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Roton-induced trapping in strongly correlated Rydberg gases
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Atoms excited into high-lying Rydberg states and under strong dipole-dipole interactions exhibit phenomena
associated with highly correlated and complex systems. We perform first-principles numerical simulations on the
dynamics of such systems. The emergence of a roton minimum in the excitation spectrum, as expected in strongly
correlated gases and accurately described by Feynman’s theory of liquid helium, is shown to significantly inhibit
particle transport, with a strong suppression of the diffusion coefficient, due to the emerging spatial order. We
also demonstrate how the ability to temporally tune the interaction strength among Rydberg atoms can be used in
order to overcome the effects of disorder-induced heating, allowing the study of unprecedented highly coupled

regimes.
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I. INTRODUCTION

The concept of the roton minimum was first introduced
by Landau in an attempt to explain superfluidity in liquid
helium [1,2]. Despite its rather heuristic derivation, and the
fact that its microscopical origin has yet to be fully under-
stood, Landau’s phenomenological model accounted for many
of the experimental features [3-6]. Later, Feynman provided
a deeper understanding on the physical origin of the roton
minimum by relating it with the structural properties of the su-
perfluid state [7,8], particularly the presence of strong spatial
correlations and the high-interactive character among helium
atoms. Rotonlike excitations have also been observed in dif-
ferent systems, such as quantum Fermi liquids [9] and dipolar
Bose-Einstein condensates [10—12], while roton instabilities
have been related with the formation quantum supersolids in
spin-orbit coupled [13] and Rydberg-excited Bose-Einstein
condensates [14], as well as in cold atoms above degeneracy
due to multiple scattering of light [15].

Recently, Rydberg gases [16,17] have also been the subject
of great scientific interest, mainly due to their high interactive
character. One such manifestation of strong interactions is the
so-called blockade effect, either due to van der Waals [18] or
dipole-dipole forces [19]. Strong interactions among Rydberg
atoms play two distinct, albeit related, roles. On the one hand,
the dynamics and transport of Rydberg excitations [20,21]
develops at fast time scales, where the motional degrees of
freedom are essentially frozen. On the other hand, at slower
time scales, the mechanical (external degrees of freedom)
evolution of Rydberg gases [22-25] present a great approach
to the physics of strongly interacting and highly correlated
particle systems, a subject of extensive theoretical, computa-
tional, and experimental research [26-33].
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In this paper, we perform molecular dynamics (MD) simu-
lations of two-dimensional Rydberg gases. A roton minimum
in the excitation spectrum is shown to emerge in the strongly
coupled regime and is accurately described by Feynman’s
theory of liquid helium, relating it to the development of
spatial ordering. The origin of the roton minimum and its
relation with other systems is discussed in detail. By tracking
the trajectory of each atom and studying its mean-square
displacement we show that the emerging spatial correlations
are responsible for a strong inhibition of (diffusive) trans-
port, as atoms become trapped in the roton minima. We
also investigate the relaxation dynamics and describe the
mitigation of the long-standing problem of disorder-induced
heating. This is accomplished by adiabatically increasing the
interaction strength during thermalization, culminating in the
achievement of stronger correlated samples. The experimen-
tal realization of the phenomenology described here is also
discussed.

II. THEORETICAL MODEL

Permanently polarized Rydberg atoms interact, in a
first approximation, via the pairwise dipole-dipole potential
[24,34-36]

C; )
V(r60)= 11 -3 cos’ ()], (1)

with 6 the angle between the atomic dipoles P (aligned
with external electric field E) and the interatomic separation
vector r. The strength of the interaction is quantified by C3 =
P2 /4mey, where P denotes the induced permanent atomic
dipole moment and € the vacuum electric permittivity. While
in one dimension the interaction is always isotropic, with
attractive or repulsive character depending on the polarization
angle 6 [37], in a two-dimensional gas isotropic repulsion is
obtained with polarization perpendicular to the atomic sam-
ple. In this case, & = 7 /2 and the in-plane potential is reduced
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to V(r) = C3/r3, which is the case we consider throughout
this paper. In a two-dimensional sample we define the average
interparticle distance (Wigner-Seitz radius) as a = (7rng)~"/2,
with ng = 1/ the homogeneous density, in the units of
r/a. The degree of correlations in the gas can be properly
parametrized by the coupling parameter, defined as the mean
ratio of potential to kinetic energy, I' = (V(r))/kpT, with kp
the Boltzmann constant and 7 the temperature of the gas.
In terms of the mean interparticle distance I' = C3/kp Ta,
with weakly and strongly correlated regimes corresponding to
I' € 1and I" > 1, respectively.

In order to describe the emergence of spatial correlations
(expected for I > 1), the radial distribution function g(r) is
defined such that the average number of atoms between r and
r + dr from a reference atom is 2w rnog(r)dr. In the absence
of correlations g(r) = 1, or h(r) =0, with h(r) = g(r) — 1
the pair correlation function. In reciprocal space we may also
define the (static) structure factor, related with g(r) via S(k) —
1 =no [dre®T[g(r) — 1]. Both these structural functions
can be obtained, even in the strongly coupled regime, via the
integral equation technique and the hypernetted chain (HNC)
closure equation [38]—check Appendix A for further details.

The correlational origin of the roton minimum can be
traced back to the early work of Feynman regarding the
structural properties of liquid helium. At finite temperatures,
Feynman’s theory relates the static structure factor with the
dispersion relation of the elementary excitation w(k) via [7]

s e (o)) | uk
= co ~ S
2mw(k) 2kgT w?(k)

with u; = /kgT/m the thermal speed of sound. The last
expression is obtained by taking the classical limit kg7 >
liw, and corresponds to the result obtained via the classical
fluctuation-dissipation theorem [39]. This is a further evi-
dence of the close connection between the roton minimum and
classical correlations induced by strong interactions. It also
goes in line with previous arguments [40], where quantum
and classical simulations of strongly correlated systems are
shown to yield equivalent results regarding the excitation
spectrum, discarding the influence of quantum fluctuations,
suggesting similar physics with that of liquid helium [41]. The
connection between the spatial correlations at high I and the
dynamics of the gas, as determined by Feynman’s model, is
further illustrated in Appendix B. As an important remark,
notice that the (correlational) roton minimum is of a distinct
physical origin as that in the case of dipolar Bose-Einstein
condensates [10,11]. In the latter, the roton minimum in quasi-
2D samples depends on the slight three-dimensional charac-
ter of the dipole-dipole potential, in the weakly interacting
regime, while here the roton minimum emerges in the strongly
correlated limit even in pure 2D samples.

2

III. MOLECULAR DYNAMICS AND EMERGENCE OF THE
ROTON MINIMUM

In the sequence, we perform molecular dynamics (MD)
simulations of the two-dimensional Rydberg gas, with N =
5000 atoms distributed in a square box of size L = /N /ng =
v N 2~ 125a, much larger than the typical range of spatial

correlations, at least in the range of parameters investigated
here. This is a critical feature and ensures the absence of spu-
rious correlations due to finite-size effects. Periodic boundary
conditions are used to mimic the evolution of a homogeneous
and isotropic system. In the early simulation times, we apply
a thermalization algorithm where the particles’ velocities are
rescaled accordingly as to maintain high values of the cou-
pling parameter. To this end, before each iteration of a regular
velocity Verlet algorithm we calculate the mean velocity over
the entire collection of particles, typically initiated such that
(v) = 1. After each integration step the updated velocities
are normalized in order to maintain the mean velocity of the
entire system. This can be understood as a relaxation at con-
stant temperature—canonical evolution. Once thermalization
has been settled, here identified by the convergence of the
velocity distribution, the trajectories are integrated in a full
Hamiltonian manner—microcanonical evolution. Distances
are measured in units of the mean interparticle distance a,
time in units of a/u;, and velocities normalized to the thermal
speed of sound u;.

The spectrum of density fluctuations (dynamic structure
factor) is obtained from the atomic trajectories (after thermal
equilibrium has been reached) by defining the intermediate
scattering function as p(k, 1) =) explik - r;(t)] [42,43],
where the summation is taken over all particles, with the
dynamic structure factor following as [44]

1 ) 1 5

Sk w) = 2w N Alrlgoo AT'p(k’w)| ' ®)
with AT the total simulation time and p(k, ) the Fourier
transform of the intermediate scattering function. From the
symmetry of the dipole-dipole potential, we assume that
S(k, w) does not depend on the direction of the perturbation
wave vector. The time is discretized in steps of 0.01 with a
total simulation span of 50, in units of a/u,. Such long sim-
ulation times ensure high frequency resolution upon Fourier
transformation. Also, permissible wave numbers are given
by multiples of the inverse box size, namely ky, = 27 /L.
Collective excitation are identified as peaks in the spectrum of
density fluctuations, with their respective width related with
the excitation lifetime—narrower peaks entail longer-lived
modes.

The results of the MD simulations are presented in Fig. 1.
The mode softening observed near ka ~ 4 entails the emer-
gence of a roton minimum, accompanied with the develop-
ment of short-range order in the spatial arrangement of atoms.
Also, the integral equation technique (and HNC closure)
prediction accurately describes the observed spatial order-
ing quantified by the radial distribution function. Notice the
increasing absence of particles—g(r) >~ 0—near r = 0 for
increasing values of the coupling parameter. This is due to the
stronger dipole-dipole repulsion at higher values of I". The
radial distribution function, together with Feynman’s model
of liquid helium in Eq. (2), correctly describes the MD results,
with an excellent agreement observed without any free fitting
parameter. The blurring of the S(k, w) near k, indicates rela-
tive short lifetime of the excitations near the roton position,
at least in comparison with the longer-lived modes in the
acoustic region near k — 0. As an important remark, notice
the increasing noise displayed by the theoretical dispersion
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FIG. 1. Results of molecular dynamics simulation for a two-
dimensional Rydberg gas. From top to bottom we increase the
coupling parameter (I' = 2, 15, 35) and observe the emergence of
strong spatial correlations and the resulting roton minimum in the
spectrum of density fluctuations. (a) Radial distribution function
obtained from the MD simulation (red dots) and comparison with the
HNC prediction (blue line). (b) Dynamic structure factor obtained
from the MD trajectories and comparison with Feynman’s model of
liquid helium based on the HNC correlations (red line) showing the
emergence of a roton minimum near ka ~ 4.

relation (red line) in the low k range. This is due to the
finite size of the simulation box. For increasing value of
I', the extent of spatial correlations increases. Upon Fourier
transformation of the radial distribution function, in order to
obtain the static structure factor and, consequently, the disper-
sion relation according to Feynman’s theory, these finite-size
effects lead to the emergence of noisy features in the low &
range of S(k). The correlational origin of the roton minimum
has a simple physical reasoning. The mode softening near the
roton momentum at k, indicates a slowing down of the phase
velocity of density perturbations, w(k,)/k,, allowing for the
accumulation of atoms near 27/, and resulting in peaks in
radial distribution function at this periodicity.

IV. INHIBITION OF DIFFUSION

The (diffusion) transport properties follow from the eval-
vation of the mean-square displacement (MSD) of indi-
vidual atoms, defined as (in the x direction, for instance)
([x(t) — x(O)]z). Pure diffusion (Brownian motion) is char-
acterized by the Einstein relation lim,_, o ([x(¢) — x(0)]*) =
2Dt, with D the diffusion coefficient. The simulation results
are presented in Fig. 2. We observe ballisticlike motion in the
early simulation times, coincident with the initial relaxation
at constant temperature, as described before. Once thermal-
ization settles, pure diffusive transport takes place. Here,
the simulation trajectories are taken over the microcanonical
ensemble, corresponding to the most relevant experimental
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FIG. 2. Diffusion in a strongly interacting Rydberg gas. Mean-
square displacement (in the x direction) as a function of time, for
different values of the coupling coefficient—from top to bottom
I' =2, 10, 20, 40. The results for the y direction are equivalent. The
inset depicts the diffusion coefficient as a function of I', with strong
transport inhibition in the highly interacting regime. The solid line
theoretical curve is based on the Einstein-Stokes relation together
with the Arrhenius-like law 7 ~ 00T

situation. The mean-square displacement allows the obtain-
ment of the diffusion equation directly from the Einstein
relation. Here, we observe a strong inhibition of diffusion
(transport) in the strongly interacting regime. This is a rather
distinct, albeit related, manifestation of the emerging spatial
order and the corresponding roton minimum, as dipole-dipole
interactions ensure the transient “trapping” of atoms at local
minima in the potential landscape, as described by the radial
distribution functions described before. As an import remark,
notice the increasing error bars associated with the diffusion
coefficient. Although an overall diffusive behavior is always
observed, there is an increasing irregular behavior of the
mean-square displacement at higher values of T.

In the presence of shear viscosity, here induced by dipole-
dipole interactions, diffusion can be described by the Einstein-
Stokes relation D = kgT /qan, with n the shear-viscosity
coefficient and ¢ a numerical factor dependent on intrinsic
properties of the medium [45]. Moreover, when transient trap-
ping dominates the transport in strongly correlated systems,
the shear viscosity can be determined by an Arrhenius-type
relation 7 = A 8T [46], with A and B numerical factors. This
type of relation can be justified by Eyring’s theory of transport
in liquids [47]. Altogether, this yields a dependence of the
form D ~ ¢~ T, which fits well with the MD results—see
Fig. 2.

V. EXPERIMENTAL CONSIDERATIONS AND
DISORDER-INDUCED HEATING

The experimental excitation of highly interacting Ryd-
berg atoms precludes the obtainment of large densities and
overall coupling strengths, due to the limitations imposed by
the blockade mechanism. As such, an excitation into a low

062713-3



JOAO D. RODRIGUES et al.

PHYSICAL REVIEW A 98, 062713 (2018)

interacting n S, state, for instance, ensures small interatomic
separations. In this case, the blockade effect only arises
from the weaker van der Waals (repulsive) interaction, which
becomes significant only for higher n (principal quantum
number). In a recent work [37], a one-dimensional sample
of 8Rb atoms confined in an optical dipole trap with density
10'> cm~! and temperature of 80 1K was used to measure the
angular dependence of the dipole interaction by applying an
external electric field. Here, the authors directly excited Ryd-
berg atoms in S-like states between two avoided crossings in
the Stark manifold and measured an interaction parameter Cs3
of approximately 99.7 MHz um? and an interatomic distance
of ~4 um. Such high interaction parameter for S states was
recently confirmed by preliminary calculations [48]. This sim-
ple atomic system carries a relatively high coupling parameter
r ~10.

An effective way to overcome the Rydberg atom density
limit in highly interacting states (imposed by the blockade
effect) and achieve even higher coupling parameters consists
in performing a Landau-Zener adiabatic passage, promoted
by an electric-field sweep through an avoided crossing in the
Stark landscape. This transfers the atoms from # S into high
dipolar states, which become permanently polarized in the
direction of the electric field, moving the atomic sample into
a highly interacting regime [24,38,49,50].

Immediately after excitation, where no particular order is
expected, there is a rapid reorganization of the atoms into
an equilibrium distribution. Here, the randomly positioned
dipoles are accelerated by the potential landscape, which is
accompanied by a fast increase of the temperature and the
decrease in the overall coupling coefficient. This is essentially
the mechanism of disorder-induced heating (DIH) that has
been reported in ultracold neutral plasmas (UCNPs) [51]. The
amount of heating is directly related to the level of disorder
(lack of correlations) and the excitation of initially ordered
states should greatly reduce these effects. Proposals to prepare
such initially ordered states include taking advantage of the
Rydberg blockade mechanism [52] or via the preordering of
atoms in a partially filled optical lattice [53]. While the latter
could also be employed in the present context, the former
more simply means that an initial excitation where the inter-
atomic distance is limited by the blockade mechanism would
also suppress the effects associated with disorder-induced
heating.

Here, we further demonstrate that the ability to temporally
control the interaction strength (quantified by C;) via the
external electric field can be exploited in order to partially
overcome the effects of DIH and reach stronger coupled
equilibrium samples. The key idea is to slowly increase the in-
teraction strength during the relaxation process, in such a way
that the atoms are allowed to adiabatically follow the changing
potential landscape while adapting to the transient equilibrium
configurations. The numerical results are portrayed in Fig. 3.
We observe that slower ramping of the interaction strength
results in lower temperature and, hence, higher coupled equi-
librium gases, partially mitigating the heating effect due to
the initial disorder. Moreover, for a sample of 85Rb at a
temperature of 100 uk and a ~ 2 um, as is the case of typical
experiments [24], we obtain a/u; ~ 20 us. Hence ramping
times even slower than those considered in Fig. 3 should

T T T T

N\i’f, -
/\\"'\ -
210" F g E
u QO ]
C = ]
[ @) ]
0 L J

0 0.01 0.02

100 ol MR | MR |
10°® 107 10"

tus/a

FIG. 3. Thermalization of a two-dimensional Rydberg gas with
time-dependent interaction strength. Average square velocity during
relaxation of the initially disordered gas for different time-dependent
interaction strength, as depicted in the inset plot. The dashed line
corresponds to the same time instant and the different colors to the
same conditions on both plots.

experimentally lead to thermalization at high values of I and
at time scales much shorter than both the typical lifetime of
Rydberg states and also the time range available to recover
the atomic trajectories [24], pointing towards the feasibility of
the experimental observation of the roton minimum, as well
as other features associated with a strongly coupled system,
including Wigner crystallization [54,55].

VI. CONCLUSION

We have performed MD simulations of two-dimensional
gases of highly interacting Rydberg atoms and demonstrated
the emergence of a roton minimum in the excitation spectrum
accompanied by the development of strong spatial correla-
tions. A model based on Feynman’s theory of superfluidity
was shown to accurately describe the numerical results, ev-
idencing the correlational origin of the roton minimum, as
first anticipated for liquid helium, and here demonstrated for
a system under classical (dipole) interactions. The transient
trapping of atoms in the “roton potential” was shown to
strongly inhibit diffusive transport. We also demonstrated
that an adiabatic ramping of the interaction strength during
the initial relaxation of the gas, easily achievable in typical
experiments involving Rydberg atoms, can be used to highly
mitigate the effects of disorder-induced heating [24,51,52], of-
fering a route towards experimental investigation of otherwise
inaccessible regimes of strongly coupled gases.
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APPENDIX A: INTEGRAL EQUATION TECHNIQUE

In the study of strongly correlated systems, one must
go beyond hydrodynamical or Vlasov descriptions in terms
of single-particle densities. The full N-particle density,
p™M@N), is usually truncated to the lower-order sin-
gle and the two-particle functions, pV(r) = >, 8(r—
r;)) and p@(r, 1) = (3, > i 8(r — )8 — 1)), respec-
tively, with summations over the entire set of N parti-
cles and averaging over the canonical ensemble, usually.
With the single-particle density p()(r) = ng, correlations are
usually described by the (normalized) two-particle distribu-
tion g (ry, r2) = p@(ry, r2)/n3. For isotropic interactions
g? (), ry) = g?(r; —ra2]) = g(r), the latter known as the
radial distribution function, defined such that the average
number of particles between r and r 4+ dr away from an atom
atr = 0is 2nrnog(r)dr (in two-dimensional samples).

Apart from the radial distribution function, g(r), the struc-
tural properties of a gas can be inferred from a dual description
in reciprocal space by defining the (static) structure factor as

Sk) = %(lo(l)(k)p(l)(_k)) =1+ %<Z eik~(r,-rj)>’
i#]
(AL)

with S(k) =1 indicating the absence of correlations. The
radial distribution function and the static structure factor are
related by

S(k) — 1 =n0/dre_ik‘r[g(r) —1]

or, equivalently, S(k) = 1 4 noh(k).

Correlations between a pair of Rydberg atoms arise both
from the direct and indirect interactions. In this context,
we may introduce the direct correlation function c(r), re-
lated with the total correlation A (r) by the Ornstein-Zernike
relation [43]

(A2)

h(r)=c(r)+ng / dr'c(|r — Y'Dh(r), (A3)
with A (r) including the effect of direct and indirect correla-
tions, as those originating from interactions between any pair
of intermediate particles. As such, while the range of c¢(r) is
usually comparable with that of the pair potential, the total
correlation function is of higher range, due to the effects of
indirect correlations.

In order to close the OZ relation, we begin by noting that
the distribution of particles in the presence of interactions may
be given according to the Boltzmann relation, namely

n(r) = noexp[—¢(r)/kpT], (A4)

and known as the barometric law. Here, ¢(r) is the total
potential and can be constructed in a hierarchy similar to the
OZ relation, where the total potential, ¢(r), is the sum of the
direct pairwise term, V (r), and the indirect contribution from
any number of intermediate atoms, namely

$() V() , -
S0 e +n0/drc(|r—r|)h(r)
V)
= o ThO) e, (AS)

g(r/a)

S(ka)

ka

FIG. 4. Two-dimensional Rydberg gas. Top panel: radial distri-
bution function and emergence of short-range correlations in the
strongly coupled regime (I" > 1), with &, the wave number asso-
ciated with the regularity in the spatial arrangement. Middle panel:
static structure factor, with the developing peak at approximately
k, = 2w /A, ~ 4a~" and related with the short-range oscillatory be-
havior of the radial distribution function. Bottom panel: excitation
spectrum of the atom density fluctuations and the emergence of a
roton minimum near k,..

where the last equality follows from the OZ relation. From the
barometric law in Eq. (A4) follows

g(r) = exp[—M + h(r) — C(r)}

iaT (A6)

also known as the hypernetted chain (HNC) closure relation
[43]. Together with the OZ relation in Eq. (A3) this forms
a closed set of equations for the total and direct correlation
functions, h(r) and c(r), respectively. The details on the
numerical algorithm for the solution of the coupled Egs. (A3)
and (A6) can be found in Ref. [38].

APPENDIX B: CORRELATIONAL ORIGIN OF THE
ROTON MINIMUM

The correlational origin of the roton minimum can be
understood from Feynman’s model presented in the main text
or, equivalent in the classical limit, the relation between the
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static structure factor and the dispersion relation as dictated
by the fluctuation-dissipation theorem [39]—Fig. 4. Here, the
radial distribution function—top panel—and the (static) struc-
ture factor—middle panel—are numerically obtained from the

HNC relation [38]. We observe the emergence of a roton min-
imum at k,—bottom panel—associated with the developing
short-range order in the spatial arrangement of the Rydberg
atoms, at a periodicity of approximately 27/ k,.
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