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ABSTRACT
Let R be an alternative ring containing a nontrivial idempotent and D be
a multiplicative Lie-type derivation from R into itself. Under certain
assumptions on R, we prove that D is almost additive. Let pnðx1, x2, :::, xnÞ
be the ðn� 1Þ-th commutator defined by n indeterminates x1, :::, xn: If R is
a unital alternative ring with a nontrivial idempotent and is f2, 3,
n� 1, n� 3g-torsion free, it is shown under certain condition of R and D
that D ¼ dþ s, where d is a derivation and s : R ! ZðRÞ such that
sðpnða1, :::, anÞÞ ¼ 0 for all a1, :::, an 2 R:

ARTICLE HISTORY
Received 5 March 2020
Communicated by Alberto
Elduque

KEYWORDS
Additivity; alternative ring;
multiplicative Lie-type
derivation; prime
alternative rings

AMS
17A36; 17D05

1. Introduction and preliminaries

Let A be an associative ring. We define the Lie product ½x, y� :¼ xy� yx and Jordan product x � y :¼
xyþ yx for all x, y 2 A: Then ðA, ½, �Þ becomes a Lie algebra and ðA, �Þ is a Jordan algebra. It is a
fascinating topic to study the connection between the associative, Lie, and Jordan structures on A:

In this field, two classes of mappings are of crucial importance. One of them consists of mappings,
preserving a type of product, for example, Jordan homomorphisms and Lie homomorphisms. The
other one is formed by differential operators, satisfying a type of Leibniz formulas, such as Jordan
derivations and Lie derivations. In the AMS Hour Talk of 1961, Herstein proposed many problems
concerning the structure of Jordan and Lie mappings in associative simple and prime rings [17].
Roughly speaking, he conjectured that these mappings are all of the proper or standard forms. The
renowned Herstein’s Lie-type mapping research program was formulated since then. Martindale [25]
gave a major force in this program under the assumption that the rings contain some nontrivial
idempotents. The first idempotent-free result on Lie-type mappings was obtained by Bre�sar [4].
Recently, several new articles have also studied the additivity of maps that maintain new products
and derivable maps about new products among them we can mention references [22–24, 29, 30].
Also the structures of derivations, Jordan derivations, and Lie derivations on (non-)associative rings
were studied systematically by many people (cf. [1–4, 5–7, 9–15, 17–21, 25, 28, 31]). It is obvious
that every derivation is a Lie derivation. But the converse is in general not true. A basic question
toward Lie derivations of the associative algebras is that whether they can be decomposed into the
sum of a derivation and a central-valued mapping, see [1–4, 15, 20, 21, 25] and references therein.
In this article, we will address the structure of Lie derivations without additivity on alternative rings.
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Let R and R0 be two rings (not necessarily associative) and u : R ! R0 be a mapping, we call
u is additive if uðaþ bÞ ¼ uðaÞ þ uðbÞ, almost additive if uðaþ bÞ � uðaÞ � uðbÞ 2 ZðRÞ,
multiplicative if uðabÞ ¼ uðaÞuðbÞ, for all a, b 2 R: Let R be a ring with commutative center
ZðRÞ and x1, x2½ � ¼ x1x2 � x2x1 denote the usual Lie product of x1 and x2. Let us define the fol-
lowing sequence of polynomials:

p1ðxÞ ¼ x and pnðx1, x2, :::, xnÞ ¼ pn�1ðx1, x2, :::, xn�1Þ, xn
� �

for all integers n � 2: Thus, p2ðx1, x2Þ ¼ ½x1, x2�, p3ðx1, x2, x3Þ ¼ ½½x1, x2�, x3�, etc. Let n � 2 be an
integer. A mapping (not necessarily additive) D : R ! R is called a multiplicative Lie
n-derivation if

Dðpnðx1, x2, :::, xnÞÞ ¼
Xn
i¼1

pnðx1, x2, :::, xi�1,DðxiÞ, xiþ1, :::, xnÞ: (1)

Lie n-derivations were introduced by Abdullaev [1], where the form of Lie n-derivations of a cer-
tain von Neumann algebra was described. According to the definition, each multiplicative Lie
derivation is a multiplicative Lie 2-derivation and each multiplicative Lie triple derivation is a
multiplicative Lie 3-derivation. Fo�sner et al. [15] showed that every multiplicative Lie n-derivation
from an associative algebra A into itself is a multiplicative Lie ðnþ kðn� 1ÞÞ-derivation for each
k 2 N0: Multiplicative Lie 2-derivations, Lie 3-derivations, and Lie n-derivations are collectively
referred to as multiplicative Lie-type derivations.

A ring R is said to be alternative if ðx, x, yÞ ¼ 0 ¼ ðy, x, xÞ for all x, y 2 R, and flexible if
ðx, y, xÞ ¼ 0 for all x, y 2 R, where ðx, y, zÞ ¼ ðxyÞz � xðyzÞ is the associator of x, y, z 2 R: It is
known that alternative rings are flexible. An alternative ring R is called k-torsion free if k x ¼ 0
implies x ¼ 0, for any x 2 R, where k 2 Z, k > 0, and prime if AB 6¼ 0 for any two nonzero
ideals A,B � R: The nucleus NðRÞ and the commutative center ZðRÞ are defined by:

NðRÞ ¼ fr 2 R j ðx, y, rÞ ¼ 0 ¼ ðx, r, yÞ ¼ ðr, x, yÞ for all x, y 2 Rg and
ZðRÞ ¼ fr 2 R j ½r, x� ¼ 0 for all x 2 Rg:

By [8, Theorem 1.1] we have the following.

Theorem 1.1. Let R be a 3-torsion free alternative ring. So R is a prime ring if and only if aR �
b ¼ 0 (or a �Rb ¼ 0) implies that a¼ 0 or b¼ 0 for a, b 2 R:

A nonzero element e1 2 R is called an idempotent if e21 ¼ e1 and the idempotent e1 is a nontrivial
idempotent if e1 is not the multiplicative identity element of R: Let us consider R an alternative ring
and fix a nontrivial idempotent e1 2 R: Let e2 : R ! R and e02 : R ! R be linear operators given by

e2ðaÞ ¼ a� e1a and e02ðaÞ ¼ a� ae1: Clearly, e22 ¼ e2 � e2 ¼ e2, ðe02Þ2 ¼ e02: Note that if R has a
unity, then e2 ¼ 1� e1 2 R: Let us denote e2ðaÞ by e2a and e02ðaÞ by ae2. It is easy to see that eia �
ej ¼ ei � aej ði, j ¼ 1, 2Þ for all a 2 R: By [16] we know that R has a Peirce decomposition

R ¼ R11 �R12 �R21 � R22,

where Rij ¼ eiRej ði, j ¼ 1, 2Þ, satisfying the following multiplicative relations:

(i) RijRjl � Rilði, j, l ¼ 1, 2Þ;
(ii) RijRij � Rjiði, j ¼ 1, 2Þ;
(iii) RijRkl ¼ 0, if j 6¼ k and ði, jÞ 6¼ ðk, lÞ, ði, j, k, l ¼ 1, 2Þ;
(iv) x2ij ¼ 0, for all xij 2 Rijði, j ¼ 1, 2; i 6¼ jÞ:

The first result about the additivity of mappings on rings was given by Martindale [26], he
established a condition on a ring R such that every multiplicative isomorphism on R is additive.
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In [20, 21], Li and his coauthors also considered the almost additivity of maps for the case of Lie
multiplicative mappings and Lie 3-derivation on associative rings. They proved the following.

Theorem 1.2. Let R be an associative ring containing a nontrivial idempotent e1 and satisfying the
following condition: ðQÞ If A11B12 ¼ B12A22 for all B12 2 R12, then A11 þ A22 2 ZðRÞ. Let R0 be
another ring. Suppose that a bijection map U : R ! R0 satisfies

Uð A,B½ �Þ ¼ UðAÞ,UðBÞ½ �
for all A,B 2 R. Then UðAþ BÞ ¼ UðAÞ þ UðBÞ þ Z0

A,B for all A,B 2 R, where Z0
A,B is an element

in the commutative center ZðR0Þ of R0 depending on A and B.

Theorem 1.3. Let R be an associative ring containing a nontrivial idempotent e1 and satisfying the
following condition: ðQÞ If A11B12 ¼ B12A22 for all B12 2 R12, then A11 þ A22 2 ZðRÞ. Suppose
that a mapping d : R ! R satisfies

dð A,B½ �,C½ �Þ ¼ dðAÞ,B½ �,C½ � þ A, dðBÞ½ �,C½ � þ A,B½ �, dðCÞ� �
for all A,B,C 2 R. Then there exists a ZA,B (depending on A and B) in ZðRÞ such
that dðAþ BÞ ¼ dðAÞ þ dðBÞ þ ZA,B:

In [13], Ferreira and Guzzo investigated the additivity of Lie triple derivations. They obtained
the following result.

Theorem 1.4. Let R be an alternative ring. Suppose that R is a ring containing a nontrivial idem-
potent e1 which satisfies

(i) If ½a11 þ a22,R12� ¼ 0, then a11 þ a22 2 ZðRÞ,
(ii) If ½a11 þ a22,R21� ¼ 0, then a11 þ a22 2 ZðRÞ:

Then each multiplicative Lie triple derivation D of R into itself is almost additive.

In a recent article, Ferreira and Guzzo [9] studied the characterization of Lie 2-derivation on
alternative rings. They showed that

Theorem 1.5. Let R be a unital 2,3-torsion free alternative ring with nontrivial idempotents e1, e2
and with associated Peirce decomposition R ¼ R11 �R12 �R21 �R22. Suppose that R satisfies the
following conditions:

(1) If xijRji ¼ 0, then xij ¼ 0 (i 6¼ j);
(2) If x11R12 ¼ 0 or R21x11 ¼ 0, then x11 ¼ 0;
(3) If R12x22 ¼ 0 or x22R21 ¼ 0, then x22 ¼ 0;
(4) If z 2 ZðRÞ with z 6¼ 0, then zR ¼ R:

Let D : R ! R be a multiplicative Lie derivation of R. Then D is the form dþ s, where d is an
additive derivation of R and s is a mapping from R into the commutative center ZðRÞ, which
maps commutators into the zero if and only if

(a) e2DðR11Þe2 � ZðRÞe2,
(b) e1DðR22Þe1 � ZðRÞe1:
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Inspired by the aforementioned results, we are planning to extend Theorem 1.4 to an arbitrary
mulitplicative Lie-type derivations in Section 2. In Section 3, we give the characterization of
multiplicative Lie-type derivations on alternative rings and study the structure of multiplicative
Lie-type derivations on alternative rings, which can be considered as a natural generalization of
Theorem 1.5.

2. Almost additivity of multiplicative Lie-type derivations

We shall prove as follows the first main result of this article.

Theorem 2.1. Let R be an alternative ring with nontrivial idempotent e1, ZðRÞ be the commuta-
tive center of R and D be a multiplicative Lie-type derivation of R. Suppose that R satisfies the fol-
lowing conditions:

(i) If ½a11 þ a22,R12� ¼ 0, then a11 þ a22 2 ZðRÞ,
(ii) If ½a11 þ a22,R21� ¼ 0, then a11 þ a22 2 ZðRÞ:

Then D is almost additive.

As our goal is to generalize the result obtained in [13], the following Lemmas are generaliza-
tions of Lemmas that appear in [13]. The hypotheses of the following lemmas are the same as
Theorem 2.1.

It is easy to see that Dð0Þ ¼ 0:

Lemma 2.2. For any a11 2 R11, bij 2 Rij, with i 6¼ j there exist za11, bij 2 ZðRÞ such that, Dða11 þ
bijÞ ¼ Dða11Þþ DðbijÞ þ za11, bij :

Proof. We only prove the case of i¼ 1, j¼ 2 because the demonstration of the other cases is
rather similar by using the condition (i) of the Theorem 2.1. Let us set t ¼ Dða11 þ b12Þ �
Dða11Þ �Dðb12Þ: Then we get pnðt, e1, :::, e1Þ ¼ 0, which is due to the fact

Dðpnða11 þ b12, e1, :::, e1ÞÞ ¼ Dðð�1Þnþ1b12Þ
¼ Dðpnða11, e1, :::, e1ÞÞ
þDðpnðb12, e1, :::, e1ÞÞ:

In view of the definition of D, we have ð�1Þnþ1t12 þ t21 ¼ 0: Now we will use the condition (ii)
of the Theorem 2.1. For any c21 2 R21, we know that

Dðpnða11 þ b12, c21, e1, :::, e1ÞÞ ¼ Dð�c21a11Þ
¼ Dðpnða11, c21, e1, :::, e1ÞÞ
þDðpnðb12, c21, e1, :::, e1ÞÞ:

Now using the definition of D and Dð0Þ ¼ 0, we obtain ½t11 þ t22, c21� ¼ pnðt, c21, e1, :::, e1Þ ¼ 0:
Therefore by condition (ii) of the Theorem 2.1 we have t11 þ t22 2 ZðRÞ: And hence
Dða11 þ b12Þ ¼ Dða11Þ þDðb12Þ þ za11, b12 : w

Lemma 2.3. For any a12 2 R12 and b21 2 R21, we have Dða12 þ b21Þ ¼ Dða12Þ þDðb21Þ:

Proof. First, observe that ð�1Þnþ1a12 þ b21 ¼ pnðe1 þ a12, e1 � b21, e1, :::, e1Þ for all a12 2 R12 and
b21 2 R21: By invoking Lemma 2.2, we arrive at
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Dðð�1Þnþ1a12 þ b21Þ ¼ Dðpnðe1 þ a12, e1 � b21, e1, :::, e1ÞÞ
¼ pnðDðe1 þ a12Þ, e1 � b21, e1, :::, e1Þ
þ pnðe1 þ a12,Dðe1 � b21Þ, e1, :::, e1Þ

þ
Xn
i¼3

pnðe1 þ a12, e1 � b21, e1, :::,Dðe1Þ, :::, e1Þ

¼ Dðpnðe1, e1, e1, :::, e1ÞÞ
þDðpnðe1, � b21, e1, :::, e1ÞÞ
þDðpnða12, e1, e1, :::, e1ÞÞ
þDðpnða12, � b21, e1, :::, e1ÞÞ
¼ Dðð�1Þnþ1a12Þ þDðb21Þ:

In the case of n is odd, then Dð�a12 þ b21Þ ¼ Dð�a12Þ þDðb21Þ: However, this clearly implies
that Dða12 þ b21Þ ¼ Dða12Þ þDðb21Þ: w

Lemma 2.4. For any aij, bij 2 Rij with i 6¼ j, we have Dðaij þ bijÞ ¼ DðaijÞ þDðbijÞ:

Proof. Here we shall only prove the case i¼ 2, j¼ 1 because the proofs of the other cases are
similar. Note that x2ij ¼ 0, for all xij 2 Rijði, j ¼ 1, 2; i 6¼ jÞ: Thus we have

a21 þ b21 þ 2ð�1Þnþ1a21b21 ¼ pnðe1 þ a21, e1 � b21, e1, :::, e1Þ:
Now making use of Lemmas 2.2 and 2.3 we get

Dða21 þ b21Þ þDð2ð�1Þnþ1a21b21Þ ¼ Dða21 þ b21 þ 2ð�1Þnþ1a21b21Þ
¼ Dðpnðe1 þ a21, e1 � b21, e1, :::, e1ÞÞ
¼ pnðDðe1 þ a21Þ, e1 � b21, e1, :::, e1Þ
þ pnðe1 þ a21,Dðe1 � b21Þ, e1, :::, e1Þ

þ
Xn
i¼3

pnðe1 þ a21, e1 � b21, e1, :::,Dðe1Þ, :::, e1Þ

¼ pnðDðe1Þ þDða21Þ, e1 � b21, e1, :::, e1Þ
þ pnðe1 þ a21,Dðe1Þ þDð�b21Þ, e1:::, e1Þ

þ
Xn
i¼3

pnðe1 þ a21, e1 � b21, e1, :::,Dðe1Þ, :::, e1Þ

¼ Dðpnðe1, e1, :::, e1ÞÞ þDðpnðe1, � b21, e1, :::e1ÞÞ
þDðpnða21, e1, e1, :::, e1ÞÞ
þDðpnða21, � b21, e1, :::, e1ÞÞ
¼ Dða21Þ þDðb21Þ þDðð�1Þnþ12a21b21Þ:

For the case i¼ 1, j¼ 2, we only need to use

ð�1Þnþ1ða12 þ b12Þ þ 2a12b12 ¼ pnðe1 þ a12, e1 � b12, e1, :::, e1Þ
together with Lemmas 2.2 and 2.3. w
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Lemma 2.5. For any aii, bii 2 Rii, i¼ 1, 2, there exists a zaii , bii 2 ZðRÞ such that

Dðaii þ biiÞ ¼ DðaiiÞ þDðbiiÞ þ zaii , bii :

Proof. Let us set t ¼ Dðaii þ biiÞ �DðaiiÞ �DðbiiÞ: On the one hand,

0 ¼ Dð0Þ
¼ Dðpnðaii þ bii, e1, :::, e1ÞÞ

¼ pnðDðaii þ biiÞ, e1, :::, e1Þ þ
Xn
i¼2

pnðaii þ bii, e1, :::,Dðe1Þ, :::, e1Þ:

On the other hand,

0 ¼ Dð0Þ þDð0Þ
¼ Dðpnðaii, e1, :::, e1ÞÞ þDðpnðbii, e1, :::, e1ÞÞ

¼ pnðDðaiiÞ þDðbiiÞ, e1, :::, e1Þ þ
Xn
i¼2

pnðaii þ bii, e1, :::,Dðe1Þ, :::, e1Þ:

This implies that pnðt, e1, :::, e1Þ ¼ 0: That is t12 ¼ t21 ¼ 0: For any cij 2 Rij, with i 6¼ j, by
Lemma 2.4, we obtain

Dðð�1Þnþ1ðaii þ biiÞcijÞ ¼ Dðð�1Þnþ1aiicijÞ þDðð�1Þnþ1biicijÞ
¼ Dðpnðcij, aii, e1, :::, e1ÞÞ
þDðpnðcij, bii, e1, :::, e1ÞÞ
¼ pnðDðcijÞ, aii þ bii, e1, :::, e1Þ
þ pnðcij,DðaiiÞ þDðbiiÞ, e1, :::, e1Þ

þ
Xn
i¼3

pnðcij, aii þ bii, e1, :::,Dðe1Þ, :::, e1Þ:

Now we also have,

Dðð�1Þnþ1ðaii þ biiÞcijÞ ¼ Dðpnðcij, aii þ bii, e1, :::, e1ÞÞ
¼ pnðDðcijÞ, aii þ bii, e1, :::, e1Þ
þ pnðcij,Dðaii þ biiÞ, e1, :::, e1Þ

þ
Xn
i¼3

pnðcij, aii þ bii, e1, :::,Dðe1Þ, :::, e1Þ:

Hence pnðcij, t, e1, :::, e1Þ ¼ 0: This give ½t11 þ t22, cij� ¼ 0 for all cij 2 Rij with i 6¼ j: By the condi-
tions of Theorem 2.1, we get t11 þ t22 2 ZðRÞ: Therefore, Dðaii þ biiÞ ¼ DðaiiÞ þDðbiiÞþ
zaii , bii : w

Lemma 2.6. For any a11 2 R11, b12 2 R12, c21 2 R21, d22 2 R22, there exists a za11, b12, c21, d22 2 ZðRÞ
such that

Dða11 þ b12 þ c21 þ d22Þ ¼ Dða11Þ þDðb12Þ þDðc21Þ þDðd22Þ þ za11, b12, c21, d22 :
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Proof. Let us write t ¼ Dða11 þ b12 þ c21 þ d22Þ �Dða11Þ �Dðb12Þ �Dðc21Þ �Dðd22Þ: By the
definition of D and Lemma 2.3 we know that pnðt, e1, :::, e1Þ ¼ 0: Indeed,

pnðt, e1, :::, e1Þ ¼ pnðDða11 þ b12 þ c21 þ d22Þ �Dða11Þ
�Dðb12Þ �Dðc21Þ �Dðd22Þ, e1, :::, e1Þ

¼ pnðDða11 þ b12 þ c21 þ d22Þ, e1, :::, e1Þ � pnðDða11Þ, e1, :::, e1Þ
� pnðDðb12Þ, e1, :::, e1Þ � pnðDðc21Þ, e1, :::, e1Þ � pnðDðd22Þ, e1, :::, e1Þ

¼ Dðpnða11 þ b12 þ c21 þ d22, e1, :::, e1ÞÞ

�
Xn
i¼2

pnða11 þ b12 þ c21 þ d22, e1, :::,Dðe1Þ, :::, e1Þ

� Dðpnða11, e1, :::, e1ÞÞ �
Xn
i¼2

pnða11, e1, :::,Dðe1Þ, :::, e1Þ
( )

� Dðpnðb12, e1, :::, e1ÞÞ �
Xn
i¼2

pnðb12, e1, :::,Dðe1Þ, :::, e1Þ
( )

� Dðpnðc21, e1, :::, e1ÞÞ �
Xn
i¼2

pnðc21, e1, :::,Dðe1Þ, :::, e1Þ
( )

� Dðpnðd22, e1, :::, e1ÞÞ �
Xn
i¼2

pnðd22, e1, :::,Dðe1Þ, :::, e1Þ
( )

¼ Dðð�1Þnþ1b12 þ c21Þ �Dðð�1Þnþ1b12Þ �Dðc21Þ
¼ 0:

As pnðt, e1, :::, e1Þ ¼ 0, we conclude that ð�1Þnþ1t12 þ t21 ¼ 0: Now for all x12 2 R12, by Lemmas
2.3 and 2.4 we get

pnðDða11 þ b12 þ c21 þ d22Þ, x12, e1, :::, e1Þ
þ pnða11 þ b12 þ c21 þ d22,Dðx12Þ, e1, :::, e1Þ

þ
Xn
i¼3

pnða11 þ b12 þ c21 þ d22, x12, e1, :::,Dðe1Þ, :::, e1Þ

¼ Dðpnða11 þ b12 þ c21 þ d22, x12, e1, :::, e1ÞÞ
¼ Dðð�1Þnþ1x12d22 þ ð�1Þna11x12 þ ð�1Þnb12x12Þ
¼ Dðð�1Þnþ1x12d22 þ ð�1Þna11x12Þ þDðð�1Þnb12x12Þ
¼ Dðð�1Þnþ1x12d22Þ þDðð�1Þna11x12Þ þDðð�1Þnb12x12Þ
¼ Dðpnða11, x12, e1, :::, e1ÞÞ þDðpnðb12, x12, e1, :::, e1ÞÞ
þDðpnðc21, x12, e1, :::, e1ÞÞ þDðpnðd22, x12, e1, :::, e1ÞÞ
¼ pnðDða11Þ þDðb12Þ þDðc21Þ þDðd22Þ, x12, e1, :::, e1Þ
þ pnða11 þ b12 þ c21 þ d22,Dðx12Þ, e1, :::, e1Þ

þ
Xn
i¼3

pnða11 þ b12 þ c21 þ d22, x12, e1, :::,Dðe1Þ, :::, e1Þ:

We therefore have pnðDða11 þ b12 þ c21 þ d22Þ, x12, e1, :::, e1Þ ¼ pnðDða11Þ þDðb12Þ þDðc21Þ þ
Dðd22Þ, x12, e1, :::, e1Þ: That is, ½t11 þ t22, x12� ¼ pnðt, x12, e1, :::, e1Þ ¼ 0: Applying the condition (i)
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of Theorem 2.1 yields t ¼ t11 þ t22 2 ZðRÞ: Thus, Dða11 þ b12 þ c21 þ d22Þ ¼ Dða11Þ þDðb12Þ þ
Dðc21Þ þDðd22Þ þ za11, b12, c21, d22 , where za11, b12, c21, d22 2 ZðRÞ:

We are ready to prove our Theorem 2.1. w

Proof of Theorem 2.1. Let a, b 2 R with a ¼ a11 þ a12 þ a21 þ a22 and b ¼ b11 þ b12 þ b21 þ b22:
By previous Lemmas we obtain

Dðaþ bÞ ¼ Dða11 þ a12 þ a21 þ a22 þ b11 þ b12 þ b21 þ b22Þ
¼ Dðða11 þ b11Þ þ ða12 þ b12Þ þ ða21 þ b21Þ þ ða22 þ b22ÞÞ
¼ Dða11 þ b11Þ þDða12 þ b12Þ þDða21 þ b21Þ þDða22 þ b22Þ þ z1
¼ Dða11Þ þDðb11Þ þ z2 þDða12Þ
þDðb12Þ þDða21Þ þDðb21Þ þDða22Þ þDðb22Þ
þ z3 þ z1

¼ ðDða11Þ þDða12Þ þDða21Þ þDða22ÞÞ þ ðDðb11Þ
þDðb12Þ þDðb21Þ þDðb22ÞÞ
þ ðz1 þ z2 þ z3Þ

¼ Dða11 þ a12 þ a21 þ a22Þ � z4 þDðb11
þ b12 þ b21 þ b22Þ � z5 þ ðz1 þ z2 þ z3Þ
¼ DðaÞ þDðbÞ þ ðz1 þ z2 þ z3 � z4 � z5Þ
¼ DðaÞ þDðbÞ þ za, b:

This finishes the proof of Theorem 2.1.

Corollary 2.7. Let R be an alternative ring. Suppose that R is a ring containing a nontrivial idem-
potent e1 which satisfies:

(i) If ½a11 þ a22,R12� ¼ 0, then a11 þ a22 2 ZðRÞ,
(ii) If ½a11 þ a22,R21� ¼ 0, then a11 þ a22 2 ZðRÞ:

Then every Lie 3-derivation D of R into itself is almost additive.

Corollary 2.8. Let R be a 3-torsion free prime alternative ring. Suppose that R is an alternative
ring containing a nontrivial idempotent e1. Then every Lie 3-derivation D of R into itself is
almost additive.

Proof. In [13] the authors showed that any prime alternative ring satisfies the conditions of the
Theorem 2.1. Hence the result holds true for n¼ 3. w

3. Characterization of Lie-type derivations on alternative rings

In this section, we will characterize multiplicative Lie-type derivations on alternative rings and
provide an essential structure theorem for multiplicative Lie-type derivations. Henceforth, let R
be a 2, 3, ðn� 1Þ, ðn� 3Þ� �

-torsion free alternative ring satisfying the following conditions:

(1) If xijRji ¼ 0, then xij ¼ 0 (i 6¼ j);
(2) If x11R12 ¼ 0 or R21x11 ¼ 0, then x11 ¼ 0;
(3) If R12x22 ¼ 0 or x22R21 ¼ 0, then x22 ¼ 0;
(4) If z 2 Z with z 6¼ 0, then zR ¼ R:

We refer the reader to [9] about the proofs of the following propositions.
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Proposition 3.1. Any prime alternative ring satisfies conditions (1), (2), (3).

Proposition 3.2. Let R be a 2, 3-torsion free alternative ring satisfying the conditions (1), (2),
and (3).

ð€Þ If ½a11 þ a22,R12� ¼ 0, then a11 þ a22 2 ZðRÞ,
ð|Þ If ½a11 þ a22,R21� ¼ 0, then a11 þ a22 2 ZðRÞ:

Proposition 3.3. If ZðRijÞ ¼ a 2 Rij j ½a,Rij� ¼ 0
� �

, then ZðRijÞ � Rij þZðRÞ with i 6¼ j:

The main result in this section reads as follows.

Theorem 3.4. Let R be a unital 2, 3, n� 1, n� 3f g-torsion free alternative ring with nontrivial
idempotents e1, e2 and with associated Peirce decomposition R ¼ R11 �R12 � R21 �R22. Suppose
that R satisfies the following conditions:

(1) If xijRji ¼ 0, then xij ¼ 0 (i 6¼ j);
(2) If x11R12 ¼ 0 or R21x11 ¼ 0, then x11 ¼ 0;
(3) If R12x22 ¼ 0 or x22R21 ¼ 0, then x22 ¼ 0;
(4) If z 2 ZðRÞ with z 6¼ 0, then zR ¼ R:

Let D : R ! R be a multiplicative Lie-type derivation of R. Then D is the form dþ s, where d is
an additive derivation of R and s is a mapping from R into the commutative center ZðRÞ, such
that sðpnða1, a2, :::, anÞÞ ¼ 0 for all a1, a2, :::, an 2 R if and only if

(a) e2DðR11Þe2 � ZðRÞe2,
(b) e1DðR22Þe1 � ZðRÞe1,
(c) DðRijÞ � Rij, 1 	 i 6¼ j 	 2:

The following Lemmas have the same hypotheses of Theorem 3.4 and we need these Lemmas
for the proof of the first part this Theorem.

First, assume that the multiplicative Lie-type derivation D : R ! R satisfies the conditions (a),
(b), and (c). Let e1 be a nontrivial idempotent of R: We start with the following lemma.

Lemma 3.5. Dðe1Þ � fy, zðe1Þ 2 ZðRÞ, with y ¼ Dðe1Þ12 þDðe1Þ21, z¼ e1 where fy, z :¼ ½Ly, Lz� þ
½Ly,Rz� þ ½Ry,Rz� and L, R are left and right multiplication operators, respectively.

Proof. In the case of n is even, we have

Dða12Þ ¼ Dðpnðe1, a12, e1, :::, e1ÞÞ

¼ pnðe1,Dða12Þ, e1, :::, e1Þ þ
Xn
i¼2

pnðe1, a12, e1, :::,Dðe1Þ, :::, e1Þ

¼ �a12Dðe1Þe1 þ e1Dðe1Þa12 � a12Dðe1Þ þ e1Dða12Þ �Dða12Þe1
þ
Xn
i¼3

pnðe1, a12, e1, :::,Dðe1Þ, :::, e1Þ:

Multiplying the left and right sides in the above equation by e1 and e2, respectively, we obtain

e1Dða12Þe2 ¼ e1Dðe1Þa12 � a12Dðe1Þe2 þ e1Dða12Þe2
þ
Xn
i¼3

ð�1Þn�1 Dðe1Þ11 þDðe1Þ22, a12
� �

:
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This implies

�ðn� 3Þ Dðe1Þ11 þDðe1Þ22, a12
� �þ 2Dðe1Þ12a12 ¼ 0

for all a12 2 R12: In light of condition ð€Þ of Proposition 3.2, we assert that Dðe1Þ11þDðe1Þ222ZðRÞ:
Taking y¼Dðe1Þ12þDðe1Þ21 and z ¼ e1 we see that Dðe1Þ�fy,zðe1Þ¼Dðe1Þ11þDðe1Þ222 ZðRÞ:

In the case of n is odd, we get

Dða12Þ ¼ Dðpnða12, e1, :::, e1ÞÞ

¼ pnðDða12Þ, e1, :::, e1Þ þ
Xn
i¼2

pnða12, e1, :::,Dðe1Þ, :::, e1Þ

¼ Dða12Þe1 � 2e1Dða12Þe1 þ e1Dða12Þ

þ
Xn
i¼2

pnða12, e1, :::,Dðe1Þ, :::, e1Þ:

Multiplying the left and right sides in the above equation by e1 and e2, respectively, we arrive at

e1Dða12Þe2 ¼ e1Dða12Þe2 þ
Xn
i¼2

e1pnða12, e1, :::,Dðe1Þ, :::, e1Þe2

¼ e1Dða12Þe2 � ðn� 1Þ Dðe1Þ11 þDðe1Þ22, a12
� �

:

This gives that ðn� 1Þ½Dðe1Þ11 þDðe1Þ22, a12� ¼ 0 for all a12 2 R12: By condition ð€Þ of
Proposition 3.2 we conclude that Dðe1Þ11 þDðe1Þ22 2 ZðRÞ: Taking y ¼ Dðe1Þ12 þDðe1Þ21 and z
¼ e1 again, we see that Dðe1Þ � fy, zðe1Þ ¼ Dðe1Þ11 þDðe1Þ22 2 ZðRÞ: w

Let us continue our discussions. It is worth noting that fy, z :¼ ½Ly, Lz� þ ½Ly,Rz� þ ½Ry,Rz� is a der-
ivation. According to [27, p. 77], we without loss of generality may assume that Dðe1Þ 2 ZðRÞ:
Remark 3.1. If Dðe1Þ 2 ZðRÞ, then Dðe2Þ 2 ZðRÞ: Indeed, since

0 ¼ Dðpnðe2, e1, :::, e1Þ

¼ pnðDðe2Þ, e1, :::, e1Þ þ
Xn
i¼2

pnðe2, e1, :::,Dðe1Þ, :::, e1Þ

¼ pnðDðe2Þ, e1, :::, e1Þ
¼ Dðe2Þe1 � e1Dðe2Þe1 þ ð�1Þne1Dðe2Þe1 þ ð�1Þnþ1e1Dðe2Þ,

we know that e1Dðe2Þe2 ¼ e2Dðe2Þe1 ¼ 0: When n is even, for any a12 2 R12, we have

Dða21Þ ¼ Dðpnðe2, a21, e2:::, e2ÞÞ
¼ pnðDðe2Þ, a21, e2, :::, e2Þ þ pnðe2,Dða21Þ, e2, :::, e2Þ

þ
Xn
i¼3

pnðe2, a21, e2, :::,Dðe2Þ, :::, e2Þ

¼ �ð�1Þn�2a21Dðe2Þ11 þ ð�1Þn�2Dðe2Þ22a21
þ e2Dða21Þ �Dða21Þe2
� ðn� 2Þ Dðe2Þ11 þDðe2Þ22, a21

� �
¼ �ðn� 1Þ Dðe2Þ11 þDðe2Þ22, a21

� �þ e2Dða21Þ �Dða21Þe2:
Multiplying by e2 and e1 from the left and right sides in the above equation, respectively, we
arrive at �ðn� 1Þ½Dðe2Þ11 þDðe2Þ22, a21� ¼ 0 for all a21 2 R21: This gives

Dðe2Þ11 þDðe2Þ22, a21
� � ¼ 0
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for all a21 2 R21, since the characteristic of R is not n� 1. By condition ð|Þ of Proposition 3.2 it
follows that Dðe2Þ ¼ Dðe2Þ11 þDðe2Þ22 2 ZðRÞ: Now if n is odd, then we have

Dða21Þ ¼ Dðpnða21, e2:::, e2ÞÞ

¼ pnðDða21Þ, e2, :::, e2Þ þ
Xn
i¼2

pnða21, e2, :::,Dðe2Þ, :::, e2Þ

¼ �2e2Dða21Þe2 þ e2Dða21Þ þDða21Þe2
� ðn� 1Þ Dðe2Þ11 þDðe2Þ22, a21

� �
:

Multiplying by e2 and e1 from the left and right sides in the above equation, respectively, we
obtain the same result as n is even.

Lemma 3.6. DðRiiÞ � Rii þ ZðRÞði ¼ 1, 2Þ:

Proof. We only show the case of i¼ 1, because the other case can be treated similarly. For each
a11 2 R11, with Dða11Þ ¼ b11 þ b12 þ b21 þ b22 we get

0 ¼ Dðpnða11, e1, :::e1ÞÞ
¼ pnðDða11Þ, e1, :::, e1Þ þ

Xn
i¼2

pnða11, e1, :::,Dðe1Þ, :::, e1Þ

¼ pnðDða11Þ, e1, :::, e1Þ:
It follows from this that b12 ¼ b21 ¼ 0: By condition (a) of Theorem 3.4 we know that

Dða11Þ ¼ b11 þ e2Dða11Þe2 ¼ b11 þ ze2 ¼ b11 � e1z þ z 2 R11 þZðRÞ:

Lemma 3.7. D is an almost additive mapping. That is, for any a, b 2 R,Dðaþ bÞ �DðaÞ �
DðbÞ 2 ZðRÞ:

Proof. Since R is an alternative ring satisfying the conditions (1), (2), and (3), R satisfies condi-
tions ð€Þ and ð|Þ by Proposition 3.2. Now using Theorem 2.1 we get D as an almost additive
mapping. w

Now let us define the mappings d and s. By the item (c) of Theorem 3.4 and Lemma 3.6 we have

(A) if aij 2 Rij, i 6¼ j, then DðaijÞ ¼ bij 2 Rij,
(B) if aii 2 Rii, then DðaiiÞ ¼ bii þ z, bii 2 Rii, where z is a central element.

It should be remarked that bii and z in (B) are uniquely determined, Indeed, if DðaiiÞ ¼
b0ii þ z0, b0ii 2 Rii, z0 2 ZðRÞ: Then bii � b0ii 2 ZðRÞ: Taking into account the conditions (2) and
(3), we assert that bii ¼ b0ii and z ¼ z0: Now let us define a mapping d of R according to the rule
dðaijÞ ¼ bij, aij 2 Rij: For each a ¼ a11 þ a12 þ a21 þ a22 2 R, we define dðaÞ ¼ P

dðaijÞ: And a
mapping s of R into ZðRÞ is then defined by

sðaÞ ¼ DðaÞ � dðaÞ
¼ DðaÞ � ðdða11Þ þ dða12Þ þ dða21Þ þ dða22ÞÞ
¼ DðaÞ � ðb11 þ b12 þ b21 þ b22Þ
¼ DðaÞ � ðDða11Þ � za11 þDða12Þ þDða21Þ þDða22Þ � za22Þ
¼ DðaÞ � ðDða11Þ þDða12Þ þDða21Þ þDða22Þ � ðza11 þ za22ÞÞ
¼ DðaÞ � ðDða11Þ þDða12Þ þDða21Þ þDða22ÞÞ:

We need to show that d and s are the desired mappings.
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Lemma 3.8. d is an additive mapping.

Proof. We only need to prove that d is an additive mapping on Rii: Let us choose any
aii, bii 2 Rii,

dðaii þ biiÞ � dðaiiÞ � dðbiiÞ ¼ Dðaii þ biiÞ � sðaii þ biiÞ �DðaiiÞ þ sðaiiÞ
�DðbiiÞ þ sðbiiÞ:

Thus, dðaii þ biiÞ � dðaiiÞ � dðbiiÞ 2 ZðRÞ \Rii ¼ f0g: w

Let us next show that dðabÞ ¼ dðaÞbþ adðbÞ for all a, b 2 R:

Lemma 3.9. For any aii, bii 2 Rii, aij, bij 2 Rij, bji 2 Rji and bjj 2 Rjj with i 6¼ j, we have

(I) dðaiibijÞ ¼ dðaiiÞbij þ aiidðbijÞ,
(II) dðaijbjjÞ ¼ dðaijÞbjj þ aijdðbjjÞ,
(III) dðaiibiiÞ ¼ dðaiiÞbii þ aiidðbiiÞ,
(IV) dðaijbijÞ ¼ dðaijÞbij þ aijdðbijÞ,
(V) dðaijbjiÞ ¼ dðaijÞbji þ aijdðbjiÞ:

Proof. Let us begin with (I)

dðaiibijÞ ¼ DðaiibijÞ
¼ Dðpnðaii, bij, ej, :::, ejÞÞ
¼ pnðDðaiiÞ, bij, ej, :::, ejÞ þ pnðaii,DðbijÞ, ej, :::ejÞ
¼ pnðdðaiiÞ, bij, ej, :::, ejÞ þ pnðaii, dðbijÞ, ej, :::, ejÞ
¼ dðaiiÞbij þ aiidðbijÞ:

Let us see (II)

dðaijbjjÞ ¼ DðaijbjjÞ
¼ Dðpnðaij, bjj, ej, :::, ejÞÞ
¼ pnðDðaiiÞ, bij, ej, :::, ejÞ þ pnðaii,DðbijÞ, ej, :::, ejÞ
¼ pnðdðaiiÞ, bij, ej, :::, ejÞ þ pnðaii, dðbijÞ, ej, :::, ejÞ
¼ dðaijÞbjj þ aijdðbjjÞ:

We next show (III). By linearization of flexible identity and (I) we get

dððaiibiiÞrijÞ ¼ dðaiibiiÞrij þ ðaiibiiÞdðrijÞ:

On the other hand,

dðaiiðbiirijÞÞ ¼ dðaiiÞbiirij þ aiidðbiirijÞ ¼ dðaiiÞbiirij þ aiiðdðbiiÞrij þ biidðrijÞÞ:

Considering the facts ðaiibiiÞrij ¼ aiiðbiirijÞ and ðaiibiiÞdðrijÞ ¼ aiiðbiidðrijÞÞ, we obtain

ðdðaiibiiÞ � dðaiiÞbii � aiidðbiiÞÞrij ¼ 0

for all rij 2 Rij: And hence dðaiibiiÞ ¼ dðaiiÞbii þ aiidðbiiÞ:
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Let us prove (IV).

2dðaijbijÞ ¼ dð2aijbijÞ ¼ Dð2aijbijÞ
¼ Dðpnðaij, bij, ei, :::, eiÞÞ ¼ pnðDðaijÞ, bij, ei, :::, eiÞ
þ pnðaij,DðbijÞ, ei, :::, eiÞ
¼ pnðdðaijÞ, bij, ei, :::, eiÞ þ pnðaij, dðbijÞ, ei, :::, eiÞ
¼ dðaijÞbij � bijdðaijÞ þ aijdðbijÞ � dðbijÞaij
¼ 2ðdðaijÞbij þ aijdðbijÞÞ:

Since R is 2-torsion free, we see that dðaijbijÞ ¼ dðaijÞbij þ aijdðbijÞ: And finally we show (V). We
get

sðpnðaij, bji, cij, ej, :::, ejÞÞ ¼ Dðpnðaij, bji, cij, ej, :::, ejÞÞ
� dðpnðaij, bji, cij, ej, :::, ejÞÞ
¼ pnðDðaijÞ, bji, cij, ej, :::, ejÞ þ pnðaij,DðbjiÞ, cij, ej, :::, ejÞ
þ pnðaij, bji,DðcijÞ, ej, :::, ejÞ � dððaijbjiÞcij � cijðbjiaijÞÞ

¼ pnðdðaijÞ, bji, cij, ej, :::, ejÞ þ pnðaij, dðbjiÞ, cij, ej, :::, ejÞ
þ pnðaij, bji, dðcijÞ, ej, :::, ejÞ � dððaijbjiÞcijÞ � dðcijðbjiaijÞÞ

¼ ðdðaijÞbjiÞcij þ cijðbjidðaijÞÞ þ ðaijdðbjiÞÞcij þ cijðdðbjiÞaijÞ þ ðaijbjiÞdðcijÞ
þ dðcijÞðaijbjiÞ � dðaijbjiÞcij � ðaijbjiÞdðcijÞ � dðcijÞðbjiÞaijÞ � cijdðbjiaijÞ

¼ ðdðaijÞbjiÞ þ aijdðbjiÞ � dðaijbjiÞÞ þ ðdðbjiaijÞ � dðbjiÞaij � bjidðaijÞÞ, cij
� �

:

Since Rij \ Z ¼ f0g, we know that ½ðdðaijÞbjiÞ þ aijdðbjiÞ � dðaijbjiÞÞ þ ðdðbjiaijÞ � dðbjiÞaij �
bjidðaijÞÞ, cij� ¼ 0 for all cij 2 Rij: By Proposition 3.2 it follows that

dðaijÞbji þ aijdðbjiÞ � dðaijbjiÞ
� �þ dðbjiaijÞ � dðbjiÞaij � bjidðaijÞ

� � ¼ z 2 ZðRÞ:
If z¼ 0, then dðaijbjiÞ ¼ dðaijÞbji þ aijdðbjiÞ: If z 6¼ 0, we multiply by aij and get

aijdðbjiaijÞ � aijdðbjiÞaij � aijðbjidðaijÞÞ ¼ aijz:

By (II) we have

dðaijbjiaijÞ � dðaijÞðbjiaijÞ � aijdðbjiÞaij � aijðbjidðaijÞÞ ¼ aijz:

Now we see that dðaijbjiaijÞ ¼ dðaijÞðbjiaijÞ þ aijdðbjiÞaij þ aijðbjidðaijÞÞ: Indeed, note that
pnðaij, bji, aij, ej, :::, ejÞ ¼ 2aijbjiaij: Thus

2dðaijbjiaijÞ ¼ dð2aijbjiaijÞ
¼ Dðpnðaij, bji, aij, ej, :::, ejÞÞ
¼ pnðDðaijÞ, bji, aij, ej, :::, ejÞ þ pnðaij,DðbjiÞ, aij, ej, :::, ejÞ
þ pnðaij, bji,DðaijÞ, ej, :::, ejÞ
¼ pnðdðaijÞ, bji, aij, ej, :::, ejÞ þ pnðaij, dðbjiÞ, aij, ej, :::, ejÞ
þ pnðaij, bji, dðaijÞ, ej, :::, ejÞ
¼ ðdðaijÞbjiÞaij þ aijðbjidðaijÞÞ þ 2aijdðbjiÞaij
þ ðaijbjiÞdðaijÞ þ dðaijÞðbjiaijÞ
¼ dðaijÞðbjiaijÞ � ðaijbjiÞdðaijÞ þ aijðbjidðaijÞÞ þ aijðbjidðaijÞÞ
þ 2aijdðbjiÞaij þ ðaijbjiÞdðaijÞ þ dðaijÞðbjiaijÞ

¼ 2ðdðaijÞðbjiaijÞ þ aijdðbjiÞaij þ aijðbjidðaijÞÞÞ:
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Applying the fact that R is 2-torsion free yields that

dðaijbjiaijÞ ¼ dðaijÞðbjiaijÞ þ aijdðbjiÞaij þ aijðbjidðaijÞÞ:
So aijz ¼ 0: But, by (4) there exist h 2 R such that zh ¼ e1 þ e2 hence aij ¼ 0, which is a contra-
diction. Therefore dðaijbjiÞ ¼ dðaijÞbji þ aijdðbjiÞ: w

Lemma 3.10. d is a derivation.

Proof. For any a, b 2 R, we have

dðabÞ ¼ dðða11 þ a12 þ a21 þ a22Þðb11 þ b12 þ b21 þ b22ÞÞ
¼ dða11b11Þ þ dða11b12Þ þ dða12b12Þ þ dða12b21Þ þ dða12b22Þ
þ dða21b11Þ þ dða21b12Þ þ dða21b21Þ þ dða22b21Þ þ dða22b22Þ

¼ dðaÞbþ adðbÞ
by Lemmas 3.8 and 3.9. w

Lemma 3.11. s sends the commutators into zero.

Proof. For any a1, a2, :::, an 2 R, we get

sðpnða1, a2, :::, anÞÞ ¼ Dðpnða1, a2, :::, anÞÞ � dðpnða1, a2, :::, anÞÞ

¼
Xn
i¼1

pnða1, a2, :::, ai�1,DðaiÞ, aiþ1, :::, anÞ � dðpnða1, a2, :::, anÞÞ

¼
Xn
i¼1

pnða1, a2, :::, ai�1, dðaiÞ, aiþ1, :::, anÞ � dðpnða1, a2, :::, anÞÞ

¼ 0:

Let us now assume that D : R ! R is a Lie-type derivation of the form D ¼ dþ s, where d is
a derivation of R and s is a mapping from R into its commutative center ZðRÞ, such that
sðpnða1, a2, :::, anÞÞ ¼ 0 for all a1, a2, :::, an 2 R: Then for any a11 2 R11, we see that

e2Dða11Þe2 ¼ e2dða11Þe2 þ e2sða11Þe2
¼ e2dðe1a11Þe2 þ e2sða11Þe2
¼ e2ðdðe1Þa11 þ e1dða11ÞÞe2 þ e2sða11Þe2
¼ e2ðdðe1Þa11Þe2 þ e2ðe1dða11ÞÞe2 þ e2sða11Þe2
¼ ðe2dðe1ÞÞða11e2Þ þ ðe2e1Þðdða11Þe2Þ þ e2sða11Þe2
¼ e2sða11Þe2 2 ZðRÞe2:

Now

e1Dða22Þe1 ¼ e1dða22Þe1 þ e1sða22Þe1
¼ e1dðe2a22Þe1 þ e1sða22Þe1
¼ e1ðdðe2Þa22 þ e2dða22ÞÞe1 þ e1sða22Þe1
¼ e1ðdðe2Þa22Þe1 þ e1ðe2dða22ÞÞe1 þ e1sða22Þe1
¼ ðe1dðe2ÞÞða22e1Þ þ ðe1e2Þðdða22Þe1Þ þ e1sða22Þe1
¼ e1sða22Þe1 2 ZðRÞe1

for all a22 2 R22: Furthermore,
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DðaijÞ ¼ ðdþ sÞðaijÞ ¼ dðpnðaij, ej, :::, ejÞÞ þ sðpnðaij, ej, :::, ejÞÞ
¼ pnðdðaijÞ, ej, :::, ejÞ 2 Rij:

This shows the items (a), (b), (c) and the proof of the Theorem 3.4 is complete.

Corollary 3.12. Let R be an unital prime alternative ring with nontrivial idempotent satisfying (4)
and D : R ! R be a multiplicative Lie-type derivation. Then D is the form of dþ s, where d is a
derivation of R and s is a mapping from R into its commutative center ZðRÞ, such that
sðpnða1, a2, :::, anÞÞ ¼ 0 for all a1, a2, :::, an 2 R if and only if

(a) e2DðR11Þe2 � ZðRÞe2,
(b) e1DðR22Þe1 � ZðRÞe1,
(c) DðRijÞ � Rij, 1 	 i 6¼ j 	 2:

Let us end our work with a direct application to simple alternative rings.

Corollary 3.13. Let R be an unital simple alternative ring with nontrivial idempotent and D :
R ! R be a multiplicative Lie-type derivation. Then D is the form dþ s, where d is a derivation
of R and s is a mapping from R into its commutative center ZðRÞ, such that sðpnða1,
a2, :::, anÞÞ ¼ 0 for all a1, a2, :::, an 2 R if and only if

(a) e2DðR11Þe2 � ZðRÞe2,
(b) e1DðR22Þe1 � ZðRÞe1,
(c) DðRijÞ � Rij, 1 	 i 6¼ j 	 2:

Proof. It is enough to remark that every simple ring is prime and ZðRÞ is a field. w
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