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This paper introduces the Fast Continuation Hypercubes (FCH) algorithm, a method for generating piecewise
linear approximations of implicitly defined manifolds of arbitrary dimension. By integrating and mixing
key aspects of existing approaches, the FCH algorithm offers significant improvements in both speed and
memory efficiency. It traverses the domain by generating and processing only the necessary cells, which
reduces the computational cost associated with high-dimensional manifold approximation. Additionally, the
algorithm stores only the cells at the boundary of the traversed region, further optimizing memory efficiency.

Experimental results demonstrate that FCH outperforms state-of-the-art algorithms in terms of runtime and

memory usage.

1. Introduction

Implicitly defined manifolds (level sets) appear in many contexts in
the fields of mathematics and computer graphics, especially in the form
of iso-valued curves and surfaces. Consequently, many algorithms and
data structures have been proposed to tackle the problem of creating
a representation of these shapes in a way that makes them easier to
visualize and manipulate [1,2]. These methods are widely used in appli-
cations in optimization problems [3,4], finite element calculations [5],
data visualization [6-8], surface reconstruction [9-12], constructive
solid geometry [13,14], surface learning [15-17], among others.

One of the most universally used approaches is to represent a level
set using a piecewise-linear approximation, where a cell decomposition
of the domain is used and, in each cell of this decomposition, the level
set is approximated by a geometric shape composed of vertices, edges,
and faces. In the literature, this process has been known by various
terms, such as polygonization [18], contouring [19], tracing [20], and
isosurfacing [21].

A well-known algorithm is the Marching Cubes [22], which generates
a triangular mesh in 3D representing an isosurface. In this algorithm,
the 3D space is partitioned into cubes, forming a three-dimensional
grid, and each cube is processed individually by examining only its
vertices (to decide whether they are on the same or opposite sides
of the surface). Based on the configuration of these vertices, a lookup
table is consulted to determine how to connect the vertices to create

* This article was recommended for publication by F.H. de Figueiredo.
* Corresponding author.

the triangles inside the cubes. These triangles are then glued along
their shared edges to form the resulting mesh. Alternatively, there are
also methods that decompose the domain into tetrahedra instead of
cubes, such as the Marching Tetrahedra [23-25]. Compared to cube-
based methods, tetrahedron-based methods perform simpler numerical
evaluations, although the space is segmented into a considerably larger
number of parts.

The mathematical formalization of an implicitly defined level set
is that of a manifold: an implicitly defined manifold M of dimension
(n — k) is defined as a level set of a function F:R" — Rk, with
n > k. That is, M = {x € R" | F(x) = ¢} for some ¢ € R (see
Section 2 for details). In the literature, there are many methods tailored
for the 3D space, but substantially fewer more general methods that
can be applied to manifolds of arbitrary dimensions, as some challenges
arise from the intrinsic cost of increasing dimensionality. Considering
the traditional Marching Cubes, for example, Bhaniramka et al. [21]
propose a generalized version for any n but limited to k = 1. It is
observed that, although it is possible to create a complete lookup table
for an arbitrary dimension, this becomes impractical in high dimensions
because the total number of entries in the table is 22", so it is understood
that generating the entries on demand would be more appropriate.
On the other hand, considering a generalized version of the Marching
Tetrahedra, the subdivision of the domain into n-dimensional simplices
may create a factorial-order number of partitions (see Section 2.1 for
details), requiring mechanisms to mitigate this cost.
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A different approach would be to employ predictor—corrector meth-
ods [26, Section 2.2], which do not subdivide the domain. Instead,
these methods progressively create (cell by cell) an unstructured mesh
that follows the manifold. The vertices of each cell are iteratively
adjusted to be close to the manifold under a threshold of tolerance. An
example is Brodzik’s algorithm [27], which is valid for any k > 1 and
n > k + 2. These methods are often sensitive to the step size and other
tolerance parameters used. Furthermore, for closed manifolds these
methods require additional computations to correctly handle regions
where two portions of the approximation meet. For this reason, we
focus on piecewise-linear methods that operate on partitioned domains.

The most efficient algorithms for high dimensions are continuation
methods [1,26], which process only the partition cells of the domain
that intersect the manifold. Starting from an initial partition cell, these
methods traverse to neighboring cells along the manifold in an advanc-
ing front fashion. In this sense, state-of-the-art methods for general
n > k > 1 include the tracing algorithm by Boissonnat et al. [28],
which leverages the so-called permutahedral representation to facilitate
the traversal to neighboring partition cells of the domain, and the
Generalized Combinatorial Continuation Hypercubes by Castelo et al. [29],
which uses combinatorial techniques with binary labels to assist in
the decomposition of the domain into n-dimensional hypercubes. Both
methods are built upon the concepts of a group of triangulations
usually attributed to Coxeter [30], Freudenthal [31], and Kuhn [32],
which we refer to as CFK triangulation. It is a highly regular simplicial
decomposition of the domain with a convenient set of properties.

In this paper, we introduce a new algorithm that combines the
binary labeling technique from Castelo et al. [29,33] with the general
approach from Boissonnat et al. [28]. This results in a continuation
method with reduced computational cost, that is both faster and more
memory efficient. The method generates an abstract cell complex rep-
resentation of the manifold (see Section 2.4) and hence geometrical
realizations of the cells are not produced. As a result, the constructed
cells are not guaranteed to be homeomorphic to closed balls and their
triangulations may contain self-intersections.

The rest of the paper is organized as follows: Section 2 provides
a review of the necessary background and literature, detailing the
concepts of implicitly defined manifolds and relevant triangulation
methods. Section 3 introduces the Fast Continuation Hypercubes (FCH)
algorithm, including implementation details. Section 4 analyzes the
computational complexity of the FCH algorithm compared to existing
algorithms. Section 5 presents experimental results, highlighting the
performance improvements achieved by the FCH algorithm. Finally,
Section 6 concludes the paper with a summary of our findings and
possible directions for future research.

2. Background and literature review

In this section we present some definitions and background mate-
rial, including the definitions of an implicitly defined manifold and of the
types of cells used in this paper. For more details on these definitions
and related concepts, see [26,34,35].

Definition 1. Consider a C! function F : R” — R¥ with n > k. A point
x € R" is called a regular point of F if rank(DF(x)) = k. If x is not a
regular point of F, it is called a critical point of F. A point ¢ € R is a
regular value of F if x is a regular point for all x € F~!(¢). If ¢ is not a
regular value, it is called a singular value of F.

Definition 2. A set M C R” is called an implicitly defined (n — k)-
dimensional manifold if there exists a C! function F:R" — R* and a
regular value ¢ of F such that

M=F )= {xeR"| F(x) =c}.

Without any loss of generality we can assume that

M=F10)={x eR"| F(x) =0}.
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Definition 3. The points v,,...,v, € R” are said to be affinely
independent if the vectors v, — vy, ..., v, — v, are linearly independent.

Definition 4. A simplex of dimension k, or simply a k-simplex, generated
by the affinely independent points

Ugs -5 € R"

is the set of points
k k
v= Auv, with 4, >0and Y 4 =1¢,

i=0 i=0,
and is denoted by ¢ = [vy, ..., v ]. A 0-simplex is also referred to as

a vertex and a 1-simplex as an edge.

c=K vER"

A k-simplex ¢ = [vg,...,v;] is the convex hull of the vertices
v, .., Uy in R".

Definition 5. Let ¢ = [vy,...,v,] and 7 = [u, ...,u,,] be simplices of
dimensions k and m, respectively. The simplex z is a face of ¢ if m < k
and {ug, ..., u,} C {vg, ..., v, }. If 7 is a face of 6 we say that ¢ is a coface
of .

Definition 6. A hypercube in R" is a set of the form

n
1=[]rcr,
i=1

where I, = [a;,b;] with a; < b;. When a; = b; we denote I; = {q;}.
The dimension of I is dim(I) = #{i | I, = [a;,b;] with a; < b;}, that
is, the dimension of I is the number non-trivial intervals defining 1.
A hypercube of dimension k is also called a k-dimensional hypercube or
simply a k-hypercube. A 0-hypercube is also referred to as a vertex and
a 1-hypercube as an edge.

Note that a hypercube is aligned with the axes of its domain.

Definition 7. Let I = []'_, I; and J = []I_, J; be hypercubes in R".
We say that J is a face of I if dim(J) < dim(/) and for i = 1,...,n either
J;=1I,0orI;=[a;b]and J; € {{q;},{b;}}. A face of dimension  is also
referred to as a k-face of the hypercube I. If J is a face of I we say that
I is a coface of J.

2.1. The CFK triangulation

The CFK triangulation [30-32] is used to decompose the unit hyper-
cube into a highly regular simplicial complex and is defined as follows.

Consider the canonical basis of R” given by
e; =(1,0,...,0), e, =(0,1,0,...,0),..., ¢, =(0,0,...,0,1),

that is, the ith entry of ¢; is 1 and all the other entries are 0. Given
a bijection (permutation) «: {1,2,...,n} — {1,2,...,n} define

vo(a) =0, )
i
vi(a) :=vy(a) + Zea(/‘)’ fori=1,...,n.
j=1
The points vy(a),...,v,(a) € R" are vertices of the unit n-hypercube

I = I]}_, [0,1] and all the vertices of I can be obtained this way for
some choice of permutation a. These points define an n-simplex

o(a) := [vy(a), vy (@), ..., v, ()] (2
inscribed in the hypercube I. Let A be the set of all permutations
a:{l,2,....n} = {1,2,...,n}.

The CFK triangulation of I consists of all n-simplices generated by all
permutations in A, that is, the CFK triangulation of I is given by the
set of simplices

T :={c(a) | a € A}.
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€1

(1,1) (0,1)

(1,0) (0,0)
o(a1) =[(0,0), (1,0), (1,1)] o(a2) =[(0,0), (0,1), (1,1)]

Fig. 1. CFK triangulation of the unit square decomposing it into 2 triangles corre-
sponding to the two permutations a; and a, of {1,2}.

(0,1,1)

(0.0.1) ’

(1,1,1)

(0,0,0) to

Fig. 2. CFK triangulation of the unit cube decomposing it into 6 tetrahedra.
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Fig. 3. CFK triangulations of a 2D domain. On the left: the K, triangulation. On the
right: the J, triangulation.

The CFK triangulation 7 decomposes the unit hypercube I into n!
distinct simplices of dimension n. Figs. 1 and 2 illustrate this decompo-
sition in dimensions 2 and 3, respectively.

The unit n-hypercube can be mapped to a general n-hypercube I
by scaling and translation. Hence the CFK triangulation of the unit »-
hypercube can be used to define the CFK triangulation of I; via this
mapping. Given a rectangular domain 2 c R”, a triangulation of Q
can be obtained by first partitioning £ into a grid of n-hypercubes,
and then constructing a CFK triangulation of each of these partitions
individually. To ensure consistency in the decomposition of shared
faces between adjacent n-hypercubes, two main types of triangulations
are considered, following the same nomenclature as Todd [36]:

+ K, triangulation: constructed using translations of the unit »-
hypercube;

+ J, triangulation: constructed using reflections of the unit n-
hypercube.

These triangulations are illustrated in Fig. 3.

When working with CFK triangulations, it is not necessary to explic-
itly construct each individual n-simplex that subdivides the domain. By
assuming the domain is implicitly partitioned by a CFK triangulation,
the specific n-hypercube and n-simplex which contain a given point can
be identified via arithmetic expressions. This allows for the construction
of the simplices only when they are needed.
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2.2. Vertices of the approximation

To create an approximation of the manifold M implicitly defined by
F(x) = 0, where F: R" — R, the first step is to create the vertices of
the approximation, and then connect these vertices to form the edges,
faces, and higher-dimensional cells. In the case of piecewise linear
approximations employing a triangulation, the vertices are created
by detecting the intersections of M with the k-simplices generated
by the triangulation. Thus, the main role of the triangulation is to
decompose the domain into these k-simplices, enabling the detection
of intersections (for further details, see [26,28]).

One of the simplest methods is to use a triangulation (such as a K
triangulation) to decompose the domain into n-simplices and then for
each n-simplex check all of its k-faces for intersections with M. Let = be
a k-simplex = = [ug, u;, ... , y;]. The intersection of = with M can be
approximated by solving the following linear system for the barycentric
coordinates A of the approximated intersection point v,,:

Ao
1 1 1 A 1
= . 3
[F(uo) F(u) ... F(uk)] : [O] ®
Ay

The approximated intersection point v,,, is then given by

k
Ups = Z A 4
i=0

If 4, > 0fori = 0,...,k, then Dy is in the interior of z. To
ensure that the coefficient matrix in (3) is non-singular, a small random
perturbation is typically applied to the coordinates of the vertices of z,
similar to the approach used in [29,33].

Although this algorithm is straightforward, it is computationally
inefficient because it evaluates every k-face of every n-simplex, and
hence it usually evaluates many k-faces that do not intersect M, leading
to unnecessary computations. The subsequent sections present more
advanced algorithms designed to address this inefficiency and reduce
the overall computational cost.

2.3. Permutahedron-based tracing algorithm

An efficient manifold tracing algorithm based on a K, triangulation
of the domain is presented by Boissonnat et al. [28]. We refer to this
algorithm as the Permutahedron-based Tracing Algorithm (PTA). As-
suming that the domain is implicitly triangulated by a K, triangulation
and that a seed k-simplex (a face) that intersects the manifold is pro-
vided, the key idea of the algorithm is to traverse the domain through
only the (k + 1)-simplices (the cofaces) that intersect the manifold and
are connected to the starting k-simplex. A major component of the
algorithm is the permutahedral representation of a simplex, a proposed
data structure that enables efficient generation of all faces and cofaces
of a simplex of any dimension in the triangulation of the domain. See
Appendix A.1 for a step-by-step example of the PTA algorithm.

Introducing the vector e,,; = — Y| ¢;, from (1) and (2) we obtain

e, = vg(a) — v,(a).

Consequently, the sequence of vectors
(ea1)s €a)r ++ > Ca(my €n+1)

provides a cyclic representation of the n-simplex o(a) [37]:
vi(@) = v;_1 (@) + gy fori=1,...,n,
and

v,(a) + e, = vy(@).
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(-1.1) (0.1)
2 —_—
€1 (1,1
€3 o = (61762763)
€9 €9 €9
63e e3o 9 = ((327@1753)
(=1,0) T “a O = (c2.e3,01)
14 14
—_—
o T M @-(waa)
es @es e = (63,81762)
€9 €9 €9
639 O = (c1,635,¢2)

-L-np 24

Fig. 4. The permutations a* of {1,2,3} in a 2D domain generate all 2-simplices
containing the vertex 0.

Exploiting this cyclical nature, any n-simplex in the K, triangulation
containing the vertex 0 can be generated using a permutation

o {1,2,....n,n+ 1} > {1,2,....,n,n+ 1}

as follows. Let

vo(@®) =0,

v(@*) 1= v (@) +egry, fori=1,....n,
and define

o) 1= [vp(a™), vy (@), ..., v,(a@")].

Notice that v,(a*) + e,+(,41) = Vo) and hence ey, is not needed
to represent the simplex o(a*). However e, is useful to efficiently
generate the faces and cofaces of a simplex and so it is included in the
representation of ¢(a*). We represent the simplex o(a*) by the sequence
Of Vectors (e,+ (1), €q#(2)s - -+ » €a*(n+1)) Used to generate it. Considering all
permutations of {1,2,...,n,n+1}, there are (n+1)! simplices containing
0. Fig. 4 illustrates this scenario for a 2D domain. Although the vector
sequence above is based on the unit vectors of the canonical basis, it can
be mapped to any n-simplex in a K, triangulation through translation
and scaling. Furthermore, by selecting an adequate vector sequence,
the reference vertex 0 can be mapped to any of the vertices of any of
these n-simplices.

An (n — 1)-face 7 of the n-simplex o(a*) can be obtained by removing
a vertex v;(a*):

7= [vg(@”), ..., 05 1 (@), vy (@), ..., 0, (a")].

Given that v;,(¢*) — v;_;(@*) = eys(;) + €4=(j41)> the corresponding
cyclic vector sequence for r becomes

(eam), s Cor(j—1)r €ar(j) T Car(j+1)r Car(j42)0 o+ ,ea*(nﬂ)) .

Thus, the faces of o can be derived by manipulating the vector
sequence rather than the vertices: combining two consecutive vectors
eq+(jy and e,«;4qy into a single sum in the sequence is equivalent
to removing the vertex v () from o. Conversely, the n-dimensional
cofaces of r can be obtained by the inverse operation — splitting the
combined vector sum into two consecutive vectors.

Using these ideas, Boissonnat et al. [28] demonstrate that all faces
and cofaces of a simplex can be generated by manipulating the vector
sequence defining the simplex (see [28] for the details on these opera-
tions). They show that an m-simplex has m+ 1 faces of dimension m—1,
and at most 2""*! — 2 cofaces of dimension m + 1. To enable a global
representation of a simplex within the grid, the following definition is
introduced.
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Definition 8. Let 7 = [u,...,u,] be an m-face of & where the relative
order of the vertices from ¢ is maintained, and let p € Z" be the vertex
in the grid that u, is mapped to. The permutahedral representation of ¢
is given by
T=(p,w),
where w = (wo, Wy, ..., wm) is the cyclic sequence of vectors

w; =u,—u, fori=0,....,m—1;

m—1
w0 =ty —ty =~ 3w,
i=0

If p corresponds to the minimal point of 7 in lexicographical order, this
notation referred to as the canonical permutahedral representation. In this
case the vertices uy, ... ,u,, are monotonically increasing with respect to
the lexicographical order.

The permutahedral representation defined above implies that
w; = {sum (E) I E c {el,ez, ,en,en+,}} ,fori=0,...,m

E,.nEj=(2), for i # j;

m
UE,- = {el,ez,...,en,en+l}.
harl

In the case of the canonical permutahedral representation we have that
e, €EE,.

The canonical permutahedral representation of any simplex gen-
erated by the K, triangulation can be obtained by first sorting its
vertices in ascending lexicographical order, and then calculating the
corresponding values of p and w. This representation uniquely identifies
the simplex, making it suitable for utilization in sets of unique elements
(such as hash tables), while also allowing for the operations to create
its faces and cofaces.

The pseudocode of the PTA algorithm is presented in Algorithm
1. In this tracing algorithm, starting from a seed k-simplex z,,,, that
intersects the manifold, the permutahedral representation of z,,; is
manipulated to generate all its (k + 1)-dimensional cofaces o. For each
o, all k-dimensional faces =’ are subsequently generated and checked
for intersection with the manifold. To avoid redundant processing of
the same k-simplex, a record of all previously processed r is maintained.
The algorithm begins by initializing the empty set of k-simplices that
have already been processed (Line 1) and the queue of k-simplices that
are yet to be processed (Line 2). At each iteration, a k-simplex 7 is
dequeued from Q for processing (Line 4). The algorithm then iterates
through all k-simplices adjacent to z in the K, triangulation (Lines
5-6). For each adjacent k-simplex 7/, it checks whether a vertex of the
approximation is present in 7’ (Line 8). If so, the coordinates of this
approximation vertex are determined (Line 10), and 7’ is enqueued to
be processed in the next iterations (Line 13).

2.4. Generalized combinatorial continuation hypercubes

The Combinatorial Marching Hypercubes [33] is designed for ap-
proximating manifolds defined by functions of the form F:R" — R,
employing combinatorial techniques to improve memory efficiency.
This approach was generalized to handle functions of the form F : R"” —
Rk with n > k, leading to the development of the Generalized Combina-
torial Marching Hypercubes (GCMH) and its continuation variant, the
Generalized Combinatorial Continuation Hypercubes (GCCH) [29].

These algorithms utilize a simplicial decomposition of the domain
via a K, triangulation, where each n-hypercube is processed inde-
pendently. For each n-hypercube, the method avoids processing all
simplices in the n-hypercube by analyzing only those contained in its
k-faces. See Appendix A.2 for a step-by-step example of the GCCH
algorithm.
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Algorithm 1: Permutahedron-based Tracing Algorithm (PTA).

Input : A function F:R" — R¥ defining the manifold M = F~'(0).
A seed k-simplex 7,4 for the continuation algorithm.
Output: A list of vertices of the approximation and the respective
k-simplices.
1S<{} // initialize set
2 Q « [Tyeedls // initialize queue
3 while Q is not empty do
4 T < remove (Q);
foreach (k + 1)-coface ¢ of © do

5

6 foreach k-face v’ of ¢ do

7 if 7/ ¢ S then

8 A « solve system for 7’/; // Eq. (3)
9 if min (1) > 0 then

10 Ung =T 4 // Eq. (&)
11 Save {7, v,,};

12 Insert 7’ in S;

13 Insert 7’ in Q;

As mentioned before, an important aspect of these algorithms is
that the hypercube and the simplicial decomposition of the domain are
combinatorial in nature and do not need to be explicitly constructed.
Each face of the hypercube and its simplicial decomposition can be
created independently and as needed. A binary labeling system is
employed in order to efficiently obtain the adjacency and membership
relationships among the faces of the n-hypercube.

Definition 9. Let I = [];_, I; be an m-face of the unit n-hypercube in
R". This implies that either I, = [0,1] or I; € {{0},{1}}. The label of
the face I is the integer # with 2» binary digits defined as

2n-1

£i= Y d2 = dy_ dysy ... do),,
j=0

where for i = 1,...,n the digit pairs (d;_, d;_,,,) are given by

0, 0), ifI1,=10,1]
(dic1s disign) =901, 0), if I, = {0}
o, 1, ifr,={1}

Definition 10. Let I =[];_, I; be a m-face of the unit n-hypercube in
R". If I; € {{0}, {1}}, we say that the coordinate i of the face is fixed.
If I; = [0, 1], we say that the coordinate i is free.

Fig. 5 illustrates the labeling of all 2-faces of the unit cube in 3D.
In this binary labeling system, each set (nonzero) bit of # corresponds
to a coordinate of the face that is fixed at either 0 or 1. Consequently,
all possible k-faces of the unit n-hypercube can be generated by manip-
ulating ¢ using combinatorial techniques. Since a coordinate cannot
be fixed at both 0 and 1 simultaneously, there will be exactly (n — m)
set bits in an m-face. Additionally, because a general n-hypercube is
combinatorially equivalent to the unit n-hypercube, this labeling system
can be used to manipulate the faces of a general n-hypercube.

Consider a K| triangulation of the domain and let = be a k-simplex in
a k-face of an n-hypercube decomposing the domain. The coordinates of
the vertices of = corresponding to the fixed coordinates of the k-face are
constant. Hence only the vectors of the canonical basis corresponding to
the free coordinates of the k-face are needed to generate all the vertices
of 7. Furthermore, the initial vertex of all k-simplices in this k-face is
determined by the n most significant bits of the label # of the k-face.
More precisely, let I be a k-face of the unit n-hypercube and let # be the
label of this k-face I. The k-simplices z of I are generated as follows.
Let [dy,_; dyys - do]2 be the binary representation of # and notice
that the set of free coordinates of I is given by

I, ={ildiy +di_14,=0}. 5
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T =1[0.1]
L=[01 J2=100,1]
[2 [071] (]3: {1}
I [0’ 1] £ = 100000 Ji = [[]7 1]
£ = 000000, o Jy = {1}
Js=1[0,1]
Ji={0} '
o] ¢ = 010000,
Ty =[0,1]
£ = 000001, 0
e_r;T
Ji={1}
E’ ih s-p
Ty = [0,1]
Ji=1[0,1] £ = 001000
T = {0} O
Js = [0,1]
= 0000105 S=10,1]
T = [0,1]
Jz = {0}
¢ = 000100,

Fig. 5. Decomposition of the unit 3-hypercube into all of its 2-faces and their
corresponding labels.

2-face label: £ = 0010004
L First vertex: 001y = vo = (1,0,0)
L Vectors of the canonical basis:

Iy = {2,3} = {ea, e3}

T(an) = [(Lo.()), (1,1,0), (LLI)}
2-simplices: <
[(1.0.0). (1,0.1), (141.1)}

T(us)

Fig. 6. Triangulating a 2-face of the unit 3-hypercube based on its label.

Let
ay: {1,2,...,k} > 1,
be a bijection and define

vo(ap) = (dys dygys o s doyy)

and
i
viay) = vg(ag) + Y eq s fori=1,.. k.
j=1

The points vg(ay), ..., vi(a,) are vertices of I and define the k-simplex
t(ay) = [vglay), v1(@p), ..., v(ay)]

in the face I. The set of all k-simplices in the face I is obtained by
considering all bijections a, : {1,2,...,k} - I,. The k-simplices in a
k-face of a general n-hypercube can be obtained from the k-simplices
of the unit n-hypercube by scaling and translation.

Fig. 6 provides an example of applying the CFK triangulation to a
2-face of a hypercube, which is analogous to the decomposition in Fig.
1. The GCMH algorithm approximates the manifold by processing all
k-simplices 7 of all k-faces of each n-hypercube and creating vertices of
the approximation within those r which intersect the manifold. Once
they are created, the vertices are connected based on adjacency rules,
forming the edges of the approximation (for more details, see [29,33]).
In the continuation variant GCCH, the algorithm initiates with a seed
n-hypercube and enqueues, for subsequent processing, the neighboring
n-hypercubes that share faces intersecting the manifold.
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iy iy
A | LT

A B

Fig. 7. (A) Combinatorial cell represented by a list of vertices (blue) and edges
(red). (B) The combinatorial cell in (A) is decomposed into convex affine cells (green
triangles).

The pseudocode for the GCCH algorithm is presented in Algorithm
2. To avoid redundancy, a record of the indices of the n-hypercubes that
have been processed is maintained. The algorithm begins by initializing
the empty set of n-hypercubes that have already been processed (Line
1) and the queue of n-hypercubes to be processed (Line 2). At each
iteration, an n-hypercube A is dequeued from Q for processing (Line 4).
The algorithm then initializes a list that will store the approximation
vertices found in ~ (Line 7), the corresponding list of k-face labels
for each vertex (Line 8), and a binary label marking all neighbors of
h that share approximation vertices (Line 9). It proceeds by iterating
through all k-simplices on the k-faces of 4 in the K| triangulation (Lines
10-11). For each k-simplex z, the algorithm checks for the presence
of an approximation vertex (Line 12) and, if found, determines its
coordinates (Line 14) and sets the neighboring n-hypercubes that share
face # (Line 17). Finally, the algorithm inserts these neighbors into Q
for subsequent processing (Line 18).

The same adjacency rules used within an n-hypercube to create
the edges of the approximation are also applied to connect edges to
form faces, connect faces to form volumes, and to construct higher-
dimensional cells up to dimension n — k. This set of rules is referred
to as the Combinatorial Skeleton [29,33], which can be constructed in
a subsequent step, after the vertices and edges of the approximation
have been generated.

While the cells generated by the Combinatorial Skeleton do not
form a cellular complex in the geometric sense (they represent distorted
polytopes — see Fig. 7), they do constitute an abstract cell complex (a
cellular complex in the topological sense). A 2D cell has a boundary
composed of 1D cells (edges); a 3D cell has a boundary composed of
2D cells; and this pattern continues up to the final polytope, an (n — k)-
dimensional cell with a boundary composed of (n — k — 1)-dimensional
cells. As the dimension increases, the structure gets more complex and
there is no guarantee that each m-dimensional cell is topologically
equivalent (homeomorphic) to an m-dimensional closed ball. These
distorted polytopes do not intersect each other, as each polytope is
contained within its own n-hypercube, and the shared faces between
adjacent polytopes are coincident (identical, without gaps). However,
a simplicial decomposition of a polytope may contain self-intersections.
Consequently, a simplicial decomposition of the generated approxi-
mation will not necessarily constitute a manifold. For visualization
purposes within a rendering pipeline, it is sufficient to decompose only
the 2D cells into triangles using a triangle fan or similar approach, but
this does not guarantee the absence of intersections between triangles.

3. Fast continuation hypercubes algorithm

In our proposed algorithm, called Fast Continuation Hypercubes
(FCH), the goal is to mix the binary labeling of the GCCH with the
concepts of the PTA algorithm. Starting from an initial k-face from an
n-hypercube, the traversal proceeds through the grid of the domain via
the (k + 1)-dimensional cofaces, while adhering to the manifold. The
cofaces are decomposed into (k+1)-simplices using the K, triangulation,
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Algorithm 2: Generalized Combinatorial Continuation Hyper-
cubes (GCCH).

Input : A function F:R" — R¥ defining the manifold M = F~1(0).
A seed n-hypercube hgq for the continuation algorithm.
Output: A list of vertices of the approximation and the respective
face labels for each n-hypercube.
1 H<{} // initialize set
2 Q « [Ageeqls // initialize queue
3 while Q is not empty do

4 h < remove (Q);

5 if » ¢ H then

6 Insert h in H;

7 Vel] // initialize list

8 L[] // initialize list

9 £, < 0; // initialize binary label

10 foreach label ¢ of a k-face of h do

1 foreach k-simplex = of ¢ do

12 A < solve system for 7; // Eq. (3)
13 if min (1) > 0 then

14 Upp < T4 // Eq. (4)
15 Insert v, in V;

16 Insert ¢ in L;

17 ¢, < ¢, OR ¢; // set neighbors
18 Insert in Q the neighbors indicated by ¢,;

19 | Save {h, L, V}

Line 17: OR is the bitwise OR operator.

and only those simplices that intersect the manifold are evaluated.
To facilitate this process, a global notation for the binary labels of
the faces is established, uniquely identifying each face in the domain,
upon which the operations for generating cofaces are conducted. See
Appendix A.3 for a step-by-step example of the FCH algorithm.

3.1. Canonical face notation

The face label from Definition 9 provides a local representation of
a face, depending on the specific n-hypercube under consideration. To
globally identify a face, we introduce the following definition.

Definition 11. Let I be an n-hypercube on a grid in R” with vertices
on the integer lattice Z". Let p € Z" be the vertex on the grid that
corresponds to the minimal vertex of I in lexicographical order. Let #
be the label of an m-face J of I. The global face representation of the
face J is defined as

J :=(,7).

If p is a point contained in J, this representation is the canonical face
representation.

The global face representation is the hypercube equivalent of the
permutahedral representation. Note that, in the canonical face repre-
sentation, the point p is also the minimal point of J in lexicographical
order, and the n most significant bits of # are unset. Since a face is
shared among neighboring n-hypercubes, it can be expressed from the
perspective of each n-hypercube that contains it. In the example of Fig.
8, we have:

(5,1) , 0011, = (4,1),0110, = (5,0), 1001, = (4,0), 1100,.
———

2-hypercube face
position label

—_———

canonical face
representation

The fact that the n most significant bits of the label are always 0 in
the canonical face representation simplifies the generation of cofaces
and the calculation of relationships between faces and cofaces, as
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(6,2)

(6,1)

(4,0) [(5,0) |[(6,0)

Fig. 8. Example of a 0-face (the vertex (5, 1)) shared among four 2-hypercubes in the
2D domain.

discussed in the following sections. For this reason, the canonical face
representation is always used to represent hypercubes in our algorithm.

3.2. Simplex face

In a way akin to the PTA algorithm, which traverses the (k + 1)-
simplices of the domain, our algorithm operates by traversing the (k +
1)-hypercubes of the domain. Initially, a seed k-simplex 7 that intersects
the manifold is provided. The algorithm then determines the hypercube
k-face f containing r. Starting from f, the method iteratively moves
to all (k + 1)-cofaces of f, systematically tracing the manifold in the
process. Therefore, the first step is to determine f from z.

As in the PTA algorithm, an initial seed k-simplex r must be pro-
vided. However the FCH algorithm has the additional requirement that
the = must be contained in a hypercube k-face. One way to determine
7 is to run the GCMH algorithm until the first intersecting k-simplex is
encountered. This process can be guided, for example, by prioritizing k-
simplices whose vertices are closer to F(x) = 0. If the manifold contains
multiple disconnected components, it is necessary to find one seed
simplex in each component, and execute the algorithm for each com-
ponent individually. In the canonical permutahedral representation, =
is represented by:

= (p) . (wp, wy, ..., w) .
N—— N———
reference vector

vertex sequence

canonical permutahedral representation

The fact that —w), is the vector that translates the minimal point of
7 (which is p.) into the maximal point of = in lexicographical order
can be utilized to identify the coordinates of f that are fixed. The
fixed coordinates are represented by the bits of an n-digit bit mask
FixedCoord, defined as follows:
n—1
z(l+wk4ej+1)2/ =>
j=0
{O, ifw- ey #0

1, otherwise.

FixedCoord =

=> FixedCoordj

Since the vertices of = are monotonically increasing from p,, making
p, the minimal point of both r and f, it follows that p, is also
the reference point for the n-hypercube containing f, and each fixed
coordinate i of f takes the value {p,i}. Consequently, f is given in
terms of its canonical face representation H ., by:

J = Hpgeelr) = (p;) . 00...0 FixedCoord .
—— ——
n most n least
reference significant significant
n-hypercube bits bits
N—_— —
2n bits

Because f represents a k-face, FixedCoord must contain exactly
(n — k) set bits. Fig. 9 provides an example for the case when n = 3
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(3,4,4)
T=(3,3,3), (€2, €3, €1 + €4
(3,3,4) (3,3,3), (€2, €3, e1+eq)
Te3 —wy = — (€1 + ¢4)
ate - =exte3
z. A (3,4,3) =011
- €2 FizedCoord = 001,
L. (3.3.3)
L2
T f = Hpaee (1) = (3,3,3), 000001,
1

Fig. 9. Determining the hypercube 2-face that contains a 2-simplex in the 3D domain.

(4,4,3)

(3,2,3)

T3 (3a3*2) b

(4,3,2)

T2

T

Fig. 10. Example of an 1-face (f) in the 3D domain, and all of its cofaces in the
Cartesian grid.

and k = 2, showing how f is obtained from 7. Having determined the
canonical face representation of the hypercube k-face f that contains
the seed k-simplex 7, the next step is to generate the (k + 1)-cofaces of

f.
3.3. Generating the cofaces from a k-face

Let J be an m-hypercube where the coordinate i is fixed. Then
J; = {a;}, with a; € R. Let T be a (m+ I)-coface of J where the
coordinate i is free. Then there are only two possibilities for I: one
where I, = [b;,q;], a; > b;, and another where I, = [q;,b;], b; > a;.
This implies that if the ith coordinate of a k-face f is fixed, then f
represents the intersection of two distinct (k + 1)-cofaces along the x;
axis. In Fig. 10, the third coordinate of the face f is fixed, which means
that f is the intersection of the cofaces a and b. Similarly, since the
second coordinate of f is also fixed, f is the intersection of the cofaces
¢ and d. These intersections can be expressed as Cartesian products as

a=1[3,4]x {3} x[3,4], b=[3,4]1x {3} x[2,3],

c=[3,4] x[3,4] x {3}, d=1[3,4] x[2,3] x {3},

anb=cnd=[3,41x {3} x (3} = f.

Since each set bit in the label of f corresponds to a fixed coordinate,
we can generate all the cofaces of f by unsetting each bit individually.
For each unset bit j (where 0 < j < n) there will be two cofaces: one
in the same n-hypercube as f, and another in the previous n-hypercube
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along the direction of the x,, axis. These cofaces are denoted by ¢, ,
J+1 A X1

and ¢ fa, respectively:

i ] = (p,) , 00...0 (FixedCoord XOR 2j),
i+
- = (pr —¢j41) » 00...0 (FixedCoord XOR 27,
J+ S—
n most N
reference significant n least
n-hypercube bits mgr;)lﬂcant
its

where XOR is the bitwise XOR operator.
As a result, the total number of (k + 1)-cofaces generated from any
given k-face is 2 (n — k). The cofaces of f in Fig. 10 are

/= (3,3.3),000110,,
@ = ¢y = (3,3,3),000010,,
b= ¢ = (3,3,2),000010;,
¢ = ¢y = (3,3,3),000100;,
d = ¢ = (523),000100,

After identifying each (k+ 1)-coface ¢, of the k-face f, we can apply
a manifold tracing algorithm inside each of these (k + 1)-hypercubes, as
described in the next section.

3.4. Tracing the manifold approximation edge in a coface

Tracing the manifold inside a single hypercube of dimension & + 1
means that we are essentially tracing the isocurve M* of an implicit
function

F* - Rk+l - Rk,

where M* is the intersection of the original manifold M and this
(k +1)-hypercube. We can exploit this fact by using a tracing algorithm
specific to curves embedded in high dimensions. More specifically, our
implementation is based on the algorithm described by Allgower and
Georg [26].

This algorithm works by traversing the (k + 1)-simplices inside the
(k + 1)-hypercube while following M*. It starts at the k-simplex = and
continues until M* leaves the (k + 1)-hypercube through another -
simplex. We must first identify the starting (k + 1)-simplex o, which
is the (k + 1)-simplex containing z inside the (k + 1)-hypercube. This
means that ¢ contains all the vertices of r plus one additional vertex v,

which we have to determine.

Let f be a hypercube k-face and ¢, a (k + 1)-coface of f. Let #, and
l. , be the labels of f and c,, respectively. With respect to Eq. (5), if
¢, was created by unfixing the coordinate i of f, then i is a value in
Ifc/ that is not in 7, "~ Since o must keep the same vertices of = and

follow the rules of the CFK triangulation, the only possible values for
the additional vertex v that needs to be determined are either 7, — e;
or 7, +¢; (which also reflects the fact that there are two cofaces for
each fixed coordinate). In the first case, v becomes the minimal point
of o, which is emphasized by a change of the reference n-hypercube.
In the canonical permutahedral representation, if P, is the reference

n-hypercube of c,, then ¢ is given by

Pe; ) s (wo w0y, o wie—rys e (wi =€) ) Sif pe = prs
_ ( f) ( S (6)

Tes .
(l)cf)v("wwovwlv o Wity (wy =€) if Pey =Pr =i

Fig. 11 illustrates the ¢ corresponding to each ¢, in Fig. 10:

t=(3,3,3), (e, ey tes+ey);

o'cfx3+ =(3,3,3), (el, e3, e +e4) ;

O, - = 3,3,2), (e3, ey, e+ e4) ;
3
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T2

T

Fig. 11. Highlight of the (k + 1)-simplices o calculated for each coface in Fig. 10.

O'C/X; =(3,3,3), (e,, ey, e3 + e4) H

O-c/x, =(3,2,3), (ezs ey, e3 +e4) .
2

To perform the traversal inside the hypercube we use the following
result, known as the Door-in/Door-out principle.

Proposition 1. A (k + 1)-simplex has exactly 0 or 2 k-faces that intersect
M.

The proof is provided by Allgower and Georg [26]. If a (k+ 1)-
simplex ¢ has two k-faces r and 7’ intersecting the manifold, we say
that the manifold enters ¢ through r and leaves it through 7’. In our
case, the input k-simplex r is known, and Eq. (6) gives o, so now
we want to compute the output k-simplex /. To do this, we use a
technique equivalent to one iteration of Bittner’s Generalized Regula
Falsi algorithm [38], which was used in a similar way in [20].

Assuming that [ug, u), ... , u,] are the vertices of z, we first com-
pute 4 using Eq. (3). Note that 4, > 0, for i = 0,...,k, because 7 is a
k-simplex that intersects M. The vertex v, which is the vertex in ¢ that
is not in 7, is used in the following system to obtain u:

Ho

1 1 1 m|_[1 ;
[F(uo) F(u) ... F(uk)] : [F(v)] ' .
Hic

Knowing A and p, we find the index i where:

Ai A
—’=min{—l, y[>0}. (8)
Hi Hi

The output k-simplex 7’ is finally obtained by replacing the vertex
u; with v in 7. In other words,

!
T = ["07 cee s Uil U5 Uppgs e s Up s ”k]-

The value A’ is computed by applying Eq. (3) to 7/, and the vertices
of the approximation are created by applying Eq. (4) to the pairs
(r,4) and (¢/,1'). Connecting these vertices gives us the edge of the
approximation that is inside o, thus tracing a manifold edge inside a
single (k + 1)-simplex.

When the manifold leaves ¢ through 7/, it enters another (k + 1)-
simplex ¢’ through 7’. To find ¢/, we need to determine the additional
vertex v’ needed to generate ¢’ from 7/, that is, ¢’ is generated by

!
{uo, e Wiy Uy Uiy e s Uy, uk}U{U }.
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Input:
7 = [, 1] Door-in/Door-out on o
IR to find its output 1-simplex.
o = [vo,v1,v3], N o
U ew T = [vg, v3).
Output: Connect endpoints.

Save edge:

{ Umfs U:n,f }

7' = [vg, va],

o' = [vg, va,v3].
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Compute manifold vertex within 7.

Pivot o on vy.

New o = [vg, v2, v3].

Door-in/Door-out
on o to find its
output 1-simplex.

New 7 = [vg, v2].

Compute manifold vertex within 7.

Pivoting o on vz leaves the 2-hypercube:
ending the traversal.

Fig. 12. Steps to trace an edge {vmf, o /} in a 2-dimensional hypercube.

Using the CFK triangulation, ¢/ can be easily obtained by pivoting
o on u;. Let [dy,...,i;,,] be the vertices of o sorted in ascending
lexicographical order, and let (wy, ..., w; ) be the vector sequence given
by Definition 8, which generates o starting from . Pivoting ¢ on vertex
i;, with 1 < j < k, means swapping the positions of vectors w;_; and
w; in the vector sequence, effectively replacing i; while keeping all the
other vertices.

By repeating this combination of the Door-in/Door-out principle
plus pivoting on the subsequent (k + 1)-simplices, we can traverse the
entire (k + 1)-hypercube, crossing only the k-simplices that intersect the
manifold, until the manifold exits ¢,. A step-by-step example of this
tracing algorithm is provided in Fig. 12, showing how an edge of the
approximation is traced inside a 2-hypercube.

If the index found by Eq. (8) corresponds to pivoting on the first or
the last vertex of the (k + 1)-hypercube (minimal or maximal points in
lexicographical order), it means that the manifold has left the coface
and the traversal wants to move to a neighboring (k + 1)-hypercube, so
the traversal ends. Since we are only interested in the vertices inside the
k-faces of the n-hypercube, we only store the endpoints of the traversal:
if the manifold enters the (k + 1)-hypercube through {z,s} and leaves
it through {r’ o' }, the vertices are created in = and 7’ and connected
to form a single edge in the entire (k + 1)-hypercube, thus creating one
edge of the resulting approximation.

Once we have identified the k-simplex ¢/ from which M* leaves
the (n + 1)-hypercube, we can then restart the process on 7/, tracing
the manifold across all (k + 1)-hypercubes that contain 7’. By repeating
this procedure iteratively, the algorithm generates the approximation
of the entire manifold within the domain. The resulting approximation
consists of the same edges that are created by the GCCH algorithm.
Hence, the Combinatorial Skeleton (see Section 2.4) can also be used
to create the higher-dimensional cells of the approximation.

Observe that Egs. (3) and (7) can be rewritten to reduce the overall
cost as follows:

A

[F(uy) = Fup) Fu) - Fup)]| & |= [-Fuy)] )

A

Output simplices: 7" = [vg, va],
o = [vo, vz, va).
and
M
[Fu;) — Flup) F(uy) — F(up)] = [F(v) - F(up)] » 10)
Hi
with 4 =1 -4 — - — 4, and g = 1 — p; — --- — ;. Noting that the

same coefficient matrix is used in Egs. (9) and (10), both systems can
be solved at the same time. Typically, these systems are solved using
LU decomposition with partial pivoting, which presents an asymptotic
complexity of O (k?), though other methods could also be employed.

3.5. Memory storage

The Door-in/Door-out principle ensures that we can avoid creating
duplicate edges in the approximation. The reason is that only the two
(k + 1)-simplices ¢ and ¢’ (which represent the entry and exit locations
of a (k + 1)-hypercube) need to be added to a set of already traversed
(k + 1)-simplices to effectively prevent the respective (k + 1)-hypercube
from being processed more than once. Each time a new ¢ is about to
be traversed, this set is checked for redundancy.

To optimize memory usage, this approach is equivalent to storing
information about which cofaces of = have yet to be traversed. Instead
of storing each of the 2(n — k) cofaces of r separately, we can store
a single integer C for each z. The initial value of C is given by the
function C,:

C =C,(z) := (FixedCoord - 2") + FixedCoord.

Each set bit in C indicates a coface of r to be traversed. When the

algorithm traverses the coface Ocs 4 starting from z, the jth bit of C is

j+1

unset, indicating that this coface has already been traversed. Similarly,

when the coface O, _ is traversed, the (j + n)th bit of C is unset. Given
X

Jj+l1
that f = (p 1. ) represents the hypercube k-face that contains 7, and

cp=(pe fcf> represents its coface that contains ¢, we can update C
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by using a bit mask U as follows:

£y XOR £,

ifpf =P
U(f’cf)= ( ’

¢; XOR fc/)-Z”, otherwise

C=C XOR U(f,cy).

We use a dictionary that stores key-value pairs, where the keys are
the k-simplices = and the values are the corresponding integers C. In
the step where the cofaces of f are being generated, the algorithm
verifies the C value of = and only proceeds to the tracing step if the bit
corresponding to the coface has not yet been unset in C. After creating
an edge of the approximation, we have f and ¢, (which contain 7 and
0), and we calculate f’ and ¢/. (which contain 7’ and ¢’) and update
the C integers of both 7 and 7’ in the dictionary accordingly.

3.6. Boundary tracking

The process of traversing the grid while following the manifold is
similar to an advancing front algorithm. Hence it is not necessary to
store all cells already traversed within the domain; it is sufficient to
store only the boundary of the traversed region.

Based on the storage method described in the previous section,
when all cofaces originating from a simplex z are traversed, r is not
revisited because access to 7 is blocked by the neighboring simplices
7/ that are added to the dictionary. Therefore, when the integer C
associated with a simplex r reaches zero, r can be removed from the
dictionary, leading to further memory savings.

A double-ended queue is used to perform the traversal in a breadth-
first manner: the = to be processed is removed from the front of the
queue, while any 7’ resulting from traversing the cofaces are inserted
at the back. To ensure that the queue contains only unique elements,
the algorithm first checks if 7’ is already in the queue and inserts it
only if it is not.

For a manifold of dimension n — k, the boundary of the explored
region has dimension n — k — 1, so the memory usage is proportional to
this reduced dimension.

3.7. Algorithm pseudocode

Algorithm 3 presents the complete pseudocode of the FCH algo-
rithm. The algorithm begins by initializing the queue of k-simplices to
be processed (Line 1) and a dictionary that records the boundary of
(k+ 1)-simplices to be processed (Line 2). At each iteration, a k-simplex
7 is removed from the front of Q for processing (Line 4). The algorithm
identifies the k-hypercube f that contains = (Line 5) and computes A
for 7 (Line 6). It then determines the coordinates of the approximation
vertex in 7 (Line 7). Next, the algorithm iterates through all cofaces
¢y of f in the grid (Line 8) and, in each c,, identifies the (k + 1)-
simplex ¢ that contains r (Line 10). The manifold is traced inside ¢ 7
as discussed in Section 3.4 (Line 11). The algorithm then determines
the k-hypercube s’ that contains the output k-simplex 7’ (Line 12)
and identifies the (k 4+ 1)-coface of f’ that contains ¢’ (Line 13). The
dictionary is updated accordingly (Lines 14-19) and 7’ is enqueued to
be processed in the next iterations (Line 20). Finally, the algorithm
computes A’ for 7/ (Line 21) and determines the coordinates of its
approximation vertex (Line 22).

3.8. Implementation and tests

We implemented the three algorithms (PTA, GCCH, and FCH) in the
C++ programming language and ran various test cases (see Section 5)
to measure the memory usage and execution time of the traversal. The
generated cells are progressively saved to disk, with only the necessary
data for the traversal of each algorithm being kept in RAM. This allows
the generation of bigger approximations that cannot fit entirely in RAM.

10
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Algorithm 3: Fast Continuation Hypercubes (FCH)

Input : A function F:R" — R¥ defining the manifold M = F~'(0).
A seed k-simplex 7,4 for the continuation algorithm.
Output: A list of edges of the approximation with each respective
pair of k-simplices.
1Q« [Tseed];
2 B‘_{ [Tseed! Cn (Tseed)] };
3 while Q not empty do
7 « popfront (Q);
5 f - Hface (7);
6 A « solve system for 7;
7 Uy < T4
8
9

// initialize queue
// initialize dictionary

FS

// Eq. (3)
// Eq. (4)
foreach coface ¢, of f do

if U(f.c;) AND B(r) then

10 ¢ —tU{v}; // (k+1)-simplex
1 7,6’ « Trace(z,0); // trace edge
12 < Hjge, (7')s

13 c’f — Hjppo (67);

14 if B contains 7' then

15 ‘ B(t') « B(r') XOR U (f’,c});

16 else

17 key « '3

18 value = C, (') XOR U <f’,c’f,);

19 Insert [key, value] pair in B;

20 Insert 7/ at the back of Q;

21 A’ « solve system for 7’; // Eq. (3)
22 uinf<—-r’-/1’; // Eq. (4)
23 i Save edge {r,vmf, T/’U:nf};

24 Remove 7 from B;

Line 9: AND is the bitwise AND operator.
Lines 15, 18: XOR is the bitwise XOR operator.

All methods were implemented by the same programmer and tested
on the same machine, ensuring consistency in the evaluation. The
specifications of the test machine are as follows:

* Processor: AMD Ryzen 9 3900X 12-Core;
* Memory: 4x 16 GB DIMM DDR4 3200 MHz;
« Storage: 223.57 GB SSD.

The runtime of each algorithm was measured internally, using the
high-resolution clock from the C++ standard library. Memory usage
was measured externally, using a utility tool from the operating system.
Because the operating system always allocates a minimum amount of
memory for any given program, the memory usage presents a very
noticeable lower bound.

Our C++ implementation of all three algorithms has been made
available in an online repository, along with a tool to visualize the
generated approximations.'

4. Computational complexity per iteration

Since the total runtime of an algorithm depends on the manifold
being approximated, here we present the time complexity equations of
the PTA, GCCH, and FCH algorithms for the traversal of the domain as
a function of the number of structures traversed (the number of iter-
ations executed by each algorithm). For a more direct comparison, in
Appendix B we offer a discussion on the upper bound on computational
cost for each algorithm, and a worst-case comparison.

1 https://github.com/lucasmreia/fch.


https://github.com/lucasmreia/fch

L.M. Reia et al.
4.1. PTA algorithm

The computational complexity of the PTA algorithm, as calculated
by Boissonnat et al. [28], is given by:

S (2D _2) (k+ 1) - I, an

[ —
o(k20-h)

where:

+ S, is the total number of k-simplices processed (number of itera-
tions);

+ (20=k+D —2) is the maximum number of (k + 1)-dimensional co-
faces a k-simplex can have;

* (k + 1) is the number of k-faces (k-simplices) in each coface;

+ T is the cost of solving the k x k system of Eq. (9) to obtain the A
for each k-simplex.

Note that, since the PTA algorithm processes every k-face of each
coface, there will be many processed k-simplices which do not intersect
the manifold. However, the Door-in/Door-out principle can be applied
to directly find the output k-simplex in each coface, which reduces the
complexity of the middle term to O (2¢'~9)).

4.1.1. GCCH algorithm
The computational complexity of the GCCH algorithm, as calculated
by Castelo et al. [29], is given by:

", - <nfk> 20 gy T 12)
o 52m200)
where:
* M, is the total number of n-hypercubes processed (number of

iterations);

* (") -2 is the number of k-faces of each n-hypercube, where
(nfk) represents the number of possible combinations of coor-
dinates that can be fixed, and 2% represents the number of
possible values for each set of fixed coordinates (each coordinate
can be fixed at either 0 or 1);

* k! is the number of k-simplices in each k-face;

» T is the cost of solving the k x k system of Eq. (9) to obtain the A
for each k-simplex.

As the GCCH algorithm processes only the k-simplices on the k-faces
of the n-hypercube, and not those in the interior of the n-hypercube,
the resulting number of vertices and edges of the approximation is
significantly smaller than that of the PTA algorithm. The memory
usage is also lower for the GCCH algorithm because it records only the
position of the traversed n-hypercubes. On the other hand, the GCCH
algorithm always processes all k-simplices of all k-faces, which leads to
unnecessary computations.

4.2. FCH algorithm

The computational complexity of the FCH algorithm is given by:

Hy-2(n—k) - (Spqr +1) - 1, (13)
——

o((—-k+11)

where:

* H, is the total number of k-hypercubes processed (number of
iterations);

* 2(n — k) is the number of (k + 1)-cofaces for one k-hypercube, as
discussed in Section 3.3;
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* Si41 is the number of (k + 1)-simplices processed when tracing
the manifold inside a coface, as explained in Section 3.4. In the
best case we have S,,;, = 1, and in the worst case we have
Sppr = (k+ 1)}

+ T is the cost of solving the two k X k systems of Egs. (9) and
(10), used to determine A and yu for each time the Door-in/Door-
out principle is applied. An additional 7 is added at the end to
calculate A’ for the output 7’.

Although Eq. (13) contains factorial terms, the total cost of the FCH
algorithm is greatly reduced by restricting the evaluation to the same k-
simplices as the GCCH, but only to those that do intersect the manifold
thanks to the Door-in/Door-out principle.

5. Results

The performance results obtained from the implementation and
evaluation of the three methods — PTA, GCCH, and FCH - are presented
in Figs. 13-18. Figs. 13-15 show the performance as a function of
the resolution of the grid that subdivides the domain (the number of
subdivisions or partitions per dimension) for the following test cases:

* Hypersphere S* generated by:
F:R’ >R, F(X)=x%+x§+x§+xi+x§—l,
+ Klein Bottle in R generated by:
F:R’ > R3,
x1 = (34 cos (5 ) sin (xs) = sin (5 ) sin (25) ) cos (xa)
F (0= x5 = (34 cos (5 ) sin (xs) = sin (5 ) sin (2x5) ) sin (xs)

X3 7sin(x74)sin(x5) +cos(%):in (2x5)

+ Circle S' embedded in R’ generated by:

(X7 + x5 — 1.0001]
x2 —1.0002
x2 - 1.0003
F:R RS, F(x) = Xj = 1.0004
x2 - 1.0005
x% —1.0006
x2 —1.0007
x2 —1.0008 ]

In this case, the level set corresponds to several disconnected
curves, but only the central circumference was traced due to the
chosen starting point.

Figs. 16-18 show the performance as a function of the dimension
of the manifold for the following test cases:

+ Hypersphere S7~% embedded in R, for varying k, generated by:
T—k+1
1=y %2
X7 k42
X7—k+3

F:R’ > R, F(x)=

X7
+ Hypersphere SU3-% embedded in R', for varying k, generated

by:
15-k+1 _ 2
1- Zi=1 Xi
. X15-k+2
F:RP SR Fx)= X15-k43
X15
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Fig. 13. Hypersphere S* (F: R’ - R).
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Fig. 14. Klein Bottle in R® (F: R’ - R%).
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Fig. 15. Circle S' embedded in R’ (F: R’ —» R®).
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Fig. 16. Hypersphere SU~% embedded in
partitions per dimension.

R? (F: R’ — R, varying k), with 10

+ Cartesian product of S! k times, (Sl)k, for varying k, generated

by:
2., .2
xl+x2—1
2k k X 4xz-1
F: R > R", F(x)= 3774
2 ‘2
Xy T X~ 1

In all cases, the GCCH algorithm consumed less memory than the
PTA algorithm, which was expected since the GCCH algorithm stores
only the indices of the traversed n-hypercubes. The PTA algorithm
presented the highest memory usage, as it stores all the evaluated -
simplices. In contrast, the FCH algorithm presented the lowest memory
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Fig. 17. Hypersphere S(>~® embedded in R (F:R' — Rk, varying k), with 10
partitions per dimension.
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Fig. 18. Cartesian product of S' taken k times, (S')k (F : R* — R, varying k), with
5 partitions per dimension.

usage, as it stores only the boundary of the (k + 1)-simplices that still
need to be traversed. In many cases, the memory usage of an algorithm
was lower than the minimum allocated by the operating system, which
is particularly evident in Figs. 14 and 15, making the memory usage
appear constant.

In terms of runtime, Figs. 14-16 show that the PTA algorithm is
faster than the GCCH algorithm when the value of k is close to n.
When k and » are significantly different, the cost to traverse all (k + 1)-
simplices that intersect the manifold resulted in longer execution times
for the PTA algorithm. Because of this, the GCCH algorithm seems
better suited than the PTA algorithm for situations where k is low.

Fig. 18 shows that the PTA and GCCH algorithms present relatively
similar growth in runtime when both k and n — k are increased by 1.
One explanation for this behavior is that, while greater k means that
the GCCH will process more k-simplices, greater n — k means that the
PTA will process more (k + 1)-simplices, and these terms have similar
influence in the total number of evaluated simplices.

It is important to note that in all three methods, the data structures
used to track the traversed regions are implemented as hash tables
using the C++ standard library. The higher the memory usage of a
method, the more prone it is to hash collisions, with the PTA algorithm
being the most affected by this issue. In addition, since the cells
generated by the algorithms are stored progressively on disk, methods
that generate more vertices and edges are expected to be slowed down
by disk write operations, which also penalizes the PTA algorithm the
most.

Table 1 presents the performance metrics related to the usage of
the hash table for each algorithm. To minimize memory consumption
in general scenarios, the structure was designed to expand dynamically
and perform rehash operations as needed (on demand). Collisions are
tracked during both element insertion and rehashing: a collision is
recorded whenever a new element is inserted into a bucket that already
contains one or more elements. The FCH algorithm resulted in the
lowest number of collisions and rehashes, although close to the GCCH
algorithm.

Finally, the FCH algorithm produced an output identical to that of
the GCCH algorithm, which consists of edges of affine cells, but this
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Fig. 19. 3D projections of the approximations generated for the Klein Bottle in R’ with 30 partitions per dimension. Left column: approximation created by GCCH and FCH. Right
column: approximation created by PTA. Top row: entire approximation. Bottom row: cross-sectional cut to reveal the interior of the 3D projection and its auto-intersection, which
forms a figure-eight shape. Notice that in R’ the shape is a manifold, but its projection in R’ is not (the projection contains self-intersections).

Table 1
Performance metrics of the hash table in different settings.
PTA GCCH FCH

Hypersphere S* Rehashes 14 11 9
(10 parts/dim) Collisions 132.015 14.062 9.417
Klein bottle in R’ Rehashes 14 10 6
(50 parts/dim) Collisions 140.879 12.613 12.381
Circle S' in R’ Rehashes 1 1 1
(40 parts/dim) Collisions 98 11 10

was achieved with significantly less execution time and memory usage.
Across all scenarios tested, the FCH algorithm was the most efficient,
with the lowest execution time and memory usage. Fig. 19 provides an
example of the generated approximations, showing that the approxima-
tions generated by the GCCH and FCH algorithms contain significantly
fewer cells compared to those generated by the PTA algorithm.

High-dimensional modeling, combined with an appropriate projec-
tion to lower dimensions, enables the generation of more complex
geometric shapes compared to traditional low-dimensional modeling.
In the original domain of F, the level set F(x) = 0 is expected to satisfy
the properties of a manifold. However, when this manifold is projected
to lower dimensions, no constraints are imposed, allowing the creation
of shapes with self-intersections, as illustrated in Fig. 19. Additionally,
this approach supports the modeling of shapes of different dimensions
- such as curves, surfaces, and volumes — demonstrated in Fig. 20. The
implicit equations used to generate the shapes in Fig. 20 are:

. A:

Flxoy.z) = [x —r, cos(w z)]

y—r, sin(w z)

ol

13

- B,C:

F(x,y,2) = \/(x—r, cos (@ z))2+ (y—r, sin(@ z))2 -r, =0;

* D,E:

F(x,y,z,7y) = \/(x—r, cos (@ z))2 + (y—r, sin (@ z))2 -yr,=0.

where o, r, and r, are constants, and y € [0, 1].
6. Conclusion

In this work, we introduce the Fast Continuation Hypercubes (FCH),
an algorithm that combines the strengths of the binary labeling tech-
nique used in the Generalized Combinatorial Continuation Hypercubes
(GCCH) [29] with the general tracing approach of the Permutahedron-
based Tracing Algorithm (PTA) [28]. Through a series of experiments,
we demonstrate that the FCH algorithm provides a more efficient
method to generate piecewise-linear approximations of implicitly de-
fined manifolds compared to both the PTA and GCCH algorithms.

Our results show that the FCH algorithm not only reduces memory
usage by limiting memory storage to only the boundary of the region
being traversed, but also significantly decreases runtime by limiting
the evaluation to only the k-simplices contained in the k-faces of the
n-hypercubes that subdivide the domain. The application of the Door-
in/Door-out principle effectively avoids processing simplices that do
not intersect the manifold, which makes the FCH algorithm particularly
suitable for applications where both memory efficiency and computa-
tional speed are desired, and underscores its potential as a method for
high-dimensional manifold approximation.
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D
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Fig. 20. 3D projections of approximations generated for helical shapes with varying dimensions. A: 1D helix. B,C: 2D tube-shaped helix. D,E: 3D solid helix. While A, B and D
display the full approximations, C and E include a cross-sectional cut to reveal the interior structure. Note that, topologically, A is composed of 1D edges; B,C are composed of

2D polygons; and D,E are composed of 3D polyhedra.

For future research, an interesting direction would be to develop
adaptive and parallel methods based on the proposed approach. In
a general sense, adaptive methods could dynamically allocate com-
putational resources based on the complexity of different regions,
improving efficiency. Additionally, parallelization across multiple pro-
cessors could significantly decrease computation time, especially for
high-dimensional problems. These advancements could improve the
scalability of the algorithm, making it more suitable for large-scale
applications.
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Appendix A. Step-by-step example

In order to make the difference between the three algorithms more
evident, in this section we present a short step-by-step example of
isosurfacing using each algorithm. In this case, we have a 2D manifold
embedded in the 3D domain, which is generated by an implicit function
F:R3 SR,

14

A.1. PTA

Fig. A.21 illustrates the steps of the PTA algorithm. Each step is
described below.

+ A: Isosurface (in orange) and the 1D edge of the K| triangulation
(in dark red) that will serve as the seed 7z for the continuation
method.

 B: Generation of all 2D triangular faces ¢ of the K, triangulation
that contain 7.

+ C: The intersection of the isosurface with a triangular face forms
a curve (in magenta). These curves will be approximated by line
segments.

» D: Generation of the edges of the approximation (in bright red)
that lie on each ¢. The edges of the approximation are formed by
one input vertex (that lie on 7) and one output vertex (that lie on
a different edge 7’ of o).

« E: The process is restarted from step A at the 7’ of each ¢ (in dark
red). This is repeated until the entire isosurface is covered.

« F: Final surface mesh generated.

Note that the generated approximation in panel F is not a triangu-
lation, as it may contain shapes other than triangles.

A.2. GCCH

Fig. A.22 illustrates the steps of the GCCH algorithm. Each step is
described below.

+ A: Isosurface (in orange) and the 3D cube (in red) that will be the
seed for the continuation method.

» B: Generation of all 1D edges 7 (in dark red) of the initial 3D
cube.

+ C: Generation of the vertices of the approximation (in bright red)
that lie in each 7 that intersects the isosurface.

+ D: Generation of the edges of the approximation (in bright red)
using the Combinatorial Skeleton.

+ E: The process is restarted from step A at the neighboring 3D
cubes that share vertices of the approximation. This is repeated
until the entire isosurface is covered.

+ F: Final surface mesh generated.

Comparing panel F of Fig. A.22 with panel F of Fig. A.21, we can
see that the GCCH algorithm generates an approximation with fewer
vertices and edges, and its vertices are a subset of the vertices generated
by the PTA algorithm. In both cases, the generated approximations are
not triangulations.
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Fig. A.21. Step-by-step example of the PTA algorithm for isosurfacing in the 3D domain. Panels A to F depict each step.

Fig. A.22. Step-by-step example of the GCCH algorithm for isosurfacing in the 3D domain. Panels A to F depict each step.

15
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A B C

Fig. A.23. Step-by-step example of the FCH algorithm for isosurfacing in the 3D domain. Panels A to H depict each step.

A.3. FCH + H: Final surface mesh generated.
Fig. A.23 illustrates the steps of the FCH algorithm. Each step is The FCH algorithm employs an approach similar to that of the
described below. PTA algorithm, but generates an approximation identical to the one

produced by the GCCH algorithm.
+ A: Isosurface (in orange) and the 1D edge of a 3D cube (in dark
red) that will serve as the seed 7 for the continuation method.
B: Generation of all 2D square faces of the that contain 7.
C: The intersection of the isosurface with a square face forms a
curve (in magenta). These curves will be approximated by line

Appendix B. Discussion on the computational cost

segments. B.1. Upper bound on the computational cost
» D: Each square face is subdivided into triangles using the K,
triangulation.
« E: Traversal of each square face, generating the edges the approx- Assuming that every structure in the K, triangulation that could
imation (in bright red) that lie on each triangle. intersect the manifold will be processed, the largest possible number of
+ F: The intermediary vertices of the approximation that lie inside processed structures per n-hypercube sets an upper bound on the com-
each square face are removed. The edges of the approximation are putational cost. In all three methods, each processed structure requires
then formed by one input vertex (that lie on 7) and one output solving a kxk linear system, so this upper bound is directly comparable
vertex (that lie on a different edge 7’ of the square face). across the methods. Thus, we will treat the upper bound on the number
» G: The process is restarted from step A at the 7’ of each square of processed structures as an upper bound on the computational cost,
face (in dark red). This is repeated until the entire isosurface is with the terms U'pry, Ugccn, and Upcy being used to denote the
covered. upper bounds for the PTA, GCCH, and FCH, respectively.

16
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Fig. B.24. Example of a 2D domain triangulated by the K, triangulation. The different
colors highlight the 1-simplices that would be taken into account for each different 2-
hypercube if we were to count all the I-simplices generated.

B.1.1. PTA

The PTA algorithm assumes that every n-hypercube in the domain is
partitioned into n! n-simplices via the K, triangulation, and that the k-
faces of these n-simplices might intersect the manifold. The application
of the Door-in/Door-out principle means that, to find the k-faces that
intersect the manifold, we can process the (k + 1)-dimensional cofaces
instead of the k-faces. Therefore, the processed structures on the PTA
algorithm are the (k + 1)-simplices, and we need to compute the total
number of (k + 1)-simplices that the CFK triangulation generates in an
n-hypercube.

Note that in the K| triangulation, adjacent n-hypercubes may share
(k + 1)-simplices. Simply counting all (k + 1)-simplices within a sin-
gle n-hypercube could lead to duplicates when considering the entire
domain. However, the PTA algorithm ensures each (k + 1)-simplex
is processed only once, so we should guarantee that there are no
redundant counts in our computation. To achieve this, for a given
n-hypercube I we take the minimal vertex v, as a reference vertex
and, using the permutahedral representation, we generate all (k + 1)-
simplices where this permutahedral representation is canonical. This
means that all generated (k+1)-simplices lie within I and are connected
to vy. Only these (k + 1)-simplices, which connect to v, are considered
in the cost calculation.

For example, if we were to count all the 1-simplices generated by the
K, triangulation in a 2D domain, Fig. B.24 highlights the 1-simplices
that would be taken into account for each 2-hypercube: the edges were
painted with 4 different colors (blue, red, green and cyan), where
each color represents a different square, to indicate which edges would
be considered for each square. We can see that all 1-simplices in the
domain would be taken into account, except those that lie on the upper
boundary of each dimension of the domain. The set representing the
upper boundary of the domain is 1 dimension smaller than the domain
itself, so in terms of asymptotic complexity the lack of these 1-simplices
does not affect the result.

Leveraging the construction rules of the canonical permutahedral
representation, we can compute the total number of (k + 1)-simplices
connected to v, using purely combinatorial techniques. In this repre-
sentation of a (k + 1)-simplex, the n+1 vectors e, e,, ... , e,, e, are
grouped into k + 2 non-empty ordered groups, with the constraint that
the vector e,,; must always belong to the last group. This means that
the vectors e, ..., e, can be freely distributed among the k + 2 groups,
provided that each group contains at least one element. The number
of ways these n + 1 vectors can be distributed among these groups
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(i.e. the number of valid arrangements) gives us the total number of
(k + 1)-simplices connected to v.

If we choose to leave only e,,; in the last group, there will be n
vectors to be distributed among the first k + 1 groups. Alternatively, if
we choose to place m vectors together with e, in the last group, then
n — m vectors remain to be distributed among the first k¥ + 1 groups.
Since each group must contain at least one element, we have that
n-m>k+1 = 0<m<n-—-k-1.

For a given m, there are (;) ways to select the vectors that will
be placed in the last group. Now, if we were to consider the first k + 1
groups to be unordered, the number of ways to distribute the remaining
n—m vectors into k + 1 unordered groups can be determined using the
Stirling number of the second kind [39,401, S(n—m, k+ 1), where S(-,-)
can be defined as

1 > b
_ b—i .a
Stab)=— Z;(—l) <i>z :

Since the groups are ordered, we must account for the permutations
of these k + 1 groups: there are .S(n —m, k + 1) ways to distribute n —m
vectors among k + 1 non-empty groups, but each configuration can be
permuted (k + 1)! times. This gives a total of (k+ 1)! S(n—m,k+1)
arrangements for the first k + 1 groups. Thus, for a given m, the total
number of arrangements across all k + 2 groups is:

<”> (k+ 1! St —m, k+1).
m

Finally, the upper bound on the computational cost of the PTA
algorithm, which includes all possible values of m where 0 < m <

n—k —1, is given by the following sum:

<”> S(n—m, k+1).
m

A change of variable j = n—m (so m = n— j) gives

k+D! Y <nfj

> Sy, k+1),
j=k+1

n—k—1

(k+ 1! 2

m=0

and, with the equality (’:j) =

k+1! Y <:’> SG,k+ 1.

Jj=k+1

(:’), we have
(B.1)

This expression can be simplified using the following Stirling number
identity [39, Section 6.1]:

S@+1,b+1)=Y <‘T>S(;,b). (B.2)
=y \J
Jj=b

Comparing equation (B.1) with (B.2), we can see that « = n and

b=k + 1. Consequently, we obtain the final simplified expression

Uprg = (k+ D! S(h+1,k+2). (B.3)

It is worth noting that this result could have been obtained directly by
considering the distribution of the n + 1 vectors into k + 2 non-empty
groups (yielding S(n+ 1, k +2)), and then permuting only the first k + 1
groups (resulting in (k + 1)! permutations).

Upper and lower bounds for S(-,-) can be found in [41]. Using the
upper bound

a

b
S(a,b) < 3
gives us
Upra < (k+2),

and we can say the asymptotic cost of the PTA algorithm is O ((k +2)").
However, this approximation is most accurate when k is close to 1:

Ubragmy ~ 3" B.4
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When k = n (meaning k close to n — 1), we have
k+D! Sn+1,k+2) ~ n!l Sm+1,n+1) = n!,
therefore

Upragkam =~ N (B.5)

To create an estimate for the intermediary case k ~ =

2 b
the lower bound [41]:

s (2"

which gives us

let us consider

(n+ 1) (k+2*?
Upra 2 (n—k—1)! onk-1 (B.6)
The Stirling’s approximation [39, Section 9.3]

a
a! % \2rma (2)
e

can be used to approximate both factorials, yielding

+1 k+2"*2 et
Vpra 2 n f k-1 on—k—1 n—k— l)n—k—l ),
Simplifying this expression for k ~ g and high n gives us
% > V2 (2 : (B.7)

PTA ( K~ ) R %) -

which can later be compared against the other algorithms.

B.1.2. GCCH

The GCCH algorithm always processes all k-simplices that lie on
the k-faces of an n-hypercube. Hence, the processed structures in the
GCCH algorithm are these k-simplices, and the upper bound on the
computational cost is already given by Eq. (12):

n!
(n—k)!
We have the inequality

Veecen = 2k (B.8)

kK
Vgeen < 270,

indicating that the algorithm has asymptotic complexity of O (2"7% n*),
which is a more accurate approximation when « is close to 1. Assuming
high n:

VsccHunt) ® 2" n. (B.9)
For values of n — k close to 1, the expression (B.8) simplifies to

Vecen wen = 21 (B.10)

For the general case, the Stirling’s approximation can be employed
on both factorials from Eq. (B.8), yielding

) )

Then, for the intermediary case k ~ g, we have

Va (4)7

e

n—k

Uscen

UGCCH(,W%) ~ (B.11)

B.1.3. FHC

The FCH algorithm assumes that every n-hypercube in the domain
is partitioned into n! n-simplices via the K, triangulation, but only
the k-simplices that lie on the (k + 1)-faces of an n-hypercube might
intersect the manifold. Here, the same approach is used as in PTA:
for a given n-hypercube I, only the (k + 1)-faces connected to the
minimal vertex v, are taken into account, and since the Door-in/Door-
out principle is applied, we can count the (k + 1)-simplices instead of
the k-simplices. Thus, the processed structures in the FCH algorithm
are these (k + 1)-simplices connected to v.
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The label for a (k + 1)-face of an n-hypercube consists of 2n bits,
where n — k — 1 bits are set (equal to 1) and the remaining bits are
unset (equal to 0). To count only the (k + 1)-faces connected to vy, the
n most significant bits of the label must be 0, which implies that n—k—1
of the n least significant bits must be set. The number of (k + 1)-faces
connected to v, in an n-hypercube is then given by the number of ways
to choose n — k — 1 unique elements out of n:

(i)

Using the K, triangulation, each (k + 1)-face of an n-hypercube is
subdivided into (k +1)! (k + 1)-simplices that contain v,. Therefore, the
total number of (k + 1)-simplices connected to v, is

n
(n—k— 1)(k+ ne

Simplifying this expression, we obtain the upper bound on the
computational cost of the FCH algorithm:

n!
= — B.12
Urcn (n—k—1)! (B.12)
It follows that
Vpen < e

which implies an asymptotic cost of O (n*+!), particularly when k is
small:

UrcH w1y ® n. (B.13)

Conversely, for n — k close to 1, the expression (B.12) simplifies to

VrcH wny = N (B.14)
Applying the Stirling’s approximation to (B.12) yields
n n n—k=1 ; p\k+l
Ve * \imimr Gmemn) (8)
FCH n—k—1 \n—k—-1 e
which lets us derive an approximation for the intermediary case k ~ g

(assuming high n):

UFCH(kz%) ~ \/E (2?n>%

(B.15)

B.2. Upper bound comparison

Egs. (B.3), (B.8), and (B.12) give us

=(k+D! Sh+1,k+2),
n!
-k

n!
Vren = G5 —r

UPTA
n—k

B

Vseen =

Based on inequality (B.6), we have:

(k+ 22
on—k—1

(n+ 1!
U, >
PTA = =k -1)

It can be verified that for all » and k such that kK > 2 and n— k > 2, the

following relation holds:

U n+ 1! (k422
PTA = (n—k—1)!  onk-1

We begin by verifying that Upr, > Ugecpy. Substituting the
expressions:

> Ugcen > Urcn-

(n+ 1! (k+2)"k2 n ek
% 2 > 20k —
PTA = G"k—1D!  gnk-1 n—kK)!

Vgeen-

Letting m = n — k, we rewrite the inequality as:

(n+ 1! (k+2)"? o om
(m=1)!  2m-1 m!
Simplifying:

mn + Dk +2)""% > 22m-1,
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Table B.2
Upper bound on the computational cost and approximations assuming high n.
PTA GCCH FCH
. —k _n! n!
Cost equation k+ D! Sth+1,k+2) 0 fer) frmrssri
Approximation for k ~ 1 3" 2" n n’
Approximation for k ~ \5(%)5 \/E(%)E \/5(27")E
Approximation for k ~ n n! 2 n! n!
Relationship when k>2 and n—k >2 Upra > Vgcen > Vren

Now, using n = m + k, the inequality becomes:

mm+k+ D(k+2)"2% > 221
——

LHS RHS
The left-hand side (LHS) will be analyzed first. If k > 2, then:

k+2"2 > @+2m2 = (22)"° = 2m4, (B.16)
Also, if k >2 and m > 2:
mm+k+1) > 2Q2+2+1) > 22+2) = 2°. (B.17)

So, combining (B.16) and (B.17), for the left-hand side we get:

mm+k+1)(k+2)"2 > 23 22m~4 = g2l

which matches the right-hand side (RHS). Therefore, the inequality
Upra > Ugeen holds for all k >2 and n—k > 2.
Now let us verify that Ugzccp > U'rcp- Substituting the expressions:

n!
> [ —
n—k—1)!

n!
(n—k)!

n—k

Useccn = = UkrcH-

Again, letting m = n — k, it simplifies to:

2" > m,
which is true for all m > 1. Thus, the inequality Ugzcey > Upcy holds
whenever n — k > 1, and we conclude that U'pp, > Usccy > Uren 1S
valid for all k¥ > 2 and n — k > 2. When n — k is close to 1, we already
have the approximations given in Egs. (B.5), (B.10), and (B.14); and for
k close to 1, the approximations are provided in Egs. (B.4), (B.9), and
(B.13).

These results show that, based on the upper bound analysis, the FCH
algorithm is the most efficient among the three. Table B.2 summarizes
the approximations of each algorithm, showing that:

» When & is close to n, all three algorithms have very similar costs,
approaching n!;

» As k decreases, FCH becomes the most efficient algorithm, with
the lowest computational complexity.

B.3. Worst-case scenario

While the calculated upper bound establishes a theoretical limit for
the computational cost, reaching this limit may not be feasible due to
inherent mathematical constraints. For instance, the Door-in/Door-out
principle limits to 0 or 2 the number of k-faces that can intersect the
manifold in a (k + 1)-simplex. In this section, we present a method to
artificially construct a feasible case with a high computational cost,
though without guaranteeing that it represents the absolute worst-case
scenario. Consequently, the actual worst-case cost will fall somewhere
between this feasible configuration and the previously calculated upper
bound. The objective of this analysis is to assess how tight the upper
bounds calculated in Appendix B.1 are, and to verify if the relationships
in Table B.2 hold true for actually feasible cases.

As in the previous section, our focus remains on calculating the
number of processed structures within the unit n-hypercube that are
connected to v
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B.3.1. PTA

Our goal is to artificially construct a function F:R" — RX that
results in a high number of processed structures, which requires F to
produce a large number of intersections between k-simplices and the
manifold. Since F is evaluated only at the vertices of a n-hypercube,
we will define F exclusively at these points for our artificial case.

As discussed in Section 2.2, a k-simplex intersects the manifold if
all components of A, obtained from Eq. (3), are positive. Note that it
is always possible to select k + 1 distinct values in R* (the codomain
of F) that satisfy this condition. Therefore, by assigning these selected
values to the vertices of a k-simplex, we ensure that this k-simplex
will intersect the manifold. Conversely, if F at the vertices of a k-
simplex can yield only these k+1 distinct values, we can verify manifold
intersection by checking whether each vertex corresponds to a unique
value.

Let {Ly, L,,...,L;} be a set of k+1 distinct values in the codomain
of F that satisfy the intersection condition. We will assign these values
to all vertices of the unit n-hypercube, meaning that F evaluated at any
vertex will yield one of these values. For simplicity, we treat each L;
as a label that is assigned to a vertex, allowing us to work with generic
labels instead of specific values in R¥.

In the simplices generated by the CFK triangulation, we define a k-
simplex as fully-labeled if it contains k + 1 distinct labels, which implies
that this simplex intersects the manifold. Furthermore, a (k + 1)-simplex
containing k + 1 distinct labels has exactly two k-faces that are fully-
labeled, following the Door-in/Door-out principle. We also refer to such
a (k + 1)-simplex as fully-labeled.

With this framework, we can pose the problem as follows: given an
assignment of k + 1 labels across the vertices of the unit n-hypercube,
how many fully-labeled (k + 1)-simplices connected to v, exist? The
answer corresponds to the number of processed structures for the PTA
algorithm.

As detailed in Section 2.1, the n-simplices generated by the CFK
triangulation of the unit n-hypercube are formed through permutations
of « in a sequence of vectors:

vo(@) vy (@) vy (@)
i N Ca) N ) N C3)
0 —— vy(@)+eyy— v (@) +egoy— ...

Cain)
— (v,,_l (a) + ea(,,))
—_
on(@)

Because all generated n-simplices share the same geometric shape
but are placed at different positions within the n-hypercube, we can
view them as mirrored versions of a standard n-simplex defined by
a specific a. To simplify both label assignment and computational
analysis, we will first assign labels to the vertices of this standard »-
simplex, and the labels for all other n-simplices can then be derived
through the corresponding permutations of a. For example, when n = 4
and k = 2, a possible label configuration is:

a(l) €a(2) a(3) Ca(4)
o v v, U3 vy
N~—— N—— —— N—— ——
Lo L L L, L

and the permutations of ¢ will automatically determine the label as-
signments for all vertices within the unit n-hypercube.
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Cq €q Ca €a

vo () @ v1 (@) SOl (@) ® s (@) @ (@) n-simplex
S~ S~ N~ S~ S~ -

Lo Ly Ly Lo Ly
vo (@) _au (@) - W (@) a3 (a) \
N—— e S—— N—— S——

Lo a(1) Ly Ca(2) Ly €a(3) Loy
vo (@) v1 (@) v2 (@) va (@)

Lo €a(1) Ly €a(2) Ly €a(3) T €a(q) L1

(k 4 1)-simplices

vo (@) R (a) s (a) P (a)
S—~— S~ N d S~

Lo €a(1) I €q(2) T €a(3) Ly €a(4) L
vo (@) a2 (o) W (o) o (a)
N——’ e N——’ N——

Lo €a(1) T €a(2) Ly Ca(3) Ly Ca(4) Ly j

Fig. B.25. Diagram that illustrates all possible 3-faces containing vertex v, that can be formed from a 4-simplex.

As described in Section 2.3 and Appendix B.1.1, a (k + 1)-simplex
that includes v, is formed by a sequence of k + 1 vectors originating
from v,. Each vector in this sequence can be a combination of mul-
tiple subsequent vectors from the parent n-simplex. To illustrate this,
Fig. B.25 presents all possible ways to generate sequences of vectors
yielding (k + 1)-simplices for n =4 and k = 2.

From these sequences, we will consider only those that generate
fully-labeled (k + 1)-simplices, meaning sequences that include vertices
with all k + 1 distinct labels. To compute the total number of fully-
labeled (k + 1)-simplices, we must account for all permutations of a.
Let u be a vector in a sequence; if u comprises m vectors from the
canonical basis, the number of configurations for u equals the number
of ways to select m vectors from the available canonical basis vectors.
Consequently, the total number of arrangements for each sequence
represents the total number of fully-labeled (k + 1)-simplices connected
to vy. Continuing with the example where n = 4 and k = 2, the diagram
in Fig. B.26 illustrates the total number of possible arrangements that
generate fully-labeled (k+ 1)-simplices. In this example, we observe that
the total number of processed structures is 48.

To summarize, our artificial case involves assigning a set of k + 1
distinct labels to the vertices of a standard n-simplex and identifying
the sequences that form fully-labeled (k + 1)-simplices. Through exper-
imentation, we found that a high number of processed structures can
be achieved when the labels are distributed among the vertices of the
standard n-simplex as follows:

» L, is assigned exclusively to v,
+ Let #(L;) denote the number of times label L; appears in the
sequence. Then:

#(Ly) = 1;
n+ 1= YHL)

#L) = Krl—i

, for1<i<k.

« Labels L, to L, are assigned in increasing order to the vertices v,
through v,.

As an example, Table B.3 shows the label assignments for n = 10 and
1<k<O.

To identify sequences that generate fully-labeled (k + 1)-simplices,
we implemented a recursive search algorithm that explores all possible
sequences in the n-simplex, checking whether each sequence is fully
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Table B.3
Label assignment used for n = 10.

Label sequence in the n-simplex

0,1,1,1,1,1,1,1,1,1, 1
0,1,1,1,1,1,2,2,2,2,2
0,1,1,1,2,2,2,3,3,3,3
0,1,1,2,2,3,3,3,4,4,4
0,1,1,2,2,3,3,4,4,5,5
0,1,2,3,3,4,4,5,5,6,6
0,1,2,3,4,5,5,6,6,7,7
0,1,2,3,4,5,6,7,7,8,8
0,1,2,3,4,5,6,7,8,9,9

R
I
O 0N R W =

labeled. For each valid sequence, we then compute the total number of
possible arrangements of vectors, as previously discussed. The obtained
results are presented in Appendix B.4.

B.3.2. GCCH

The GCCH processes a fixed number of structures per n-hypercube,
regardless of the manifold being approximated. Therefore, its worst-
case scenario is identical to the upper bound calculated in
Appendix B.1.2.

B.3.3. FCH

In the FCH, evaluations are restricted to the (k + 1)-hypercubes that
are faces of the n-hypercube and that are connected to v,. Applying
the same analysis used for the PTA to each of these (k + 1)-hypercubes
individually, we can demonstrate that all (k + 1)-simplices within these
hypercubes will be evaluated. Consequently, the worst-case scenario for
the FCH is equal to the upper bound calculated in Appendix B.1.3.

B.4. Worst-case comparison

Fig. B.27 illustrates the worst-case comparison of the three methods
— PTA, GCCH, and FCH - for the specific values of n € {3,4, 5, 10,20, 40}
and 1 < k < n—1. It is important to highlight that the data in Fig. B.27
refer to a single n-hypercube, meaning they represent a cost normalized
by the number of n-hypercubes in the domain. While the theoretical
upper bounds for GCCH and FCH (calculated in Appendix B.1) exactly
match their worst-case costs, the data shown in Fig. B.27 indicate that
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€a
v3 (@) @ (a)
S—~— S~—~—
Lo Ly

) (D7) =24
— \()J ()03 (%) =12
() (") (1) =12

("7

Total: 48

Fig. B.26. Given a particular label assignment, this diagram illustrates the number of all possible fully-labeled 3-faces containing vertex v, that can be formed from a 4-simplex.

n=3 n=4
6 x 10
8 —— GCCH 4 g
3 —— PTA (upper bound) 2 3
S ) s S
5 10t{ == PTA (feasible) £ 4x 10 E
3 —— FCH (ours) 3 3
g 9x10 £ 3x10 8 102
s 8 s
5 5 5
5 8% 10° 5 pa
H * 1 #*
2% 10

CR) N £
£ E £
£ X X
= = =

6 x 100

T T T
1 2 1 2 3 1 2 3 4
Manifold dimension = (3 — k) Manifold dimension = (4 — k) Manifold dimension = (5 — k)
n =10 n =20 n =40
10°6

9 o P

g g 1019 4 g 10

2 2 2

s El ERTT)

B £ 10104 5 1074

@ 7 7

- = -

2 2 2 10% A

: : 5 10%

5 5 1010 4 k-

W #* 4 107 4

£ E £

£ £ £ 109

% % %

3 3 5

= = 104 = 1074

1 2 3 4 5 6 7 8 9 1 3 5 7 9 11 13 15 17 19 1 4 8 12 16 20 24 28 32 36 39

Manifold dimension = (10 — k)

Manifold dimension = (20 — k)

Manifold dimension = (40 — k)

Fig. B.27. Worst-case comparison of the computational cost between the three methods for n € {3,4,5,10,20,40} and 1 < k < n— 1. For the PTA, its worst-case lies somewhere in

between its upper bound and the feasible case.

the bound for PTA is also a reasonable approximation for its worst-
case cost. This is further reinforced by the consistent cost relationships
observed between the algorithms when comparing Fig. B.27 with Table
B.2. For other comparisons in situations that are not guaranteed to be
worst-case, see the experimental results in Section 5.

To conclude the comparisons, we can say that the FCH has lower
complexity compared to the PTA because it is more selective regarding
the (k + 1)-simplices it processes — the FCH can approximate the
entire manifold by processing only the (k + 1)-simplices located on
the (k + 1)-faces of the n-hypercubes, unlike the PTA, which processes
all (k + 1)-simplices that intersect the manifold. Furthermore, the FCH
also exhibits lower complexity compared to the GCCH because the
application of the Door-in/Door-out principle ensures that structures
not intersecting the manifold are not processed, reducing the total
number of processed structures.
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References

[1] Gomes A, Voiculescu I, Jorge J, Wyvill B, Galbraith C. Implicit Curves and
Surfaces: Mathematics, Data Structures and Algorithms. Springer London; 2009,
http://dx.doi.org/10.1007/978-1-84882-406-5.

Biischer KJ, Degel JP, Oellerich J. A comprehensive survey of isocontouring
methods: Applications, limitations and perspectives. Algorithms 2024;17(2). http:
//dx.doi.org/10.3390/a17020083.

Allgower EL, Schmidt PH. Piecewise linear approximation of solution manifolds
for nonlinear systems of equations. In: Hammer G, Pallaschke D, editors. Selected
topics in operations research and mathematical economics. Berlin, Heidelberg:

[2]

[3


http://dx.doi.org/10.1007/978-1-84882-406-5
http://dx.doi.org/10.3390/a17020083
http://dx.doi.org/10.3390/a17020083
http://dx.doi.org/10.3390/a17020083

L.M. Reia et al.

[4]

[5]

(6]

[7

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Springer Berlin Heidelberg; 1984, p. 339-47. http://dx.doi.org/10.1007/978-3-
642-45567-4_26.

Zhou M, Xiao M, Zhang Y, Gao J, Gao L. Marching cubes-based isogeometric
topology optimization method with parametric level set. Appl Math Model
2022;107:275-95. http://dx.doi.org/10.1016/j.apm.2022.02.032.

Anderson JT, Williams DM, Corrigan A. Surface and hypersurface mesh-
ing techniques for space-time finite element methods. Comput.- Aided Des
2023;163:103574. http://dx.doi.org/10.1016/j.cad.2023.103574.

Wu J, Zhang D, Yi X, Luo F, Zhang T. Improved marching cubes algorithm
for 3d multi-slice spiral computed tomography in the diagnosis of bone and
joint diseases. J Med Imaging Heal Inform. 2019;9(5):962-8. http://dx.doi.org/
10.1166/jmihi.2019.2684.

Nugroho PA, Basuki DK, Sigit R. 3D heart image reconstruction and visualization
with marching cubes algorithm. In: 2016 international conference on knowledge
creation and intelligent computing. KCIC, IEEE; 2016, p. 35-41. http://dx.doi.
0rg/10.1109/KCIC.2016.7883622.

Cirne MVM, Pedrini H. Marching cubes technique for volumetric visu-
alization accelerated with graphics processing units. J Braz Comput Soc
2013/09/01;19(3):223-33. http://dx.doi.org/10.1007/s13173-012-0097-z.

Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC,
Evans TR. Reconstruction and representation of 3D objects with radial basis
functions. In: Proceedings of the 28th annual conference on computer graphics
and interactive techniques. SIGGRAPH ’01, New York, NY, USA: Association
for Computing Machinery; 2001, p. 67-76. http://dx.doi.org/10.1145/383259.
383266.

Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel H-P. Multi-level partition of
unity implicits. ACM Trans Graph 2003;22(3):463-70. http://dx.doi.org/10.
1145/882262.882293.

Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Trans Graph
2013;32(3). http://dx.doi.org/10.1145/2487228.2487237.

Incahuanaco F, Paiva A. Surface reconstruction method for particle-based fluids
using discrete indicator functions. Comput Graph 2023.

Breen DE, Mauch S, Whitaker RT. 3D scan conversion of CSG models into dis-
tance volumes. In: IEEE symposium on volume visualization (cat. no.989EX300).
SVV-98, IEEE; 1998, p. 7-14. http://dx.doi.org/10.1109/5VV.1998.729579.
Fang S, Srinivasan R. Volumetric-CSG — a model-based volume visualization
approach. J WSCG 1998;6.

Chen Z, Tagliasacchi A, Funkhouser T, Zhang H. Neural dual contouring. ACM
Trans Graph 2022;41(4):1-13. http://dx.doi.org/10.1145/3528223.3530108.
Liao Y, Donné S, Geiger A. Deep marching cubes: Learning explicit surface
representations. In: 2018 IEEE/CVF conference on computer vision and pattern
recognition. IEEE; 2018, p. 2916-25. http://dx.doi.org/10.1109/CVPR.2018.
00308.

Shen T, Munkberg J, Hasselgren J, Yin K, Wang Z, Chen W, Gojcic Z,
Fidler S, Sharp N, Gao J. Flexible isosurface extraction for gradient-based
mesh optimization. ACM Trans Graph 2023;42(4). http://dx.doi.org/10.1145/
3592430.

Bloomenthal J. Polygonization of implicit surfaces. Comput Aided Geom Design
1988;5(4):341-55. http://dx.doi.org/10.1016/0167-8396(88)90013-1.
Schroeder W, Maynard R, Geveci B. Flying edges: A high-performance scalable
isocontouring algorithm. In: 2015 IEEE 5th symposium on large data analysis
and visualization. LDAV, IEEE; 2015, p. 33-40. http://dx.doi.org/10.1109/LDAV.
2015.7348069.

Dobkin DP, Wilks AR, Levy SVF, Thurston WP. Contour tracing by piecewise
linear approximations. ACM Trans Graph 1990;9(4):389-423. http://dx.doi.org/
10.1145/88560.88575.

22

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Computers & Graphics 129 (2025) 104237

Bhaniramka P, Wenger R, Crawfis R. Isosurfacing in higher dimensions. In:
Proceedings visualization 2000. VIS 2000 (cat. no.00CH37145). IEEE; 2000, p.
267-73. http://dx.doi.org/10.1109/VISUAL.2000.885704.

Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construc-
tion algorithm. SIGGRAPH Comput Graph 1987;21(4):163-9. http://dx.doi.org/
10.1145/37402.37422.

Doi A, Koide A. An efficient method of triangulating equi-valued surfaces by
using tetrahedral cells. IEICE Trans Inf Syst 1991;74(1):214-24.

Guéziec A, Hummel R. Exploiting triangulated surface extraction using tetrahe-
dral decomposition. IEEE Trans Vis Comput Graphics 1995;1(4):328-42. http:
//dx.doi.org/10.1109/2945.485620.

Treece GM, Prager RW, Gee AH. Regularised marching tetrahedra: improved
iso-surface extraction. Comput Graph 1999.

Allgower EL, Georg K. Numerical continuation methods. Heidelberg: Springer
Berlin; 1990, http://dx.doi.org/10.1007/978-3-642-61257-2,

Brodzik ML. The computation of simplicial approximations of implicitly defined
p-dimensional manifolds. Comput Math Appl 1998;36(6):93-113. http://dx.doi.
0rg/10.1016/50898-1221(98)00164-3.

Boissonnat J-D, Kachanovich S, Wintraecken M. Tracing isomanifolds in R in
time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. SIAM J
Comput 2023;52(2):452-86. http://dx.doi.org/10.1137/21M1412918.

Castelo A, Nakassima G, Bueno LM, Gameiro M. A generalized combinatorial
marching hypercube algorithm. Comput Appl Math 2024;43(3):1-23. http://dx.
doi.org/10.1007/540314-024-02627-4.

Coxeter HSM. Discrete groups generated by
1934;35(3):588-621.

Freudenthal H. Simplizialzerlegungen von Beschrédnkter Flachheit. Ann Math
1942;43(3):580-2.

Kuhn HW. Simplicial approximation of fixed points. Proc Natl Acad Sci
1968;61(4):1238-42. http://dx.doi.org/10.1073/pnas.61.4.1238.

Castelo A, Moutinho Bueno L, Gameiro M. A combinatorial marching hypercubes
algorithm. Comput Graph 2022.

Spivak M. Calculus On Manifolds. CRC Press; 1965, http://dx.doi.org/10.1201/
9780429501906.

Edelsbrunner H. Geometry and topology for mesh generation. Cambridge mono-
graphs on applied and computational mathematics, Cambridge University Press;
2001, http://dx.doi.org/10.1017/cbo9780511530067.

Todd MJ. The computation of fixed points and applications. Springer Berlin
Heidelberg; 1976, http://dx.doi.org/10.1007/978-3-642-50327-6,

Eaves BC. A course in triangulations for solving equations with deformations.
Heidelberg: Springer Berlin; 1984, http://dx.doi.org/10.1007/978-3-642-46516-
1,

Bittner L. Simplicial methods for the solution of systems of nonlinear equations.
ZAMM - J Appl Math Mech / Z Angew Math Mech 1976;56(2-3):65-73. http:
//dx.doi.org/10.1002/zamm.19760560202.

Graham RL, Knuth DE, Patashnik O. Concrete Mathematics: A Foundation for
Computer Science. second ed.. USA: Addison-Wesley Longman Publishing Co.
Inc.; 1994.

Moll VH. Numbers and functions. Student mathematical library, Providence, RI:
American Mathematical Society; 2012.

Gismatullin J, Tardivel P. Beta distribution and associated stirling numbers of
the second kind. Probab Math Statist 2024;44(1):119-32. http://dx.doi.org/10.
37190/0208-4147.00156.

reflections. Ann Math


http://dx.doi.org/10.1007/978-3-642-45567-4_26
http://dx.doi.org/10.1007/978-3-642-45567-4_26
http://dx.doi.org/10.1007/978-3-642-45567-4_26
http://dx.doi.org/10.1016/j.apm.2022.02.032
http://dx.doi.org/10.1016/j.cad.2023.103574
http://dx.doi.org/10.1166/jmihi.2019.2684
http://dx.doi.org/10.1166/jmihi.2019.2684
http://dx.doi.org/10.1166/jmihi.2019.2684
http://dx.doi.org/10.1109/KCIC.2016.7883622
http://dx.doi.org/10.1109/KCIC.2016.7883622
http://dx.doi.org/10.1109/KCIC.2016.7883622
http://dx.doi.org/10.1007/s13173-012-0097-z
http://dx.doi.org/10.1145/383259.383266
http://dx.doi.org/10.1145/383259.383266
http://dx.doi.org/10.1145/383259.383266
http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1145/882262.882293
http://dx.doi.org/10.1145/2487228.2487237
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb12
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb12
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb12
http://dx.doi.org/10.1109/SVV.1998.729579
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb14
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb14
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb14
http://dx.doi.org/10.1145/3528223.3530108
http://dx.doi.org/10.1109/CVPR.2018.00308
http://dx.doi.org/10.1109/CVPR.2018.00308
http://dx.doi.org/10.1109/CVPR.2018.00308
http://dx.doi.org/10.1145/3592430
http://dx.doi.org/10.1145/3592430
http://dx.doi.org/10.1145/3592430
http://dx.doi.org/10.1016/0167-8396(88)90013-1
http://dx.doi.org/10.1109/LDAV.2015.7348069
http://dx.doi.org/10.1109/LDAV.2015.7348069
http://dx.doi.org/10.1109/LDAV.2015.7348069
http://dx.doi.org/10.1145/88560.88575
http://dx.doi.org/10.1145/88560.88575
http://dx.doi.org/10.1145/88560.88575
http://dx.doi.org/10.1109/VISUAL.2000.885704
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb23
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb23
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb23
http://dx.doi.org/10.1109/2945.485620
http://dx.doi.org/10.1109/2945.485620
http://dx.doi.org/10.1109/2945.485620
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb25
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb25
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb25
http://dx.doi.org/10.1007/978-3-642-61257-2
http://dx.doi.org/10.1016/S0898-1221(98)00164-3
http://dx.doi.org/10.1016/S0898-1221(98)00164-3
http://dx.doi.org/10.1016/S0898-1221(98)00164-3
http://dx.doi.org/10.1137/21M1412918
http://dx.doi.org/10.1007/s40314-024-02627-4
http://dx.doi.org/10.1007/s40314-024-02627-4
http://dx.doi.org/10.1007/s40314-024-02627-4
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb30
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb30
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb30
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb31
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb31
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb31
http://dx.doi.org/10.1073/pnas.61.4.1238
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb33
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb33
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb33
http://dx.doi.org/10.1201/9780429501906
http://dx.doi.org/10.1201/9780429501906
http://dx.doi.org/10.1201/9780429501906
http://dx.doi.org/10.1017/cbo9780511530067
http://dx.doi.org/10.1007/978-3-642-50327-6
http://dx.doi.org/10.1007/978-3-642-46516-1
http://dx.doi.org/10.1007/978-3-642-46516-1
http://dx.doi.org/10.1007/978-3-642-46516-1
http://dx.doi.org/10.1002/zamm.19760560202
http://dx.doi.org/10.1002/zamm.19760560202
http://dx.doi.org/10.1002/zamm.19760560202
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb39
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb39
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb39
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb39
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb39
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb40
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb40
http://refhub.elsevier.com/S0097-8493(25)00078-0/sb40
http://dx.doi.org/10.37190/0208-4147.00156
http://dx.doi.org/10.37190/0208-4147.00156
http://dx.doi.org/10.37190/0208-4147.00156

	A fast high-dimensional continuation hypercubes algorithm
	Introduction
	Background and Literature review
	The CFK triangulation
	Vertices of the approximation
	Permutahedron-based tracing algorithm
	Generalized Combinatorial Continuation Hypercubes

	Fast Continuation Hypercubes Algorithm
	Canonical face notation
	Simplex face
	Generating the cofaces from a k-face
	Tracing the manifold approximation edge in a coface
	Memory storage
	Boundary tracking
	Algorithm pseudocode
	Implementation and tests

	Computational complexity per iteration
	PTA algorithm
	GCCH algorithm

	FCH algorithm

	Results
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Step-by-step example
	PTA
	GCCH
	FCH

	Appendix B. Discussion on the computational cost
	Upper bound on the computational cost
	PTA
	GCCH
	FHC

	Upper bound comparison
	Worst-case scenario
	PTA
	GCCH
	FCH

	Worst-case comparison

	Data availability
	References


