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Abstract. We have found a closed form expression for a minimizer of the total potential
energy of a circular homogeneous and aeolotropic pipe in the context of a constrained
minimization theory that preserves injectivity. The pipe is in a state of plane deformation, is
fixed at its inner surface, and is radially compressed along its outer surface. To find the
closed form expression, we have assumed that the displacement field is radially symmetric
with respect to the center of the pipe. In this case, the only non-zero component of the
displacement field is the radial one, which is a function of the radius only. In the special case
of a solid circular cylinder, a full bi-dimensional numerical investigation carried out
elsewhere has shown that another solution, which is not radially symmetric, is possible. This
numerical solution is quite different from the radially symmetric solution. In this work, some
recent results concerning both the analytical and numerical investigations of the constrained
pipe problem are presented.
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1. INTRODUCTION

There are well-posed problems in the classical linear theory of elasticity whose closed
form solutions allow material overlapping to occur. Typically, problems of this kind involve
some sort of singularity, and strains exceeding a level acceptable from the point of view of a
linear theory occur around the singular points (Aguiar, 2006a; Aguiar & Fosdick, 2001).

We consider a two-dimensional problem in classical linear elasticity for which material
overlapping occurs in the absence of singularities. The problem concerns the equilibrium of a
circular homogeneous and aeolotropic pipe, which is in a state of plane deformation
perpendicular to the axis of the pipe, is fixed at its inner surface, and is radially compressed
along its outer surface by a uniformly distributed normal force p. The requirement that the
displacement field be radially symmetric with respect to the center of the pipe allows the
derivation of a closed form solution that predicts overlapping of material at the inner surface
of the linear elastic pipe when the radial compressive force p becomes larger than a critical

load p,, which is small.

One possible way to prevent the anomalous self-intersection behavior is proposed by
Fosdick & Royer-Carfagni (2001). It combines the linear theory with the imposition of a local
injectivity constraint through a Lagrange multiplier technique. These authors investigate the
problem of minimizing the total potential energy % of classical linear elasticity on an

admissible set 4. of vector-valued functions v that satisfy the injectivity constraint

det(1+Vv) > ¢ > 0for a sufficiently small £ € R. In particular, they show the existence of a
solution for the constrained minimization problem in two dimensions and apply the results of
their constrained minimization theory in the analysis of a disk problem, which corresponds to
the pipe problem described above when the inner radius is zero. They show that two regions
coexist inside the disk for moderate values of p: a central region for which det(1+Vv)=¢
and an outer annular region for which det(1+Vv)>e¢. If p becomes too large, we have that
det(1+Vv) = ¢ in the whole disk region.

We use the constrained theory of Fosdick & Royer-Carfagni (2001) to find a solution of
the pipe problem that respects the injectivity constraint. Here, no region with det(1+Vv)=¢
exists for p < p,, where p, is the critical load mentioned above. For larger, but still moderate,
values of p, we have both an annular region surrounding the inner boundary surface of the
pipe for which det(1+Vv)=¢ and an outer annular region for which det(1+Vv)>¢. For
even larger values of p, we then have that det(1+Vv) = ¢ in the whole disk region.

Recently, Fosdick, Freddi, and Royer-Carfagni (2007) have considered the full
bidimensional disk problem, where we recall from above that the disk corresponds to a pipe
with zero inner radius, and have shown numerical results which indicate that the radial
symmetry may not persist for all values of the shear elastic modulus. Because the constrained
theory is nonlinear, there are values of the shear modulus for which bifurcation from radial
symmetry to non-radial symmetry is a definite possibility.

Aguiar (2004, 2006a) assume radial symmetry to solve different classes of constrained
problems and present a finite element approach to find numerical approximations to these
problems. The approach is based on an interior penalty formulation, which consists of
replacing the total potential energy & of an elastic body by a penalized functional
E,=E+Q/y, where y is an arbitrary positive number and Q is a penalty functional

defined on a constraint set 4 of displacement fields v that satisfy both the injective
constraint det(1+Vv)25 >0 and essential boundary conditions on the external surface of



the body. The penalty functional is non-negative on _4,, satisfies Q[v] — « as v approaches
the boundary of 4, and is designed so that minimizers of E, lie in the interior of the
constraint set 4. Thus, the interior penalty formulation consists of finding u, € A, that

minimizes the penalized functional %, over the constraint set A.. The solution of the

original constrained minimization problem is obtained as the limit function of a sequence of
minimizers of & , parameterized by y,as y — .

Aguiar (2006b) and Aguiar et al (2008) present a different finite element approach,
which is based on an exterior penalty formulation. It also consists of replacing by a

penalized functional £5;=%+® /06, where now & is an arbitrary small number and Pis a
penalty functional defined on a set _4 of displacement fields that is only required to satisfy
the essential boundary conditions. Clearly, 4. C_4. The penalty functional is non-negative

on A and satisfies ®[v]—0 as v approaches the boundary of _4,. Thus, the exterior
penalty formulation consists of finding u; € 4 that minimizes the penalized functional E;

over the set 4. The solution of the original constrained minimization problem is obtained as
the limit function of a sequence of minimizers of &, parameterized by 6,as 6 - 0.

Aguiar (2007) applies both penalty formulations in the analysis of the constrained disk
problem considered by Fosdick and Royer (2001). In particular, he constructs convergent
sequences of minimizers for either increasing values of » or decreasing values of & and

show numerically that the resulting limit functions are the same for a given characteristic
length of the finite element. We recall from the exposition above that the solution of the
corresponding unconstrained problem yields not only self-intersection of material, but also
singular stresses and strains at the center of the disk. In this work, we apply both penalty
formulations in the analysis of the constrained pipe problem. In this way, we investigate the
self-intersection behavior without the coupling effect of the singular stresses and strains.
Results presented here first appeared in Aguiar et al (2008).

In Sections 2 and 3 we present some results concerning the compressed pipe problem in
the context of the unconstrained and the constrained theories, respectively. In Section 4 we
present both the interior and the exterior penalty formulations of the constrained pipe
problem. These formulations yield numerical schemes that are simple to implement and can
be applied in the numerical solution of problems in any dimension. In Section 5 we compare
the numerical results obtained from the solutions of the corresponding discrete problems with
analytical results obtained from the closed form solution of the constrained minimization
problem considered in Section 3.

2. THE UNCONSTRAINED PIPE PROBLEM

In classical linear elasticity, the pipe problem described in Section 1 is two-dimensional
so that, relative to the usual orthonormal cylindrical basis (e,,e,), the pipe cross-section

occupies the region B= {x= pe, o < pSpe}, where p, and p, are, respectively, the inner

radius and the outer radius of the pipe. Also, the components of the stress and strain tensors
are related to each other by the linear constitutive relations
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where ¢, >0, ¢, >0, and G >0 are elastic constants that satisfy c,c,, —c,,” >0. Since

uniqueness is guaranteed in classical linear elasticity, the displacement field must be radially
symmetric with respect to the center of the pipe, i.e., u(p,8)=u(p)e,. Thus, the strain

components take the form
gppzu'(p)’ geezu(p)/p’ 8p0=0’ (2)

where (-)'=d()/dp. In view of both Eqg. (1) and Eqg. (2), the equilibrium equations in the
absence of body force yield
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The solution of this ordinary differential equation that satisfies the displacement and traction
boundary conditions

u

u(p;) =0, O o :C11u'+012;:_p on p=p,, (4)
respectively, is given by

u(p)=-2¢ [ﬁJ —(ﬁj 2 for p,<p<p,, ()
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In the limit, as p, — 0, we obtain from Eq. (5) together with Eq. (6) the solution of the solid

disk problem presented by Lekhnitskii (1968).
It follows from Eq. (5) that both u'(p) <0 and u''(p) >0 for pe(p;,p.) and for

0 < x <1, which means that u is a convex function of o and that its derivative u' is a
monotonically increasing function of p with its minimum at p = p,. Since our main interest
in this work is to analyze the sign of the Jacobian determinant

J =det(1+Vv) =(1+u')(1+5], )
0

we see from Eq. (5) - Eq. (7) that a critical value of the load p that yields J <O is obtained
from u'(p) =-1 and is given by p= p,, where p, is defined by Eqg. (6.a). Clearly, we may



have p,, and hence p, as small as we wish by decreasing the value of p, and still have

bounded stresses and strains everywhere. In this work, we are only concerned with 0 < x <1.
Similarly, we can show that u(p)/p is convex at p=p, and, for 0<x <1, has a

unique minimum at a point with radius p, > p,. The critical value of p for which
u(p,)! p, =-1is given by

p, =(1- K)(“—Kj(l;:] Py (8)

1-x

which is greater than p, for 0 < x <1. Infact, p, >2p,.

To avoid crushing of the outer surface into the inner surface of the pipe, we must have
—u(p,)! p, =1-p, I p,, which, because of Eqg. (5), imposes the restriction

p< pc{M}pp nz(ﬂ]- ©)
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Since p, > p, for both p, < p, and x <1, we conclude from the above that local injectivity
is lost for non-zero values of p that are small compared to the critical value p, .

Thus, for 0<x <1, the classical solution has no physical meaning and therefore
should be rejected as a viable solution. In the next section, we use the constrained
minimization theory of Fosdick & Royer-Carfagni (2001) to derive a solution for the pipe
problem described in Section 1 that is everywhere injective, i.e., a solution for which J > 0.

3. THE CONSTRAINED PIPE PROBLEM

Recall from Section 2 that @ is the region occupied by the pipe cross-section. Here,
we consider that B=®B_U®B , where B z{x:pep rdet(1+Vu)=¢,p, SpSpa} , and
B ={x=pe,:det(1+Vu)2 & p, < p<p,} forboth £>0 and some p, (p,, p,) yetto be

determined. Assuming that the displacement field is radially symmetric with respect to the
center of the pipe in a state of plane strain®, i.e., that u(p,0)=u(ple,, we find that the

necessary first variation conditions for the existence of a minimizer are satisfied by

g(p)-p, 9(p)=\(P*-p)e+rt  pe(pip,),

u(p) = « -x (10)
f—a[ﬂl(ﬁj +ﬂz[ﬁj } pe(pap.),
x| o

where

! Recently, Fosdick, Freddi, and Royer-Carfagni (2007) have considered the full bidimensional disk problem, for
which pj = 0, and have shown numerical results that indicate that this symmetry may not persist for all values of

the elastic constant G in Eq. (1).
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and p, satisfies the algebraic equation

0=r(0)=5(S;) +5(5; )+, (=t (12)
Cy Pe
In Eq. (12),
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Notice from Eq. (12) together with Eq. (13) that r(&;)=[ p—(1-¢)p, ]/c,,, where p,
is given by Eg. (6). Notice also that r(l)=p-p,,  where

Po z{1+ Hy —{%3(1)2}}% > p, since both ¢; and & >0 are sufficiently small. Taking
the derivative of r in Eqg. (12), we obtain that r'({ ) IS negative, because x+ u,>0,
k—u,>0,and &>0 is sufficiently small. Thus, if r(¢;)<0, then r(¢)=0 has no roots,
which is consistent with results obtained in Section 2, according to which p—p, <0 implies
no self-intersection. If, on the other hand, both r(¢;)>0 and r(1)<0, then there exists a
unique ¢ [0,1] that satisifies r(¢)=0. In particular, if p=(1-¢)p,, then {=¢; and if

p=p,, ¢=1. Furthermore, if p>p,, no (e[gi,l] exists that satisfies r(;):o. In this

case, p, =p,.
Using Eq. (10) together with Eq. (11) in Eq. (7), we can easily obtain an expression for
J, which is positive everywhere in [pi,pe]. Thus, the solution given by Eq. (10) together

with Eq. (11) describes the deformation of the pipe under radial pressure, which is both
locally and globally injective.

In general, constrained minimization problems are highly nonlinear and require a
numerical solution. In the next section we use a penalty method together with a standard finite
element procedure to find an approximate solution of the constrained pipe problem. The
numerical scheme forms the computational basis for the analysis of problems for which no
symmetry considerations exist and is being applied in the approximate solution of full two-,
or, three-dimensional problems.



4. THE PENALTY FORMULATION

The formulation presented here is general and applies to any bounded domain in R?
with smooth boundary. Thus, let B = R? be the undistorted natural reference configuration of
a body. Points xe® are mapped to points y=f(x)=x+u(x)eR?, where u(x)is the

displacement of x. The boundary 0B of B is composed of two non-intersecting parts, 0,3
and 0,8, 9,BU0,B=0B, 0,BNd,B=4, such that u(x)=0 for x € 9,8 and such that a
dead load traction field t(x) is prescribed for x € 9,8 In addition, a body force b(x) per

unit volume of @ acts on pointsx € B.
Let

A={v:W"(B)—>R*|v=0 ae.on 5,3} (14)
be the class of displacement fields that respect essential boundary conditions and let
A, ={v:a—>R’|det(1+Vv) =& >0} (15)

be the class of admissible displacement fields. We suppose that £>0 in Eqg. (15) is
sufficiently small. We then consider the problem of minimum potential energy:

min E[v], E[v]=Za(v.v)- 1 (v), (16)

VeA,
where

a(v,v):jC[E]-de, f[v]zjb-vdx+ﬁ-vdx. (17)

In Eq. (17), C=C(x) is the elasticity tensor, assumed to be positive definite and totally

symmetric, and Ez[ijt(Vv)T J/Z is the infinitesimal strain tensor field. The functional

E [] is the total potential energy of classical linear theory of elasticity.

Fosdick and Royer-Cafagni (2001) fully characterize the solutions of the minimization
problem given by both Eq. (16) and Eqg. (17). In particular, they show that there exists a
solution to this problem and they derive first variation conditions for a minimizer ue 4, of
£[].

Aguiar (2006a) presents an interior penalty functional formulation of the minimization

problem given by both Eqg. (16) and Eq. (17), which consists of replacing the energy
functional given Dby Eq. (16.b) by a penalized potential energy functional

E,: A, >R, R=Ru{w}, of the form

£, [u] = £[u]+Qu]. )



where y >0 is a penalty parameter and Q : 4, — R is a barrier functional, given by

Q[v]:jﬁdx, p(v) =det(1+Vv)-e¢, Vve A.. (19)
Vv

B

Observe from Eq. (19) that Q is non-negative on 4, and satisfies Q[v]—>oo as v
approaches the boundary of 4 _. The interior penalty formulation consists of finding an
admissible displacement field u e 4, that minimizes the penalized potential &, [] i.e.,

minE, [v] . (20)

Ve,

This is a constrained problem, and indeed the functional to be minimized is somewhat more
complicated than the original energy functional given by Eq. (16.b). The advantage of
considering this problem, however, is that we can use numerical procedures commonly
employed in the numerical approximation of solutions of unconstrained problems.

On the other hand, an exterior penalty functional formulation of the minimization
problem given by both Eq. (16) and Eq. (17) consists of replacing the energy functional given
by Eq. (16.b) by a penalized potential energy functional & of the form

Z, [u]=£[u]+%@[u], (21)

where 6 >0 is a penalty parameter and ®: 4 — R is a penalty functional, which is non-
negative in 4 and is designed so that (P[v] increases with the distance from v to the

constraint set 4, . In this work, we consider

Q)[v]zéj[max(o,—p(v))]zdx , Ve A, (22)
3
where max(0,—p)=(-p+|p|)/2, and p(v) is given by Eq. (19.b). Clearly, ?[v]=0 if the
injectivity constraint is satisfied; otherwise, (P[v] > 0. The choice given by Eq. (22) for ®
leads to a discrete version of the penalized energy functional & that is continuous and
differentiable everywhere. We then want to find an admissible displacement field u; € 4,
that minimizes the penalized potential E;[-] ,i.e.,

mi nE, [v]. (23)

This is an unconstrained problem, which has the advantage of yielding discrete minimization
problems that can be solved by classical unconstrained nonlinear programming techniques.



In the next section we use both the interior and the exterior penalty formulations
together with a standard finite element technique and a classical nonlinear programming
method? to find the solution of the constrained pipe problem presented in Section 3.

5. NUMERICAL RESULTS

We have normalized all lengths by setting p, =1, where we recall from Section 2 that
P, s the outer radius of the pipe. Furthermore, in dimensionless units, the inner radius of the
pipe is p, =0.001, the applied load on the outer surface of the pipe is p =500, and the elastic
constants are c,, =10°, ¢,, =10°, ¢,, =10°, which, in view of Eq. (3.b), yield x =0.1<1. We
then have from Eq. (6) that p, =0.00132, from Eq. (8) that p, =0.00359, and from Eq. (9)
that p, =1.76913. As observed in Section 2, p, >> p, >2p,. Also, we take ¢=0.1 for the
lower bound of the injectivity constraint. The radius of the core subregion 3., where the
constraint is active, is obtained from both Eq. (12) and Eq. (13) and is given by p, =0.00554.

In Fig. 1 we show curves for the radial deformation 1+u'(p), the tangential
deformation 1+u(p)/ o, and the Jacobian determinant J, which is given by Eq. (7), versus
the radius p in the interval (0.001, 0.010) for the unconstrained pipe problem presented in
Section 2. Observe from this figure that the radial deformation is monotonically increasing
and is zero at ¢, =0.00381. Observe also that the tangential deformation is zero at both
a,=0.00148 and «, =0.00784 . This is in agreement with our analysis in Section 2, since
p > p,. As a result, we obtain from Eq. (7) that J is positive in the interval (0.00784, 1),
negative in the interval (0.00381,0.00784), positive again in the interval (0.00148,0.00381),
and negative again in the interval (0.001,0.00148) . Although the positive values of J in the
interval (0.00148,0.00381) have no physical meaning, they represent eversion of material

taking place in both radial and tangential directions.
In Fig. 2 we show the Jacobian determinant J versus the radius p in the interval

(0.001, 0.010) for both the unconstrained and the constrained pipe problems presented in
Sections 2 and 3, respectively. Observe from this figure that J for the constrained problem,
which is represented by the solid line, is positive everywhere. In particular, it is constant and
equalsto ¢ =0.1 in the interval (0.001, 0.00554) .

In Fig. 3 we show curves representing both exact analytical solutions and numerical
solutions. The numerical solutions were obtained with either the interior penalty formulation
using a large value of y or the exterior penalty formulation using a small value of 6. The
solid line corresponds to the solution of the constrained pipe problem, given by Eq. (10) — Eq.
(13), and the dash-dotted line corresponds to numerical solutions of the constrained pipe
problem for an increasing number of finite elements (480, 960, ..., 7680 elements). Observe
from Fig. 3.a that both the exact and the numerical solutions of the constrained problem are
indistinguishable and from Fig. 3.b, which corresponds to a zoom in a neighborhood of
P, =0.00554, that the sequence of numerical solutions obtained with increasing number of
finite elements converges to the constrained exact solution. We also show in Fig. 3.a the
unconstrained exact solution, which is given by both Eqg. (5) and Eq. (6) and is represented by
the dashed line. By comparing this line with the solid line, we conclude that the imposition of

? Details of the numerical scheme for the interior penalty formulation are presented in Aguiar (2006a).



the injective constraint has the effect of stiffening the pipe. Similar conclusions are reached
by Aguiar (2006a) and Fosdick and Royer-Carfagni (2001) in their treatment of radially

symmetric constrained problems.
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Figure 1. Radial deformation ( -.- ), tangential deformation ( --- ), and the Jacobian
determinant (__) versus radius p for the unconstrained pipe problem.
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Figure 2. The Jacobian determinant J versus radius p for both the unconstrained ( --- ) and
the constrained ( __ ) pipe problems.
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(3.b) Zoom in a neighborhood of p, =0.00554.

Figure 3. Radial displacement u versus radius p for the constrained pipe problem for either
large ¥ or small & and for an increasing number of finite elements.

In Fig. 4 we show the determinant of the deformation gradient, J, calculated from
both the exact solution of the constrained problem, represented by the solid line, and the
corresponding numerical approximations, obtained with increasing values of either y or 1/6
and represented by dash-dotted lines, for the most refined mesh of 7680 elements. Figures 4.a
and 4.b refer to the approximations J, obtained with, respectively, the interior and the

exterior penalty formulations. Observe from both figures that J, converges to a limit function



as the penalty parameter is enforced in each case, i.e., as y - in Fig. 4.aandas 6 -0 in
Fig. 4.b. Observe from Fig. 4.b that, in the interval (0.001, 0.00554), the approximations u, of

the minimizer u lie in the exterior of the set 4. for large & since, in this case, J, <¢.
Nevertheless, contrary to what one might expect, as 6 — 0, the sequence of approximations
{u,} converges to a limit function that belongs to the constrained set A..
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0.103| - —-Numerical solution 1 |I i
, =
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(4.a) Interior Penalty Formulation.
0.104 . '
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— —-Numerical solution
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b
0.094 : ' : :
1 2 3 , 4 5 6
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(4.b) Exterior Penalty Formulation.

Figure 4. Jacobian determinant J versus radius p for a large number of finite elements (7680
elements) and for increasing values of both (a)  and (b)1/¢ .
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