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 Logique & Analyse 153-154(1996), 113-151

 EQUALITY IN LINEAR LOGIC

 Marcelo E. CONIGLIO and Francisco MIRAGLIA

 1 . Quantales

 In this section we introduce the basic definitions and results of the theory of
 quantales (a good reference is [Ros]). Quantales were introduced by
 Mulvey ([Mul]) as an algebraic tool for studying representations of non-
 commutative C*-algebras. Informally, a quantale is a complete lattice Q
 equipped with a product distributive over arbitrary sup's. The importance
 of quantales for Linear Logic is revealed in Yetter's work ([Yet]), who
 proved that semantics of classical linear logic is given by a class of
 quantales, named Girard quantales, which coincides with Girard' s phase
 semantics. An analogous result is obtained for a sort of non-commutative
 linear logic, as well as intuitionistic linear logic without negation, which
 suggest that the utilisation of the theory of quantales (or even weaker
 structures, such that *-autonomous posets) might be fruitful in studying the
 semantic of several variants of linear logic.
 As usual, we denote the order in a lattice by :s, while V and A denote

 the operations of sup and inf, respectively. We write T for the largest ele-
 ment in a lattice and 0 for its smallest element.

 Definition 1.1 A quantale is a complete lattice Q with an associative binary
 operation 0: Q X Q

 left of arbitrary sup's, i.e.:

 [ßl] a 0 (b 0 c) = (a 0 b) 0 c,for every a,b,c G Q
 [02] a 0 (V,e/a ,) = V ,€/(a ® a,-),(V/e/a ,) ® « = V,e/(a/® a)

 A quantale Q is unital if it has an element 1 Eg such that a®l = 10a =
 a, for every a E Q. A quantale Q is commutative if a® b = ¿0 a, for
 every a,bE.Q.

 A morphism of quantales is an operator between quantales which pre-
 serves 0 and arbitrary sup 's.

 It's easily seen that the above axioms imply that 0 is increasing in both
 coordinates, that is
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 1 14 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 If a ^ b then, Ve Eg, a<&c c and c <S> a s c <8> b

 We register a classic result:

 Proposition 1.2 The endomorfisms a 0 • , • <8> a : Q

 adjoints, denoted by a -> r • and a ¡ respectively. Thus,

 a <8>c ^ b iff c ^ a r b c® a^b iff c ^ a ¡ b

 and consequently

 a -i r b = '/ {c E Q : a® c ^ b]
 a - > ( ¿ = V {c E Q : c<8> a s b}.

 Definition 1.3 Let Qbe a quantale. A map j : Q

 a) quantic nucleus if it satisfies:

 [Ngl] a ^ b implies j(a) ^ j(b) [A IQ2] a ^ j(a)
 [NQ3] j(j(a)) =j(a) [NQ4] j(a) ®j(b) < j(a <g> b)

 b) quantic conucleus if it satisfies:

 [CNQ'] a <b implies g(a) s g(b) [CNQ2] g(a) :£ a
 [CNQ3] g(g(a)) = g(a) [ CNQA ] g(a) <g> g(b) < g(a <g> b)

 Quantic nuclei and conuclei are important, because they determine the
 quotients and subobjects in the category of quantales.

 Definition 1.4 Let Qbe a quantale. A subset S £ Q is a subquantale of Q if
 it is closed under <8> and arbitrary sup 's.

 Proposition 1.5 [/?os]: (a )If Q - - > Q is a quantic nucleus, then
 Q = { X E Q : j(x) =x } is a quantale where the operations , V7 and
 AJ in Qj are given by:

 a®J b =j(a <g> b) VL ai =XV/e/ a,) AĻ a¡ = A/e/ ar

 Moreover, the map j : Q

 phism of quantales. Further, every surjective morphism of quantales can be
 represented in this form.
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 EQUALITY IN LINEAR LOGIC 1 1 5

 (b) If Q - Q is a quantic conucleus , then Q = { x E Q : g(x) = jc }
 is a subquantale where , vWiA notation as in (a), Afe/ a ¡ = g (A/e/ ř).
 Moreover , subquantale is of this form, i.e.,
 if S Q Q is a subquantale , í/ičw í/iere exists a quantic conucleus g in Q

 such that S = Qg.

 Definition 1.6 An element 1 E Q is dualizing (/;

 (a- >r _!)-», _L = a = (û - » ¿ 1 ) - » r -L,for every a E ß.

 An element s El Q is cyclic (/!*

 a -> r s = a -> ¡ s, for every a E Q.

 Proposition 1.7 [Yet]: Let Q be a quantale and st _L be elements of Q.
 a) s E Q is cyclic iff for allav a n in Q ,

 a , 0 • • • ® an < í implies aK(í) <g> an(2) ® • • • <g> aK(n) < 5,
 /or all cyclic permutations tt of { 1, n}.

 b) If L E.Q is dualizing, then Q is unital and we have:

 1 = ± ->r ± = -L ±.

 Definition 1.8 A Girard quantale is a quantale which has a cyclic dualizing
 element 1. The operator • - _L = • - >r 1 = • - > 1 is called linear
 negation, a/uf we write a * = a - » ± (noie that 1 = _LJ'± = 1J' and a =
 a *).

 Next proposition is of frequent use when computing in a Girard quantale.

 Proposition 1.9 [7?os]: Let Q be a Girard quantale with a cyclic dualizing
 element 1 and let a,b E.Q. Then:

 (1) a -¥ i b = (a<8) b1)1 (2) a - » r b = (bL ® a)L
 (3) a®fe = (a->, bx)L (4) b ®a = {a r £x)x
 (5) a - ) r b = bL - > i a 1 (6) a - > ¡b = b 1 - > r a1

 Proposition 1.10 [Yet'. Let Q be an unital quantale and s £ Q cyclic. Then,

 j : Q

 { a EQ : j(a) = a } isa Girard quantale, where l = s6(3;.
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 1 1 6 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 Example 1.11 : The Phase Quantales ( Girard )
 Let (Aí , - , 1) be a monoid. We define A- B = { a-b : a E A , b E B }

 V A,B C M. Let 1 CM be such that a- b E 1 implies b - a El 1 (for exam-
 ple , _L can be a semiprime ideal or the complement of a prime ideal ofM).

 Thus , p(M) w a quantale with the product defined above , am/ w/i/i sup's
 e infs calculated as unions (U) and intersections (H). In fact, it's an unital
 quantale , where 1 = { 1 } and _L is cyclic. Then, by proposition 1.10 ,
 (p(M) j is a Girard' s quantale containing _L. Their elements are called
 facts, and we have:

 A<8>B = (A ■ B )xx

 V,e/^ , = (U i€/A () ^ ; in particular, A'y B = (Au B)^ = äefA ® B,
 A(€/A ( = H ie/y4 in particular, AAB-Ac'B = JefA&B.

 The next result tells us that every Girard quantale is of this form.

 Proposition 1.12 [/řos]: IfQ is a Girard' s quantale, then Q is isomorphic to
 a phase quantale.

 We are now going to relate the exponentials treated by Yetter ([Yet]) and
 Avron ([Avr]) with certain concepts in the theory of quantales.

 Definition 1.13 [Yet]: An open modality in a quantale Q is a map
 M- : Q

 [Ml] (X (a) ^ a [A/2] a ^ b implies fx (a) < ļx (b)
 [A/3] jn. (|x (a)) = |x (a) [A/4] (x (jx (a) <8> p, (b)) = |x (a) <Ś> jx (b).

 An open modality |x is said to be

 - central if b <8> |x (a) = |x ( a ) <8> b for every a,b G Q.
 - idempotent if |x (a) <8> |x (a) = |x (a) for every aE.Q.
 - weak if Q is unital, |x (1) = 1, and |x (a) ^ 1 for every aE. Q.

 Let M(Q) = {p.: y» is an open modality in Q], partially ordered by point-
 wise order.

 Proposition 1.14 [Yet]: Let Q be a quantale (resp. unital quantale). Then,
 there exists a unique maximal open modality in Q central (resp. central,
 idempotent and weak) denoted by cm (resp. ! m) given by:

 cmW = '/{aE:Q:a<x,ae. Z(Q) }
 'm(x) = 'J{a(=Q:a<x/'l,a = a®a,aE.Z(Q) },
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 EQUALITY IN LINEAR LOGIC 1 1 7

 where Z(Q ) = { a E Q : a <8> b = b <8> a, for every b E Q}.

 Definition 1.15 [Avr}' Let Q be an unital quantale. A map B: Q

 a modal operation if it satisfies, for all x, y E Q:

 [ßl] B( 1) = 1 [B2' B(x ) < X
 [ß3] B(B(x)) = B(x) [54] B(x) <g> B(y) = B(x A y).

 Proposition 1.16 Let Qbe a quantale, and jx : Q

 (i) (X is an open modality iff y* is a quantic conucleus.
 ( ii) If Q is unital, then |x is an open, idempotent and weak modality iff jx

 is a modal operation.

 Proof : (i) We must prove that [M4] is equivalent to [CNQ4]. Let jx be an
 open modality. Because jx (a) <8> jx ( b ) ^ a <8> b, we get jx (a) ® jx ( b ) = jx
 (ļx (a) ® jx ( b )) ^ jx (a <8> b).
 Conversely, if |x is a quantic conucleus, then

 jx (a) <8> |x ( b ) = jx (|x ( a )) 0 |x (|x ( b ))
 ^ |x (jx (a) <8> jx ( b )) < jx (a) <S> |x (b).

 (ii) Assume that |x is an open, weak and idempotent modality. Then, it
 clearly satisfies conditions [51],[ß2],[ß3]. Because jx (a) ^ a and |x(¿) ^
 1, we get jx(a) 0 n (i) s a ® 1 = a. Similarly, jx (a) <S> |x ( b ) ^ b and
 therefore, jx (a) ® jx (b) ^ a A b. Thus, |x (a) <8> jx (b) = (x (|x (a) <8> jx ( b ))
 ^ jx (a Ab).
 Now, since jx is increasing and a A b ^ a, b, then jx (a A b) < jx (a),

 I x{b). Thus,

 jx (a A b) = jx (a A b) <8> jx (a A b) ^ jx (a) <S> |x (b),

 and so jx satisfies [fi4].
 Conversely, if jx is a modal operation, then [Ml] is just [B2}' [M 3] is

 [53], while [M4] is equivalent to [CNQ4], in the presence of [Ml], [M2],
 [M3], by item (i) above.
 Condition [M2] is item (5) of Lemma 4.2 in [Avr] and jx satisfies [ CNQA ]

 by item 8 of Lemma 4.2 in [Avr]. It follows from items 4 and 1 in that
 same Lemma, that jx (x) ^ 1 for every x E Q. Thus, [B 1 ] yields that jx is
 weak. □«

 Definition 1.17 A frame (or Complete Heyting algebra) is a quantale where
 <8> = A.
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 1 1 8 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 Definition 1.18 Let Q be a quantale and let T be the maximum of Q. We
 say that X G Q is

 a) right-sided (in Q) ifx ® T s x,
 b) left-sided (in Q) if T <8> x :£ x,
 c) two-sided (in Q) if it is right and left sided in Q.
 d) idempotent ifx <S> x = x.

 Proposition 1.19 [/?oí]: Let Q be a quantale, and g a quantic conucleus in
 Q. Are equivalent:

 (a) Q g is a frame. (b) g(a) <g> g(b) = g(a A b).
 (c) every x G Qg is idempotent and two-sided (in Qg).

 Definition 1.20 A map g satisfying the conditions above is called a localic
 conucleus and Q is called a localic subquantale.

 Since open, weak idempotent modalities are localic conuclei |x such that
 (x (1) = 1, we have

 Corollary 1.21 Let Q be an unital quantale, and let |x be an open, weak and
 idempotent modality. Then, Q ß is a frame.

 Thus, the fixed points of the interpretation of the modality ! (of course)
 lie in a localic subquantale (complete Heyting algebra) of any quantale in
 which linear logic is interpreted.

 2. Linear Calculus with Equality

 In this section we discuss the laws for a binary predicate representing
 equality. The goal is to define a reflexive, symmetric and transitive predi-
 cate satisfying the substitution (Leibnitz's) rule for the class of all formulas.
 We may assume, just as in Classical Logic (CL), that we have substitution
 for atomic formulas. With this model in mind, we shall define a prototype
 of a linear calculus with equality, called (LLEX). Our formulation will use
 sequents in Linear Logic ( LL ). Analogously, we will set down a calculus
 with equality for the {MALL) fragment, i.e., the fragment without expo-
 nentials, indicated by ( LLE0 ). Starting from the property of substitution for
 elementary formulas, we prove that (• = •) must be ^ 1 and idempotent in
 {MALL), and open in the general case; in other words, (• = •) must be
 intuitionistic.
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 EQUALITY IN LINEAR LOGIC 1 1 9

 Definition 2.1 A first order linear language with equality L consists in a
 countable set of predicate symbols p = ( Pn:n Ew ) U ( = ļ ( where
 is binary), a countable set of variables V= { v n : n E co }, together with the
 symbols:

 1,1, T , 0, '

 Definition 2.2 The formulas o/L, FOR(L), are defined recursively:

 [Fl] 1, 1, T, 0 G FOR(L).
 [F2' IfP E p isa predicate of arity n and xx,...,x n are variables,

 then P(xv...,x „) and P(jc,,...,;c n)x E FOR(L).
 [F3] ifF,G E FOR(L) then F <g> G, F u G, F &. G, F @ G E.

 FOR( L).
 [F4] if F E FOR(L), then !F,?F£ FOR( L).
 [F5] if F G FOR( L) and x G V, then A x.F and V x.F E FOR( L).

 Every occurrence of a variable x in a formula F is free except in a subfor-
 mula of the type A x.G or V x.G (which are bounded occurrences). We
 shall write

 ELF( L) = { P(x,,...,xn) : P E p - { = } , xt G V }, the set o/elemen-
 tary formulas

 and

 ELF+( L) = ELF( 1) U { (x = y): x , y E V } , the extended set of elemen-
 tary formulas .

 Definition 2.3 The syntactic linear negation is a map
 ±:FOR( L)

 [NLÌ] 1(1) = 1 , 1(1) = 1 , 1(0) = T , 1(T) = 0
 [NL2] l(P(x,

 1 (P(xv...,xn) ) = P(x{,...,xn) , ±((x = y) ) = (x = y )
 (here, P(xv...,xn) E ELF( L))

 [NL3] 1(F®G)= 1(F) u 1(G), 1(F u G) = 1(F) ® 1(G) ,
 1(F & G) = 1(F) © 1(G) , 1(F © G) = 1(F) & 1(G)

 [NIA] 1(!F) = 11(F), 1(1 F) = 11(F)
 [NL5] 1(A x.F) = V xl (F) , 1(V x.F) = Ax. 1(F)

 We write 1(F) = F1 ; clearly F = F1 x for every FE FOR( L).
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 1 20 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 Definition 2 A Let A a formula; we define A'y/x ] to be the formula obtained
 from A by replacing all bound occurrences of y by z, where z is the first
 variable (in the natural order ofV) not occurring in Ay and then replacing

 all free occurences of variable x by y.

 Definition 2.5 (Girard) The calculus ( LL)for first order commutative linear
 logic is defined by the axioms and rules below (here, A , B denote formulas,
 and r, A denote multisets of formulas):

 [AXl] I- A1, A [AX 2] hT, r [AX3] hi

 [CUT] LXJ

 i-r.A

 [EXCH] If A is a permutation of I' then hX
 h A

 [&] '- a. r '-B.r
 I -A&B, T

 [©i] '-A.r [® 2] '-b.t
 b/4®ß,r I- A® B,Y

 [-L] If r is not empty, then h T
 n,r

 [0] h A. r h B. A [u ] hA.B.r
 A ®B, T, A A u B,T

 [dereliction] VA. T [weakening] h T
 h ia, r i- ia, r

 [contraction] V ?A. 1A. F [!] A. ?r
 h ?a, r i- 'a, ?r

 [V] I- Afv/xl. T [A] If x is not free in T, then A. T
 i- v^» r '-/'x.a, r

 We can consider as defined connectives the linear implication and the lin-
 ear equivalence, given by:

 (A - 0 B) = def (A 1 u B) = {A®B V
 (A B) = def (A - » B)&(B - 0 A).
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 EQUALITY IN LINEAR LOGIC 1 2 1

 Definition 2.6 The linear calculus with equality ( LLE0 ) for the (MALL)
 fragment of (LL) is defined by adding the axioms below to those in the pre-
 ceding definition:

 [/?=]: I- (x = *); [5=] : -O' =*);
 [r=] : I- (x = y) ,(y = z) ,(x = z).

 [SUBST]: h (*, =)'i)"1" v , (x =y„)1 ,
 ,F(x,¿ y,,...,xn¿ yn),

 where F(xv...,x n) denotes an elementary formula with (eventually)
 Xv...,xn free and F(xtl y,,..., xnļ y n) is obtained from F(xv...,xn)
 by replacing some occurrences of x¡ (which are not in the scope of a
 y ¡-quantifier) by y , .

 [/=] ; '-(x = y)1 ,(x = y) ®(x = y) [< 1] : '-(x = y)1 , 1

 Definition 2.7 The linear calculus with equality (LLE , ) for (LL) is defined
 by adding, besides the axioms [/?=], [S=], [7=], [SUBST] the following rule

 ['=]:'-(x = y)± ,Kx = y)

 Obviously, all the rules (with exception of [/?=]) could be formulated as
 linear implications, for example [7=] could be stated as

 I- (x = y) 0 (y = z) - 0 (x = z)

 We have as well that ( LLEX ) is equivalent to the calculus obtained from
 (LLE ļ) by replacing [5=] and [!=] by the rule:

 [5!=] I- (* = y)"1, !(),=*)

 3. Semantics

 In this section we develop interpretations for the calculi described above. It
 will be necessary to extend the definitions in [Yet] so that the axioms
 involving equality are verified.
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 1 22 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 Definition 3.1 An interpretation of a language IL is a triple <«sd,Y, | • '^>
 where

 - ¿á is an algebra for the theory with constants 1, 1 , T, 0;
 - a set of unary operations { 1 , !, ? } (the interpretation of the

 modalities )'
 - binary operations ®, u , &, ®, and infinitary operations V and A;
 - Ï Çá, the set of v alids elements ; and
 - I • U : ELF+( L)

 It is straightforward to see that there exists a (unique) extension of | • to
 FOR( L), also denoted by | • U . When there is no risk of confusion, we write
 I • I f°r i • u •

 Definition 3.2 A semantics for L is a class of interpretations. A semantics is
 sound (with respect to a linear calculus P) if.

 '- Ax,...,An is provable in P implies ' A , u ... u AJ^GT
 for every < si, T, | • > in the semantics.

 A semantics for L is complete (with respect to P) if:

 iFļ^ G V, for every <sí, T, | • > in the semantics,
 implies h F is provable in P.

 Definition 3.3 An interpretation of quan tales /or L is a Girard quantale Q,
 together with an assignment ! •-> jjl G M(Q ) and a map
 I • I q : ELF+( L)

 - Va, b G Q, au b =de, (aL ® b1) 1 andla = def (¡x (a1))1;
 - We interpret A x.A and V x.A as A v |A[y/x]| ß

 and Vv6 v |A[y/x]| Q, respectively.

 Recall that M{Q) is the lattice of open modalities in Q (Definition 1.13).

 Definition 3.4 The semantics of quantales for (commutative) Linear Logic
 with equality is the class of interpretation of quantales for L such that:

 [51] Q is commutative. [52] 'i= def ' is idempotent andweak.

 [53] I • 'q : ELF+( L)

 (a) For the Calculus (LLE 0):
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 EQUALITY IN LINEAR LOGIC 123

 [=1]: x = x >1; [=2]:'x = y'®'y = z'^'x = z'-,
 [=3] ! X = y = [y = x''

 [=4] : =y,l ® • • •' ® k =y„l ® [Fix^xjl
 sl^i( ( yjl

 (same notation as [ SUBST ]);
 [=5] : 'x = y' < |* = y|® |* = y|; [=6]: 'x = y' =£ 1

 (b) For the Calculus Ç LLEX ), conditions [=5] and [=6] are replaced by
 the stronger :

 [=l]-.'x = y'<''x = y'.

 The next result shows that it is always possible to define a map | • | Q satis-
 fying the above conditions.

 Proposition 3.5 lf'''Q' ELF(L) - - > Q is a map, then it can be extended
 to ELF+( L) satisfying, in the (MALL) case, conditions [=l],. -,[=6] and, in
 the general case, conditions [=1],...,[=4],[=7].

 Proof. Let's begin by the general case, in which ! e M(Q) is idempotent
 and weak.

 Let I • I q : ELF( L)

 Ax.y and5*,v as:

 A x = { F E ELF( L): neither x nor y occur in F}
 B x y = { F E ELF(L): xory occur in F}

 In B j v consider the relation:

 F ~ G iff G is obtained from F by replacing some occurrences of
 x by y and/or some occurrences of y by x

 For example, ~ P(;t,z,x) ~ PCv,z,v) ~ P(y,z,x). Clearly, ~ is an
 equivalence relation. Now define,

 ^,v=A{ 'F'q -*'G'Q:F,G<=Bxy>F~G).

 Fact 1: If I • I satisfies [=7] and [=3], then it satisfies [=4] iff |* = y| s T x v
 for xi^y.

 To see this, assume that F,G E Bx v, F ~ G. Note that there is
 H E ELF( I) such that H = F(x } y),G = H(y I x).

 Since ! is idempotent, [=7] implies [=5] and so, by [=3], [=4] and [=5] we
 have that |jc = >>| <8> |F| ^ 'H'; thus,
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 1 24 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 'x = y' 0 |F| < I* = y| (8> ('x = y' ® |F|) s ķ = y' ® 'H' < |G|.

 Therefore, |jc = y| ^ ļFļ - » |G|, proving that |jc = yļ < Tx v.
 Conversely, suppose that |jc = y | ^ Txx for x # y. Then, if

 FEUjL, ,

 k = yj ^ -» IFU,, y„)|

 and therefore, |jc„ = y J <8> |F(jc,,...,jcn)| < ,jc „ ^ y„)|.
 Analogously,

 k-i =:v«-il®(k =y«l® |f(xi,...,jc„)|)
 ^ *«-1 =y.-J® yJ'
 - F(x l'-">x n-2'X n-'l y n-1 '■* n ' ^n^r

 We may proceed by induction to get:

 I* ! = y,|®- =yn'®'F(xi,...,xn)'<'F(xJ y„)|,

 as desired.

 If F E H "=1 Axx then, since [=7] implies [=6], we have:

 l*,=y,|®- - - = yJ®|F|<(l®- ••<8>l)<g>|F| = |H

 showing that[=4] is valid and proving Fact 1 .
 By induction, define a map | • | as follows: for x , y e V , x ź y, set

 *=;y «+i = Az«.v (l* = zl. <->b=z|„)
 (a <-» b means (a -¥ b) /'{b - » a))'

 I* = yL = !(A„eA, I* = y' n ); finally, set 'x = x' m = 1.

 Fact 2: ' • |„ satisfies the properties required for the full logic.
 In fact: condition [=1] is clear, while [=3] is verified because it's true for

 |jc = y' n , for all «Gu.

 Since |jc = yL = !|* = yL» [=7] is satisfied (the case x = y is valid too, be-
 cause !1 = 1). Observe that, for every n S: 0 and z # x,y:

 x = y n+l <8> I* = z' „ =s b = z|„ and therefore,
 *=y..®l*=*L ^l*=yL+i®k=«L - 'y = 4n for every «>o.
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 EQUALITY IN LINEAR LOGIC 1 25

 Thus,

 'x = yL® |*=z|- ^ AneiV 'y = z' „ ; now [=7] and [A/4] yield [=2].

 Since |jc = y) ^ < |jc = y|0 = TX v, Fact 1 guarantees that | • | satisfies [=4].
 For the (MALL) fragment, it's enough to take ! = !m (see Proposition

 1.14) in the above computations. □

 Discussion 3.6 Are requirements [=5], [=6] (resp. [=7]) too strong ?
 The motivation for them is, starting with substitution for elementary for-

 mulas, to have substitution for every formula. Obviously, they are suffi-
 cient, but indeed, they are also necessary. To see this, note that, if a =
 'x = y',b = I PU) I and c = |P(jc ¿ }>)|, then we must have that a 0 b ^ c and
 a® c^b, (i.e. a < c)) must imply a 0 'b ^ !c (and, of course, that
 a®!cs 'b). Since 1 is a formula, we must also have a = a 0 1 ^ 1. The
 critical cases are 0 and !. We have

 Lemma 3. 7 Let Q be a Girard Quantale and let a be an element of Q such
 that a ^ 1. (a) Are equivalent:

 (i) V b, c, d E Q, a ^ (b <-» c) , a ^ (d e)
 implies a ^((b 0 d) <-> (c 0 e)).

 (ii) a^a® a

 (b) Assume that ! E M(Q) is idempotent and weak. Are equivalent:

 (i) V b, c E Q, a ^ (b c) implies a < ('b <-> !c).
 (ii) a = 'a

 (c) V b, c E Q, a ^ (b <-» c) implies a ^ (b1 <- > c1).

 Proof, (a) (j) => (ti): since a s 1 , then a ^ (1 <r-> a) and soa s
 ((1 ® 1) H (a 0 a)); thus, a = a 0 (1 0 1) ^ a 0 a.
 (i) <= (ii): If a ^ (b c), a ^ (d e), then we have a 0 ¿ £ c and
 a® d-^e, and so a 0 (b 0 d) £ (a 0 a) 0 (è 0 d) = (a 0 ¿>) 0 (a 0 d)
 s c 0 e. Analogously, a 0 (c 0 e) < è 0 d.
 (b) (i) => (ii): since and !1 = 1, then a s (1 <4 a) and therefore

 a ^ (1 <-» !a); thus, a=a0ls 'a<a.
 (i) <= (ii): suppose that a< (b<r+ c)' thus, a 0 ò < c and then a0!è

 ^ a 0 ¿ < c. Thus, by [M4] , we have a ® = !a 0 !fe = !(!o 0 'b) =
 '(a 0 !ft) s !c. Analogously, we can prove that a®!cs 'b.
 (c) Since Q is commutative, then (x - » y) = (y 1 - » jc1), by Proposition

 1.9. □
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 1 26 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 We can now show that we have substitution for every formula:

 Proposition 3.8 Let ' • |: ELF(L)

 [=4], [=7] resp.). Then, the extension to FOR(L) verifies:

 |x, = y,|® • = ;yj® |<K*iv..,*„)l - l<K*!? y,)l

 where E FOR( L) has (eventually) free occurrences of variables
 jr,,...,xn, and <1>(jc,^ y,,. >>„) is obtained from <!>(*,,...,*„) by
 replacing some occurrences of x¡ (not in the scope of a y ¡-quantifier) by
 y¡-

 Proof. By induction in the complexity of (1). As a first step, we have two
 cases to consider.

 i) <f>e£LF+(L).
 It's true by [=2], [=3], [=4] and [=6] (or [=7] and ! weak).

 ii) <ļ> E { 1, ±, T, 0 }. It's true by [=6] (or [=7] and ! weak).

 To proceed with the induction, assume that substitution holds true for every
 9 with complexity s k and let 4> be a formula with complexity k + 1. We
 have the following cases:

 a) <t> = a ® ß.
 It's immediate from [=5] (common to both systems)
 and lemma 3.7.

 b) <t> = ax.
 Since |a | = |a| , the conclusion follows from Lemma 3.7.

 c) <ļ> = A jc.a (xv...,xn,x). Given z E V, we have:

 ®"-i I*. -y.- 1 ® A v«vla n,*)Ly/.x]|
 =£ ®"=1 'x- =y¡ I ® |a (Xj

 - M*i < ( y „ ,x)[zJx' 1, and then

 ®"=i ® Arevla
 -^y«v|a(*lC yv-iXnl

 d) <|) = a & ß. Similar to c).
 e) (full logic) <ļ> = !a. It follows from [=7] and Lemma 3.7.

 Since the other connectives are defined by duality, the proof is complete. □

 Now, we shall extend the results in [Yet] to the calculus with equality.
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 EQUALITY IN LINEAR LOGIC 1 27

 Theorem 3.9 (Soundness) The semantics of quantales for commutative Lin-
 ear Logic with equality is sound with respect to the given calculus.

 Proof. We prove the validity of the new axioms (for the other rules, con-
 sult [Yet]). Define |b A A J = ļ/ļ , u • • • u A J. By observing that, for
 every a,b G Q, a ^ b iff axLl b ^ 1, the validity of each axiom is guaran-
 teed by [=1]- [=6] (resp. [=1]- [=4],[=7]). □

 Theorem 3.10 ( Completeness ) The semantic of quantales for commutative
 Linear Logic with equality is complete with respect to the given calculus.

 Proof. The proof is an extension of the proofs by [Yet] and [Gir]. Let M ,
 be the set of finite sequence of formulas in I; M, is a monoid with the op-
 eration of concatenation (and identity the null sequence). Let M be the
 (commutative) monoid obtained by identifying sequences which are distinct
 only by a permutation of their elements. Just as in example 1.11, p(M) is a
 commutative quantale and we set J. = { T: h T is provable } E fp(M).
 Since M is commutative, 1 is cyclic and so we can consider the phase

 quantale Q = (p(M) ,» where j : p(M)

 (A - ^ X) - ^ -L.
 Let Pr : FOR( L)

 PĄA ) = { T: I- A, r is provable }.

 By theorem 3.4 in [Yet], Pr factores through Q, i.e., Pr(FOR(L)) = Q.
 Let I • I = Pr |elf+(l>; clearly, the unique extension of |*| to FOR( L) is Pr,

 once we have defined in Q the open, weak and idempotent modality ! as:

 !(x) = V { Pri'A): PĄ'A) < * }

 Fact: !1 = 1 (where, by definition, 1 = A { PiiA) : '- A is provable}).
 To see this, Let T G PR(' 1); thus, I- !1, T (i.e., I- (?±) 1 , T) is provable

 and let A e FOR( L) be such that I- A is provable. Then:

 h 4, 1 :
 i- a, ?± b(?±)x,r

 h a , r
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 1 28 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 i.e., r G PĄA), and so Pr(!l) - A { Pr(A) : A is provable } = 1.
 Thus, />r(!l) ^ V { PiļlA): Pr(!A) < 1 } = !1. In fact, equality holds be-

 cause I- !1 is provable, and so 1 ^ Pr(!l) - Ü - 1, i-e- 1 = 'l-
 We shall now show that |- | satisfies the required properties. Since h(* =jc)

 is provable, 1 s Pr((x = x)) = |jc = x . This verifies [=1].
 To prove [=2], let T A G |* = y| • y = z|. Then we have:

 Kx = y),r

 I- Cy = z)1,(jr = z),r hCy = z), A
 i- (^ = z) , r, a

 i.e., r A G |jc = zļ. Thus, |x = ;y| • [y = z| < |x = z| and so

 |x = y|0|y = z| = (|x=y| -|y = z|)xx - = z|-

 To prove [=3], let T E |x = y| . We have:

 h(* = ;y),r I- (^ = y)1» (y = x)
 h(y = ac),r

 i.e., r G |y = x' and thus |* = y| ^ |y = x'
 Properties [=4], [=5], [=6], [=7] are verified in a similar way. This shows

 that we have an interpretation of quantales such that |A| a 1 iff I- A is prov-
 able, completing the proof. □

 4. Generalisations of the Calculus

 There are alternatives to the treatment of equality given above, using the
 exponentials of Linear Logic. For example, instead of requiring (• = •) to be
 open, we could establish that its characteristic properties be valid in the in-
 terior of (• = •)• Thus, we define the calculus (/>,) by the axioms:

 [*!] M(x=jc) [5!] I- !(* =y) - 0 ¡(y = x)
 [7!] I- '(x =y) <8> !Cy = z) - 0 !(* = z)
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 EQUALITY IN LINEAR LOGIC 129

 For every predicate symbol P,

 [SUBSi] '- !(*, =y,)0 • • • 0 !(*„ = yn)®P(xl

 - Pfril yi,-,x„( y„)

 Clearly, we have substitution for every formula, and we can say that
 !(x = y) has the behaviour of a linear equality. An even weaker form of
 substitution can be defined as follows:

 HOc, =7,)® • • • ® !(*„ = y„)® !/>(*„...,* :)
 0 "*(* i ( y i

 or, even

 I- !(*, =y,)® • • • ® !(*„ =y„)® 'P{xx,...,xn)
 -°tP(x i I yļ,...^cj yn).

 We can modify each axiom combining the modal operators in all possible
 ways. It is straightforward to verify that (incorporating id, the identity oper-
 ation on formulas), there are only seven modal operations obtained by suc-
 cessive applications of { !, ? }, namely, the set

 ?

 /91? I'
 M = { !, !?!, ?!, !?, ?!?, ?, id } id ?! !?

 ' ' !?! I/ ' !?!

 ! fig. 1
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 1 30 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 with its natural lattice structure (see figure 1). This is in complete analogy
 with Kuratowski's problem, in which we can prove that, given a topologi-
 cal space X and A QX, there are only 14 distinct sets that can be obtained
 from A by combinations of taking complements and closure (in our case,
 we do not consider modalities of the form m'x) = m{x) 1 with m E ./M,).
 Starting with this, we can define a general scheme to create a linear calcu-
 lus with equality.

 Definition 4.1 Let (mj )|2] be a sequence in M. A linear calculus with
 equality P((m¡ )) is defined by the following axioms:

 [/?] h m{(x = x) [5] h m2(x = y) - °m}(y = x)
 [7] h m4(m5(x = y) ®m5(y = z)) - °m6(x = z)

 For each predicate symbol P, the axiom

 [SUBS] h ro7(((x)"=, m ļ(x j = yi))®m9(P(xļ,...,xn)))
 0 m 10 (P(x , ( yv...,xn I yn)).

 Remarks 4.2 (a) If m3 ^ m2, then [5] implies that, for m3 ^ r,s ^ m2,
 r{x = y), s(x =y), r(y = a:) and s{y = x) are all equivalent.

 (b) Ifmx = id orm{ = !, then '- m(x = x) is provable for every m E. M.
 (c) lfm-, = id, mg E { !, !?, !?! } andm9 S: m 10, then substitution holds

 for every formula <(> built up from formulas of the form m9(P), where P G
 ELF( L).

 (d) For each m¡ E {!, !?, !?! }, we have m(®"=i m¡(A¡)) =
 m!(®;=1 mf(A()).

 Examples 4.3 (a) The system (LLEX) of section 2 is obtained by the
 assignment

 m J = ! and m¡= id, for every i ^ 3.

 (b) If we set

 m , = m2 = m J = m5 = m6 = m8 =! and m4 = m 1 = m 9 = m 10 = id,

 we get the system (P,), in which "equality" is the interior of {• = •)• This
 system satisfies substitution for every formula.
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 EQUALITY IN LINEAR LOGIC 131

 (c) If we set

 mx = m2 = /n5 = m6 = mg = ?, m 4 = m7 = m9 = /n10 = id ,

 and

 m3 = !?

 f/ze/i we have a system in which "equality" corresponds to the closure of
 (* = ')»' from [5] will follow that that ?(• = •) is "clopen". This system
 satisfies the substitution rule for every formula.

 (d) By considering

 m i = m ļ = m 6 = m10 = ?!, m2 = m 5 = ms = m9 = !?!

 and

 m 4 = m7 = !? or !?!

 w gei a system containing a translation of the classical theory of equality
 inside ( LL ), to be studied in next section.

 ( e) Another translation of classical equality in (LL) can be obtained by
 considering the assignment

 m , = id, m 2 = m A = m5 = m7 = ms = m9 = ?

 and

 m3 = m6 =m10 = !.

 Now, we would like to identify the classes of equivalent calculi. Instead of
 doing a complete classification of the possible calculi, we present quantale
 theoretic techniques that are useful in deciding this problem. We start with
 reflexivity ([/?]):

 Proposition 4.4 Let Q be a Girard's quantale, and let x E Q. Then:

 (a) Are equivalent:

 (0 ?*>1 (ii) !?x> 1 (iii) ?!?*>!
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 1 32 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 (b) Are equivalent:

 (i) *>1 (i'O Ltäl

 (c) Ar? equivalent:

 (i) ?!x > 1 (h) !?!jc > 1

 Proo/: (a): If ?x > 1, then !?x > !1 = 1. If !?;c > 1, then ?!?jc > ?1 >
 1. Finally, ?!?jc s 1 implies lx ^ 1, because ? s ?!?.

 (b) comes directly from !1 = 1, while (c) is consequence of (b). □

 Thus, introducing the notation r = s to denote that calculi obtained with
 m , = r and m , = .v are equivalent, we have:

 (а) ? = !? = ?!? ( b ) id = ! (c) ?! s ļ?ļ

 and so there are only three non equivalent possibilities for [/?].
 With respect to axiom [5], consider Jí , = {?, ?!, ?!? } = {?m: mE 1},

 together with M2 = {!, !?, !?! } = {!m:m G M. }. Write (r,s) = (r',i') to
 denote that calculi obtained with m 2 = r, m3 = s and m2 = r ' m3 = s' are
 equivalent. Then we have:

 Proposition 4.5 (a) /fm3 G M,, then:

 ( i ) (Im,) = (?!,m3) s (!?!,m3) (ii) (!?,m3) = (?!?,m3)
 (Hi) (id/n3) = (?,m3)

 (b) If m 2 E M2, then:

 (i) (m2,l) ^ (m2,!?) = (m2,?!?) (ii) (m2,?!) = (m2,!?!)
 (iii) (m2,id) = (m2,!)

 Therefore, there are only 26 non equivalent cases for [5]:

 (1): (!,!?) = (!,?!?) = (!,?) = (!?!,?!?) s (?!,?!?)
 = (!?!,!?) = (!?!,?) = (?!,?)

 (2): (!?.!?) = (!??!?) s (t? ?) = (?t? = í?t?

 (3): (!,?!) s (!?!,?!) - (?!,?!) s (Ü?!) = (!?!,!?!)'
 (4): (id,?) =(?,?) (5): (!?,?!) = (?!?,?!) = (!?,!?!)
 (б): (id,?!) = (?,?!) (7): (id,?!?) = (?,?!?) (8): (',id) ■ (!,!)
 (9): (!?,!) = (M, id) (10): (!?!,!) = (!?!,id) (11): (id, id)
 (12): (id,!) (13): (id,!?) (14): (id,!?!) (15): (?,id)
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 EQUALITY IN LINEAR LOGIC 1 33

 (16): (?,!?) (17): (?,!?!) (18): (?,!) (19): (7'7,id)
 (20): (?!?,!?) (21): (?!?,!?!) (22): (?!?,!) (23): (7',id)
 (24): (?!,!?) (25): (?!,!?!) (26): (?!,!)

 For transitivity ([71), we shall write ( r,s,t ) = (r',s',tr) when calculi obtained
 with m 4 = r, m5 = s, m6 = t and m4 = r', m5 = s', m6 = t' are equivalent.
 Then we have:

 Proposition 4.6 If m 5 E M2, then:
 (0 //m6 E jliļ, ř/ien (r,m5,/n6) = (s/n 5,m 6) for every r,s E Jí
 («0 (r,/n5,?) - (*,m5,?) = (/¿,m5,!?) - (!,m5,!?) = (!?,ms,!?) =

 (!?!,m5,!?) = (t,m5,7'7) = ( u,m5,7'7 ) for every r,s,t,u E jH.
 («O (r,/n5,?!) = (i,m5,?!) = (W,m5,!?!) = (!,m5,!?!) = (!?,m5,!?!) =

 ('7',m 5,'7') for every r,s E JiL

 The results above imply that, for m 5 E M, 2 fixed, we have only 8 possibil-
 ities for pairs (m4,m6) (in contrast with 26 possibles ones), where the num-
 bers refer to the pairs described above.

 [1]: (1) « (2) = (4) « (7) = (13) [2]: (3) = (5) = (6) = (14)
 [3]: (8) = (1 1) = (12) [4]: (9) ^ (10)
 [5]: (15) = (19) = (23) [6]: (16) = (20) = (24)
 [7]: (17) = (21) = (25) [8]: (18) = (22) = (26)

 With respect to substitution, if we fix m 8, m 9 E M2, then there are again,
 for pairs (m7,m10), only the 8 cases above. Thus, these are the non equiv-
 alent calculi that can be constructed with the exponentials, satisfying the
 usual rules of equality. We register that this corresponds to only 8% of the
 original universe of possible calculi.

 5. Interpreting Classical Equality in Linear Logic with Equality

 It is well know that the exponentials of linear logic (LL) are important in
 interpreting intuitionistic logic (IL) and classical logic (CL) inside LL. For
 each of these logics, we have two translations, one of them based in the fact
 that every (commutative) Girard' s quantale contains a frame (complete
 Heyting algebra) (corollary 1.21) and a complete Boolean algebra:

 §€ = { 'x: X E Q } and 20 = { ?!*: x E Q },

 respectively. Operations and constants in each of these algebras are given
 by:
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 1 34 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 ( H). For the frame

 0Ä = 0, T x = 1, (xA3t;y) = (x0;y) = !(xAy), (x Vse y) = (x V y)',
 (x => y) = ! (x y), -i X = (x => Ox) = ! (x -> 0),
 Ajf 5 = ! A 5, 'Z^S = '/S.

 (B). For the complete Boolean algebra ÖS:

 0« = 1, Ta = ?1, (x /V y) = ?(!x 0 ! y) = ?l(x A y),
 (* V® y) = (* u y) = (x ®y ) ;
 U => y) = (be ->■ y),-! X = (x => O®) = ('x 1) = ?(*x);
 AaS = ?!AS, VaS = ?V{!^í6S}.

 Thus, we can interpret A E FOR{IL) as A' E. FOR( L) by the rules:
 A'= 'A if A is atomic; proceed by induction on complexity using the

 operations in (H) to define A ' for all intuitionistic formulas (here, FOR(IL)
 denote the set of intuitionistic formulas).

 For classical logic, we have our first translation:

 (*) A c = ?!A if A is atomic; then proceed by induction on complex-
 ity, using the rules in (B).

 Thus, if we assume two-hand sequents for ( LL ), we have ([Gir]):

 A v...,An '- lL A is provable in intuitionistic logic
 iff (i4 ,) ' ,...,04 n ) ' I- A ' is provable in LL,

 and

 (líř T ): Av..„An V CL A is provable in classical logic iff
 !(A j) c,...,!(y4 ,, ) c '-Ac is provable in LL.

 Another interpretation for classical logic is constructed from polarities for
 formulas. Thus, given a sequent for classical logic T '- CL A, we'll say that
 occurrences of formulas A E T are positive (denoted by pA) and occur-
 rences of formulas B E A are negative (denoted by nA). We have the fol-
 lowing rules of a second translation (**):

 pA = A = nA if A is atomic.
 p{- 1 A) = ( nA)L , «( - i A) = (pA)1,
 p(A vß)= p(A) © p(B) , n{A 'jB) = 'n(A) u 'n(B),
 p(A A B) = 1p(A) 0 1p(B), n(A A B) = n(A) & n(B),
 p(A => B) = n(A )x © p(B), n(A => B) = 7p(A) - ° 'n(B),
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 EQUALITY IN LINEAR LOGIC 1 35

 p((V jc)A) = A x.lp(A), n((V jc)A) = A xn(A),
 p(( 3 x)A) = V x.p(A)9 n(( 3 x)A) = V x.'n{A).

 With this definition, we have ([Gir]):

 (**) Av..ģ,Ak '- CL A is provable in (CL) iff !«(A ļ),...,!/2(y4 ^ ) h lp(A)
 is provable in (LL).

 We now turn to the question of determining a linear theory of equality such
 that, given a classical theory of, its translation into linear logic is defines a
 linear theory contained in the original linear theory of equality.
 For this, we need to relate the deduction of a sequent in (LL) from a set of

 sequent-axioms and the deduction of a formula from a multiset of hy-
 pothesis (in the left-hand side of the sequent), called external and internal
 relations of consequence (respectively) by [Avr].

 Definition 5.1 Let A E FOR(L ) with exactly xv...,x n as free variables . The
 universal closure of A, denoted by A A is the formula obtained from A by
 quantifying universally all the free variables of A, i.e., A A =
 A X j . • • • A X n . A . Analogously , we define 'J A, the existential closure of A.
 It is straightforward to prove next result:

 Proposition 5.2 Let A X,...,A n be formulas, B='AA{ & • - • & !A An, and
 A a multiset of formulas. Are equivalent :
 (i) h A is provable from the sequent-axioms h A x ,...,b A n ;
 ( ii ) there exists k^O such that B, B h A is provable ;

 k times

 (iii) !A/4,,...,!A An Y Á is provable.

 Now, assume that M is the set of axioms (without free variables) of a theory
 of (CL) in a language without functional symbols. It follows from Prop-
 osition 5.2 that if Ax,...,An G si and A is a formula, then the following are
 equivalent, for the first translation (*) of CL into LL:

 (i) A |,...,An h ci
 (ii) !(À ,) c,...,!(i4 n ) cl- A c is provable in (LL);
 (iii) There is a proof of I- A° from the axioms I- (/4,)c,...,b (An)c (recall

 that the A . 's have no free variables).

 Thus, to each axiom A e ¿4 of a classical theory, corresponds a sequent-
 axiom I- Ac in (LL). Similarly, for the second translation (**), it can be seen
 that to each axiom AG si, there corresponds a sequent-axiom 1- n(A).

 Now assume that si defines the classical theory of equality. Thus, si con-
 sists in the following axioms:
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 Now assume that sí defines the classical theory of equality. Thus, si con-
 sists in the following axioms:

 (V x)(x = x);
 (Vx)(Vy)((x = y) =>(y = *));
 (V x)(V y)(V z)((* = y) A (y = z) =>(x = z));
 (V x,)(V y,)...(V x„)(V yn)((jC[ =>*,) A • • • A(jc =yn) A />(*,,. ..,*„)

 => P(x i( yv...,xn( >>„))
 (where P varies over every predicate symbol of arity n of the lan-
 guage).

 For the first translation (*), we get a calculus (£,) with the following axi-
 oms:

 [Rl] '-V.AxV.(x = x) [51] I- ?! A je ?!A y (!?!(* = y) - » 7'(y = *))
 [71] I- ?!Ax?!Ay?!Az(!?(!?!(x = y) ® !?!(y = z))- ° ?!(x = z))
 [SUBSTÌ] If P is a n-ary predicate symbol of the language

 I- ?!Ax, ?!A y, -?!Axn ?!Ayn(!?(!?!(x, =y¡)<8> ■■■ ®
 !?!(xn = yn)<S>!?!P(x¡,...,xn))-^>?!P(x¡^ y„...,xj yn))

 For the second translation (**), we get a calculus (E2 ) with the following
 axioms:

 [/?2] hAx(x = x) [52] I- Ax Ay (?(x =y) - °!(y = ;t))
 [T2' hAMyAz(?(?(i = y)0?(y = z))-^ !(* = z))
 [SUBST2] If P is a n-ary predicate symbol in the language

 h Ax, Ay, •• - A*, Ay n (?(?(*, =y,)®-..0
 ?(*„ =y„)®tP(x 1,...^,))- o !/>(*, I >•,,->■*„ I yn)).

 Consider the linear theory (P ,) determined by the axioms:

 [L/řl] h ?!(*=*) [L51] 1- ?!(x = y) - » ?!(y = x)
 [LTÌ] '- !?!(jc = y) ® !?!(y = z) - » ?!(x = z)
 [LSUBSTÌ] h !?!(*, =y,)® • • • ® !?!(*„ = y„) <g> !?!/>(*„...,*„))

 0 ?!^(^i ( yH).

 Clearly, (P,) contains (£,) (because every axiom in (£,) is deducible in
 (Pļ), using the equivalences of last section) and we have that (P,) defines a
 linear theory of equality in the sense of section 4.
 Similarly, define the theory (P2 ) by the axioms:
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 EQUALITY IN LINEAR LOGIC 1 37

 [LR2] '-(x = x) [LS2] '-1(x = y)-«l(y = x)
 [LT2] h ?(?(* = y) ® ?(y = z)) - l(x = z)
 [ LSUBST2 ] I- ?(?(*, =v,)0 • • - <8» ?(jc„ = yn) ® ??(*„...,*„))

 - ć ?„)•

 We can reformulate (P2 ) as:

 [LRT] h (JC = jc) [LSZ] h (JC = y) - «» (y = JC)
 [LTT] {-{x = y)®(y = z)^{x=z)
 [LSUBSTZ] h ?((*, =y,)0 • • • ® (*„ = ?„) <8> ?PU„...,xJ)

 Ji

 [? - !] 1- ? (Jc =y) - » !(JC = y).

 It is straightforward to check that ( P2 ) and (E 2) are equivalents. In fact,
 ( P2 ) is the strongest (and therefore more restricted as far as semantics is
 concerned) of the calculi already defined.

 6. Equality and intuitionistic Linear Logic

 In this section we shall study how to recover classical logic and intuitio-
 nistic logic from a linear calculus without exponentials, as well as analyse
 another extensions of the relationship between linear logic and quantales.
 Our basic system is (commutative) first order intuitionistic linear logic,
 from now on denoted by ( LLI ). The appropriate semantics will turn out to
 be furnished by commutative unital quantales. Similarly, the semantics for
 non-commutative first order intuitionistic linear shall be proven to be given
 by unital quantales. From this, it will be seen that, adding appropiate axi-
 oms, we can recover intuitionistic logic, classical logic and classical linear
 logic. Thus, an intuitionistic linear theory of equality provides an intuitio-
 nistic theory of equality, a classical theory of equality, and a classical linear
 theory of equality, simultaneously. The most natural candidate is system
 ( LLEq ), the simplest already defined.
 We define a sequent calculus for (commutative) first-order intuitionistic

 linear logic without negation, simply by extending the system in [GiLa] and
 then proving soundness and completeness for this system.

 Definition 6.1 The language L( for commutative first-order intuitionistic
 linear logic consist of a countable set of predicate symbols, p = {PB:nE
 w }, a countable set of variables V = { vn : n G w }, the symbols ®, - 0 , &,
 ®, V» and the same rules as in Definition 2.2 for the formation of the set
 of formulas FOR(L¡). For A E FOR{ L() and x,y G V, A [ylx' is as in
 Definition 2.4.
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 1 38 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLI A

 Definition 6.2 The calculus ( LLI)for commutative first order intuitionistic
 linear logic consist in the following rules and axioms (A,B,C denote formu-
 las, and r, A denote multisets of formulas):

 [AXl] A I- A [AX 2] ri-T
 [AX 3] I- 1 [AXA] r , 0 h A

 [CUT] ri-A A.A'-B [EXCH] V . A. B . A h C
 r,Ahß r,ß,A,Ahc

 [IL] Th A [®/?] ri -A Al -B [® L] TAfihC
 l,TbA r,Ah A®B r,A<S>ßhC

 [&R] r i- a r'-B [&i] r.A he [&2] r.gi-c
 ri-A&B T,A&B'-C I'A&ßbC

 [®L] r.Ahc r.Bhc [®i] r hA [®2] r '-b
 r,A©BHC ri-A©ß r i- a ® ß

 [ - ° /?] r.Ahg [ - °L] r±A

 ri-A^5 r,A,A^ßhc

 tv R] r h A^i tv L] r.Ahff
 r h V xA r , V xA h B if X not occurs free in T , B

 [AL] r.Aív/xi i- b [A R] r h A
 r , A xA h B r h A xA if X not occurs free in T

 Definition 6.3 An interpretation of quantales for ( LLI ) is a commutative uni-
 tal quantale (Q , V » * » 1) and a map |-L : FOR( L , )

 1. 0| =0, |l| = 1, |t| = T.
 2. A <8> ß| = |A * |5|, |A - 0 ß| = |A| -> |4
 3. A & B' = |A A 'B', 'A © B' = |A| V 14
 4. A x.A' =Aye VA/?(L,) |A[y/x]|,

 |V x.A'= 'jye VAĀ(L, ) |A[;y/x]| .
 We say that A E FOR( L ) is valid in Q î/|A|ô S: 1.
 A sequent T I- A is valid in Q i/|r| ß S |À| ß, where

 in í1 ,/r = 0
 in |r|ß= ļ®-.,KĻ (fr. A,,.... A.

 Before stating and proving soundness we establish the following simple
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 EQUALITY IN LINEAR LOGIC 1 39

 Lemma 6.4 Let Q be a quantale. Then, a<8>0 = 0<8>a = 0 for every a E Q.

 Proof: 0 ^ a - » r 0 implies a®0s0;0áa - > ; 0 implies 0 ® a ^ O.D

 Theorem 6.5 (Soundness) IfT A is provable in ( LL1 ), then it is valid in
 every interpretation of quantales, i.e., |r|e ^ ¡AL for every unital quan-
 tale Q.

 Proof. By induction on least lenght n of a proof of T I- A.
 Let Q be a quantale. If n = 1, [AX1],[/4X2] and [AX3] are immediate,

 while [/4X4] is a consequence of Lemma 6.4.
 Assume the thesis holds for all sequents with a proof of length < n (n >

 1 fixed) and let A I- D be a sequent admitting a proof of minimum length
 n + 1 . We discuss the last rule applied in the proof of A I- D:

 [CUT]: We have |T| ^ jv4| and A| * |A| < |ß| by the induction hypoth-
 esis; thus, |r| * |A| ^ |A| * |A| < I B .

 The passage through the rules [EXCH] and [1L] follow from the fact that
 Q is commutative and that 1 is the unit of Q.

 [® /?]: |r| s IA! and |A| ^ |ß| (induction hypothesis) yield, then |r| * |A|
 < 'A' * |ß|.

 [<8> L]: This works by definition of interpretation.
 [& R]: By induction, |r| ^ |A| and |r| < |jB|, and so |r| :£ |A| A |fi|.
 [& 1] and [& 2]: We have |T| * |A| < |C| ( induction hypothesis); thus

 |r| * (|a| a |ß|) < |r| * 'a' ^ |c|.

 The other rule is similar.

 [© L],[© 1 ],[© 2]: Same argument as in &, using v in place of A.
 [ - 0 /?]: Induction yields |T| * |A| ^ |5|; thus, by adjointness |r| <
 ¡Al -» |B|.
 [ - °L]: The induction hypothesis yields |T| ^ |A| and |A| * |ß| ^ |C|.

 Thus,

 (|A|-»|fi|) * |r| * |A| < (H->|ß|) * |A| * |A| < |ß| * |A| < |c|.

 [V /?]: By induction, there is a variable y such that |r| < | A Ijy/jc] | ; but then

 |r| < lA[jy/jc]| < Vy |v4[yx]|.

 We now state a Fact whose proof is routine:
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 140 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 Fact : If r , A V B is provable in n steps and x is not free in either T or B,
 then r , A'ylx] h ß is provable in n steps for every y S V.
 [V L]' Suppose that last rule applied was [V L]. Since * is not free in I'

 B, by induction and the Fact above, we may assume that |T| * |A[y/x] | £ |ß|,
 for every y E V.
 Thus, |AIjy/jc]| ^ |T| -4 |ß| for every y e V and so |v * = V v |A[y/jc] |

 - |r| - > |ß|, i-e. |r|*|v^|s|4
 [A L]: This is treated just as [V R]> above.
 [A R]: Suppose that last rule applied was [A R]m Since x is not free in I'

 induction and the Fact above allow us to assume that |T| < 'A[y/x]', for
 every y E V. It is then clear that |r| < A y |A[y/jc]|, ending the proof. □

 Before we prove completeness, we need a general result about quantales
 (generalizing an analogous result about Hey ting algebras in [Mir]).

 Definition 6.6 An autonomous poset is a partially ordered set P with a bi-
 nary associative operation 0 such that the endomorfisms a ® * and • ® a
 have right adjoints , denoted by a - » / and a -> ¡ -, respectively .

 A [® , VHutonomous lattice L is an autonomous poset where L is a lat-
 tice and such that ® is distributive for all V's which exists in L, i.e., if S C
 L such that exists V S in L, then, for every a E L, 'J s G S (a ® 5) and
 'Js eS (s® a) exists in L , and we have that V s E 5 (a ® s) = a 0 (V S),
 'Js eS (i®fl) = ('/S)<8>a.

 IfS, T are subsets ofL , define

 S - T= {a<8> b : a E S and b E 71.

 Definition 6.7 Let Lbe a lattice and I Q Lan ideal (i.e., if x E I and y ^ x
 then y E /; if x, y E I then x'/ y E I). We say that I is complete if it satis-
 fies :

 if S C I such that V L S exists , then V L S E /.

 Since an arbitrary meet of complete ideals is again a complete ideal ,
 CĶL) - { I C L : I is a complete ideal in L }, is a complete lattice

 ordered by inclusion , and containing , for each a EL,

 = {x E L: x < a }.

 If a E L and S C Lis a subset ofL , define

 a ^ = </?/ U ceS (a - > rc) and a ,S =defU ce5(a - » ,c) .
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 EQUALITY IN LINEAR LOGIC 141

 Lemma 6.8 Let Lbea[® , '/] -autonomous lattice. Then
 (a) If a E L and I E CĶL), then a - » r I and a 1 1 are in CĶL).
 (b) For every S,T Q L and K E CĶL), we have

 S • T Q K iff S Q C' aeT (a -> , K) iffT Çfi Û6S (a -> r K).

 Proof: (a) If x E a - » r I, then there is c EI such that x ^ a - » r c; thus,
 if y < X then y s a - » r c and therefore y E a - » r I.
 If x,y E a - » r I, then there are c,d E / such that x ^ a - > r c, and y s

 a r d' therefore

 * V y ^ (a r c) V (û -> r d) ^ a r (c v d),

 yields x'yy E a - » r /, because c'j d E I.
 Let 5 Ç a - > r / be such that c = 'J L S exists. For every i E S there is c s

 E / such that s ^ a - » r c s , i.e., a 0 í s c s . Since / is an ideal, a 0 s EI,
 for all 5 E 5. Then,

 a 0c = a ® Vi6s 5 = VS€jû®îE /,

 because / is complete. But this means that c E a - » r /. A similar computa-
 tion will prove that a -¥ ¡ I E CĶL).
 (b) Let xES and a ET and assume that S • T Ç. K; since x<S>a = c E K,

 then x^a ¡ c and thus x E a ¡ K, for every a ET.
 Now, suppose that SC fi aeT (a - » , K), x E S and a E T' since x E

 a - » ( K, there is c E K such that x ^ a - » ; c, i.e. x <8>a ^ c. Since A' is an
 ideal, we get x 0 a E K. The other equivalence can be handled similarly. □

 Theorem 6.9 ( The completion of a [0 , '/]-autonomous lattice)
 Let L be a [0 , 'J]-autonomous lattice with 0, T. Then, there exists a

 quantale Q and an injective map <|) : L

 1. <ļ>(0) = 0, 4>(T) = T. Moreover, <|) preserves all 'J's and A 's existing
 in L, i.e., if'Jie, a¡ andAjeJ bj exists in L, then

 «KV/s/ a¡) = Vie/ <Kař) and <t>(A jmJ b j) = A jsJ <1 >(6 .).

 2. For all a, b E L,

 ( i) <ļ>(a 0 b) = <ļ)(a) 0
 (ii) <j>(a -> r b) = <ļ>(a) -» r <Kè) and <1>(öt -> , b) = <ļ>(a) - > ; <K^)-

 3. If a ® b = b ® a for every a,b EL, then Q is commutative.
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 142 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 4. IfL is unital, i.e., there is 1 E L such that a ® 1 = a =1 0 a, V a E L,
 then Q is unital and 4>(1) = 1 q-

 5. If in addition, L has a cyclic dualizing element ±, then Q is a Girard
 quantale and <ļ»( X) = 1.

 Proof: Set Q = CĶL) and define in Q the operation

 (I) I * J =def C'{KEQ:KDI-J},
 where / • J={a®b:aEl,bEJ}.

 Clearly * is increasing in both variables. By Lemma 6.8, • * / and / * -have
 right adjoints / - » r J and / - » , J, given by

 ^ ael (a ~ * r ^ ae/ (a I

 respectively. Thus, V I, J E Q,

 (II) I * J Ç. K iff I C J ¡ K iff J C 1 r K.

 Formulas (I) and (II) will be of constant use. To show that * is associative,
 we need

 Fact 1: Let /, J, K e Q. Then

 st={HEQ:HD(I*J)'K} = {HEQ:HDI(J*K)} = ®.

 Proof of Fact 1 : We have, using Lemma 6.8, the following sequence of
 implications

 HD (I *J)K=>HD (I J)-K = I- (J -K)
 =$J'KCl-¥rH=$J*KCI-ìrH.

 The last term implies H~DI - (J* K) and si £ 30. Similar reasoning yields
 S& Csâ.

 It follows directly from the Fact that * is associative. We now must show
 that * distributes over suprema.
 Let IE Q and {/„ } aeA Ç Q; we shall prove that I*'/I a='/(I* /„).

 Observe that '/Ia = r'{HEQ:HDUaIa },as well as that V U * I a)
 CI * V I a is always true. Now, we have the following sequence of impli-
 cations
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 EQUALITY IN LINEAR LOGIC 143

 KDU(I*Ia)=>KDI*Ia,VaeA=>IaÇI^>rK,VaEA
 =>U/„Ç/- ) rK =$'/IaQI->rK=ïI*'/IaCK,

 and so / * V CVC*'«)' Right distributivity is similar and so Q is in-
 deed a quantale.

 Before defining the map <j>, we state

 Fact 2 : For a,b Eß
 (i) ~^rb^ =(a -+rb)*~ and a" -*,b^ ={a ò)^.
 (ii) If S Ç L is such that a = '/S exists in L, then V„ss-=a-.
 (iii) If S ÇL such that a = AS exists in L, then a *~= Ai€jj<_= fi ssS s*~ .
 (iv) * b*~ = (a ®b)*~.

 Proof of Fact 2: (i) Let K G Q be such that a*~ * K C b ; for x G K,
 we have a® x^b and so, x £ a -¥ r b. Thus, K C (a - > r b)*~, proving
 that a*~ - * rb*~ Ç {a -ïrb)*~.

 For the reverse inclusion, consider x ^ a and y ^ a -) r b' then x ® y ^
 a® (a - » r b) s b and so a*~ • (a - » r b)*~ Ç b*~ , i.e., a*~ * (a - » r b)*~
 Ç b*~. This last relation implies (a - » r b)*~ Ca ^ -ïrb*~, as needed.
 For the operation - > ;, the argument is similar.
 (ii) If V S = a, then í Ç a for every s G S, and so it is clear that

 ' / * - t - ^ -
 ' VísSÍ / Ç" t - ■
 If H D U seS s , since H is complete, it follows that a E.H.
 (iii) Is similar to (ii).
 (iv) If* < a,y < b thenjt<8>>> ^ a® ¿impliesa*" • b*~ Ç (a®b)*~.

 Thus, a*~ * b*~ Q(a® b)*~ .
 Now, ifHDa^ • b*~ then a® b G H and we get (a® b)*~ Ç. H. By the

 definition of * (formula (I)), this yields (a® b)*~ Ç. a*" * b*~ , d& desired.
 This ends the proof of Fact 2.

 We now define

 <(>: L

 Clearly (J> is injective and, by Fact 2.(ii) and (iii), preserves all existing V's
 and A's in L. Furthermore, 4>(0) = { 0 } (the smallest complete ideal in L)
 and <J>(T) = L = Tß. The preservation of the other operations is guaranteed
 by Fact 2.(i) and (iv). This shows that <(> has the properties in items 1 and 2
 of the statement.

 It is quite clear from the definition of * (see (I), above) that Q will be
 commutative if * is commutative in L. Moreover, if L is unital, straightfor-
 ward computation will show that <|>(1) = l*- is the unit of Q.
 (d) Let ± G L be a cyclic dualizing element in L. Clearly 1 G Q is

 cyclic and therefore Q y. = { / G Q : j(J) = / } is a Girard quantale, where
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 144 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 j : Q

 Moreover, a*~ G Qjt for every a G L. Thus, the map y' 0 <ļ> : L
 an embedding of L in a Girard quantale, with all the required properties. □

 We can now prove

 Theorem 6.10 ( Completeness ) If (T| Q < 'A' q for all interpretations in
 quantales Q, then T h A is provable in ( LLI ).

 Proof. Our method will be to show that the Lindenbaum algebra L of
 (LLI) can be embedded in a commutative unital quantale Q, such that |r| Q
 ^ 'A' q iff r I- A is provable.
 Define in FOR(L ¡) the relation:

 A ~ B iff A '- B and B '- A are provable.

 It is easily seen that ~ is an equivalence relation. Its equivalence classes
 shall be denoted by AL.
 Let L be the set of equivalence classes, i.e., L = { AL : A G FOR( L , ) }. In

 L, define the relation:

 AL s BL iff A b B is provable in (LLI).

 By [CUT], ^ is a partial order in L. Moreover, for formulas A, B in LLI, we
 have

 Fact 1: If A, B are formulas in (LLI), then
 1. (/4 & B)L = (AL) A (BL) and (A © B)L = (AL) v (BL).
 2. AxeV(A[y/x]L) = (Ax.A)L and Vv.v W*]/~) = (V^V-
 3. 0 = 0/. and T = T/_.

 Proof of Fact 1 : All these equalities can be read off the corresponding
 rules of the calculus. We do the first one in each of items 1. and 2. in some
 detail, just naming the rules that should be used for the other cases.

 1. From [/4X1], [&1] and [&] we get A & B A, B and so (A & B)L ^
 AL, (A & B)L ^ BL. On the other hand, if C h A and C '- B, then [&/ř]
 yields CV A &.B. This means that

 CL < AL, CL ^ BL =» CL ^ (A & B)L,

 proving that (A & B)/_ = (AL) A (BL) in L.
 Similarly, [AY1], [0 1], [© 2] and [®L] will yield (/4 ® B)L =

 (AL) v (BL).
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 EQUALITY IN LINEAR LOGIC 145

 2. By [AX1] and [A L], (A x. A)L s A'ylx]L, for every y G V.
 If BL ^ A'ylx]L, for every y, let z be a variable not occurring in B. Then,

 BL ^ A [zJx]L and so [ A R ] yields BL ^ (A x A )/_. This proves that
 AveV(A[y*]/_) = (Ajt.Ay_.
 For the existential quantifier, the reasoning is the same, using [AX1],

 [V R] and [y L].
 3. This follows directly from [AX 2] and [AX4], ending the proof of

 Fact 1.

 Define in L a binary operation * by:

 (AL) * (BL) = def (A®B)L

 Clearly, * is well defined, is associative, commutative, increasing in both
 variables and 1/. is the unit. We have

 Fact 2: With the operation * defined above, L is a [0, V] autonomous lat-
 tice.

 Proof of Fact 2: It remains to be shown that * has right adjoints and dis-
 tributes over the suprema existing in L.

 If A, B, C are formulas in (LLI), then

 (+) A <8> B I- C is provable iff A, B C is provable
 iff A '- B - ° C is provable.

 To see this, note that [® /?] yields A I- A B'- B
 A,BVA®B

 Thus if A <8> B '- C is provable, [CUT] implies that A, B I- C is provable.

 The converse comes directly from [0 L] as A.BVC .
 A0ß I-C

 From [-« R ] we get A. B h C .
 A HB- «»C

 To show that the last clause in (+) implies the second, first note that
 B, B - o Ch Cis provable, because we can use [ - 0 /?] a B h B CV C.

 B,B - ° C'-C

 Thus, the provability of A I- B - ° C and B, B - ° C '- C and [ CUT] yield
 that of A, B '- C.

This content downloaded from 
������������143.107.45.1 on Wed, 03 Apr 2024 13:42:34 +00:00������������ 

All use subject to https://about.jstor.org/terms



 146 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 It is clear from (+) that (A - 0 -)L is the rigth adjoint to AL * • = • * AL in
 L.

 To show that * distributes over the sup's in L, let SCL be such that there
 is A/_ G L satisfying AL = V L S. Fix B/_ G L. Since * is increasing,
 (BL) * (X/.) < (BL) * (AL), for every XL G S.

 Let FL G L such that {BL) * (XL) ^ FL, for every X/. G S. By (+) we
 have that, for X/. G S,

 B ® X I- F is provable iff X '- (B - ° F) is provable,

 V XL G 5; taking sup's, we get A h (B - ° F) is provable. Thus, B <8> A '- F
 is provable, and so (B/_) * (A /_) ^ F /_. But this means that
 V x/-<es((BL)*(X/_)) exists in L, and it's equal to (BL) * '/ L S, ending the
 proof of Fact 2.

 Therefore, L is a commutative [<8> , Vi -autonomous lattice and by theo-
 rem 6.9 it has a completion <ļ> : L

 tive quantale. Moreover, (1) preserves <S>, - °, 0, T, 1 and all existing V's
 and A's in L. Consequently, if X, Y are formulas in (LLI) we have

 <f>(X/_) ^ 4>(y/J iff XL < YL.

 It follows from these preservation properties that the map
 |*| q:FOR(X¡)
 quantales such that |T| < |A| iff Ť I- A is provable, as required to complete
 the proof of the Theorem. □

 Before we give logical applications of the preceding results, we need to in-
 vestigate when is it that a quantale becomes a frame. From Lemma 6.4
 comes:

 Corollary 6.11 Let Q be a quantale. If Q has a largest localic subquantale
 L, then

 L = I(Q)={a(EQ:a2 =a).

 Proof. We must have L C I(Q) because every x G L is idempotent (prop-
 osition 1.19).

 For a G I(Q), set La = { 0 , a }. By Lemma 6.4, La is closed under <8>; it
 is clearly closed under arbitrary V's, and so La is a subquantale of Q. Since
 a is idempotent, it follows that La is localic. Thus, La CL, i.e., a G L, and
 therefore 1(Q) ÇL □
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 EQUALITY IN LINEAR LOGIC 147

 The next result is a correction of Theorem 3.4.1 in [Ros], which is false as
 it stands. In fact, the usual quantale of phases of Linear Logic is a counter-
 example to that result.

 Proposition 6.12 Let Q be a quantale. Are equivalent:
 (1) Q has a largest localic subquantale.
 (2) I(Q) is a localic subquantale of Q.
 (3) For all every a,b G I(Q), a 0 b = b 0 a s a Ab (A in Q or in ĶQ)).

 Proof. (1) => (2) comes from Corollary 6.1 1, while (2) => (3) is immedi-
 ate.

 (3) => (1): Because ĶQ) is commutative, it is closed under 0. To show
 that I(Q) is closed under sup's, let { a ¡ } fe/ Q I(Q). Then:

 (*) Vie, a, = V1€, (ß iJel (a¡ 0 a})
 = (V,-6/ a¡) 0 (V jei aj)-,

 (**) (Víe, «,) ® (V jsi «;) = V, e, (V;e/ K- <S> aj )) < Vie# «/>

 because a¡ - a, f°r every j G I. From (*) and (**) it follows that
 Vis/ ai is idempotent and so I(Q) is a subquantale of Q.

 To show that I(Q) is localic, observe that it follows from 3. that a 0 b ^
 a, for every b G I(Q). Thus, V a G /(0,

 a 0V^(ß) = Vfc6/(ß)(a 0 b) - a and (V ĶQ)) 0 a ^ a,

 which shows that all elements of /(0 are idempotent and two-sided in I{Q).
 Now, Proposition 1.19 guarantees that /(0 is localic. If L Ç Q is a localic
 subquantale then every x E. Lis idempotent (Proposition 1.19) and so L £
 /(0. □

 Thus, in a commutative Girard quantale Q, /(0 PI 1*~ is the largest frame
 contained in 1 . From the point of view of Logic, we have a privileged
 localic subquantale, that corresponds to intuitionistic Logic. However, the
 situation is quite different in the non commutative case: in general, a Girard
 quantale will not have a largest localic subquantale. If one considers Propo-
 sition 1.14, one realizes the importance of commutati vity: there is a largest
 interpretation for ! in a Girard' s quantale Q, corresponding to the largest
 among frames L satisfying

 (i) L C Z(Q) (ii) LCl*- = {xGß:jt<l}

 In fact, Q; = I(Q) fi Z(Q) fi 1 , where Z(Q) is the center of Q.
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 148 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 The quantale theoretic setting will be helpful in finding axioms that,
 when added to various systems of Linear Logic, produce classical intuitio-
 nism and classical logic. We have the simple (compare with proposition
 1.19),

 Lemma 6.13 Let L be a complete lattice and * : L X L

 operation on L. Are equivalent:

 (i) * = A.
 (ii) (a) X * X = xfor every x GL.

 ( b ) x * T S je, T * x ^ xfor every x E.L.
 (c) * is increasing in both variables.

 Proof: (i) => (ii) is clear.
 (ii) => (i): We have a * b ^ a * T < a; a * è < T * b ^ b and there-

 fore, a * b ^ a A b.
 On the other hand, since * is increasing a A b = (a A b) * (a A b) ^ a * b.

 □

 An analogous (and dual) result holds for the operation v- From the preced-
 ing results we get

 Corollary 6. 14 Let Qbe a quantale. Are equivalent:
 (/) Q is a frame, i.e., <8> = A.
 (») every x G Q is idempotent and two-sided. □

 This Corollary and the completeness Theorem 6.10 yield

 Proposition 6.15 (a) The system (LI) obtained from {LLl) by adding the
 axioms

 [IDI] I- A (gíA - o A [ ID2 ] hA-
 [25] l-AOT- o A

 determines intuitionistic logic, and therefore if we add to ( LI) the axiom

 [ - i - .] (A - » 0) - » 0 I- A

 we get classical logic, where 1 is equivalent to T and 1 - 0 0 is equivalent
 to 0.

 Thus, adding the axioms [ID'],[ID2],[2S' and [/ř=], [S=], [7=], [SUBST',
 [^1] (see section 2) to (LLI) we obtain a intuitionistic theory of equality,
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 EQUALITY IN LINEAR LOGIC 149

 which becomes first order classical logic with equality upon the addition of
 [-i - i].
 (b) The system (MALLI) obtained from ( LLĪ) by adding the constant for-

 mula JL to the language and the axiom

 [ -i -i'] (A - 0 1) - 0 1 h A,

 is equivalent with (MALL) in the following sense:

 h A is provable in (MALL) iff'- A is provable in (MALLI),

 where A 1 and A U B are interpreted as A - ° JL and
 (O4°_L)0(ß - 0 _L)) - 0 J_, respectively . Thus, adding J_ to the language we
 have that

 (LLI) + the axioms [-. -S],[R=US=UT=],[SUBST', [/=],[< 1]
 is equivalent to (LLE0)t

 where (LLE0) is described in Definition 2.6.
 (c) Adding [IDI], [ID2] and [2S] to (MALLI) produces classical logic ,

 where 1 is equivalent to T, and 0 is equivalent to 1. □

 Remark 6.16 The possibility of obtaining (MALL) from (LLI) in part (b) ap-
 pears in [Dos] proved by a different method: one interprets A - 0 B,A & B
 and A x.A as (A 0 (B - 0 1)) - 0 ±, ((A - 0 1) © (B - 0 1)) - 0 1 and
 (V x.(A - 0 J_)) - 0 _L, respectively , together with the interpretation for U
 made in (b).

 Since (a 0 b) -> c = a - » (b c) and b = 1 - > by in every unital com-
 mutative quantale , it can be shown that his interpretation of linear implica-
 tion is equivalent to adding [- i -i'] to (LLI) to obtain (MALL) (translations
 for & and A are derived and a consequence of the ones given).

 As a matter of fact, we can extend this result to non-commutative intu-
 itionistic linear logic, simply by observing that each rule of (LLI) deter-
 mines an algebraic property of the Lindenbaum algebra of the calculus. For
 a general unital quantale, we need two implications, - °/ and - °r, to dis-
 card the exchange rule [ EXCH ], as well as to modify the rules in order to
 describe the properties of each operation. We can define a linear calculus
 which describes unital quantales, essentially the same as in [Abr].

 Definition 6.17 The calculus (NC LLI) for noncommutative first-order lin-
 ear intuitionistic logic consist in the following rules and axioms:
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 150 MARCELO E. CONIGLIO AND FRANCISCO MIRAGLIA

 [AX 1] AhA [AX2] ri-T
 [AX3] hi [AXA] I'0,AhA

 [CUT] rhA S .A. A h fi [IL] T. AhA
 2,r,Ahfi r,i,Ai-A

 [®iq L±A

 I'AhA®ß I'A®fi, AhC

 [&R] Ubá

 ri-A&ß r,A®5,Ahc

 [&L1] T.A.AhC [&L2] r.fi.AhC
 I'A&fi,AhC I'A&fi,AhC

 [®/?i] r'- a [0 /?2] r'-B
 ri-A©ß ri-A©ß

 [-, L] Xii A

 2, a - °rß,r,Ai-c ri-A^rß

 [-^», L] rhA

 2,r, A^r B, Ah c r h A - °r B

 [Vfl] r h A[y/^ļ
 r h v xA

 [V L] Ifx is not free in T, A, B then T. A. A h B
 r,v*AAhß

 [AL] r. Afv/xl. A h fi
 r, A xA, Ah B

 [A /?] Ifx is not free in T then T h A
 r h A xA

 With the same method employed in Theorems 6.5 and 6.10, Theorem 6.9
 yields that unital quantales are a complete and sound class of models for
 (NCLLT)š.
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 EQUALITY IN LINEAR LOGIC 1 5 1

 Theorem 6.18 (Completeness and Soundness for ( NCLLI ))
 A sequent T I- A is provable in [NCLLI] iff Y I- A is valid in every inter-

 pretation of quantales.

 Instituto de Matemática e Estatística, Universidade de São Paulo
 Caixa Postal 66.281 - Cep 05315-970, S.Paulo, S.P., Brasil

 e-mail: M.E. Coniglio: coni@ime.usp.br
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