an improvement in most results, especially for higher
numbers of species.

5. CONCLUSIONS

This work dealt with the problem of bird species classifi-
cation, approaching all stages of the classification pipeline,
from pre-filtering through feature extraction to automatic
classification. We obtained improved results with respect
to those previously obtained by Lopes et al. [7] by com-
bining new filtering techniques with standard acoustic fea-
tures and classifiers. Our experiments indicate that a good
feature/classifier pair for this problem is MFCC and SVM.
The classification improvements obtained by the proposed
filters are indicative of the validity of the spectral mask ap-
proach in this context, and of our initial assumptions about
the nature of bird song signals and environmental noise.
Further exploration and refining of these assumptions are
an encouraging route for the development of better filtering
techniques, leading to improved classification strategies.

We have shown that performance in bird song classifi-
cation is highly variable according to number of classes,
acoustic  features, classification algorithms, and
pre-processing filters. Using filters as enhancers for the
underlying signals proved to be of vital importance in im-
proving performance of the overall classification task. The
results of our experiment suggest that there are many possi-
ble couplings between filtering technique and type of fea-
ture used, the quality of which may depend both on the
quality of the recordings and on the specific species and
types of environmental noise they contain.

Future work should address other domain-specific fea-
tures that have been used consistently by ornithologists
in manual bird song classification. It came as a surprise
that syllable duration performed so poorly on the avail-
able data, but this may have several reasons unrelated to
the importance of this particular feature in manual classi-
fication. In order to better understand and possibly over-
come this difficulty, it would be useful to work with manu-
ally annotated domain-specific features and develop filters
that preserve related acoustic characteristics. A promis-
ing avenue for exploration is the use of detection tech-
niques such as CFAR for a segmentation phase following
the filtering phase. This would facilitate the extraction of
many domain-specific temporal features (such as durations
of notes, syllables and phrases), while ensuring that only
the relevant parts of the recordings are used. Lastly, em-
ploying a multi-feature approach would be a great step for-
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ward in a more robust classification system.
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