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Let R be an alternative ring containing a nontrivial idempotent and D be Received 5 March 2020

a multiplicative Lie-type derivation from R into itself. Under certain Communicated by Alberto

assumptions on R, we prove that D is almost additive. Let p,(x1, X2, ..., Xn) Elduque

be the (n — 1)-th commutator defined by n indeterminates xi, ..., x,. If R is

a unital alternative ring with a nontrivial idempotent and is {2,3, KEYWORDS

n —1,n — 3}-torsion free, it is ShOWI’? upder certain condition of R and © Additivity; alternative ring;

that D =0+1, where o is a derivation and 7:R — Z(R) such that multiplicative Lie-type

r(p,,(a1, ...,Gn)) = 0 for all aiy, ..., dp € R. derivation; prime
alternative rings

AMS
17A36; 17D05

1. Introduction and preliminaries

Let A be an associative ring. We define the Lie product [x,y] := xy — yx and Jordan product x o y :=
xy + yx for all x,y € A. Then (A, [,]) becomes a Lie algebra and (U, 0) is a Jordan algebra. It is a
fascinating topic to study the connection between the associative, Lie, and Jordan structures on 2.
In this field, two classes of mappings are of crucial importance. One of them consists of mappings,
preserving a type of product, for example, Jordan homomorphisms and Lie homomorphisms. The
other one is formed by differential operators, satisfying a type of Leibniz formulas, such as Jordan
derivations and Lie derivations. In the AMS Hour Talk of 1961, Herstein proposed many problems
concerning the structure of Jordan and Lie mappings in associative simple and prime rings [17].
Roughly speaking, he conjectured that these mappings are all of the proper or standard forms. The
renowned Herstein’s Lie-type mapping research program was formulated since then. Martindale [25]
gave a major force in this program under the assumption that the rings contain some nontrivial
idempotents. The first idempotent-free result on Lie-type mappings was obtained by BreSar [4].
Recently, several new articles have also studied the additivity of maps that maintain new products
and derivable maps about new products among them we can mention references [22-24, 29, 30].
Also the structures of derivations, Jordan derivations, and Lie derivations on (non-)associative rings
were studied systematically by many people (cf. [1-4, 5-7, 9-15, 17-21, 25, 28, 31]). It is obvious
that every derivation is a Lie derivation. But the converse is in general not true. A basic question
toward Lie derivations of the associative algebras is that whether they can be decomposed into the
sum of a derivation and a central-valued mapping, see [1-4, 15, 20, 21, 25] and references therein.
In this article, we will address the structure of Lie derivations without additivity on alternative rings.
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Let R and R’ be two rings (not necessarily associative) and ¢ : R — R’ be a mapping, we call
¢ is additive if (a4 b) = ¢(a) + @(b), almost additive if @(a+b)— ¢(a) — @(b) € Z(R),
multiplicative if ¢(ab) = @(a)p(b), for all a,b € R. Let R be a ring with commutative center
Z(R) and [x1, %3] = x1x; — % denote the usual Lie product of x; and x,. Let us define the fol-
lowing sequence of polynomials:

pi(x) =x and p,(x1, %2, .. %) = [pn,l(xl,xz,...,xn,l),xn]

for all integers n > 2. Thus, py(x1,%2) = [x1, %2), p3(x1, %2, X3) = [[%1, %2], %3], etc. Let n > 2 be an
integer. A mapping (not necessarily additive) D :R — R is called a multiplicative Lie
n-derivation if

D15 %25 o0 Xn)) = D P15 %25 o0 Ximt, DX, X1 -v0r X )- (1)

i=1

Lie n-derivations were introduced by Abdullaev [1], where the form of Lie n-derivations of a cer-
tain von Neumann algebra was described. According to the definition, each multiplicative Lie
derivation is a multiplicative Lie 2-derivation and each multiplicative Lie triple derivation is a
multiplicative Lie 3-derivation. Fosner et al. [15] showed that every multiplicative Lie #n-derivation
from an associative algebra A into itself is a multiplicative Lie (n + k(n — 1))-derivation for each
k € Ny. Multiplicative Lie 2-derivations, Lie 3-derivations, and Lie n-derivations are collectively
referred to as multiplicative Lie-type derivations.

A ring R is said to be alternative if (x,x,y) =0 = (y,x,x) for all x,y € R, and flexible if
(x,9,x) =0 for all x,y € R, where (x,5,2) = (xy)z — x(yz) is the associator of x,y,z € R. It is
known that alternative rings are flexible. An alternative ring R is called k-forsion free if k x =0
implies x = 0, for any x € R, where k € Z, k> 0, and prime if AB # 0 for any two nonzero
ideals A, B C R. The nucleus N'(R) and the commutative center Z(R) are defined by:

NER)={reR|(xy,r)=0=(x,r,y) = (r,x,y) for all x,y € R} and
ZR)={reR|[r,x] =0 for all x € R}.

By [8, Theorem 1.1] we have the following.

Theorem 1.1. Let R be a 3-torsion free alternative ring. So R is a prime ring if and only if aR -
b=0 (or a-Rb=0) implies that a=0 or b=0 for a,b € N.

A nonzero element e; € R is called an idempotent if e = e; and the idempotent e, is a nontrivial
idempotent if e, is not the multiplicative identity element of R. Let us consider R an alternative ring
and fix a nontrivial idempotent e; € R. Let e; : R — R and &), : R — R be linear operators given by
ex(a) =a—ea and €(a) = a— ae;. Clearly, &3 = e, 0e; = e, (e’2)2 =¢,. Note that if R has a
unity, then e; =1 —e; € R. Let us denote e;(a) by e,a and €)(a) by ae,. It is easy to see that e;a -
ej =e;-ae (i,j=1,2) for all a € R. By [16] we know that R has a Peirce decomposition

R =R &Rz &Ry @ Ry,

where R;; = e;Re; (i,j = 1,2), satisfying the following multiplicative relations:

(i) RN S Ni(h,j = 1,2);
(iii) RNy =0, if j # k and (i,j) # (k. 1), (i, k, 1 = 1,2);
(iv) x; =0, forall x; € Ry(i,j = 1,2; i #}).

The first result about the additivity of mappings on rings was given by Martindale [26], he
established a condition on a ring R such that every multiplicative isomorphism on R is additive.
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In [20, 21], Li and his coauthors also considered the almost additivity of maps for the case of Lie
multiplicative mappings and Lie 3-derivation on associative rings. They proved the following.

Theorem 1.2. Let R be an associative ring containing a nontrivial idempotent e; and satisfying the
following condition: (Q) If AyBy, = BiyAy, for all Byy € Ryy, then Ay + Ay € Z(R). Let R’ be
another ring. Suppose that a bijection map ® : R — R’ satisfies

®([4, B]) = [®(A), D(B)]

for all A,B € R. Then ®(A + B) = ®(A) + ®(B) + Z), g for all A,B € R, where Z), 5 is an element
in the commutative center Z(R') of R’ depending on A and B.

Theorem 1.3. Let R be an associative ring containing a nontrivial idempotent e, and satisfying the
following condition: (Q) If A;1Bia = BiaAy for all By, € Ry, then Ay + Axn € Z(R). Suppose
that a mapping 6 : R — R satisfies

3([l, BJ, C) = [[6(A), BJ, C] + [|4, 6(B)], C] + [[A, B], 6(C)]

for all A,B,C€R. Then there exists a Zsp (depending on A and B) in Z(R) such
that (A + B) = 0(A) + 6(B) + Za, 5.

In [13], Ferreira and Guzzo investigated the additivity of Lie triple derivations. They obtained
the following result.

Theorem 1.4. Let ‘R be an alternative ring. Suppose that R is a ring containing a nontrivial idem-
potent e; which satisfies

(i) If [a11 + axn,R12] =0, then ayy + ax € Z(R),
(ii) If [au + 022,9{21] =0, then a;; +axy € Z(‘R)

Then each multiplicative Lie triple derivation © of R into itself is almost additive.

In a recent article, Ferreira and Guzzo [9] studied the characterization of Lie 2-derivation on
alternative rings. They showed that

Theorem 1.5. Let R be a unital 2,3-torsion free alternative ring with nontrivial idempotents e;, e,
and with associated Peirce decomposition R = Ry & Rix ® Ray & Rap. Suppose that R satisfies the
following conditions:

(1) If x;R;; = 0, then x;; = 0 (i # j);

(2) Ifx”iRn =0 or ng]Xu =0, then X11 = 0;
(3) Ifmlzxzz =0 or .X'22€.R21 =0, then X2 = 0;
4) Ifze€ Z(R) with z # 0, then zZR = R.

Let © : R — R be a multiplicative Lie derivation of R. Then D is the form 6 + 1, where ¢ is an
additive derivation of ‘R and t is a mapping from R into the commutative center Z(R), which
maps commutators into the zero if and only if

(a) esz(‘ﬁu)ez - Z(ER)EL
(b) elﬁ)(‘ﬁzz)el g Z(ﬂi)el
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Inspired by the aforementioned results, we are planning to extend Theorem 1.4 to an arbitrary
mulitplicative Lie-type derivations in Section 2. In Section 3, we give the characterization of
multiplicative Lie-type derivations on alternative rings and study the structure of multiplicative
Lie-type derivations on alternative rings, which can be considered as a natural generalization of
Theorem 1.5.

2. Almost additivity of multiplicative Lie-type derivations
We shall prove as follows the first main result of this article.

Theorem 2.1. Let R be an alternative ring with nontrivial idempotent e,, Z(R) be the commuta-
tive center of R and D be a multiplicative Lie-type derivation of R. Suppose that R satisfies the fol-
lowing conditions:

(i)  If [a11 + a2, R1z) = 0, then aj + axn € Z(N),
(ii) If [tlu + dzz,%ﬂ] =0, then a;; +ax € Z(‘.R)

Then D is almost additive.

As our goal is to generalize the result obtained in [13], the following Lemmas are generaliza-
tions of Lemmas that appear in [13]. The hypotheses of the following lemmas are the same as
Theorem 2.1.

It is easy to see that D(0) = 0.

Lemma 2.2. For any ay € Ry, by € Ry, with i # j there exist z,,,p,; € Z(R) such that, D(a;; +
b,]) = :D(au)-l- D(bU) + Zu”,bij.

Proof. We only prove the case of i=1, j=2 because the demonstration of the other cases is
rather similar by using the condition (i) of the Theorem 2.1. Let us set t = D(aj; + b1z) —
D(a1) — D(b12). Then we get p,(t, ey, ...,e;) = 0, which is due to the fact

D(pu(an + bz, e1,...e1)) = b((—l)nﬂblz)
= D(pn(all>ela-~') el))
+ D(pn(blz,el,...,el)).

In view of the definition of ©, we have (—1)”“1‘12 + t,1 = 0. Now we will use the condition (ii)
of the Theorem 2.1. For any ¢;; € Ry;, we know that

@(Pn(all + blZ)Czl,el,...,el)) = D(—Cna”)
= D(pn(ai, a1, e15....1))
+D(Pn(blz,cﬂ,el,...,el)),

Now using the definition of © and D(0) = 0, we obtain [t1; + f, c21] = pu(t, 21, €1, ..., €1) = 0.
Therefore by condition (ii) of the Theorem 2.1 we have t;;+1t; € Z(R). And hence
D(an + biz) = D(an) + D(b1a) + zayy, by, - O
Lemma 2.3. For any aj; € Ry, and by € Ry, we have D(ar + byy) = D(ann) + D(bay).

Proof. First, observe that (—1)n+1a12 + by = puler +an,e; — by,ey,....ep) for all ap € Ry, and
ba1 € Ry1. By invoking Lemma 2.2, we arrive at



COMMUNICATIONS IN ALGEBRA® 5

b((—l)nﬂalz + by1) = D(pa(er + anz,er — barser,..51))
= pn(D(ey + an),e1 — bay,eq,...e1)
+ puler + aw, D(er — bar), e1,...61)
+ g pn(er + an, er — bar,er, ..., D(er), ... e1)

i=3

= D(palen, e e, e1))

+ D(pu(er, — barse1,...€1))

+ D(pn(arz, er, €1, ....€1))

+ D(pu(arz, — bar,e1,..0€1))

= D((-1)""an) + D(bn).
In the case of n is odd, then D(—aj; + ba1) = D(—arz) + D(ba1). However, this clearly implies
that D(ay; + by1) = D(an) + D(byn). .
Lemma 2.4. For any aj, b; € Ry; with i # j, we have D(aij + b,»j) = D(‘lij) + Q(bij)-

Proof. Here we shall only prove the case i=2, j=1 because the proofs of the other cases are
similar. Note that xl-zj =0, for all x;; € R;(i,j = 1,2; i # j). Thus we have
an + by + 2(—1)n+1021521 = pn(er + az,e1 — bar, €1, .. €1).
Now making use of Lemmas 2.2 and 2.3 we get
D(az + ba) + D(2(—1)"azbar) = D(ags + bar +2(—1)"az bar)

= D(pn(e; + az1,e1 — bay, ey, ...e1))

= pu(D(e1 + a21),e1 — bars €1, ... 1)

+ puler + a21, D(ey — bay), ey, ..., €1)

m:

+ n(er + axi,e1 — boys e, ..., D(er), ... er)

i=3
Pn(D(er) + D(az), e1 — barsen,...oe1)
puler + ax, D(er) + D(—by),e1....,e1)

n

+

pnler + ax,e; — bayser, ... D(er), ... e1)

+

w

b(pn(el)el) ...,61)) + D(p,,(el, — by, e, ._.el))
+ D(pn(az, e, e1, -5 €1))

+ D(pulan, — bas,ei,..e1))

= D(az) + D(ba) + D((—=1)""2ayb1).

For the case i=1, j=2, we only need to use
(—1)n+1(6112 + b12) + 2a12b1; = pu(er + ai, er — bip,er5..€1)
together with Lemmas 2.2 and 2.3. 0
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Lemma 2.5. For any a;, b; € Ry, i=1, 2, there exists a z,_p, € Z(R) such that
E(aii —+ bii) = @(a,‘i) + D(b,,) + Za;, by

Proof. Let us set t = D(a; + bi;) — D(ai) — D(bi). On the one hand,
0 = D(0)
= D(pn(aii + bi, 1, ...,€1))
= Pa(D(@i + bi)sers oner) + an(aii + bier, ... D(er), ... e1).

p)
On the other hand,
0=D(0) + D(0)
= D(pn(aii, e1,....e1)) + D(pu(bie1, ... e1))
= pu(D(ai) + D(bi), e1,....e1) + zn:pn(aii + biser, ... D(er), ..., eq).

i=2

This implies that p,(t,e,....e;) =0. That is t;; =t,; = 0. For any ¢; € Ry, with i#j, by
Lemma 2.4, we obtain

D((—1)" (a5 + bii)cij) = D((—l)”“aiicij) + D((_l)"ﬂbﬁcij)
= E(.pn(cija dii, €1, --->31))
+ D(pu(cij» biis €1, ..., €1))
= pu(D(cyj), aii + bis, €1, ..., e1)
+Pn(clj’ D(aii) + @(bii), ey, ~-->el)
+ ) pulcsn @i + bier, oo Dler), o).

i=3
Now we also have,
D((-1)" (a; + bii)cii) = D(pa(cij» aii + biis €1, ... e1))

= Pn(D(Cij)a a;i; + by e1, ..., e1)
+pn(cija D(d,‘,‘ + bii), [T 61)

+ Zp,,(c,-j, ai;i + bi, e, ... D(er), ... e1).
i=3

Hence p,(cjj,t,e1,...,e1) = 0. This give [t;1 + t,c;] = 0 for all ¢;; € Ry; with i # j. By the condi-
tions of Theorem 2.1, we get t; + tp € Z(R). Therefore, D(a; + by) = D(a;) + D(by)+
Za;, by O

Lemma 2.6. For any aj; € Ry, b1y € Rz, o1 € Rat, don € Ry, there exists a zq,,, by, 00, dn € Z(R)
such that

D(ay + bz + ca1 +dn) = D(an) + D(b12) + D(ca1) + D(d2) + Zay,, b1y, o1, oy -
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PY’OOf. Let us write t = @(all + blz “+ 1 + dzz) — D(au) - @(blz) — D(Cz]) — b(dzz) By the
definition of D and Lemma 2.3 we know that p,(t, e}, ....,e;) = 0. Indeed,

pu(tsers...er) = pu(D(an + by + 1 + day) — D(aw)
— D(b1z) — D(ca1) — D(dn), €1, ..., 1)
= pn(D(an + bz + ca1 + daz)s €1, ..e1) — pu(D(anr), €15 ..., €1)
— pu(D(b12), 1, ..ne1) — pu(D(ca1), €1, o €1) — Pu(D(dna), €1, ..., €1)
=D(pu(an + b1 + a1 +dn.e1,....€1))
— an(au + b1y + o +dnser, ... D(er), ..e1)

i=2

— {b(pn(all,el, ...,61)) — an(au,el, ey @(61), ...,61)}

i=2

D(pn(bia.e1,....€1)) — ip,,(bu,el, . D(er), ...,el)}

i=2

— {D(p,,(cn,el, wner)) — zn:pn(cn,el, . D(er),....e1)

D(pn(dzz,el, ...,61)) — an(dzz,el, ...,@(el), ...,61)}

i=2

=D((—=1)"bi + 1) — D((=1)""b1) — D(car)
0

As pu(t,er,....,e1) =0, we conclude that (_1)n+1t12 + f; = 0. Now for all x;, € Ry, by Lemmas
2.3 and 2.4 we get

Pn(D(an + biz + c21 + da)> X125 €15 -5 €1)
+ pu(an + bz + 21 + doa, D(x12), €15 .. €1)

n
+ E pn(ai + bia + 21 + daz, x12, €15 ..., D(er), ..., €1)

i=3

= D(pu(an + bz + 21 + dz, X125 €15 ..., 1))

= D((=1)"Mx12dpy + (—1)"ayx12 + (—1)"brox12)

= D((—=1)" M x12dsy + (—1)"anx12) + D((—1)"b1ox1)

= D((—1)"x12ds2) + D((—1)"anx12) + D((—1)"brox1z)
= D(pu(an, x12, €1, ... 1)) + D(pn(br2, X12, €1, ... €1))

+ D(pu(ca1> X12, €15 .. €1)) + D(pn(daz, x12, €1, .., €1))

= pa(D(an) + D(b12) + D(ca1) + D(dn), x12, €15 ..., €1)

+ pu(ain + biz + c21 + doa, D(x12), €45 ... €1)

+ ) pulan + b + ca + dyg, 312, €1, .., D(e1), or 1),

i=3

We therefore have pn(ﬁ(a” + b12 “+ ¢ + dzz),xlz, €1, ...,61) = pn(D(all) + D(blz) + S(CZI) +
D(da), X12, €1, ....€1). That is, [t + taz, x12] = pu(t, x12,€1,...,€1) = 0. Applying the condition (i)



8 (&) B.L MACEDO FERREIRA ET AL.

of Theorem 2.1 yields t=1t,+ 1ty € Z(ER) Thus, b(&lu + b12 “+ ¢ + dzz) = D(au) + @(blz) +
®(CZl) + @(dzz) + Zay, b, o1, das where Zay, by candiy € Z(SR)

We are ready to prove our Theorem 2.1. O

Proof of Theorem 2.1. Let a,b € R with a =ay; +app +ax + axn and b= by + by + by + b
By previous Lemmas we obtain
D(a+b) = D(an +an + ax + an + by + by + by + by)
= D((ai1 + bur) + (a2 + biz) + (az1 + bar) + (az2 + b))
= D(an + b)) + D(az + biz) + D(az + bar) + D(an + bn) + 21
= D(an) + D(bn1) + 2z + D(ar)
+ D(b12) + D(az1) + D(bar) + D(az) + D(by2)
+ 23+ 2
= (D(an1) + D(ar2) + D(a21) + D(az)) + (D(bu1)
+ D(b12) + D(b21) + D(b22))
+(z1+ 2+ 2z3)
= D(an + aiz + az + ax) — z4 + D(bu
+ b2+ by +by) — 25 + (21 + 22+ 23)
=D(a)+Db)+ (51 + 22+ 23 — 24 — 25)
=D(a) + D(b) + z4p.

This finishes the proof of Theorem 2.1.

Corollary 2.7. Let R be an alternative ring. Suppose that R is a ring containing a nontrivial idem-
potent e; which satisfies:

(1) If [an + tlzz,%lz] =0, then apn +ay € Z(‘.R),
(ii) If [au + 022,9{21] =0, then a;; +ax € Z(ﬂ?)

Then every Lie 3-derivation © of R into itself is almost additive.

Corollary 2.8. Let R be a 3-torsion free prime alternative ring. Suppose that R is an alternative
ring containing a nontrivial idempotent e;. Then every Lie 3-derivation © of R into itself is
almost additive.

Proof. In [13] the authors showed that any prime alternative ring satisfies the conditions of the
Theorem 2.1. Hence the result holds true for n=3. |

3. Characterization of Lie-type derivations on alternative rings

In this section, we will characterize multiplicative Lie-type derivations on alternative rings and
provide an essential structure theorem for multiplicative Lie-type derivations. Henceforth, let R
be a {2,3,(n — 1), (n — 3)}-torsion free alternative ring satisfying the following conditions:

(1) If x,]‘.R], =0, then Xij = 0 (l 75]),

(2) If xn‘ﬁlz =0 or m21x11 =0, then X11 — 0,
(3) If muxzz =0 or szmn =0, then X2 = 0,
(4) Ifze Z with z# 0, then zR = R.

We refer the reader to [9] about the proofs of the following propositions.
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Proposition 3.1. Any prime alternative ring satisfies conditions (1), (2), (3).

Proposition 3.2. Let R be a 2, 3-torsion free alternative ring satisfying the conditions (1), (2),
and (3).

(M) If [an1 + a2, R12] = 0, then ay; + an € Z(R),
() If [a11 + a2, Ra1] = 0, then ay; + an € Z(NR).

Proposition 3.3. If Z(R;) = {a € Ry | [a,Ry] = 0}, then Z(R;;) C Ry + Z(N) with i # j.
The main result in this section reads as follows.

Theorem 3.4. Let R be a unital {2,3,n — 1,n — 3}-torsion free alternative ring with nontrivial
idempotents e, e, and with associated Peirce decomposition R = Ry; @ Riz & Ry @ Ry, Suppose
that R satisfies the following conditions:

(1) Ifx3R;; = 0, then xij =0 (i #j);

(2) Ifxu‘Rlz =0 or ‘Rzlxu =0, then X11 = 0;
(3) Ifmlzsz =0 or .X'zzg.Rﬂ =0, then X2 = 0;
4) Ifze Z(R) with z# 0, then zZR = N.

Let ©: R — R be a multiplicative Lie-type derivation of R. Then D is the form 6 + 1, where ¢ is
an additive derivation of R and t is a mapping from R into the commutative center Z(R), such
that ©(p, (a1, az, ....a,)) = 0 for all ay,ay, ...,a, € R if and only if

(a) 923(9{11) (9{)62,
(b) 613(9{22) (m)eb

ezgz
61§Z

The following Lemmas have the same hypotheses of Theorem 3.4 and we need these Lemmas
for the proof of the first part this Theorem.

First, assume that the multiplicative Lie-type derivation D : R — R satisfies the conditions (a),
(b), and (c). Let e; be a nontrivial idempotent of R. We start with the following lemma.

Lemma 3.5. D(e;) — f,,z(e1) € Z(R), with y = D(e1),, + D(e1),, z=e; where f, . :=[L,,L;] +
[Ly,R;] + [R), R;| and L, R are left and right multiplication operators, respectively.

Proof. In the case of n is even, we have

D(1112) = b(pn(elaalz’ebm;el))
= p,,(el, D(dlz), €15 .ees 61) + E pn(el, a12,€15 ..y @(61), ceey el)
i=2
= —a12©<61)61 + elﬁ(el)alz — alsz(el) + el®(a12) — D(ulz)el

n
+ an(el)QIZ) €15 .05 D(el)) (EE] el)~
i=3

Multiplying the left and right sides in the above equation by e; and e,, respectively, we obtain
613(012)62 = elb(el)au — 0123(61)62 —+ eID(alz)ez

321" [Dler)y + Dler) ]
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This implies
—(n—3) [3(61)11 + D(61)22"112} +2D(e1) 012 =0

for all a;, € Ry, In light of condition (M) of Proposition 3.2, we assert that D(e;),;+D(e1),, € Z(RN).
Taking y="D(e;),,+D(e1),, and z = e; we see that D(e;) —f,,-(e1)=D(e1);; +D(e1) € Z(R).
In the case of n is odd, we get

3(!112) = D(pn(albel, -.-,61))
= pu(D(an)e1,.er) + > _pulanser,... Dler), .. er)
i=2
= D(alz)el — 2613(012)61 + 61@((112)

+ E pu(ai, er, ... D(er),....e1).
i—2

Multiplying the left and right sides in the above equation by e; and e,, respectively, we arrive at

n

e1D(a)e; = e1D(an)e; + Zelpn(an»el, . D(er),...e1)e

i=2

= e1D(an)e; — (1 —1)[D(e1),; + Dler) ar2).

This gives that (n—1)[D(e1);, + D(e1),ya12] =0 for all a;; € Ry,. By condition (#) of
Proposition 3.2 we conclude that D(e;),; + D(e1),, € Z(R). Taking y = D(ey);, + D(ey),, and z
= e; again, we see that D(e;) — f,,.(e1) = D(e1),; + D(e1),, € Z(R). O

Let us continue our discussions. It is worth noting that f, , := [L,, L;] + [L,,R;] + [R),R;] is a der-
ivation. According to [27, p. 77], we without loss of generality may assume that D(e;) € Z(R).

Remark 3.1. If D(e;) € Z(R), then D(ey) € Z(N). Indeed, since
0= D(pn(ez, €1, ...,61)

= pn(D(ez), [T 61) + an(ez, [T D(el), ooy el)
i=2

:pn(b(ez),el,...,el)
= D(ey)er — e D(ey)er + (—1)"e1D(ex)er + (—1)" ey D(ey),

we know that e;D(e;)e; = e,D(e2)e; = 0. When n is even, for any a;; € Ry,, we have

D(az1) = D(pules, az1, 3., €2))
= pn<®(€2>, a215€2;5 ...» 62) +pn(€2, @(an), €2y ey €2>

n
+ E pn<62) a215 €25 ..+ b(ez), EEEH) 62)
i=3

= —(=1)"*anD(e2);, + (~1)" " D(ez) pan

+e,D(a21) — D(az1)ex

—(n—2) [9(62)11 + D(e2) “21}

=—(n—-1) [D(ez)” + D(ez)zz,au} + e;D(az) — D(ax)er.
Multiplying by e, and e; from the left and right sides in the above equation, respectively, we
arrive at —(n — 1)[D(ez);; + D(e2),,>a21] = 0 for all ay; € Ry;. This gives

[D(e2);; + D(e2)yr 1] = 0
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for all a,; € Ry, since the characteristic of R is not n— 1. By condition (&) of Proposition 3.2 it
follows that D(e;) = D(ez),, + D(ez),, € Z(R). Now if n is odd, then we have

@(021) = D(pn(aZb €. 62))

pn(D(am), [ T 62) + an(am, [T D(EZ), cees 62)

i=2
= —262@(d21)€2 =+ ezb(am) + D(d21)€2
—(n—1) [3(32)11 + D(eZ)w“Zl]'

Multiplying by e, and e; from the left and right sides in the above equation, respectively, we
obtain the same result as » is even.

Lemma 3.6. @(ER,,) g ‘R,-,- + Z(‘R)(z = 1,2)

Proof. We only show the case of i=1, because the other case can be treated similarly. For each
api € Ry, with @(011) = b1 + by + by + by we get

0= D(pn(alb €1, ...61))
= pn(D(anr),er,...e1) + an(all’el’ o Dler), - en)
i=2

= pa(D(an), e, ....e1).
It follows from this that by, = by, = 0. By condition () of Theorem 3.4 we know that
D(an) = b +exD(an)es = by +ze; = by —eiz+z € Ry + Z(R).

Lemma 3.7. D is an almost additive mapping. That is, for any a,b € R, D(a+b) — D(a) —
D(b) € ZR).

Proof. Since R is an alternative ring satisfying the conditions (1), (2), and (3), R satisfies condi-
tions (M) and (&) by Proposition 3.2. Now using Theorem 2.1 we get D as an almost additive

mapping. O
Now let us define the mappings ¢ and 7. By the item (c) of Theorem 3.4 and Lemma 3.6 we have

(A) if aij € ‘R,J,z 75_], then D(a,-j) = sz S iR,j,
(B) if a; € Ry, then D(a;) = by + z,b;; € Ry, where z is a central element.

It should be remarked that b; and z in (B) are uniquely determined, Indeed, if D(a;) =
b, + 2,V € Ry,Z € Z(R). Then b; — b); € Z(N). Taking into account the conditions (2) and
(3), we assert that b; = b/, and z = z’. Now let us define a mapping J of R according to the rule
0(aij) = by, a;j € Ry;. For each a = ayy + ap + az + ax € R, we define 6(a) =) d(a;). And a
mapping 7 of R into Z(R) is then defined by

7(a) = D(a —d(a)
= (0(a11) + 6(a12) + 6(az) + 6(az))
— (b1 + b2 + by + ba)
— (D(an) — zay + D(ar2) + D(az) + D(a22) — 2a,,)
— (D(an) + D(an) + D(az) + D(az) — (za, + Zay))
— (D(an) + D(ar2) + D(az1) + D(az)).

We need to show that ¢ and 7 are the desired mappings.
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Lemma 3.8. ¢ is an additive mapping.

Proof. We only need to prove that ¢ is an additive mapping on R;. Let us choose any
aii, bii € Ry,
O(aii + bit) — 6(ai) — 0(bi) = D(ai + bit) — t(ai + bir) — D(ai) + t(ai)
— D(b,,) + T(bii)~
ThUS, 5(611‘1‘ + bii) - 5(61,‘,‘) — 5(19”) (S Z(ER) n ER,‘,‘ = {0} O
Let us next show that d(ab) = d(a)b + ad(b) for all a,b € R.

Lemma 3.9. For any aj;, by € Ry, ayj, bij € Nyj, bji € Rj; and by € Ry; with i # j, we have

Q

D Aii bl] + aii

o(aiiby) = o(ai) 6(byj)
D) d(a;b;) = 6(ay)bj + a;;0(by),
(IH) 5(aiibii) = 5(5111)1711 + aii (bn))
V) o(ayby) = 6(a;)by + a;o(by),
(V) S(aybji) = d(aj)bji + a;;6(bji)-

Proof. Let us begin with (I)
0(aiib;;) = D(aiibyj)
= D(pulai by €. ¢;)
= pu(D(aii), bijs €js ..., €j) + pu(aiis D(byj), ), ...€))
= Pu(0(aii); bij> €)> ... &) + Pu(aii> 0(byj); €, ... €))
= 0(ai;)bij + a;i6(bjj).
Let us see (II)
d(a;iby;) = D(ayby)
= D(pu(ai bjj, €5 ..., €))
= pu(D(aii), bijs &), ..., €;) + pu(aii» D(bjj), €js .., €))
= pu(0(aii), bijs €js ..., €j) + pu(aii 6(bij), €)s ..., €)
= o(ay)bjj + a;0(by)-
We next show (III). By linearization of flexible identity and (I) we get
O((aibir)ryj) = 6(aibii)rj + (aiibii) 6 (ry).
On the other hand,
O(aii(biirj)) = 6(air)birij + aid(biry) = (i) biirij + ai(6(bii)ri + biid(ry)).
Considering the facts (a;ib;i)rj = a;i(birij) and (a;bi)d(rj) = a;i(biid(r;j)), we obtain
(0(aiibii) — 0(ai;)bii — a;i6(bii))rij = 0

for all rij € SR,J And hence 5(01'1'191'1') = 5(aii)b,-,- + aiié(bii)-
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Let us prove (IV).
20(ajibj) = 6(2a;b;;) = D(2a;;b;j)
= D(pa(ai, bijs €5 ..., ) = pa(D(ay), bij, i, ..., €;)
+ pa(aij D(byj), ejs ..., €;)
= pn(8(aij), bijs €is ... &) + pu(aij» 6(bij), €5 ... &)
= 0(a;j)bij — bio(aij) + a;jo(bij) — 6(bj)a;
= 2(0(aj)bi; + a;j0(by)).
Since R is 2-torsion free, we see that d(a;b;) = d(a;j)b; + a;;0(b;). And finally we show (V). We
get
T(pu(aijs bjis Cij» €js .-, €))) = D(pn(aijs bji» Cijs €j» ---» €;))
— 0(pul(aij bjis cijs €5 ..., €)))
= pu(D(ay), bjis cijs €js .-.» €)) + pnlaij D(bji), cij» €js ..., €))
+ pu(aij bji» (cij), €j» ... €;) — 0((aijbji)cij — cij(bjiaj))
= pu(0(aij), bjis Cij» €js -.» €)) + pnu(aij (bji), cij» €js -, €))
+ pa(ais bji, 6(cij)s €js ..o ) — 0((asibji)cij) — 6(cij(bjiay))
= (6(ay)bji)cij + cij(bjid(ay)) + (a;0(bji))eij + cij(0(bji)ay) + (aibji)o(cij)
+ 0(cij) (aibji) — 0(ajjbji)cij — (abji)0(cij) — 0(cij) (bji)a;) — c;jo(basj)
= [(0(ay)bji) + a;0(b;i) — (abyi)) + (3(bjay) — d(bji)az — bjid(ay)), ci]-
Since R;NZ ={0}, we know that [(0(a;)b;)+ a;jo(bj) — o(a;bji)) + (0(bjiai) — o(bji)aj —
bjié(aij)), cij) = 0 for all ¢c;; € R;;. By Proposition 3.2 it follows that
[0(ai)bji + a;j0(bji) — d(abji)| + [0(bjiai) — d(bji)ay — bid(ay)] =z € Z(R).
If z=0, then J(a;;b;;) = 6(aij)bji + a;o(bji). If z # 0, we multiply by a; and get
a;io(bjiai) — a;i0(bji)ai; — a;j(bjio(ay)) = ajz.
By (II) we have
o(aibjiaij) — 6(aij)(bjiaij) — ad(bji)a; — a;j(bjid(a;)) = ajz.
Now we see that d(ajbja;) = (a;)(bjiaij) + a;0(bji)aij + a;j(bjid(a;)). Indeed, note that
pu(aij bjis ais €, ..., ) = 2a;bja;;. Thus
20(ajbjia;;) = 0(2a;bjia;)
= D(pa(aij, bji» aijs €}, ..., €j))
= pu(D(ay), bji, aijs €js ..., €j) + pn(aij, D(bji), aij» €, ..., €))
+ pa(aij, bji» ©(ajj), €, ..., €))
= pu(0(ayj), bji, aijs €, ..., €j) + pu(aij 0(bji), as €, ..., €;)
+ pu(aij bji 0(aj), €, ... €))
= (0(ayj)bji)ai + aij(bjid(a;)) + 2a;0(bji)a;;
+ (a;b;i)0(ay) + 0(ay) (bjiay)
= 5(aij)(b]lal]) (“t] ]z) (a,]) + a,]( (alj)) =+ at‘j(bjié(aij))
+ 2a;0(bji)a; + (a;b;i)d(ay) + 6(a;) (bias;)
= 2(0(ayj) (bjiaij) + a;i0(bji)ai; + a;j(bjid(ay))).
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Applying the fact that R is 2-torsion free yields that

5(a,]bj,a,1) = 5(a,])(b],a,1) + aljé(bﬂ)a,] + al](b],é(a,]))
So a;iz = 0. But, by (4) there exist h € R such that zh = e; + e; hence a; = 0, which is a contra-
diction. Therefore 6(a;b;i) = 6(a;;)bji + a;0(bj;). 0

Lemma 3.10. 6 is a derivation.

Proof. For any a,b € R, we have

o(ab) = 6((an1 + arz + a21 + a2) (b1 + biz + bar + b22))
= d(anbi) + 6(anbiz) + 6(anzb2) + d(annbar) + 0(abs,)
+ 0(azbir) + 6(azbiz) + 0(az bar) + 6(aznby) + 0(axnbxn)
= d(a)b+ ao(b)

by Lemmas 3.8 and 3.9. |
Lemma 3.11. 7 sends the commutators into zero.

Proof. For any ay, ay, ...,a, € R, we get

(pular, az, ..an)) = D(pn(ar, az, ..., an)) — 0(pn(ar, az, ..., a,))

n
= pulan, az, .. @11, D(@1), i1 o0r @n) — S(pa(ar, aa, .., )
i=1

n

= E pn(al)aZ) e i1, 5(ai))ai+la ceey an) - 5(Pn(a1)a2> (R3] al’l))
i=1

=0.

Let us now assume that © : R — R is a Lie-type derivation of the form © = 6 4 7, where J is
a derivation of R and 7 is a mapping from R into its commutative center Z(R), such that
(pa(ar, az, ..., a,)) = 0 for all ay,ay, ...,a, € R. Then for any a;; € Ry;, we see that
e, D(ay1)e; = e;0(anr)ex + ext(an)es
= 625(616111)62 + 62’5(6111)62
62(5(61 an + 615(011))62 + 627,'(011)62
= ex(0(e
(

(e20(e

)
1)an)ex + ex(e;d(an))ex + ext(an e
))(a11e2) + (ezer)(0(anr)ez) + ext(an ez
62‘5((111)62 S Z( )

Now
e1D(axn)er = e1d(axn)er + ert(an)e
O(exax)er + ert(an)e
e1(0(ez)az + e0(ax))er + ert(axn)e
= e(d(ez)an)er +ei(e2d(an))er + e1t(axn)e
= (e10(e2))(axze1) + (ere2)(d(ax)er) + ert(az)er
=et(an)e; € Z(R)e

for all a,, € Ry,. Furthermore,
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D(ay) = (6 +1)(ay) = 3(pa(ay - €)) + 1(Pn(agn €y . e;))
= pu(d(ay), ¢, ... ) € Ry;.
This shows the items (a), (b), (c) and the proof of the Theorem 3.4 is complete.

Corollary 3.12. Let ‘R be an unital prime alternative ring with nontrivial idempotent satisfying (4)
and D : R — R be a multiplicative Lie-type derivation. Then D is the form of 6 + t, where 0 is a
derivation of R and t is a mapping from R into its commutative center Z(R), such that
(pn(ar, a2, ...,a,)) = 0 for all ay,ay, ...,a, € R if and only if

(a) 629(9{11) (m)eb
(b) 6179(9{22) (m)eb
(c) D(‘.R,-j) - ‘R,»j,l < i;éj < 2.

eZQZ
eIQZ

Let us end our work with a direct application to simple alternative rings.

Corollary 3.13. Let R be an unital simple alternative ring with nontrivial idempotent and D :
R — R be a multiplicative Lie-type derivation. Then D is the form 6 + 1, where J is a derivation
of R and t is a mapping from R into its commutative center Z(R), such that t(p,(a;,
A, ...,a,)) = 0 for all ay,a,, ...,a, € N if and only if

(a) 623(9{11)62 )62,
(b) 613(9{22)@1 )61,
(c) D(‘.Rij) - ‘R,-j,l <i#j<2.

CZ®
CZ®
Proof. Tt is enough to remark that every simple ring is prime and Z(‘R) is a field. O
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