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 A B S T R A C T

This paper introduces the Fast Continuation Hypercubes (FCH) algorithm, a method for generating piecewise 
linear approximations of implicitly defined manifolds of arbitrary dimension. By integrating and mixing 
key aspects of existing approaches, the FCH algorithm offers significant improvements in both speed and 
memory efficiency. It traverses the domain by generating and processing only the necessary cells, which 
reduces the computational cost associated with high-dimensional manifold approximation. Additionally, the 
algorithm stores only the cells at the boundary of the traversed region, further optimizing memory efficiency. 
Experimental results demonstrate that FCH outperforms state-of-the-art algorithms in terms of runtime and 
memory usage.
1. Introduction

Implicitly defined manifolds (level sets) appear in many contexts in 
the fields of mathematics and computer graphics, especially in the form 
of iso-valued curves and surfaces. Consequently, many algorithms and 
data structures have been proposed to tackle the problem of creating 
a representation of these shapes in a way that makes them easier to 
visualize and manipulate [1,2]. These methods are widely used in appli-
cations in optimization problems [3,4], finite element calculations [5], 
data visualization [6–8], surface reconstruction [9–12], constructive 
solid geometry [13,14], surface learning [15–17], among others.

One of the most universally used approaches is to represent a level 
set using a piecewise-linear approximation, where a cell decomposition 
of the domain is used and, in each cell of this decomposition, the level 
set is approximated by a geometric shape composed of vertices, edges, 
and faces. In the literature, this process has been known by various 
terms, such as polygonization [18], contouring [19], tracing [20], and 
isosurfacing [21].

A well-known algorithm is the Marching Cubes [22], which generates 
a triangular mesh in 3D representing an isosurface. In this algorithm, 
the 3D space is partitioned into cubes, forming a three-dimensional 
grid, and each cube is processed individually by examining only its 
vertices (to decide whether they are on the same or opposite sides 
of the surface). Based on the configuration of these vertices, a lookup 
table is consulted to determine how to connect the vertices to create 
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the triangles inside the cubes. These triangles are then glued along 
their shared edges to form the resulting mesh. Alternatively, there are 
also methods that decompose the domain into tetrahedra instead of 
cubes, such as the Marching Tetrahedra [23–25]. Compared to cube-
based methods, tetrahedron-based methods perform simpler numerical 
evaluations, although the space is segmented into a considerably larger 
number of parts.

The mathematical formalization of an implicitly defined level set 
is that of a manifold: an implicitly defined manifold  of dimension 
(𝑛 − 𝑘) is defined as a level set of a function 𝐹 ∶ R𝑛 → R𝑘, with 
𝑛 > 𝑘. That is,  = {𝑥 ∈ R𝑛 ∣ 𝐹 (𝑥) = 𝑐} for some 𝑐 ∈ R𝑘 (see 
Section 2 for details). In the literature, there are many methods tailored 
for the 3D space, but substantially fewer more general methods that 
can be applied to manifolds of arbitrary dimensions, as some challenges 
arise from the intrinsic cost of increasing dimensionality. Considering 
the traditional Marching Cubes, for example, Bhaniramka et al. [21] 
propose a generalized version for any 𝑛 but limited to 𝑘 = 1. It is 
observed that, although it is possible to create a complete lookup table 
for an arbitrary dimension, this becomes impractical in high dimensions 
because the total number of entries in the table is 22𝑛 , so it is understood 
that generating the entries on demand would be more appropriate. 
On the other hand, considering a generalized version of the Marching 
Tetrahedra, the subdivision of the domain into 𝑛-dimensional simplices 
may create a factorial-order number of partitions (see Section 2.1 for 
details), requiring mechanisms to mitigate this cost.
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A different approach would be to employ predictor–corrector meth-
ods [26, Section 2.2], which do not subdivide the domain. Instead, 
these methods progressively create (cell by cell) an unstructured mesh 
that follows the manifold. The vertices of each cell are iteratively 
adjusted to be close to the manifold under a threshold of tolerance. An 
example is Brodzik’s algorithm [27], which is valid for any 𝑘 ≥ 1 and 
𝑛 ≥ 𝑘 + 2. These methods are often sensitive to the step size and other 
tolerance parameters used. Furthermore, for closed manifolds these 
methods require additional computations to correctly handle regions 
where two portions of the approximation meet. For this reason, we 
focus on piecewise-linear methods that operate on partitioned domains.

The most efficient algorithms for high dimensions are continuation 
methods [1,26], which process only the partition cells of the domain 
that intersect the manifold. Starting from an initial partition cell, these 
methods traverse to neighboring cells along the manifold in an advanc-
ing front fashion. In this sense, state-of-the-art methods for general 
𝑛 > 𝑘 ≥ 1 include the tracing algorithm by Boissonnat et al. [28], 
which leverages the so-called permutahedral representation to facilitate 
the traversal to neighboring partition cells of the domain, and the
Generalized Combinatorial Continuation Hypercubes by Castelo et al. [29], 
which uses combinatorial techniques with binary labels to assist in 
the decomposition of the domain into 𝑛-dimensional hypercubes. Both 
methods are built upon the concepts of a group of triangulations 
usually attributed to Coxeter [30], Freudenthal [31], and Kuhn [32], 
which we refer to as CFK triangulation. It is a highly regular simplicial 
decomposition of the domain with a convenient set of properties.

In this paper, we introduce a new algorithm that combines the 
binary labeling technique from Castelo et al. [29,33] with the general 
approach from Boissonnat et al. [28]. This results in a continuation 
method with reduced computational cost, that is both faster and more 
memory efficient. The method generates an abstract cell complex rep-
resentation of the manifold (see Section 2.4) and hence geometrical 
realizations of the cells are not produced. As a result, the constructed 
cells are not guaranteed to be homeomorphic to closed balls and their 
triangulations may contain self-intersections.

The rest of the paper is organized as follows: Section 2 provides 
a review of the necessary background and literature, detailing the 
concepts of implicitly defined manifolds and relevant triangulation 
methods. Section 3 introduces the Fast Continuation Hypercubes (FCH) 
algorithm, including implementation details. Section 4 analyzes the 
computational complexity of the FCH algorithm compared to existing 
algorithms. Section 5 presents experimental results, highlighting the 
performance improvements achieved by the FCH algorithm. Finally, 
Section 6 concludes the paper with a summary of our findings and 
possible directions for future research.

2. Background and literature review

In this section we present some definitions and background mate-
rial, including the definitions of an implicitly defined manifold and of the 
types of cells used in this paper. For more details on these definitions 
and related concepts, see [26,34,35].

Definition 1.  Consider a 𝐶1 function 𝐹 ∶R𝑛 → R𝑘 with 𝑛 ≥ 𝑘. A point 
𝑥 ∈ R𝑛 is called a regular point of 𝐹  if rank(𝐷𝐹 (𝑥)) = 𝑘. If 𝑥 is not a 
regular point of 𝐹 , it is called a critical point of 𝐹 . A point 𝑐 ∈ R𝑘 is a
regular value of 𝐹  if 𝑥 is a regular point for all 𝑥 ∈ 𝐹−1(𝑐). If 𝑐 is not a 
regular value, it is called a singular value of 𝐹 .

Definition 2.  A set  ⊂ R𝑛 is called an implicitly defined (𝑛 − 𝑘)-
dimensional manifold if there exists a 𝐶1 function 𝐹 ∶R𝑛 → R𝑘 and a 
regular value 𝑐 of 𝐹  such that
 = 𝐹−1(𝑐) = {𝑥 ∈ R𝑛 ∣ 𝐹 (𝑥) = 𝑐}.

Without any loss of generality we can assume that
 = 𝐹−1(0) = {𝑥 ∈ R𝑛 ∣ 𝐹 (𝑥) = 0}.
2 
Definition 3.  The points 𝑣0,… , 𝑣𝑘 ∈ R𝑛 are said to be affinely 
independent if the vectors 𝑣1 − 𝑣0,… , 𝑣𝑘 − 𝑣0 are linearly independent.

Definition 4.  A simplex of dimension 𝑘, or simply a 𝑘-simplex, generated 
by the affinely independent points
𝑣0,… , 𝑣𝑘 ∈ R𝑛

is the set of points

𝜎 =

{

𝑣 ∈ R𝑛 |
|

|

𝑣 =
𝑘
∑

𝑖=0
𝜆𝑖𝑣𝑖, with 𝜆𝑖 ≥ 0 and 

𝑘
∑

𝑖=0
𝜆𝑖 = 1

}

,

and is denoted by 𝜎 = [𝑣0,… , 𝑣𝑘]. A 0-simplex is also referred to as 
a vertex and a 1-simplex as an edge.

A 𝑘-simplex 𝜎 = [𝑣0,… , 𝑣𝑘] is the convex hull of the vertices 
𝑣0,… , 𝑣𝑘 in R𝑛.

Definition 5.  Let 𝜎 = [𝑣0,… , 𝑣𝑘] and 𝜏 = [𝑢0,… , 𝑢𝑚] be simplices of 
dimensions 𝑘 and 𝑚, respectively. The simplex 𝜏 is a face of 𝜎 if 𝑚 ≤ 𝑘
and {𝑢0,… , 𝑢𝑚} ⊆ {𝑣0,… , 𝑣𝑘}. If 𝜏 is a face of 𝜎 we say that 𝜎 is a coface
of 𝜏.

Definition 6.  A hypercube in R𝑛 is a set of the form

𝐼 =
𝑛
∏

𝑖=1
𝐼𝑖 ⊂ R𝑛,

where 𝐼𝑖 = [𝑎𝑖, 𝑏𝑖] with 𝑎𝑖 ≤ 𝑏𝑖. When 𝑎𝑖 = 𝑏𝑖 we denote 𝐼𝑖 = {𝑎𝑖}. 
The dimension of 𝐼 is dim(𝐼) = #{𝑖 ∣ 𝐼𝑖 = [𝑎𝑖, 𝑏𝑖] with 𝑎𝑖 < 𝑏𝑖}, that 
is, the dimension of 𝐼 is the number non-trivial intervals defining 𝐼 . 
A hypercube of dimension 𝑘 is also called a 𝑘-dimensional hypercube or 
simply a 𝑘-hypercube. A 0-hypercube is also referred to as a vertex and 
a 1-hypercube as an edge.

Note that a hypercube is aligned with the axes of its domain.

Definition 7.  Let 𝐼 =
∏𝑛

𝑖=1 𝐼𝑖 and 𝐽 =
∏𝑛

𝑖=1 𝐽𝑖 be hypercubes in R𝑛. 
We say that 𝐽 is a face of 𝐼 if dim(𝐽 ) ≤ dim(𝐼) and for 𝑖 = 1,… , 𝑛 either 
𝐽𝑖 = 𝐼𝑖 or 𝐼𝑖 = [𝑎𝑖, 𝑏𝑖] and 𝐽𝑖 ∈ {{𝑎𝑖}, {𝑏𝑖}}. A face of dimension 𝑘 is also 
referred to as a 𝑘-face of the hypercube 𝐼 . If 𝐽 is a face of 𝐼 we say that 
𝐼 is a coface of 𝐽 .

2.1. The CFK triangulation

The CFK triangulation [30–32] is used to decompose the unit hyper-
cube into a highly regular simplicial complex and is defined as follows. 
Consider the canonical basis of R𝑛 given by
𝑒1 = (1, 0,… , 0), 𝑒2 = (0, 1, 0,… , 0),… , 𝑒𝑛 = (0, 0,… , 0, 1),

that is, the 𝑖th entry of 𝑒𝑖 is 1 and all the other entries are 0. Given 
a bijection (permutation) 𝛼∶ {1, 2,… , 𝑛} → {1, 2,… , 𝑛} define
𝑣0(𝛼) ∶= 𝟎, (1)

𝑣𝑖(𝛼) ∶= 𝑣0(𝛼) +
𝑖

∑

𝑗=1
𝑒𝛼(𝑗), for 𝑖 = 1,… , 𝑛.

The points 𝑣0(𝛼),… , 𝑣𝑛(𝛼) ∈ R𝑛 are vertices of the unit 𝑛-hypercube 
𝐼 =

∏𝑛
𝑖=1 [0, 1] and all the vertices of 𝐼 can be obtained this way for 

some choice of permutation 𝛼. These points define an 𝑛-simplex 
𝜎(𝛼) ∶= [𝑣0(𝛼), 𝑣1(𝛼),… , 𝑣𝑛(𝛼)] (2)

inscribed in the hypercube 𝐼 . Let 𝛬 be the set of all permutations
𝛼∶ {1, 2,… , 𝑛} → {1, 2,… , 𝑛}.

The CFK triangulation of 𝐼 consists of all 𝑛-simplices generated by all 
permutations in 𝛬, that is, the CFK triangulation of 𝐼 is given by the 
set of simplices
 ∶= {𝜎(𝛼) ∣ 𝛼 ∈ 𝛬}.
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Fig. 1. CFK triangulation of the unit square decomposing it into 2 triangles corre-
sponding to the two permutations 𝛼1 and 𝛼2 of {1, 2}.

Fig. 2. CFK triangulation of the unit cube decomposing it into 6 tetrahedra.

Fig. 3. CFK triangulations of a 2D domain. On the left: the 𝐾1 triangulation. On the 
right: the 𝐽1 triangulation.

The CFK triangulation   decomposes the unit hypercube 𝐼 into 𝑛!
distinct simplices of dimension 𝑛. Figs.  1 and 2 illustrate this decompo-
sition in dimensions 2 and 3, respectively.

The unit 𝑛-hypercube can be mapped to a general 𝑛-hypercube 𝐼𝐺
by scaling and translation. Hence the CFK triangulation of the unit 𝑛-
hypercube can be used to define the CFK triangulation of 𝐼𝐺 via this 
mapping. Given a rectangular domain 𝛺 ⊂ R𝑛, a triangulation of 𝛺
can be obtained by first partitioning 𝛺 into a grid of 𝑛-hypercubes, 
and then constructing a CFK triangulation of each of these partitions 
individually. To ensure consistency in the decomposition of shared 
faces between adjacent 𝑛-hypercubes, two main types of triangulations 
are considered, following the same nomenclature as Todd [36]:

• 𝐾1 triangulation: constructed using translations of the unit 𝑛-
hypercube;

• 𝐽1 triangulation: constructed using reflections of the unit 𝑛-
hypercube.

These triangulations are illustrated in Fig.  3.
When working with CFK triangulations, it is not necessary to explic-

itly construct each individual 𝑛-simplex that subdivides the domain. By 
assuming the domain is implicitly partitioned by a CFK triangulation, 
the specific 𝑛-hypercube and 𝑛-simplex which contain a given point can 
be identified via arithmetic expressions. This allows for the construction 
of the simplices only when they are needed.
3 
2.2. Vertices of the approximation

To create an approximation of the manifold  implicitly defined by 
𝐹 (𝐱) = 𝟎, where 𝐹 ∶R𝑛 → R𝑘, the first step is to create the vertices of 
the approximation, and then connect these vertices to form the edges, 
faces, and higher-dimensional cells. In the case of piecewise linear 
approximations employing a triangulation, the vertices are created 
by detecting the intersections of  with the 𝑘-simplices generated 
by the triangulation. Thus, the main role of the triangulation is to 
decompose the domain into these 𝑘-simplices, enabling the detection 
of intersections (for further details, see [26,28]).

One of the simplest methods is to use a triangulation (such as a 𝐾1
triangulation) to decompose the domain into 𝑛-simplices and then for 
each 𝑛-simplex check all of its 𝑘-faces for intersections with . Let 𝜏 be 
a 𝑘-simplex 𝜏 = [𝑢0, 𝑢1, … , 𝑢𝑘]. The intersection of 𝜏 with  can be 
approximated by solving the following linear system for the barycentric 
coordinates 𝜆 of the approximated intersection point 𝑣𝑚𝑓 : 

[

1 1 … 1
𝐹 (𝑢0) 𝐹 (𝑢1) … 𝐹 (𝑢𝑘)

]

⎡

⎢

⎢

⎢

⎢

⎣

𝜆0
𝜆1
⋮
𝜆𝑘

⎤

⎥

⎥

⎥

⎥

⎦

=
[

1
0

]

. (3)

The approximated intersection point 𝑣𝑚𝑓  is then given by 

𝑣𝑚𝑓 =
𝑘
∑

𝑖=0
𝜆𝑖𝑢𝑖. (4)

If 𝜆𝑖 > 0 for 𝑖 = 0,… , 𝑘, then 𝑣𝑚𝑓  is in the interior of 𝜏. To 
ensure that the coefficient matrix in (3) is non-singular, a small random 
perturbation is typically applied to the coordinates of the vertices of 𝜏, 
similar to the approach used in [29,33].

Although this algorithm is straightforward, it is computationally 
inefficient because it evaluates every 𝑘-face of every 𝑛-simplex, and 
hence it usually evaluates many 𝑘-faces that do not intersect , leading 
to unnecessary computations. The subsequent sections present more 
advanced algorithms designed to address this inefficiency and reduce 
the overall computational cost.

2.3. Permutahedron-based tracing algorithm

An efficient manifold tracing algorithm based on a 𝐾1 triangulation 
of the domain is presented by Boissonnat et al. [28]. We refer to this 
algorithm as the Permutahedron-based Tracing Algorithm (PTA). As-
suming that the domain is implicitly triangulated by a 𝐾1 triangulation 
and that a seed 𝑘-simplex (a face) that intersects the manifold is pro-
vided, the key idea of the algorithm is to traverse the domain through 
only the (𝑘 + 1)-simplices (the cofaces) that intersect the manifold and 
are connected to the starting 𝑘-simplex. A major component of the 
algorithm is the permutahedral representation of a simplex, a proposed 
data structure that enables efficient generation of all faces and cofaces 
of a simplex of any dimension in the triangulation of the domain. See 
Appendix  A.1 for a step-by-step example of the PTA algorithm.

Introducing the vector 𝑒𝑛+1 = −
∑𝑛

𝑖=1 𝑒𝑖, from (1) and (2) we obtain
𝑒𝑛+1 = 𝑣0(𝛼) − 𝑣𝑛(𝛼).

Consequently, the sequence of vectors
(𝑒𝛼(1), 𝑒𝛼(2), … , 𝑒𝛼(𝑛), 𝑒𝑛+1)

provides a cyclic representation of the 𝑛-simplex 𝜎(𝛼) [37]:
𝑣𝑖(𝛼) = 𝑣𝑖−1(𝛼) + 𝑒𝛼(𝑖), for 𝑖 = 1,… , 𝑛,

and

𝑣𝑛(𝛼) + 𝑒𝑛+1 = 𝑣0(𝛼).
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Fig. 4. The permutations 𝛼∗ of {1, 2, 3} in a 2D domain generate all 2-simplices 
containing the vertex 𝟎.

Exploiting this cyclical nature, any 𝑛-simplex in the 𝐾1 triangulation 
containing the vertex 𝟎 can be generated using a permutation
𝛼∗ ∶ {1, 2,… , 𝑛, 𝑛 + 1} → {1, 2,… , 𝑛, 𝑛 + 1}

as follows. Let
𝑣0(𝛼∗) ∶= 𝟎,
𝑣𝑖(𝛼∗) ∶= 𝑣𝑖−1(𝛼∗) + 𝑒𝛼∗(𝑖), for 𝑖 = 1,… , 𝑛,

and define
𝜎(𝛼∗) ∶= [𝑣0(𝛼∗), 𝑣1(𝛼∗),… , 𝑣𝑛(𝛼∗)].

Notice that 𝑣𝑛(𝛼∗) + 𝑒𝛼∗(𝑛+1) = 𝑣0(𝛼∗) and hence 𝑒𝛼∗(𝑛+1) is not needed 
to represent the simplex 𝜎(𝛼∗). However 𝑒𝛼∗(𝑛+1) is useful to efficiently 
generate the faces and cofaces of a simplex and so it is included in the 
representation of 𝜎(𝛼∗). We represent the simplex 𝜎(𝛼∗) by the sequence 
of vectors (𝑒𝛼∗(1), 𝑒𝛼∗(2),… , 𝑒𝛼∗(𝑛+1)) used to generate it. Considering all 
permutations of {1, 2,… , 𝑛, 𝑛+1}, there are (𝑛+1)! simplices containing 
𝟎. Fig.  4 illustrates this scenario for a 2D domain. Although the vector 
sequence above is based on the unit vectors of the canonical basis, it can 
be mapped to any 𝑛-simplex in a 𝐾1 triangulation through translation 
and scaling. Furthermore, by selecting an adequate vector sequence, 
the reference vertex 𝟎 can be mapped to any of the vertices of any of 
these 𝑛-simplices.

An (𝑛 − 1)-face 𝜏 of the 𝑛-simplex 𝜎(𝛼∗) can be obtained by removing 
a vertex 𝑣𝑗 (𝛼∗):
𝜏 = [𝑣0(𝛼∗),… , 𝑣𝑗−1(𝛼∗), 𝑣𝑗+1(𝛼∗),… , 𝑣𝑛(𝛼∗)].

Given that 𝑣𝑗+1(𝛼∗) − 𝑣𝑗−1(𝛼∗) = 𝑒𝛼∗(𝑗) + 𝑒𝛼∗(𝑗+1), the corresponding 
cyclic vector sequence for 𝜏 becomes
(

𝑒𝛼∗(1),… , 𝑒𝛼∗(𝑗−1), 𝑒𝛼∗(𝑗) + 𝑒𝛼∗(𝑗+1), 𝑒𝛼∗(𝑗+2),… , 𝑒𝛼∗(𝑛+1)
)

.

 Thus, the faces of 𝜎 can be derived by manipulating the vector 
sequence rather than the vertices: combining two consecutive vectors 
𝑒𝛼∗(𝑗) and 𝑒𝛼∗(𝑗+1) into a single sum in the sequence is equivalent 
to removing the vertex 𝑣𝑗 (𝛼∗) from 𝜎. Conversely, the 𝑛-dimensional 
cofaces of 𝜏 can be obtained by the inverse operation — splitting the 
combined vector sum into two consecutive vectors.

Using these ideas, Boissonnat et al. [28] demonstrate that all faces 
and cofaces of a simplex can be generated by manipulating the vector 
sequence defining the simplex (see [28] for the details on these opera-
tions). They show that an 𝑚-simplex has 𝑚+1 faces of dimension 𝑚−1, 
and at most 2𝑛−𝑚+1 − 2 cofaces of dimension 𝑚 + 1. To enable a global 
representation of a simplex within the grid, the following definition is 
introduced.
4 
Definition 8.  Let 𝜏 = [𝑢0,… , 𝑢𝑚] be an 𝑚-face of 𝜎 where the relative 
order of the vertices from 𝜎 is maintained, and let 𝑝 ∈ Z𝑛 be the vertex 
in the grid that 𝑢0 is mapped to. The permutahedral representation of 𝜏
is given by
𝜏 = (𝑝,𝑤) ,

where 𝑤 =
(

𝑤0, 𝑤1,… , 𝑤𝑚
) is the cyclic sequence of vectors

𝑤𝑖 ∶= 𝑢𝑖+1 − 𝑢𝑖, for 𝑖 = 0,… , 𝑚 − 1;

𝑤𝑚 ∶= 𝑢0 − 𝑢𝑚 = −
𝑚−1
∑

𝑖=0
𝑤𝑖.

If 𝑝 corresponds to the minimal point of 𝜏 in lexicographical order, this 
notation referred to as the canonical permutahedral representation. In this 
case the vertices 𝑢0,… , 𝑢𝑚 are monotonically increasing with respect to 
the lexicographical order.

The permutahedral representation defined above implies that
𝑤𝑖 ∶=

{

sum
(

𝐸𝑖
)

∣ 𝐸𝑖 ⊂
{

𝑒1, 𝑒2,… , 𝑒𝑛, 𝑒𝑛+1
}}

, for 𝑖 = 0,… , 𝑚;

𝐸𝑖 ∩ 𝐸𝑗 = ∅, for 𝑖 ≠ 𝑗;
𝑚
⋃

𝑖=0
𝐸𝑖 =

{

𝑒1, 𝑒2,… , 𝑒𝑛, 𝑒𝑛+1
}

.

In the case of the canonical permutahedral representation we have that 
𝑒𝑛+1 ∈ 𝐸𝑚.

The canonical permutahedral representation of any simplex gen-
erated by the 𝐾1 triangulation can be obtained by first sorting its 
vertices in ascending lexicographical order, and then calculating the 
corresponding values of 𝑝 and 𝑤. This representation uniquely identifies 
the simplex, making it suitable for utilization in sets of unique elements 
(such as hash tables), while also allowing for the operations to create 
its faces and cofaces.

The pseudocode of the PTA algorithm is presented in Algorithm 
1. In this tracing algorithm, starting from a seed 𝑘-simplex 𝜏𝑠𝑒𝑒𝑑 that 
intersects the manifold, the permutahedral representation of 𝜏𝑠𝑒𝑒𝑑 is 
manipulated to generate all its (𝑘 + 1)-dimensional cofaces 𝜎. For each 
𝜎, all 𝑘-dimensional faces 𝜏′ are subsequently generated and checked 
for intersection with the manifold. To avoid redundant processing of 
the same 𝑘-simplex, a record of all previously processed 𝜏 is maintained. 
The algorithm begins by initializing the empty set of 𝑘-simplices that 
have already been processed (Line 1) and the queue of 𝑘-simplices that 
are yet to be processed (Line 2). At each iteration, a 𝑘-simplex 𝜏 is 
dequeued from  for processing (Line 4). The algorithm then iterates 
through all 𝑘-simplices adjacent to 𝜏 in the 𝐾1 triangulation (Lines 
5–6). For each adjacent 𝑘-simplex 𝜏′, it checks whether a vertex of the 
approximation is present in 𝜏′ (Line 8). If so, the coordinates of this 
approximation vertex are determined (Line 10), and 𝜏′ is enqueued to 
be processed in the next iterations (Line 13).

2.4. Generalized combinatorial continuation hypercubes

The Combinatorial Marching Hypercubes [33] is designed for ap-
proximating manifolds defined by functions of the form 𝐹 ∶R𝑛 → R, 
employing combinatorial techniques to improve memory efficiency. 
This approach was generalized to handle functions of the form 𝐹 ∶R𝑛 →

R𝑘 with 𝑛 > 𝑘, leading to the development of the Generalized Combina-
torial Marching Hypercubes (GCMH) and its continuation variant, the 
Generalized Combinatorial Continuation Hypercubes (GCCH) [29].

These algorithms utilize a simplicial decomposition of the domain 
via a 𝐾1 triangulation, where each 𝑛-hypercube is processed inde-
pendently. For each 𝑛-hypercube, the method avoids processing all 
simplices in the 𝑛-hypercube by analyzing only those contained in its 
𝑘-faces. See Appendix  A.2 for a step-by-step example of the GCCH 
algorithm.
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Algorithm 1: Permutahedron-based Tracing Algorithm (PTA).
Input : A function 𝐹 ∶R𝑛 → R𝑘 defining the manifold  = 𝐹 −1(0).

A seed 𝑘-simplex 𝜏seed for the continuation algorithm.
Output: A list of vertices of the approximation and the respective 

𝑘-simplices.
1  ← { }; // initialize set
2  ← [𝜏seed]; // initialize queue
3 while  is not empty do
4 𝜏 ← remove ();
5 foreach (𝑘 + 1)-coface 𝜎 of 𝜏 do
6 foreach 𝑘-face 𝜏′ of 𝜎 do
7 if 𝜏′ ∉  then
8 𝜆 ← solve system for 𝜏′; // Eq.  (3)
9 if min (𝜆) > 0 then
10 𝑣𝑚𝑓 ← 𝜏′ ⋅ 𝜆; // Eq.  (4)
11 Save {𝜏′, 𝑣𝑚𝑓

}

;
12 Insert 𝜏′ in ;
13 Insert 𝜏′ in ;

As mentioned before, an important aspect of these algorithms is 
that the hypercube and the simplicial decomposition of the domain are 
combinatorial in nature and do not need to be explicitly constructed. 
Each face of the hypercube and its simplicial decomposition can be 
created independently and as needed. A binary labeling system is 
employed in order to efficiently obtain the adjacency and membership 
relationships among the faces of the 𝑛-hypercube.

Definition 9.  Let 𝐼 =
∏𝑛

𝑖=1 𝐼𝑖 be an 𝑚-face of the unit 𝑛-hypercube in 
R𝑛. This implies that either 𝐼𝑖 = [0, 1] or 𝐼𝑖 ∈ {{0}, {1}}. The label of 
the face 𝐼 is the integer 𝓁 with 2𝑛 binary digits defined as

𝓁 ∶=
2𝑛−1
∑

𝑗=0
𝑑𝑗2𝑗 =

[

𝑑2𝑛−1 𝑑2𝑛−2 … 𝑑0
]

2 ,

where for 𝑖 = 1,… , 𝑛 the digit pairs (𝑑𝑖−1, 𝑑𝑖−1+𝑛
) are given by

(

𝑑𝑖−1, 𝑑𝑖−1+𝑛
)

∶=

⎧

⎪

⎨

⎪

⎩

(0, 0) , if 𝐼𝑖 = [0, 1]
(1, 0) , if 𝐼𝑖 = {0}
(0, 1) , if 𝐼𝑖 = {1}

Definition 10.  Let 𝐼 =
∏𝑛

𝑖=1 𝐼𝑖 be a 𝑚-face of the unit 𝑛-hypercube in 
R𝑛. If 𝐼𝑖 ∈ {{0}, {1}}, we say that the coordinate 𝑖 of the face is fixed. 
If 𝐼𝑖 = [0, 1], we say that the coordinate 𝑖 is free.

Fig.  5 illustrates the labeling of all 2-faces of the unit cube in 3D. 
In this binary labeling system, each set (nonzero) bit of 𝓁 corresponds 
to a coordinate of the face that is fixed at either 0 or 1. Consequently, 
all possible 𝑘-faces of the unit 𝑛-hypercube can be generated by manip-
ulating 𝓁 using combinatorial techniques. Since a coordinate cannot 
be fixed at both 0 and 1 simultaneously, there will be exactly (𝑛 − 𝑚)
set bits in an 𝑚-face. Additionally, because a general 𝑛-hypercube is 
combinatorially equivalent to the unit 𝑛-hypercube, this labeling system 
can be used to manipulate the faces of a general 𝑛-hypercube.

Consider a 𝐾1 triangulation of the domain and let 𝜏 be a 𝑘-simplex in 
a 𝑘-face of an 𝑛-hypercube decomposing the domain. The coordinates of 
the vertices of 𝜏 corresponding to the fixed coordinates of the 𝑘-face are 
constant. Hence only the vectors of the canonical basis corresponding to 
the free coordinates of the 𝑘-face are needed to generate all the vertices 
of 𝜏. Furthermore, the initial vertex of all 𝑘-simplices in this 𝑘-face is 
determined by the 𝑛 most significant bits of the label 𝓁 of the 𝑘-face. 
More precisely, let 𝐼 be a 𝑘-face of the unit 𝑛-hypercube and let 𝓁 be the 
label of this 𝑘-face 𝐼 . The 𝑘-simplices 𝜏 of 𝐼 are generated as follows. 
Let [𝑑2𝑛−1 𝑑2𝑛−2 … 𝑑0

]

2 be the binary representation of 𝓁 and notice 
that the set of free coordinates of 𝐼 is given by 
 =

{

𝑖 ∣ 𝑑 + 𝑑 = 0
}

. (5)
𝓁 𝑖−1 𝑖−1+𝑛

5 
Fig. 5. Decomposition of the unit 3-hypercube into all of its 2-faces and their 
corresponding labels.

Fig. 6. Triangulating a 2-face of the unit 3-hypercube based on its label.

Let

𝛼𝓁 ∶ {1, 2,… , 𝑘} → 𝓁

be a bijection and define
𝑣0(𝛼𝓁) =

(

𝑑𝑛, 𝑑𝑛+1, … , 𝑑2𝑛−1
)

and

𝑣𝑖(𝛼𝓁) = 𝑣0(𝛼𝓁) +
𝑖

∑

𝑗=1
𝑒𝛼𝓁(𝑖) , for 𝑖 = 1,… , 𝑘.

The points 𝑣0(𝛼𝓁),… , 𝑣𝑘(𝛼𝓁) are vertices of 𝐼 and define the 𝑘-simplex
𝜏(𝛼𝓁) = [𝑣0(𝛼𝓁), 𝑣1(𝛼𝓁),… , 𝑣𝑘(𝛼𝓁)]

in the face 𝐼 . The set of all 𝑘-simplices in the face 𝐼 is obtained by 
considering all bijections 𝛼𝓁 ∶ {1, 2,… , 𝑘} → 𝓁 . The 𝑘-simplices in a 
𝑘-face of a general 𝑛-hypercube can be obtained from the 𝑘-simplices 
of the unit 𝑛-hypercube by scaling and translation.

Fig.  6 provides an example of applying the CFK triangulation to a 
2-face of a hypercube, which is analogous to the decomposition in Fig. 
1. The GCMH algorithm approximates the manifold by processing all 
𝑘-simplices 𝜏 of all 𝑘-faces of each 𝑛-hypercube and creating vertices of 
the approximation within those 𝜏 which intersect the manifold. Once 
they are created, the vertices are connected based on adjacency rules, 
forming the edges of the approximation (for more details, see [29,33]). 
In the continuation variant GCCH, the algorithm initiates with a seed 
𝑛-hypercube and enqueues, for subsequent processing, the neighboring 
𝑛-hypercubes that share faces intersecting the manifold.
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Fig. 7. (A) Combinatorial cell represented by a list of vertices (blue) and edges 
(red). (B) The combinatorial cell in (A) is decomposed into convex affine cells (green 
triangles).

The pseudocode for the GCCH algorithm is presented in Algorithm 
2. To avoid redundancy, a record of the indices of the 𝑛-hypercubes that 
have been processed is maintained. The algorithm begins by initializing 
the empty set of 𝑛-hypercubes that have already been processed (Line 
1) and the queue of 𝑛-hypercubes to be processed (Line 2). At each 
iteration, an 𝑛-hypercube ℎ is dequeued from  for processing (Line 4). 
The algorithm then initializes a list that will store the approximation 
vertices found in ℎ (Line 7), the corresponding list of 𝑘-face labels 
for each vertex (Line 8), and a binary label marking all neighbors of 
ℎ that share approximation vertices (Line 9). It proceeds by iterating 
through all 𝑘-simplices on the 𝑘-faces of ℎ in the 𝐾1 triangulation (Lines 
10–11). For each 𝑘-simplex 𝜏, the algorithm checks for the presence 
of an approximation vertex (Line 12) and, if found, determines its 
coordinates (Line 14) and sets the neighboring 𝑛-hypercubes that share 
face 𝓁 (Line 17). Finally, the algorithm inserts these neighbors into 
for subsequent processing (Line 18).

The same adjacency rules used within an 𝑛-hypercube to create 
the edges of the approximation are also applied to connect edges to 
form faces, connect faces to form volumes, and to construct higher-
dimensional cells up to dimension 𝑛 − 𝑘. This set of rules is referred 
to as the Combinatorial Skeleton [29,33], which can be constructed in 
a subsequent step, after the vertices and edges of the approximation 
have been generated.

While the cells generated by the Combinatorial Skeleton do not 
form a cellular complex in the geometric sense (they represent distorted 
polytopes — see Fig.  7), they do constitute an abstract cell complex (a 
cellular complex in the topological sense). A 2D cell has a boundary 
composed of 1D cells (edges); a 3D cell has a boundary composed of 
2D cells; and this pattern continues up to the final polytope, an (𝑛−𝑘)-
dimensional cell with a boundary composed of (𝑛 − 𝑘 − 1)-dimensional 
cells. As the dimension increases, the structure gets more complex and 
there is no guarantee that each 𝑚-dimensional cell is topologically 
equivalent (homeomorphic) to an 𝑚-dimensional closed ball. These 
distorted polytopes do not intersect each other, as each polytope is 
contained within its own 𝑛-hypercube, and the shared faces between 
adjacent polytopes are coincident (identical, without gaps). However, 
a simplicial decomposition of a polytope may contain self-intersections. 
Consequently, a simplicial decomposition of the generated approxi-
mation will not necessarily constitute a manifold. For visualization 
purposes within a rendering pipeline, it is sufficient to decompose only 
the 2D cells into triangles using a triangle fan or similar approach, but 
this does not guarantee the absence of intersections between triangles.

3. Fast continuation hypercubes algorithm

In our proposed algorithm, called Fast Continuation Hypercubes 
(FCH), the goal is to mix the binary labeling of the GCCH with the 
concepts of the PTA algorithm. Starting from an initial 𝑘-face from an 
𝑛-hypercube, the traversal proceeds through the grid of the domain via 
the (𝑘 + 1)-dimensional cofaces, while adhering to the manifold. The 
cofaces are decomposed into (𝑘+1)-simplices using the 𝐾  triangulation, 
1

6 
Algorithm 2: Generalized Combinatorial Continuation Hyper-
cubes (GCCH).

Input : A function 𝐹 ∶R𝑛 → R𝑘 defining the manifold  = 𝐹 −1(0).
A seed 𝑛-hypercube ℎseed for the continuation algorithm.

Output: A list of vertices of the approximation and the respective 
face labels for each 𝑛-hypercube.

1  ← { }; // initialize set
2  ← [ℎseed]; // initialize queue
3 while  is not empty do
4 ℎ ← remove ();
5 if ℎ ∉  then
6 Insert ℎ in ;
7  ← [ ]; // initialize list
8  ← [ ]; // initialize list
9 𝓁𝑛 ← 0; // initialize binary label
10 foreach label 𝓁 of a 𝑘-face of ℎ do
11 foreach 𝑘-simplex 𝜏 of 𝓁 do
12 𝜆 ← solve system for 𝜏; // Eq.  (3)
13 if min (𝜆) > 0 then
14 𝑣𝑚𝑓 ← 𝜏 ⋅ 𝜆; // Eq.  (4)
15 Insert 𝑣𝑚𝑓  in  ;
16 Insert 𝓁 in ;
17 𝓁𝑛 ← 𝓁𝑛 OR 𝓁; // set neighbors

18 Insert in  the neighbors indicated by 𝓁𝑛;
19 Save {ℎ, , };

Line 17: OR is the bitwise OR operator.

and only those simplices that intersect the manifold are evaluated. 
To facilitate this process, a global notation for the binary labels of 
the faces is established, uniquely identifying each face in the domain, 
upon which the operations for generating cofaces are conducted. See 
Appendix  A.3 for a step-by-step example of the FCH algorithm.

3.1. Canonical face notation

The face label from Definition  9 provides a local representation of 
a face, depending on the specific 𝑛-hypercube under consideration. To 
globally identify a face, we introduce the following definition.

Definition 11.  Let 𝐼 be an 𝑛-hypercube on a grid in R𝑛 with vertices 
on the integer lattice Z𝑛. Let 𝑝 ∈ Z𝑛 be the vertex on the grid that 
corresponds to the minimal vertex of 𝐼 in lexicographical order. Let 𝓁
be the label of an 𝑚-face 𝐽 of 𝐼 . The global face representation of the 
face 𝐽 is defined as
𝐽 ∶= (𝑝,𝓁).

If 𝑝 is a point contained in 𝐽 , this representation is the canonical face 
representation.

The global face representation is the hypercube equivalent of the 
permutahedral representation. Note that, in the canonical face repre-
sentation, the point 𝑝 is also the minimal point of 𝐽 in lexicographical 
order, and the 𝑛 most significant bits of 𝓁 are unset. Since a face is 
shared among neighboring 𝑛-hypercubes, it can be expressed from the 
perspective of each 𝑛-hypercube that contains it. In the example of Fig. 
8, we have:
(5, 1)
⏟⏟⏟
2-hypercube
position

, 00112
⏟⏟⏟

face
label

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
canonical face
representation

= (4, 1) , 01102 = (5, 0) , 10012 = (4, 0) , 11002.

The fact that the 𝑛 most significant bits of the label are always 0 in 
the canonical face representation simplifies the generation of cofaces 
and the calculation of relationships between faces and cofaces, as 
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Fig. 8. Example of a 0-face (the vertex (5, 1)) shared among four 2-hypercubes in the 
2D domain.

discussed in the following sections. For this reason, the canonical face 
representation is always used to represent hypercubes in our algorithm.

3.2. Simplex face

In a way akin to the PTA algorithm, which traverses the (𝑘 + 1)-
simplices of the domain, our algorithm operates by traversing the (𝑘 +
1)-hypercubes of the domain. Initially, a seed 𝑘-simplex 𝜏 that intersects 
the manifold is provided. The algorithm then determines the hypercube 
𝑘-face 𝑓 containing 𝜏. Starting from 𝑓 , the method iteratively moves 
to all (𝑘 + 1)-cofaces of 𝑓 , systematically tracing the manifold in the 
process. Therefore, the first step is to determine 𝑓 from 𝜏.

As in the PTA algorithm, an initial seed 𝑘-simplex 𝜏 must be pro-
vided. However the FCH algorithm has the additional requirement that 
the 𝜏 must be contained in a hypercube 𝑘-face. One way to determine 
𝜏 is to run the GCMH algorithm until the first intersecting 𝑘-simplex is 
encountered. This process can be guided, for example, by prioritizing 𝑘-
simplices whose vertices are closer to 𝐹 (𝐱) = 𝟎. If the manifold contains 
multiple disconnected components, it is necessary to find one seed 
simplex in each component, and execute the algorithm for each com-
ponent individually. In the canonical permutahedral representation, 𝜏
is represented by:
𝜏 =

(

𝑝𝜏
)

⏟⏟⏟
reference
vertex

,
(

𝑤0, 𝑤1, … , 𝑤𝑘
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
vector
sequence

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
canonical permutahedral representation

.

The fact that −𝑤𝑘 is the vector that translates the minimal point of 
𝜏 (which is 𝑝𝜏 ) into the maximal point of 𝜏 in lexicographical order 
can be utilized to identify the coordinates of 𝑓 that are fixed. The 
fixed coordinates are represented by the bits of an 𝑛-digit bit mask 
𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑, defined as follows:

𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑 ∶=
𝑛−1
∑

𝑗=0

(

1 +𝑤𝑘 ⋅ 𝑒𝑗+1
)

2𝑗 ⇒

⇒ 𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑𝑗 =

{

0, if 𝑤𝑘 ⋅ 𝑒𝑗+1 ≠ 0
1, otherwise.

Since the vertices of 𝜏 are monotonically increasing from 𝑝𝜏 , making 
𝑝𝜏 the minimal point of both 𝜏 and 𝑓 , it follows that 𝑝𝜏 is also 
the reference point for the 𝑛-hypercube containing 𝑓 , and each fixed 
coordinate 𝑖 of 𝑓 takes the value {𝑝𝜏 𝑖

}

. Consequently, 𝑓 is given in 
terms of its canonical face representation 𝐻𝑓𝑎𝑐𝑒 by:
𝑓 = 𝐻𝑓𝑎𝑐𝑒(𝜏) ∶=

(

𝑝𝜏
)

⏟⏟⏟
reference

𝑛-hypercube

, 00…0
⏟⏟⏟
𝑛 most

significant
bits

𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑛 least
significant

bits
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2𝑛 bits

.

Because 𝑓 represents a 𝑘-face, 𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑 must contain exactly 
(𝑛 − 𝑘) set bits. Fig.  9 provides an example for the case when 𝑛 = 3
7 
Fig. 9. Determining the hypercube 2-face that contains a 2-simplex in the 3D domain.

Fig. 10. Example of an 1-face (𝑓 ) in the 3D domain, and all of its cofaces in the 
Cartesian grid.

and 𝑘 = 2, showing how 𝑓 is obtained from 𝜏. Having determined the 
canonical face representation of the hypercube 𝑘-face 𝑓 that contains 
the seed 𝑘-simplex 𝜏, the next step is to generate the (𝑘 + 1)-cofaces of 
𝑓 .

3.3. Generating the cofaces from a 𝑘-face

Let 𝐽 be an 𝑚-hypercube where the coordinate 𝑖 is fixed. Then 
𝐽𝑖 =

{

𝑎𝑖
}

, with 𝑎𝑖 ∈ R. Let 𝐼 be a (𝑚 + 1)-coface of 𝐽 where the 
coordinate 𝑖 is free. Then there are only two possibilities for 𝐼 : one 
where 𝐼𝑖 = [𝑏𝑖, 𝑎𝑖], 𝑎𝑖 > 𝑏𝑖, and another where 𝐼𝑖 = [𝑎𝑖, 𝑏𝑖], 𝑏𝑖 > 𝑎𝑖. 
This implies that if the 𝑖th coordinate of a 𝑘-face 𝑓 is fixed, then 𝑓
represents the intersection of two distinct (𝑘 + 1)-cofaces along the 𝑥𝑖
axis. In Fig.  10, the third coordinate of the face 𝑓 is fixed, which means 
that 𝑓 is the intersection of the cofaces 𝑎 and 𝑏. Similarly, since the 
second coordinate of 𝑓 is also fixed, 𝑓 is the intersection of the cofaces 
𝑐 and 𝑑. These intersections can be expressed as Cartesian products as
𝑎 = [3, 4] × {3} × [3, 4] , 𝑏 = [3, 4] × {3} × [2, 3] ,

𝑐 = [3, 4] × [3, 4] × {3} , 𝑑 = [3, 4] × [2, 3] × {3} ,

𝑎 ∩ 𝑏 = 𝑐 ∩ 𝑑 = [3, 4] × {3} × {3} = 𝑓.

Since each set bit in the label of 𝑓 corresponds to a fixed coordinate, 
we can generate all the cofaces of 𝑓 by unsetting each bit individually. 
For each unset bit 𝑗 (where 0 ≤ 𝑗 < 𝑛) there will be two cofaces: one 
in the same 𝑛-hypercube as 𝑓 , and another in the previous 𝑛-hypercube 
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along the direction of the 𝑥𝑗+1 axis. These cofaces are denoted by 𝑐𝑓 𝑥+𝑗+1
and 𝑐𝑓 𝑥−𝑗+1

, respectively: 

𝑐𝑓 𝑥+𝑗+1
=

(

𝑝𝜏
)

, 00…0
(

𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑 XOR 2𝑗
)

,

𝑐𝑓 𝑥−𝑗+1
=

(

𝑝𝜏 − 𝑒𝑗+1
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
reference

𝑛-hypercube

, 00…0
⏟⏟⏟
𝑛 most

significant
bits

(

𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑 XOR 2𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛 least

significant
bits

,

 where XOR is the bitwise XOR operator.
As a result, the total number of (𝑘 + 1)-cofaces generated from any 

given 𝑘-face is 2 (𝑛 − 𝑘). The cofaces of 𝑓 in Fig.  10 are

𝑓 = (3, 3, 3) , 0001102,

𝑎 = 𝑐𝑓 𝑥+3
= (3, 3, 3) , 0000102,

𝑏 = 𝑐𝑓 𝑥−3
= (3, 3, 2) , 0000102,

𝑐 = 𝑐𝑓 𝑥+2
= (3, 3, 3) , 0001002,

𝑑 = 𝑐𝑓 𝑥−2
= (3, 2, 3) , 0001002.

After identifying each (𝑘+1)-coface 𝑐𝑓  of the 𝑘-face 𝑓 , we can apply 
a manifold tracing algorithm inside each of these (𝑘+1)-hypercubes, as 
described in the next section.

3.4. Tracing the manifold approximation edge in a coface

Tracing the manifold inside a single hypercube of dimension 𝑘 + 1
means that we are essentially tracing the isocurve ∗ of an implicit 
function

𝐹 ∗ ∶R𝑘+1 → R𝑘,

where ∗ is the intersection of the original manifold  and this 
(𝑘+1)-hypercube. We can exploit this fact by using a tracing algorithm 
specific to curves embedded in high dimensions. More specifically, our 
implementation is based on the algorithm described by Allgower and 
Georg [26].

This algorithm works by traversing the (𝑘 + 1)-simplices inside the 
(𝑘 + 1)-hypercube while following ∗. It starts at the 𝑘-simplex 𝜏 and 
continues until ∗ leaves the (𝑘 + 1)-hypercube through another 𝑘-
simplex. We must first identify the starting (𝑘 + 1)-simplex 𝜎, which 
is the (𝑘 + 1)-simplex containing 𝜏 inside the (𝑘 + 1)-hypercube. This 
means that 𝜎 contains all the vertices of 𝜏 plus one additional vertex 𝑣, 
which we have to determine.

Let 𝑓 be a hypercube 𝑘-face and 𝑐𝑓  a (𝑘+ 1)-coface of 𝑓 . Let 𝓁𝑓  and 
𝓁𝑐𝑓  be the labels of 𝑓 and 𝑐𝑓 , respectively. With respect to Eq.  (5), if 
𝑐𝑓  was created by unfixing the coordinate 𝑖 of 𝑓 , then 𝑖 is a value in 
𝓁𝑐𝑓  that is not in 𝓁𝑓 . Since 𝜎 must keep the same vertices of 𝜏 and 
follow the rules of the CFK triangulation, the only possible values for 
the additional vertex 𝑣 that needs to be determined are either 𝜏0 − 𝑒𝑖
or 𝜏𝑘 + 𝑒𝑖 (which also reflects the fact that there are two cofaces for 
each fixed coordinate). In the first case, 𝑣 becomes the minimal point 
of 𝜎, which is emphasized by a change of the reference 𝑛-hypercube. 
In the canonical permutahedral representation, if 𝑝𝑐𝑓  is the reference 
𝑛-hypercube of 𝑐𝑓 , then 𝜎 is given by 

𝜎𝑐𝑓 =

⎧

⎪

⎨

⎪

⎩

(

𝑝𝑐𝑓
)

,
(

𝑤0 , 𝑤1 ,… , 𝑤(𝑘−1) , 𝑒𝑖 ,
(

𝑤𝑘 − 𝑒𝑖
))

, if 𝑝𝑐𝑓 = 𝑝𝜏 ;
(

𝑝𝑐𝑓
)

,
(

𝑒𝑖 , 𝑤0 , 𝑤1 ,… , 𝑤(𝑘−1) ,
(

𝑤𝑘 − 𝑒𝑖
))

, if 𝑝𝑐𝑓 = 𝑝𝜏 − 𝑒𝑖 .
(6)

Fig.  11 illustrates the 𝜎 corresponding to each 𝑐𝑓  in Fig.  10:

𝜏 = (3, 3, 3) ,
(

𝑒1, 𝑒2 + 𝑒3 + 𝑒4
)

;

𝜎𝑐𝑓 𝑥+3
= (3, 3, 3) ,

(

𝑒1, 𝑒3, 𝑒2 + 𝑒4
)

;

𝜎𝑐𝑓 𝑥−3
= (3, 3, 2) ,

(

𝑒3, 𝑒1, 𝑒2 + 𝑒4
)

;

8 
Fig. 11. Highlight of the (𝑘 + 1)-simplices 𝜎 calculated for each coface in Fig.  10.

𝜎𝑐𝑓 𝑥+2
= (3, 3, 3) ,

(

𝑒1, 𝑒2, 𝑒3 + 𝑒4
)

;

𝜎𝑐𝑓 𝑥−2
= (3, 2, 3) ,

(

𝑒2, 𝑒1, 𝑒3 + 𝑒4
)

.

To perform the traversal inside the hypercube we use the following 
result, known as the Door-in/Door-out principle.

Proposition 1.  A (𝑘 + 1)-simplex has exactly 0 or 2 𝑘-faces that intersect 
.

The proof is provided by Allgower and Georg [26]. If a (𝑘 + 1)-
simplex 𝜎 has two 𝑘-faces 𝜏 and 𝜏′ intersecting the manifold, we say 
that the manifold enters 𝜎 through 𝜏 and leaves it through 𝜏′. In our 
case, the input 𝑘-simplex 𝜏 is known, and Eq.  (6) gives 𝜎, so now 
we want to compute the output 𝑘-simplex 𝜏′. To do this, we use a 
technique equivalent to one iteration of Bittner’s Generalized Regula 
Falsi algorithm [38], which was used in a similar way in [20].

Assuming that [𝑢0, 𝑢1, … , 𝑢𝑘
] are the vertices of 𝜏, we first com-

pute 𝜆 using Eq. (3). Note that 𝜆𝑖 > 0, for 𝑖 = 0,… , 𝑘, because 𝜏 is a 
𝑘-simplex that intersects . The vertex 𝑣, which is the vertex in 𝜎 that 
is not in 𝜏, is used in the following system to obtain 𝜇: 

[

1 1 … 1
𝐹 (𝑢0) 𝐹 (𝑢1) … 𝐹 (𝑢𝑘)

]

⎡

⎢

⎢

⎢

⎢

⎣

𝜇0
𝜇1
⋮
𝜇𝑘

⎤

⎥

⎥

⎥

⎥

⎦

=
[

1
𝐹 (𝑣)

]

. (7)

Knowing 𝜆 and 𝜇, we find the index 𝑖 where: 
𝜆𝑖
𝜇𝑖

= min
{

𝜆𝑙
𝜇𝑙

, 𝜇𝑙 > 0
}

. (8)

The output 𝑘-simplex 𝜏′ is finally obtained by replacing the vertex 
𝑢𝑖 with 𝑣 in 𝜏. In other words,
𝜏′ =

[

𝑢0, … , 𝑢𝑖−1, 𝑣, 𝑢𝑖+1, … , 𝑢𝑘−1, 𝑢𝑘
]

.

The value 𝜆′ is computed by applying Eq. (3) to 𝜏′, and the vertices 
of the approximation are created by applying Eq. (4) to the pairs 
(𝜏, 𝜆) and (𝜏′, 𝜆′). Connecting these vertices gives us the edge of the 
approximation that is inside 𝜎, thus tracing a manifold edge inside a 
single (𝑘 + 1)-simplex.

When the manifold leaves 𝜎 through 𝜏′, it enters another (𝑘 + 1)-
simplex 𝜎′ through 𝜏′. To find 𝜎′, we need to determine the additional 
vertex 𝑣′ needed to generate 𝜎′ from 𝜏′, that is, 𝜎′ is generated by
{

𝑢 , … , 𝑢 , 𝑣, 𝑢 , … , 𝑢 , 𝑢
}

∪ {𝑣′}.
0 𝑖−1 𝑖+1 𝑘−1 𝑘
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Fig. 12. Steps to trace an edge 
{

𝑣𝑚𝑓 , 𝑣′𝑚𝑓
}

 in a 2-dimensional hypercube.
Using the CFK triangulation, 𝑣′ can be easily obtained by pivoting 
𝜎 on 𝑢𝑖. Let 

[

𝑢̃0,… , 𝑢̃𝑘+1
] be the vertices of 𝜎 sorted in ascending 

lexicographical order, and let (𝑤0,… , 𝑤𝑘
) be the vector sequence given 

by Definition  8, which generates 𝜎 starting from ̃𝑢0. Pivoting 𝜎 on vertex 
𝑢̃𝑗 , with 1 ≤ 𝑗 ≤ 𝑘, means swapping the positions of vectors 𝑤𝑗−1 and 
𝑤𝑗 in the vector sequence, effectively replacing 𝑢̃𝑗 while keeping all the 
other vertices.

By repeating this combination of the Door-in/Door-out principle 
plus pivoting on the subsequent (𝑘 + 1)-simplices, we can traverse the 
entire (𝑘 + 1)-hypercube, crossing only the 𝑘-simplices that intersect the 
manifold, until the manifold exits 𝑐𝑓 . A step-by-step example of this 
tracing algorithm is provided in Fig.  12, showing how an edge of the 
approximation is traced inside a 2-hypercube.

If the index found by Eq.  (8) corresponds to pivoting on the first or 
the last vertex of the (𝑘 + 1)-hypercube (minimal or maximal points in 
lexicographical order), it means that the manifold has left the coface 
and the traversal wants to move to a neighboring (𝑘 + 1)-hypercube, so 
the traversal ends. Since we are only interested in the vertices inside the 
𝑘-faces of the 𝑛-hypercube, we only store the endpoints of the traversal: 
if the manifold enters the (𝑘 + 1)-hypercube through {𝜏, 𝜎} and leaves 
it through {𝜏′, 𝜎′}, the vertices are created in 𝜏 and 𝜏′ and connected 
to form a single edge in the entire (𝑘 + 1)-hypercube, thus creating one 
edge of the resulting approximation.

Once we have identified the 𝑘-simplex 𝜏′ from which ∗ leaves 
the (𝑛 + 1)-hypercube, we can then restart the process on 𝜏′, tracing 
the manifold across all (𝑘+1)-hypercubes that contain 𝜏′. By repeating 
this procedure iteratively, the algorithm generates the approximation 
of the entire manifold within the domain. The resulting approximation 
consists of the same edges that are created by the GCCH algorithm. 
Hence, the Combinatorial Skeleton (see Section 2.4) can also be used 
to create the higher-dimensional cells of the approximation.

Observe that Eqs. (3) and (7) can be rewritten to reduce the overall 
cost as follows: 
[

𝐹 (𝑢1) − 𝐹 (𝑢0) … 𝐹 (𝑢𝑘) − 𝐹 (𝑢0)
]

⎡

⎢

⎢

𝜆1
⋮
⎤

⎥

⎥

=
[

−𝐹 (𝑢0)
]

(9)

⎣𝜆𝑘⎦

9 
and 

[

𝐹 (𝑢1) − 𝐹 (𝑢0) … 𝐹 (𝑢𝑘) − 𝐹 (𝑢0)
]

⎡

⎢

⎢

⎣

𝜇1
⋮
𝜇𝑘

⎤

⎥

⎥

⎦

=
[

𝐹 (𝑣) − 𝐹 (𝑢0)
]

, (10)

with 𝜆0 = 1 − 𝜆1 − ⋯ − 𝜆𝑘 and 𝜇0 = 1 − 𝜇1 − ⋯ − 𝜇𝑘. Noting that the 
same coefficient matrix is used in Eqs. (9) and (10), both systems can 
be solved at the same time. Typically, these systems are solved using 
LU decomposition with partial pivoting, which presents an asymptotic 
complexity of 𝑂 (

𝑘3
)

, though other methods could also be employed.

3.5. Memory storage

The Door-in/Door-out principle ensures that we can avoid creating 
duplicate edges in the approximation. The reason is that only the two 
(𝑘 + 1)-simplices 𝜎 and 𝜎′ (which represent the entry and exit locations 
of a (𝑘 + 1)-hypercube) need to be added to a set of already traversed 
(𝑘 + 1)-simplices to effectively prevent the respective (𝑘+ 1)-hypercube 
from being processed more than once. Each time a new 𝜎 is about to 
be traversed, this set is checked for redundancy.

To optimize memory usage, this approach is equivalent to storing 
information about which cofaces of 𝜏 have yet to be traversed. Instead 
of storing each of the 2 (𝑛 − 𝑘) cofaces of 𝜏 separately, we can store 
a single integer 𝐶 for each 𝜏. The initial value of 𝐶 is given by the 
function 𝐶𝑛:

𝐶 = 𝐶𝑛 (𝜏) ∶= (𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑 ⋅ 2𝑛) + 𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑜𝑟𝑑.

Each set bit in 𝐶 indicates a coface of 𝜏 to be traversed. When the 
algorithm traverses the coface 𝜎𝑐𝑓 𝑥+𝑗+1

 starting from 𝜏, the 𝑗th bit of 𝐶 is 
unset, indicating that this coface has already been traversed. Similarly, 
when the coface 𝜎𝑐𝑓 𝑥−𝑗+1

 is traversed, the (𝑗 + 𝑛)th bit of 𝐶 is unset. Given 
that 𝑓 =

(

𝑝𝑓 ,𝓁𝑓
) represents the hypercube 𝑘-face that contains 𝜏, and 

𝑐 =
(

𝑝 ,𝓁
)

 represents its coface that contains 𝜎, we can update 𝐶
𝑓 𝑐𝑓 𝑐𝑓
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by using a bit mask 𝑈 as follows:

𝑈
(

𝑓, 𝑐𝑓
)

=

⎧

⎪

⎨

⎪

⎩

𝓁𝑓 𝖷𝖮𝖱 𝓁𝑐𝑓 , if 𝑝𝑓 = 𝑝𝑐𝑓
(

𝓁𝑓 𝖷𝖮𝖱 𝓁𝑐𝑓

)

⋅ 2𝑛, otherwise

𝐶 = 𝐶 𝖷𝖮𝖱 𝑈 (𝑓, 𝑐𝑓 ).

We use a dictionary that stores key–value pairs, where the keys are 
the 𝑘-simplices 𝜏 and the values are the corresponding integers 𝐶. In 
the step where the cofaces of 𝑓 are being generated, the algorithm 
verifies the 𝐶 value of 𝜏 and only proceeds to the tracing step if the bit 
corresponding to the coface has not yet been unset in 𝐶. After creating 
an edge of the approximation, we have 𝑓 and 𝑐𝑓  (which contain 𝜏 and 
𝜎), and we calculate 𝑓 ′ and 𝑐′𝑓  (which contain 𝜏′ and 𝜎′) and update 
the 𝐶 integers of both 𝜏 and 𝜏′ in the dictionary accordingly.

3.6. Boundary tracking

The process of traversing the grid while following the manifold is 
similar to an advancing front algorithm. Hence it is not necessary to 
store all cells already traversed within the domain; it is sufficient to 
store only the boundary of the traversed region.

Based on the storage method described in the previous section, 
when all cofaces originating from a simplex 𝜏 are traversed, 𝜏 is not 
revisited because access to 𝜏 is blocked by the neighboring simplices 
𝜏′ that are added to the dictionary. Therefore, when the integer 𝐶
associated with a simplex 𝜏 reaches zero, 𝜏 can be removed from the 
dictionary, leading to further memory savings.

A double-ended queue is used to perform the traversal in a breadth-
first manner: the 𝜏 to be processed is removed from the front of the 
queue, while any 𝜏′ resulting from traversing the cofaces are inserted 
at the back. To ensure that the queue contains only unique elements, 
the algorithm first checks if 𝜏′ is already in the queue and inserts it 
only if it is not.

For a manifold of dimension 𝑛 − 𝑘, the boundary of the explored 
region has dimension 𝑛− 𝑘−1, so the memory usage is proportional to 
this reduced dimension.

3.7. Algorithm pseudocode

Algorithm 3 presents the complete pseudocode of the FCH algo-
rithm. The algorithm begins by initializing the queue of 𝑘-simplices to 
be processed (Line 1) and a dictionary that records the boundary of 
(𝑘+1)-simplices to be processed (Line 2). At each iteration, a 𝑘-simplex 
𝜏 is removed from the front of  for processing (Line 4). The algorithm 
identifies the 𝑘-hypercube 𝑓 that contains 𝜏 (Line 5) and computes 𝜆
for 𝜏 (Line 6). It then determines the coordinates of the approximation 
vertex in 𝜏 (Line 7). Next, the algorithm iterates through all cofaces 
𝑐𝑓  of 𝑓 in the grid (Line 8) and, in each 𝑐𝑓 , identifies the (𝑘 + 1)-
simplex 𝜎 that contains 𝜏 (Line 10). The manifold is traced inside 𝑐𝑓
as discussed in Section 3.4 (Line 11). The algorithm then determines 
the 𝑘-hypercube 𝑓 ′ that contains the output 𝑘-simplex 𝜏′ (Line 12) 
and identifies the (𝑘 + 1)-coface of 𝑓 ′ that contains 𝜎′ (Line 13). The 
dictionary is updated accordingly (Lines 14–19) and 𝜏′ is enqueued to 
be processed in the next iterations (Line 20). Finally, the algorithm 
computes 𝜆′ for 𝜏′ (Line 21) and determines the coordinates of its 
approximation vertex (Line 22).

3.8. Implementation and tests

We implemented the three algorithms (PTA, GCCH, and FCH) in the 
C++ programming language and ran various test cases (see Section 5) 
to measure the memory usage and execution time of the traversal. The 
generated cells are progressively saved to disk, with only the necessary 
data for the traversal of each algorithm being kept in RAM. This allows 
the generation of bigger approximations that cannot fit entirely in RAM.
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Algorithm 3: Fast Continuation Hypercubes (FCH)
Input : A function 𝐹 ∶R𝑛 → R𝑘 defining the manifold  = 𝐹 −1(0).

A seed 𝑘-simplex 𝜏seed for the continuation algorithm.
Output: A list of edges of the approximation with each respective 

pair of 𝑘-simplices.
1  ←

[

𝜏seed
]

; // initialize queue
2  ←

{ [

𝜏seed, 𝐶𝑛
(

𝜏seed
)] }

; // initialize dictionary
3 while  not empty do
4 𝜏 ← popfront ();
5 𝑓 ← 𝐻𝑓𝑎𝑐𝑒 (𝜏);
6 𝜆 ← solve system for 𝜏; // Eq.  (3)
7 𝑣𝑚𝑓 ← 𝜏 ⋅ 𝜆; // Eq.  (4)
8 foreach coface 𝑐𝑓  of 𝑓 do
9 if 𝑈 (

𝑓, 𝑐𝑓
)

AND  (𝜏) then
10 𝜎 ← 𝜏 ∪ {𝑣}; // (𝑘 + 1)-simplex
11 𝜏′, 𝜎′ ← Trace (𝜏, 𝜎); // trace edge
12 𝑓 ′ ← 𝐻𝑓𝑎𝑐𝑒

(

𝜏′
)

;
13 𝑐′𝑓 ← 𝐻𝑓𝑎𝑐𝑒

(

𝜎′);
14 if  contains 𝜏′ then
15 (𝜏′) ← (𝜏′) XOR 𝑈

(

𝑓 ′, 𝑐′𝑓
)

;
16 else
17 𝑘𝑒𝑦 ← 𝜏′;
18 𝑣𝑎𝑙𝑢𝑒 ← 𝐶𝑛

(

𝜏′
)

XOR 𝑈
(

𝑓 ′, 𝑐′𝑓
)

;
19 Insert [𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒] pair in ;
20 Insert 𝜏′ at the back of ;
21 𝜆′ ← solve system for 𝜏′; // Eq.  (3)
22 𝑣′𝑚𝑓 ← 𝜏′ ⋅ 𝜆′; // Eq.  (4)
23 Save edge 

{

𝜏, 𝑣𝑚𝑓 , 𝜏′, 𝑣′𝑚𝑓
}

;

24 Remove 𝜏 from ;

Line 9: AND is the bitwise AND operator.
Lines 15, 18: XOR is the bitwise XOR operator.

All methods were implemented by the same programmer and tested 
on the same machine, ensuring consistency in the evaluation. The 
specifications of the test machine are as follows:

• Processor: AMD Ryzen 9 3900X 12-Core;
• Memory: 4× 16 GB DIMM DDR4 3200 MHz;
• Storage: 223.57 GB SSD.

The runtime of each algorithm was measured internally, using the 
high-resolution clock from the C++ standard library. Memory usage 
was measured externally, using a utility tool from the operating system. 
Because the operating system always allocates a minimum amount of 
memory for any given program, the memory usage presents a very 
noticeable lower bound.

Our C++ implementation of all three algorithms has been made 
available in an online repository, along with a tool to visualize the 
generated approximations.1

4. Computational complexity per iteration

Since the total runtime of an algorithm depends on the manifold 
being approximated, here we present the time complexity equations of 
the PTA, GCCH, and FCH algorithms for the traversal of the domain as 
a function of the number of structures traversed (the number of iter-
ations executed by each algorithm). For a more direct comparison, in 
Appendix  B we offer a discussion on the upper bound on computational 
cost for each algorithm, and a worst-case comparison.

1 https://github.com/lucasmreia/fch.

https://github.com/lucasmreia/fch
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4.1. PTA algorithm

The computational complexity of the PTA algorithm, as calculated 
by Boissonnat et al. [28], is given by: 
𝑘 ⋅

(

2(𝑛−𝑘+1) − 2
)

⋅ (𝑘 + 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑂
(

𝑘2(𝑛−𝑘)
)

⋅ , (11)

where:

• 𝑘 is the total number of 𝑘-simplices processed (number of itera-
tions);

• (

2(𝑛−𝑘+1) − 2
) is the maximum number of (𝑘 + 1)-dimensional co-

faces a 𝑘-simplex can have;
• (𝑘 + 1) is the number of 𝑘-faces (𝑘-simplices) in each coface;
•  is the cost of solving the 𝑘× 𝑘 system of Eq.  (9) to obtain the 𝜆
for each 𝑘-simplex.

Note that, since the PTA algorithm processes every 𝑘-face of each 
coface, there will be many processed 𝑘-simplices which do not intersect 
the manifold. However, the Door-in/Door-out principle can be applied 
to directly find the output 𝑘-simplex in each coface, which reduces the 
complexity of the middle term to 𝑂 (

2(𝑛−𝑘)
)

.

4.1.1. GCCH algorithm
The computational complexity of the GCCH algorithm, as calculated 

by Castelo et al. [29], is given by: 

𝑛 ⋅
(

𝑛
𝑛 − 𝑘

)

⋅ 2(𝑛−𝑘) ⋅ 𝑘!

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂
(

𝑛!
(𝑛−𝑘)! 2

(𝑛−𝑘)
)

⋅ , (12)

where:

• 𝑛 is the total number of 𝑛-hypercubes processed (number of 
iterations);

• ( 𝑛
𝑛−𝑘

)

⋅ 2(𝑛−𝑘) is the number of 𝑘-faces of each 𝑛-hypercube, where 
( 𝑛
𝑛−𝑘

) represents the number of possible combinations of coor-
dinates that can be fixed, and 2(𝑛−𝑘) represents the number of 
possible values for each set of fixed coordinates (each coordinate 
can be fixed at either 0 or 1);

• 𝑘! is the number of 𝑘-simplices in each 𝑘-face;
•  is the cost of solving the 𝑘× 𝑘 system of Eq.  (9) to obtain the 𝜆
for each 𝑘-simplex.

As the GCCH algorithm processes only the 𝑘-simplices on the 𝑘-faces 
of the 𝑛-hypercube, and not those in the interior of the 𝑛-hypercube, 
the resulting number of vertices and edges of the approximation is 
significantly smaller than that of the PTA algorithm. The memory 
usage is also lower for the GCCH algorithm because it records only the 
position of the traversed 𝑛-hypercubes. On the other hand, the GCCH 
algorithm always processes all 𝑘-simplices of all 𝑘-faces, which leads to 
unnecessary computations.

4.2. FCH algorithm

The computational complexity of the FCH algorithm is given by: 
𝑘 ⋅ 2(𝑛 − 𝑘) ⋅

(

𝑘+1 + 1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂
(

(𝑛−𝑘)(𝑘+1)!
)

⋅ , (13)

where:

• 𝑘 is the total number of 𝑘-hypercubes processed (number of 
iterations);

• 2(𝑛 − 𝑘) is the number of (𝑘 + 1)-cofaces for one 𝑘-hypercube, as 
discussed in Section 3.3;
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• 𝑘+1 is the number of (𝑘 + 1)-simplices processed when tracing 
the manifold inside a coface, as explained in Section 3.4. In the 
best case we have 𝑘+1 = 1, and in the worst case we have 
𝑘+1 = (𝑘 + 1)!;

•  is the cost of solving the two 𝑘 × 𝑘 systems of Eqs. (9) and 
(10), used to determine 𝜆 and 𝜇 for each time the Door-in/Door-
out principle is applied. An additional  is added at the end to 
calculate 𝜆′ for the output 𝜏′.

Although Eq. (13) contains factorial terms, the total cost of the FCH 
algorithm is greatly reduced by restricting the evaluation to the same 𝑘-
simplices as the GCCH, but only to those that do intersect the manifold 
thanks to the Door-in/Door-out principle.

5. Results

The performance results obtained from the implementation and 
evaluation of the three methods – PTA, GCCH, and FCH – are presented 
in Figs.  13–18. Figs.  13–15 show the performance as a function of 
the resolution of the grid that subdivides the domain (the number of 
subdivisions or partitions per dimension) for the following test cases:

• Hypersphere 𝑆4 generated by:

𝐹 ∶R5 → R, 𝐹 (𝐱) = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 − 1.

• Klein Bottle in R5 generated by:
𝐹 ∶R5 → R3 ,

𝐹 (𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1 −
(

3 + 𝑐𝑜𝑠
( 𝑥4

2

)

𝑠𝑖𝑛
(

𝑥5
)

− 𝑠𝑖𝑛
( 𝑥4

2

)

𝑠𝑖𝑛
(

2𝑥5
)

)

𝑐𝑜𝑠
(

𝑥4
)

𝑥2 −
(

3 + 𝑐𝑜𝑠
( 𝑥4

2

)

𝑠𝑖𝑛
(

𝑥5
)

− 𝑠𝑖𝑛
( 𝑥4

2

)

𝑠𝑖𝑛
(

2𝑥5
)

)

𝑠𝑖𝑛
(

𝑥4
)

𝑥3 − 𝑠𝑖𝑛
( 𝑥4

2

)

𝑠𝑖𝑛
(

𝑥5
)

+ 𝑐𝑜𝑠
( 𝑥4

2

)

𝑠𝑖𝑛
(

2𝑥5
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

• Circle 𝑆1 embedded in R9 generated by:

𝐹 ∶R9 → R8, 𝐹 (𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥21 + 𝑥29 − 1.0001

𝑥22 − 1.0002

𝑥23 − 1.0003

𝑥24 − 1.0004

𝑥25 − 1.0005

𝑥26 − 1.0006

𝑥27 − 1.0007

𝑥28 − 1.0008

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In this case, the level set corresponds to several disconnected 
curves, but only the central circumference was traced due to the 
chosen starting point.

Figs.  16–18 show the performance as a function of the dimension 
of the manifold for the following test cases:

• Hypersphere 𝑆(7−𝑘) embedded in R7, for varying 𝑘, generated by:

𝐹 ∶R7 → R𝑘, 𝐹 (𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −
∑7−𝑘+1

𝑖=1 𝑥𝑖2

𝑥7−𝑘+2
𝑥7−𝑘+3

⋮
𝑥7

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

• Hypersphere 𝑆(15−𝑘) embedded in R15, for varying 𝑘, generated 
by:

𝐹 ∶R15 → R𝑘, 𝐹 (𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

1 −
∑15−𝑘+1

𝑖=1 𝑥𝑖2

𝑥15−𝑘+2
𝑥15−𝑘+3

⋮

⎤

⎥

⎥

⎥

⎥

⎥

.

⎣ 𝑥15 ⎦
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Fig. 13. Hypersphere 𝑆4 (𝐹 ∶R5 → R).

Fig. 14. Klein Bottle in R5 (𝐹 ∶R5 → R3).

Fig. 15. Circle 𝑆1 embedded in R9 (𝐹 ∶R9 → R8).

Fig. 16. Hypersphere 𝑆 (7−𝑘) embedded in R7 (𝐹 ∶ R7 → R𝑘, varying 𝑘), with 10 
partitions per dimension.

• Cartesian product of 𝑆1 𝑘 times, (𝑆1)𝑘, for varying 𝑘, generated 
by:

𝐹 ∶R2𝑘 → R𝑘, 𝐹 (𝐱) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥21 + 𝑥22 − 1

𝑥23 + 𝑥24 − 1
⋮

𝑥22𝑘−1 + 𝑥22𝑘 − 1

⎤

⎥

⎥

⎥

⎥

⎦

.

In all cases, the GCCH algorithm consumed less memory than the 
PTA algorithm, which was expected since the GCCH algorithm stores 
only the indices of the traversed 𝑛-hypercubes. The PTA algorithm 
presented the highest memory usage, as it stores all the evaluated 𝑘-
simplices. In contrast, the FCH algorithm presented the lowest memory 
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Fig. 17. Hypersphere 𝑆(15−𝑘) embedded in R15 (𝐹 ∶R15 → R𝑘, varying 𝑘), with 10 
partitions per dimension.

Fig. 18. Cartesian product of 𝑆1 taken 𝑘 times, (𝑆1)𝑘 (𝐹 ∶R2𝑘 → R𝑘, varying 𝑘), with 
5 partitions per dimension.

usage, as it stores only the boundary of the (𝑘 + 1)-simplices that still 
need to be traversed. In many cases, the memory usage of an algorithm 
was lower than the minimum allocated by the operating system, which 
is particularly evident in Figs.  14 and 15, making the memory usage 
appear constant.

In terms of runtime, Figs.  14–16 show that the PTA algorithm is 
faster than the GCCH algorithm when the value of 𝑘 is close to 𝑛. 
When 𝑘 and 𝑛 are significantly different, the cost to traverse all (𝑘 + 1)-
simplices that intersect the manifold resulted in longer execution times 
for the PTA algorithm. Because of this, the GCCH algorithm seems 
better suited than the PTA algorithm for situations where 𝑘 is low.

Fig.  18 shows that the PTA and GCCH algorithms present relatively 
similar growth in runtime when both 𝑘 and 𝑛 − 𝑘 are increased by 1. 
One explanation for this behavior is that, while greater 𝑘 means that 
the GCCH will process more 𝑘-simplices, greater 𝑛 − 𝑘 means that the 
PTA will process more (𝑘 + 1)-simplices, and these terms have similar 
influence in the total number of evaluated simplices.

It is important to note that in all three methods, the data structures 
used to track the traversed regions are implemented as hash tables 
using the C++ standard library. The higher the memory usage of a 
method, the more prone it is to hash collisions, with the PTA algorithm 
being the most affected by this issue. In addition, since the cells 
generated by the algorithms are stored progressively on disk, methods 
that generate more vertices and edges are expected to be slowed down 
by disk write operations, which also penalizes the PTA algorithm the 
most.

Table  1 presents the performance metrics related to the usage of 
the hash table for each algorithm. To minimize memory consumption 
in general scenarios, the structure was designed to expand dynamically 
and perform rehash operations as needed (on demand). Collisions are 
tracked during both element insertion and rehashing: a collision is 
recorded whenever a new element is inserted into a bucket that already 
contains one or more elements. The FCH algorithm resulted in the 
lowest number of collisions and rehashes, although close to the GCCH 
algorithm.

Finally, the FCH algorithm produced an output identical to that of 
the GCCH algorithm, which consists of edges of affine cells, but this 
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Fig. 19. 3D projections of the approximations generated for the Klein Bottle in R5 with 30 partitions per dimension. Left column: approximation created by GCCH and FCH. Right 
column: approximation created by PTA. Top row: entire approximation. Bottom row: cross-sectional cut to reveal the interior of the 3D projection and its auto-intersection, which 
forms a figure-eight shape. Notice that in R5 the shape is a manifold, but its projection in R3 is not (the projection contains self-intersections).
Table 1
Performance metrics of the hash table in different settings.
 PTA GCCH FCH  
 Hypersphere 𝑆4 Rehashes 14 11 9  
 (10 parts/dim) Collisions 132.015 14.062 9.417  
 Klein bottle in R5 Rehashes 14 10 6  
 (50 parts/dim) Collisions 140.879 12.613 12.381 
 Circle 𝑆1 in R9 Rehashes 1 1 1  
 (40 parts/dim) Collisions 98 11 10  

was achieved with significantly less execution time and memory usage. 
Across all scenarios tested, the FCH algorithm was the most efficient, 
with the lowest execution time and memory usage. Fig.  19 provides an 
example of the generated approximations, showing that the approxima-
tions generated by the GCCH and FCH algorithms contain significantly 
fewer cells compared to those generated by the PTA algorithm.

High-dimensional modeling, combined with an appropriate projec-
tion to lower dimensions, enables the generation of more complex 
geometric shapes compared to traditional low-dimensional modeling. 
In the original domain of 𝐹 , the level set 𝐹 (𝐱) = 𝟎 is expected to satisfy 
the properties of a manifold. However, when this manifold is projected 
to lower dimensions, no constraints are imposed, allowing the creation 
of shapes with self-intersections, as illustrated in Fig.  19. Additionally, 
this approach supports the modeling of shapes of different dimensions 
– such as curves, surfaces, and volumes – demonstrated in Fig.  20. The 
implicit equations used to generate the shapes in Fig.  20 are:

• A:

𝐹 (𝑥, 𝑦, 𝑧) =
[

𝑥 − 𝑟𝑡 cos (𝜔 𝑧)
]

=
[

0
]

;

𝑦 − 𝑟𝑡 sin (𝜔 𝑧) 0
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• B,C:

𝐹 (𝑥, 𝑦, 𝑧) =
√

(

𝑥 − 𝑟𝑡 cos (𝜔 𝑧)
)2 +

(

𝑦 − 𝑟𝑡 sin (𝜔 𝑧)
)2 − 𝑟𝛾 = 0;

• D,E:

𝐹 (𝑥, 𝑦, 𝑧, 𝛾) =
√

(

𝑥 − 𝑟𝑡 cos (𝜔 𝑧)
)2 +

(

𝑦 − 𝑟𝑡 sin (𝜔 𝑧)
)2 − 𝛾 𝑟𝛾 = 0.

 where 𝜔, 𝑟𝑡 and 𝑟𝛾 are constants, and 𝛾 ∈ [0, 1].

6. Conclusion

In this work, we introduce the Fast Continuation Hypercubes (FCH), 
an algorithm that combines the strengths of the binary labeling tech-
nique used in the Generalized Combinatorial Continuation Hypercubes 
(GCCH) [29] with the general tracing approach of the Permutahedron-
based Tracing Algorithm (PTA) [28]. Through a series of experiments, 
we demonstrate that the FCH algorithm provides a more efficient 
method to generate piecewise-linear approximations of implicitly de-
fined manifolds compared to both the PTA and GCCH algorithms.

Our results show that the FCH algorithm not only reduces memory 
usage by limiting memory storage to only the boundary of the region 
being traversed, but also significantly decreases runtime by limiting 
the evaluation to only the 𝑘-simplices contained in the 𝑘-faces of the 
𝑛-hypercubes that subdivide the domain. The application of the Door-
in/Door-out principle effectively avoids processing simplices that do 
not intersect the manifold, which makes the FCH algorithm particularly 
suitable for applications where both memory efficiency and computa-
tional speed are desired, and underscores its potential as a method for 
high-dimensional manifold approximation.
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Fig. 20. 3D projections of approximations generated for helical shapes with varying dimensions. A: 1D helix. B,C: 2D tube-shaped helix. D,E: 3D solid helix. While A, B and D 
display the full approximations, C and E include a cross-sectional cut to reveal the interior structure. Note that, topologically, A is composed of 1D edges; B,C are composed of 
2D polygons; and D,E are composed of 3D polyhedra.
For future research, an interesting direction would be to develop 
adaptive and parallel methods based on the proposed approach. In 
a general sense, adaptive methods could dynamically allocate com-
putational resources based on the complexity of different regions, 
improving efficiency. Additionally, parallelization across multiple pro-
cessors could significantly decrease computation time, especially for 
high-dimensional problems. These advancements could improve the 
scalability of the algorithm, making it more suitable for large-scale 
applications.
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Appendix A. Step-by-step example

In order to make the difference between the three algorithms more 
evident, in this section we present a short step-by-step example of 
isosurfacing using each algorithm. In this case, we have a 2D manifold 
embedded in the 3D domain, which is generated by an implicit function 
𝐹 ∶R3 → R.
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A.1. PTA

Fig.  A.21 illustrates the steps of the PTA algorithm. Each step is 
described below.

• A: Isosurface (in orange) and the 1D edge of the 𝐾1 triangulation 
(in dark red) that will serve as the seed 𝜏 for the continuation 
method.

• B: Generation of all 2D triangular faces 𝜎 of the 𝐾1 triangulation 
that contain 𝜏.

• C: The intersection of the isosurface with a triangular face forms 
a curve (in magenta). These curves will be approximated by line 
segments.

• D: Generation of the edges of the approximation (in bright red) 
that lie on each 𝜎. The edges of the approximation are formed by 
one input vertex (that lie on 𝜏) and one output vertex (that lie on 
a different edge 𝜏′ of 𝜎).

• E: The process is restarted from step A at the 𝜏′ of each 𝜎 (in dark 
red). This is repeated until the entire isosurface is covered.

• F: Final surface mesh generated.

Note that the generated approximation in panel F is not a triangu-
lation, as it may contain shapes other than triangles.

A.2. GCCH

Fig.  A.22 illustrates the steps of the GCCH algorithm. Each step is 
described below.

• A: Isosurface (in orange) and the 3D cube (in red) that will be the 
seed for the continuation method.

• B: Generation of all 1D edges 𝜏 (in dark red) of the initial 3D 
cube.

• C: Generation of the vertices of the approximation (in bright red) 
that lie in each 𝜏 that intersects the isosurface.

• D: Generation of the edges of the approximation (in bright red) 
using the Combinatorial Skeleton.

• E: The process is restarted from step A at the neighboring 3D 
cubes that share vertices of the approximation. This is repeated 
until the entire isosurface is covered.

• F: Final surface mesh generated.

Comparing panel F of Fig.  A.22 with panel F of Fig.  A.21, we can 
see that the GCCH algorithm generates an approximation with fewer 
vertices and edges, and its vertices are a subset of the vertices generated 
by the PTA algorithm. In both cases, the generated approximations are 
not triangulations.



L.M. Reia et al.

Fig. A.21. Step-by-step example of the PTA algorithm for isosurfacing in the 3D domain. Panels A to F depict each step.

Fig. A.22. Step-by-step example of the GCCH algorithm for isosurfacing in the 3D domain. Panels A to F depict each step.

Computers & Graphics 129 (2025) 104237 
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Fig. A.23. Step-by-step example of the FCH algorithm for isosurfacing in the 3D domain. Panels A to H depict each step.
A.3. FCH

Fig.  A.23 illustrates the steps of the FCH algorithm. Each step is 
described below.

• A: Isosurface (in orange) and the 1D edge of a 3D cube (in dark 
red) that will serve as the seed 𝜏 for the continuation method.

• B: Generation of all 2D square faces of the that contain 𝜏.
• C: The intersection of the isosurface with a square face forms a 
curve (in magenta). These curves will be approximated by line 
segments.

• D: Each square face is subdivided into triangles using the 𝐾1
triangulation.

• E: Traversal of each square face, generating the edges the approx-
imation (in bright red) that lie on each triangle.

• F: The intermediary vertices of the approximation that lie inside 
each square face are removed. The edges of the approximation are 
then formed by one input vertex (that lie on 𝜏) and one output 
vertex (that lie on a different edge 𝜏′ of the square face).

• G: The process is restarted from step A at the 𝜏′ of each square 
face (in dark red). This is repeated until the entire isosurface is 
covered.
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• H: Final surface mesh generated.

The FCH algorithm employs an approach similar to that of the 
PTA algorithm, but generates an approximation identical to the one 
produced by the GCCH algorithm.

Appendix B. Discussion on the computational cost

B.1. Upper bound on the computational cost

Assuming that every structure in the 𝐾1 triangulation that could
intersect the manifold will be processed, the largest possible number of 
processed structures per 𝑛-hypercube sets an upper bound on the com-
putational cost. In all three methods, each processed structure requires 
solving a 𝑘×𝑘 linear system, so this upper bound is directly comparable 
across the methods. Thus, we will treat the upper bound on the number 
of processed structures as an upper bound on the computational cost, 
with the terms 𝑃𝑇𝐴, 𝐺𝐶𝐶𝐻 , and 𝐹𝐶𝐻  being used to denote the 
upper bounds for the PTA, GCCH, and FCH, respectively.
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Fig. B.24. Example of a 2D domain triangulated by the 𝐾1 triangulation. The different 
colors highlight the 1-simplices that would be taken into account for each different 2-
hypercube if we were to count all the 1-simplices generated.

B.1.1. PTA
The PTA algorithm assumes that every 𝑛-hypercube in the domain is 

partitioned into 𝑛! 𝑛-simplices via the 𝐾1 triangulation, and that the 𝑘-
faces of these 𝑛-simplices might intersect the manifold. The application 
of the Door-in/Door-out principle means that, to find the 𝑘-faces that 
intersect the manifold, we can process the (𝑘 + 1)-dimensional cofaces 
instead of the 𝑘-faces. Therefore, the processed structures on the PTA 
algorithm are the (𝑘 + 1)-simplices, and we need to compute the total 
number of (𝑘 + 1)-simplices that the CFK triangulation generates in an 
𝑛-hypercube.

Note that in the 𝐾1 triangulation, adjacent 𝑛-hypercubes may share 
(𝑘 + 1)-simplices. Simply counting all (𝑘 + 1)-simplices within a sin-
gle 𝑛-hypercube could lead to duplicates when considering the entire 
domain. However, the PTA algorithm ensures each (𝑘 + 1)-simplex 
is processed only once, so we should guarantee that there are no 
redundant counts in our computation. To achieve this, for a given 
𝑛-hypercube 𝐼 we take the minimal vertex 𝑣0 as a reference vertex 
and, using the permutahedral representation, we generate all (𝑘 + 1)-
simplices where this permutahedral representation is canonical. This 
means that all generated (𝑘+1)-simplices lie within 𝐼 and are connected 
to 𝑣0. Only these (𝑘+ 1)-simplices, which connect to 𝑣0, are considered 
in the cost calculation.

For example, if we were to count all the 1-simplices generated by the 
𝐾1 triangulation in a 2D domain, Fig.  B.24 highlights the 1-simplices 
that would be taken into account for each 2-hypercube: the edges were 
painted with 4 different colors (blue, red, green and cyan), where 
each color represents a different square, to indicate which edges would 
be considered for each square. We can see that all 1-simplices in the 
domain would be taken into account, except those that lie on the upper 
boundary of each dimension of the domain. The set representing the 
upper boundary of the domain is 1 dimension smaller than the domain 
itself, so in terms of asymptotic complexity the lack of these 1-simplices 
does not affect the result.

Leveraging the construction rules of the canonical permutahedral 
representation, we can compute the total number of (𝑘 + 1)-simplices 
connected to 𝑣0 using purely combinatorial techniques. In this repre-
sentation of a (𝑘+1)-simplex, the 𝑛+1 vectors 𝑒1, 𝑒2, … , 𝑒𝑛, 𝑒𝑛+1 are 
grouped into 𝑘+ 2 non-empty ordered groups, with the constraint that 
the vector 𝑒𝑛+1 must always belong to the last group. This means that 
the vectors 𝑒1,… , 𝑒𝑛 can be freely distributed among the 𝑘 + 2 groups, 
provided that each group contains at least one element. The number 
of ways these 𝑛 + 1 vectors can be distributed among these groups 
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(i.e. the number of valid arrangements) gives us the total number of 
(𝑘 + 1)-simplices connected to 𝑣0.

If we choose to leave only 𝑒𝑛+1 in the last group, there will be 𝑛
vectors to be distributed among the first 𝑘 + 1 groups. Alternatively, if 
we choose to place 𝑚 vectors together with 𝑒𝑛+1 in the last group, then 
𝑛 − 𝑚 vectors remain to be distributed among the first 𝑘 + 1 groups. 
Since each group must contain at least one element, we have that 
𝑛 − 𝑚 ≥ 𝑘 + 1 ⇒ 0 ≤ 𝑚 ≤ 𝑛 − 𝑘 − 1.

For a given 𝑚, there are (𝑛𝑚
) ways to select the vectors that will 

be placed in the last group. Now, if we were to consider the first 𝑘 + 1
groups to be unordered, the number of ways to distribute the remaining 
𝑛−𝑚 vectors into 𝑘+ 1 unordered groups can be determined using the 
Stirling number of the second kind [39,40], 𝑆(𝑛−𝑚, 𝑘+1), where 𝑆(⋅, ⋅)
can be defined as

𝑆(𝑎, 𝑏) = 1
𝑏!

𝑏
∑

𝑖=0
(−1)𝑏−𝑖

(

𝑏
𝑖

)

𝑖𝑎.

Since the groups are ordered, we must account for the permutations 
of these 𝑘 + 1 groups: there are 𝑆(𝑛 − 𝑚, 𝑘 + 1) ways to distribute 𝑛 − 𝑚
vectors among 𝑘 + 1 non-empty groups, but each configuration can be 
permuted (𝑘 + 1)! times. This gives a total of (𝑘 + 1)! 𝑆 (𝑛 − 𝑚, 𝑘 + 1)
arrangements for the first 𝑘 + 1 groups. Thus, for a given 𝑚, the total 
number of arrangements across all 𝑘 + 2 groups is:
(

𝑛
𝑚

)

(𝑘 + 1)! 𝑆(𝑛 − 𝑚, 𝑘 + 1).

Finally, the upper bound on the computational cost of the PTA 
algorithm, which includes all possible values of 𝑚 where 0 ≤ 𝑚 ≤
𝑛 − 𝑘 − 1, is given by the following sum:

(𝑘 + 1)!
𝑛−𝑘−1
∑

𝑚=0

(

𝑛
𝑚

)

𝑆(𝑛 − 𝑚, 𝑘 + 1).

A change of variable 𝑗 = 𝑛 − 𝑚 (so 𝑚 = 𝑛 − 𝑗) gives

(𝑘 + 1)!
𝑛
∑

𝑗=𝑘+1

(

𝑛
𝑛 − 𝑗

)

𝑆(𝑗, 𝑘 + 1),

and, with the equality ( 𝑛
𝑛−𝑗

)

=
(𝑛
𝑗

)

, we have 

(𝑘 + 1)!
𝑛
∑

𝑗=𝑘+1

(

𝑛
𝑗

)

𝑆(𝑗, 𝑘 + 1). (B.1)

This expression can be simplified using the following Stirling number 
identity [39, Section 6.1]: 

𝑆(𝑎 + 1, 𝑏 + 1) =
𝑎
∑

𝑗=𝑏

(

𝑎
𝑗

)

𝑆(𝑗, 𝑏). (B.2)

Comparing equation (B.1) with (B.2), we can see that 𝑎 = 𝑛 and 
𝑏 = 𝑘 + 1. Consequently, we obtain the final simplified expression 

𝑃𝑇𝐴 = (𝑘 + 1)! 𝑆(𝑛 + 1, 𝑘 + 2). (B.3)

It is worth noting that this result could have been obtained directly by 
considering the distribution of the 𝑛 + 1 vectors into 𝑘 + 2 non-empty 
groups (yielding 𝑆(𝑛+1, 𝑘+2)), and then permuting only the first 𝑘+1
groups (resulting in (𝑘 + 1)! permutations).

Upper and lower bounds for 𝑆(⋅, ⋅) can be found in [41]. Using the 
upper bound

𝑆(𝑎, 𝑏) ≤ 𝑏𝑎

𝑏!
gives us
𝑃𝑇𝐴 ≤ (𝑘 + 2)𝑛,

and we can say the asymptotic cost of the PTA algorithm is 𝑂 (

(𝑘 + 2)𝑛
)

. 
However, this approximation is most accurate when 𝑘 is close to 1: 
 ≈ 3𝑛. (B.4)
𝑃𝑇𝐴(𝑘≈1)
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When 𝑘 ≈ 𝑛 (meaning 𝑘 close to 𝑛 − 1), we have
(𝑘 + 1)! 𝑆(𝑛 + 1, 𝑘 + 2) ≈ 𝑛! 𝑆(𝑛 + 1, 𝑛 + 1) = 𝑛!,

therefore 
𝑃𝑇𝐴(𝑘≈𝑛) ≈ 𝑛!. (B.5)

To create an estimate for the intermediary case 𝑘 ≈ 𝑛
2 , let us consider 

the lower bound [41]:

𝑆(𝑎, 𝑏) ≥
(

𝑎
𝑏

)

( 𝑏
2

)𝑎−𝑏

which gives us 

𝑃𝑇𝐴 ≥ (𝑛 + 1)!
(𝑛 − 𝑘 − 1)!

(𝑘 + 2)𝑛−𝑘−2

2𝑛−𝑘−1
. (B.6)

The Stirling’s approximation [39, Section 9.3]

𝑎! ≈
√

2𝜋𝑎
(𝑎
𝑒

)𝑎

can be used to approximate both factorials, yielding 

𝑃𝑇𝐴 ≳
√

𝑛 + 1
𝑛 − 𝑘 − 1

(𝑘 + 2)𝑛−𝑘−2

2𝑛−𝑘−1
(𝑛 + 1)𝑛+1

(𝑛 − 𝑘 − 1)𝑛−𝑘−1
𝑒−(𝑘+2) .

 Simplifying this expression for 𝑘 ≈ 𝑛
2  and high 𝑛 gives us 

𝑃𝑇𝐴
(

𝑘≈ 𝑛
2

) ≳
√

2
(

𝑛2

2𝑒

)
𝑛
2
, (B.7)

which can later be compared against the other algorithms.

B.1.2. GCCH
The GCCH algorithm always processes all 𝑘-simplices that lie on 

the 𝑘-faces of an 𝑛-hypercube. Hence, the processed structures in the 
GCCH algorithm are these 𝑘-simplices, and the upper bound on the 
computational cost is already given by Eq.  (12): 

𝐺𝐶𝐶𝐻 = 𝑛!
(𝑛 − 𝑘)!

2𝑛−𝑘. (B.8)

We have the inequality
𝐺𝐶𝐶𝐻 ≤ 2𝑛−𝑘 𝑛𝑘,

indicating that the algorithm has asymptotic complexity of 𝑂 (

2𝑛−𝑘 𝑛𝑘
)

, 
which is a more accurate approximation when 𝑘 is close to 1. Assuming 
high 𝑛: 
𝐺𝐶𝐶𝐻 (𝑘≈1) ≈ 2𝑛 𝑛. (B.9)

For values of 𝑛 − 𝑘 close to 1, the expression (B.8) simplifies to 
𝐺𝐶𝐶𝐻 (𝑘≈𝑛) ≈ 2 𝑛!. (B.10)

For the general case, the Stirling’s approximation can be employed 
on both factorials from Eq.  (B.8), yielding

𝐺𝐶𝐶𝐻 ≈
√

𝑛
𝑛 − 𝑘

( 2𝑛
𝑛 − 𝑘

)𝑛−𝑘 ( 𝑛
𝑒

)𝑘
.

Then, for the intermediary case 𝑘 ≈ 𝑛
2 , we have 

𝐺𝐶𝐶𝐻
(

𝑘≈ 𝑛
2

) ≈
√

2
(4𝑛

𝑒

)

𝑛
2 . (B.11)

B.1.3. FHC
The FCH algorithm assumes that every 𝑛-hypercube in the domain 

is partitioned into 𝑛! 𝑛-simplices via the 𝐾1 triangulation, but only 
the 𝑘-simplices that lie on the (𝑘 + 1)-faces of an 𝑛-hypercube might 
intersect the manifold. Here, the same approach is used as in PTA: 
for a given 𝑛-hypercube 𝐼 , only the (𝑘 + 1)-faces connected to the 
minimal vertex 𝑣0 are taken into account, and since the Door-in/Door-
out principle is applied, we can count the (𝑘 + 1)-simplices instead of 
the 𝑘-simplices. Thus, the processed structures in the FCH algorithm 
are these (𝑘 + 1)-simplices connected to 𝑣 .
0
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The label for a (𝑘 + 1)-face of an 𝑛-hypercube consists of 2𝑛 bits, 
where 𝑛 − 𝑘 − 1 bits are set (equal to 1) and the remaining bits are 
unset (equal to 0). To count only the (𝑘 + 1)-faces connected to 𝑣0, the 
𝑛 most significant bits of the label must be 0, which implies that 𝑛−𝑘−1
of the 𝑛 least significant bits must be set. The number of (𝑘 + 1)-faces 
connected to 𝑣0 in an 𝑛-hypercube is then given by the number of ways 
to choose 𝑛 − 𝑘 − 1 unique elements out of 𝑛:
(

𝑛
𝑛 − 𝑘 − 1

)

.

Using the 𝐾1 triangulation, each (𝑘 + 1)-face of an 𝑛-hypercube is 
subdivided into (𝑘+1)! (𝑘+1)-simplices that contain 𝑣0. Therefore, the 
total number of (𝑘 + 1)-simplices connected to 𝑣0 is
(

𝑛
𝑛 − 𝑘 − 1

)

(𝑘 + 1)!.

Simplifying this expression, we obtain the upper bound on the 
computational cost of the FCH algorithm: 

𝐹𝐶𝐻 = 𝑛!
(𝑛 − 𝑘 − 1)!

. (B.12)

It follows that
𝐹𝐶𝐻 ≤ 𝑛𝑘+1,

which implies an asymptotic cost of 𝑂 (

𝑛𝑘+1
)

, particularly when 𝑘 is 
small: 
𝐹𝐶𝐻 (𝑘≈1) ≈ 𝑛2. (B.13)

Conversely, for 𝑛 − 𝑘 close to 1, the expression (B.12) simplifies to 
𝐹𝐶𝐻 (𝑘≈𝑛) ≈ 𝑛!. (B.14)

Applying the Stirling’s approximation to (B.12) yields

𝐹𝐶𝐻 ≈
√

𝑛
𝑛 − 𝑘 − 1

( 𝑛
𝑛 − 𝑘 − 1

)𝑛−𝑘−1 ( 𝑛
𝑒

)𝑘+1
,

which lets us derive an approximation for the intermediary case 𝑘 ≈ 𝑛
2

(assuming high 𝑛): 

𝐹𝐶𝐻
(

𝑘≈ 𝑛
2

) ≈
√

2
( 2𝑛

𝑒

)

𝑛
2 . (B.15)

B.2. Upper bound comparison

Eqs. (B.3), (B.8), and (B.12) give us
𝑃𝑇𝐴 = (𝑘 + 1)! 𝑆(𝑛 + 1, 𝑘 + 2),

𝐺𝐶𝐶𝐻 = 𝑛!
(𝑛 − 𝑘)!

2𝑛−𝑘,

𝐹𝐶𝐻 = 𝑛!
(𝑛 − 𝑘 − 1)!

.

Based on inequality (B.6), we have:

𝑃𝑇𝐴 ≥ (𝑛 + 1)!
(𝑛 − 𝑘 − 1)!

(𝑘 + 2)𝑛−𝑘−2

2𝑛−𝑘−1
.

It can be verified that for all 𝑛 and 𝑘 such that 𝑘 ≥ 2 and 𝑛− 𝑘 ≥ 2, the 
following relation holds:

𝑃𝑇𝐴 ≥ (𝑛 + 1)!
(𝑛 − 𝑘 − 1)!

(𝑘 + 2)𝑛−𝑘−2

2𝑛−𝑘−1
> 𝐺𝐶𝐶𝐻 > 𝐹𝐶𝐻 .

We begin by verifying that 𝑃𝑇𝐴 > 𝐺𝐶𝐶𝐻 . Substituting the 
expressions:

𝑃𝑇𝐴 ≥ (𝑛 + 1)!
(𝑛 − 𝑘 − 1)!

(𝑘 + 2)𝑛−𝑘−2

2𝑛−𝑘−1
> 𝑛!

(𝑛 − 𝑘)!
2(𝑛−𝑘) = 𝐺𝐶𝐶𝐻 .

 Letting 𝑚 = 𝑛 − 𝑘, we rewrite the inequality as:
(𝑛 + 1)!
(𝑚 − 1)!

(𝑘 + 2)𝑚−2

2𝑚−1
> 𝑛!

𝑚!
2𝑚.

Simplifying:

𝑚(𝑛 + 1) 𝑘 + 2 𝑚−2 > 22𝑚−1.
( )
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Table B.2
Upper bound on the computational cost and approximations assuming high 𝑛.
 PTA GCCH FCH  
 Cost equation (𝑘 + 1)! 𝑆(𝑛 + 1, 𝑘 + 2) 2𝑛−𝑘 𝑛!

(𝑛−𝑘)!
𝑛!

(𝑛−𝑘−1)!
 

 Approximation for 𝑘 ≈ 1 3𝑛 2𝑛 𝑛 𝑛2  
 Approximation for 𝑘 ≈ 𝑛

2

√

2
(

𝑛2

2𝑒

)
𝑛
2

√

2
(

4𝑛
𝑒

)
𝑛
2

√

2
(

2𝑛
𝑒

)
𝑛
2  

 Approximation for 𝑘 ≈ 𝑛 𝑛! 2 𝑛! 𝑛!  
 Relationship when 𝑘 ≥ 2 and 𝑛 − 𝑘 ≥ 2 𝑃𝑇𝐴 > 𝐺𝐶𝐶𝐻 > 𝐹𝐶𝐻  
Now, using 𝑛 = 𝑚 + 𝑘, the inequality becomes:

𝑚(𝑚 + 𝑘 + 1)(𝑘 + 2)𝑚−2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

LHS

> 22𝑚−1
⏟⏟⏟
RHS

.

The left-hand side (LHS) will be analyzed first. If 𝑘 ≥ 2, then: 

(𝑘 + 2)𝑚−2 ≥ (2 + 2)𝑚−2 =
(

22
)𝑚−2 = 22𝑚−4. (B.16)

Also, if 𝑘 ≥ 2 and 𝑚 ≥ 2: 

𝑚(𝑚 + 𝑘 + 1) ≥ 2(2 + 2 + 1) > 2(2 + 2) = 23. (B.17)

So, combining (B.16) and (B.17), for the left-hand side we get:

𝑚(𝑚 + 𝑘 + 1)(𝑘 + 2)𝑚−2 > 23 22𝑚−4 = 22𝑚−1,

which matches the right-hand side (RHS). Therefore, the inequality 
𝑃𝑇𝐴 > 𝐺𝐶𝐶𝐻  holds for all 𝑘 ≥ 2 and 𝑛 − 𝑘 ≥ 2.

Now let us verify that 𝐺𝐶𝐶𝐻 > 𝐹𝐶𝐻 . Substituting the expressions:

𝐺𝐶𝐶𝐻 = 𝑛!
(𝑛 − 𝑘)!

2𝑛−𝑘 > 𝑛!
(𝑛 − 𝑘 − 1)!

= 𝐹𝐶𝐻 .

Again, letting 𝑚 = 𝑛 − 𝑘, it simplifies to:

2𝑚 > 𝑚,

which is true for all 𝑚 ≥ 1. Thus, the inequality 𝐺𝐶𝐶𝐻 > 𝐹𝐶𝐻  holds 
whenever 𝑛 − 𝑘 ≥ 1, and we conclude that 𝑃𝑇𝐴 > 𝐺𝐶𝐶𝐻 > 𝐹𝐶𝐻  is 
valid for all 𝑘 ≥ 2 and 𝑛 − 𝑘 ≥ 2. When 𝑛 − 𝑘 is close to 1, we already 
have the approximations given in Eqs. (B.5), (B.10), and (B.14); and for 
𝑘 close to 1, the approximations are provided in Eqs. (B.4), (B.9), and 
(B.13).

These results show that, based on the upper bound analysis, the FCH 
algorithm is the most efficient among the three. Table  B.2 summarizes 
the approximations of each algorithm, showing that:

• When 𝑘 is close to 𝑛, all three algorithms have very similar costs, 
approaching 𝑛!;

• As 𝑘 decreases, FCH becomes the most efficient algorithm, with 
the lowest computational complexity.

B.3. Worst-case scenario

While the calculated upper bound establishes a theoretical limit for 
the computational cost, reaching this limit may not be feasible due to 
inherent mathematical constraints. For instance, the Door-in/Door-out 
principle limits to 0 or 2 the number of 𝑘-faces that can intersect the 
manifold in a (𝑘 + 1)-simplex. In this section, we present a method to 
artificially construct a feasible case with a high computational cost, 
though without guaranteeing that it represents the absolute worst-case 
scenario. Consequently, the actual worst-case cost will fall somewhere 
between this feasible configuration and the previously calculated upper 
bound. The objective of this analysis is to assess how tight the upper 
bounds calculated in Appendix  B.1 are, and to verify if the relationships 
in Table  B.2 hold true for actually feasible cases.

As in the previous section, our focus remains on calculating the 
number of processed structures within the unit 𝑛-hypercube that are 
connected to 𝑣 .
0
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B.3.1. PTA
Our goal is to artificially construct a function 𝐹 ∶ R𝑛 → R𝑘 that 

results in a high number of processed structures, which requires 𝐹  to 
produce a large number of intersections between 𝑘-simplices and the 
manifold. Since 𝐹  is evaluated only at the vertices of a 𝑛-hypercube, 
we will define 𝐹  exclusively at these points for our artificial case.

As discussed in Section 2.2, a 𝑘-simplex intersects the manifold if 
all components of 𝜆, obtained from Eq.  (3), are positive. Note that it 
is always possible to select 𝑘 + 1 distinct values in R𝑘 (the codomain 
of 𝐹 ) that satisfy this condition. Therefore, by assigning these selected 
values to the vertices of a 𝑘-simplex, we ensure that this 𝑘-simplex 
will intersect the manifold. Conversely, if 𝐹  at the vertices of a 𝑘-
simplex can yield only these 𝑘+1 distinct values, we can verify manifold 
intersection by checking whether each vertex corresponds to a unique 
value.

Let {𝐿0, 𝐿1,… , 𝐿𝑘} be a set of 𝑘+1 distinct values in the codomain 
of 𝐹  that satisfy the intersection condition. We will assign these values 
to all vertices of the unit 𝑛-hypercube, meaning that 𝐹  evaluated at any 
vertex will yield one of these values. For simplicity, we treat each 𝐿𝑖
as a label that is assigned to a vertex, allowing us to work with generic 
labels instead of specific values in R𝑘.

In the simplices generated by the CFK triangulation, we define a 𝑘-
simplex as fully-labeled if it contains 𝑘+1 distinct labels, which implies 
that this simplex intersects the manifold. Furthermore, a (𝑘+1)-simplex 
containing 𝑘 + 1 distinct labels has exactly two 𝑘-faces that are fully-
labeled, following the Door-in/Door-out principle. We also refer to such 
a (𝑘 + 1)-simplex as fully-labeled.

With this framework, we can pose the problem as follows: given an 
assignment of 𝑘 + 1 labels across the vertices of the unit 𝑛-hypercube, 
how many fully-labeled (𝑘 + 1)-simplices connected to 𝑣0 exist? The 
answer corresponds to the number of processed structures for the PTA 
algorithm.

As detailed in Section 2.1, the 𝑛-simplices generated by the CFK 
triangulation of the unit 𝑛-hypercube are formed through permutations 
of 𝛼 in a sequence of vectors:

𝑣0(𝛼)
⏞⏞⏞

𝟎
𝑒𝛼(1)

←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑣1(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑣0 (𝛼) + 𝑒𝛼(1)

𝑒𝛼(2)
←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑣2(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑣1 (𝛼) + 𝑒𝛼(2)

𝑒𝛼(3)
←←←←←←←←←←←←←←←←←←←←←←←←←→ …

…
𝑒𝛼(𝑛)

←←←←←←←←←←←←←←←←←←←←←←←←←→
(

𝑣𝑛−1 (𝛼) + 𝑒𝛼(𝑛)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑣𝑛(𝛼)

Because all generated 𝑛-simplices share the same geometric shape 
but are placed at different positions within the 𝑛-hypercube, we can 
view them as mirrored versions of a standard 𝑛-simplex defined by 
a specific 𝛼. To simplify both label assignment and computational 
analysis, we will first assign labels to the vertices of this standard 𝑛-
simplex, and the labels for all other 𝑛-simplices can then be derived 
through the corresponding permutations of 𝛼. For example, when 𝑛 = 4
and 𝑘 = 2, a possible label configuration is:

𝑣0
⏟⏟⏟

𝐿0

𝑒𝛼(1)
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑣1

⏟⏟⏟
𝐿1

𝑒𝛼(2)
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑣2

⏟⏟⏟
𝐿1

𝑒𝛼(3)
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑣3

⏟⏟⏟
𝐿2

𝑒𝛼(4)
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑣4

⏟⏟⏟
𝐿1

and the permutations of 𝛼 will automatically determine the label as-
signments for all vertices within the unit 𝑛-hypercube.
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Fig. B.25. Diagram that illustrates all possible 3-faces containing vertex 𝑣0 that can be formed from a 4-simplex.
As described in Section 2.3 and Appendix  B.1.1, a (𝑘 + 1)-simplex 
that includes 𝑣0 is formed by a sequence of 𝑘 + 1 vectors originating 
from 𝑣0. Each vector in this sequence can be a combination of mul-
tiple subsequent vectors from the parent 𝑛-simplex. To illustrate this, 
Fig.  B.25 presents all possible ways to generate sequences of vectors 
yielding (𝑘 + 1)-simplices for 𝑛 = 4 and 𝑘 = 2.

From these sequences, we will consider only those that generate 
fully-labeled (𝑘+ 1)-simplices, meaning sequences that include vertices 
with all 𝑘 + 1 distinct labels. To compute the total number of fully-
labeled (𝑘 + 1)-simplices, we must account for all permutations of 𝛼. 
Let 𝑢 be a vector in a sequence; if 𝑢 comprises 𝑚 vectors from the 
canonical basis, the number of configurations for 𝑢 equals the number 
of ways to select 𝑚 vectors from the available canonical basis vectors. 
Consequently, the total number of arrangements for each sequence 
represents the total number of fully-labeled (𝑘+1)-simplices connected 
to 𝑣0. Continuing with the example where 𝑛 = 4 and 𝑘 = 2, the diagram 
in Fig.  B.26 illustrates the total number of possible arrangements that 
generate fully-labeled (𝑘+1)-simplices. In this example, we observe that 
the total number of processed structures is 48.

To summarize, our artificial case involves assigning a set of 𝑘 + 1
distinct labels to the vertices of a standard 𝑛-simplex and identifying 
the sequences that form fully-labeled (𝑘+ 1)-simplices. Through exper-
imentation, we found that a high number of processed structures can 
be achieved when the labels are distributed among the vertices of the 
standard 𝑛-simplex as follows:

• 𝐿0 is assigned exclusively to 𝑣0.
• Let #(𝐿𝑖) denote the number of times label 𝐿𝑖 appears in the 
sequence. Then:
#(𝐿0) = 1;

#(𝐿𝑖) =
⎢

⎢

⎢

⎣

𝑛 + 1 −
∑𝑖−1

𝑗=0 #(𝐿𝑗 )

𝑘 + 1 − 𝑖

⎥

⎥

⎥

⎦

, for 1 ≤ 𝑖 ≤ 𝑘.

• Labels 𝐿1 to 𝐿𝑘 are assigned in increasing order to the vertices 𝑣1
through 𝑣𝑛.

As an example, Table  B.3 shows the label assignments for 𝑛 = 10 and 
1 ≤ 𝑘 ≤ 9.

To identify sequences that generate fully-labeled (𝑘 + 1)-simplices, 
we implemented a recursive search algorithm that explores all possible 
sequences in the 𝑛-simplex, checking whether each sequence is fully 
20 
Table B.3
Label assignment used for 𝑛 = 10.
 Label sequence in the 𝑛-simplex 
 𝑘 = 1 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1  
 𝑘 = 2 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2  
 𝑘 = 3 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3  
 𝑘 = 4 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4  
 𝑘 = 5 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5  
 𝑘 = 6 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6  
 𝑘 = 7 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7  
 𝑘 = 8 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 8  
 𝑘 = 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9  

labeled. For each valid sequence, we then compute the total number of 
possible arrangements of vectors, as previously discussed. The obtained 
results are presented in Appendix  B.4.

B.3.2. GCCH
The GCCH processes a fixed number of structures per 𝑛-hypercube, 

regardless of the manifold being approximated. Therefore, its worst-
case scenario is identical to the upper bound calculated in
Appendix  B.1.2.

B.3.3. FCH
In the FCH, evaluations are restricted to the (𝑘+1)-hypercubes that 

are faces of the 𝑛-hypercube and that are connected to 𝑣0. Applying 
the same analysis used for the PTA to each of these (𝑘+ 1)-hypercubes 
individually, we can demonstrate that all (𝑘+1)-simplices within these 
hypercubes will be evaluated. Consequently, the worst-case scenario for 
the FCH is equal to the upper bound calculated in Appendix  B.1.3.

B.4. Worst-case comparison

Fig.  B.27 illustrates the worst-case comparison of the three methods 
– PTA, GCCH, and FCH – for the specific values of 𝑛 ∈ {3, 4, 5, 10, 20, 40}
and 1 ≤ 𝑘 ≤ 𝑛−1. It is important to highlight that the data in Fig.  B.27 
refer to a single 𝑛-hypercube, meaning they represent a cost normalized 
by the number of 𝑛-hypercubes in the domain. While the theoretical 
upper bounds for GCCH and FCH (calculated in Appendix  B.1) exactly 
match their worst-case costs, the data shown in Fig.  B.27 indicate that 
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Fig. B.26. Given a particular label assignment, this diagram illustrates the number of all possible fully-labeled 3-faces containing vertex 𝑣0 that can be formed from a 4-simplex.
Fig. B.27. Worst-case comparison of the computational cost between the three methods for 𝑛 ∈ {3, 4, 5, 10, 20, 40} and 1 ≤ 𝑘 ≤ 𝑛 − 1. For the PTA, its worst-case lies somewhere in 
between its upper bound and the feasible case.
the bound for PTA is also a reasonable approximation for its worst-
case cost. This is further reinforced by the consistent cost relationships 
observed between the algorithms when comparing Fig.  B.27 with Table 
B.2. For other comparisons in situations that are not guaranteed to be 
worst-case, see the experimental results in Section 5.

To conclude the comparisons, we can say that the FCH has lower 
complexity compared to the PTA because it is more selective regarding 
the (𝑘 + 1)-simplices it processes — the FCH can approximate the 
entire manifold by processing only the (𝑘 + 1)-simplices located on 
the (𝑘 + 1)-faces of the 𝑛-hypercubes, unlike the PTA, which processes 
all (𝑘 + 1)-simplices that intersect the manifold. Furthermore, the FCH 
also exhibits lower complexity compared to the GCCH because the 
application of the Door-in/Door-out principle ensures that structures 
not intersecting the manifold are not processed, reducing the total 
number of processed structures.
21 
Data availability

No data was used for the research described in the article.
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