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Abstract. We have found a closed form expression for a minimizer of the total potential 
energy of a circular homogeneous and aeolotropic pipe in the context of a constrained 
minimization theory that preserves injectivity. The pipe is in a state of plane deformation, is 
fixed at its inner surface, and is radially compressed along its outer surface. To find the 
closed form expression, we have assumed that the displacement field is radially symmetric 
with respect to the center of the pipe. In this case, the only non-zero component of the 
displacement field is the radial one, which is a function of the radius only. In the special case 
of a solid circular cylinder, a full bi-dimensional numerical investigation carried out 
elsewhere has shown that another solution, which is not radially symmetric, is possible. This 
numerical solution is quite different from the radially symmetric solution. In this work, some 
recent results concerning both the analytical and numerical investigations of the constrained 
pipe problem are presented.
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1. INTRODUCTION 
 
 There are well-posed problems in the classical linear theory of elasticity whose closed 
form solutions allow material overlapping to occur. Typically, problems of this kind involve 
some sort of singularity, and strains exceeding a level acceptable from the point of view of a 
linear theory occur around the singular points (Aguiar, 2006a; Aguiar & Fosdick, 2001). 
 We consider a two-dimensional problem in classical linear elasticity for which material 
overlapping occurs in the absence of singularities. The problem concerns the equilibrium of a 
circular homogeneous and aeolotropic pipe, which is in a state of plane deformation 
perpendicular to the axis of the pipe, is fixed at its inner surface, and is radially compressed 
along its outer surface by a uniformly distributed normal force p . The requirement that the 
displacement field be radially symmetric with respect to the center of the pipe allows the 
derivation of a closed form solution that predicts overlapping of material at the inner surface 
of the linear elastic pipe when the radial compressive force p  becomes larger than a critical 
load 1p , which is small.  
 One possible way to prevent the anomalous self-intersection behavior is proposed by 
Fosdick & Royer-Carfagni (2001). It combines the linear theory with the imposition of a local 
injectivity constraint through a Lagrange multiplier technique. These authors investigate the 
problem of minimizing the total potential energy E  of classical linear elasticity on an 
admissible set εA  of vector-valued functions v  that satisfy the injectivity constraint 
det( + ) 0ε∇ ≥ >1 v for a sufficiently small ∈ε . In particular, they show the existence of a 
solution for the constrained minimization problem in two dimensions and apply the results of 
their constrained minimization theory in the analysis of a disk problem, which corresponds to 
the pipe problem described above when the inner radius is zero. They show that two regions 
coexist inside the disk for moderate values of p : a central region for which det( + ) ε∇ =1 v  
and an outer annular region for which det( + ) ε∇ ≥1 v . If p  becomes too large, we have that 
det( + ) ε∇ =1 v  in the whole disk region. 
 We use the constrained theory of Fosdick & Royer-Carfagni (2001) to find a solution of 
the pipe problem that respects the injectivity constraint. Here, no region with det( + ) ε∇ =1 v  
exists for 1p p< , where 1p  is the critical load mentioned above. For larger, but still moderate, 
values of p , we have both an annular region surrounding the inner boundary surface of the 
pipe for which det( + ) ε∇ =1 v  and an outer annular region for which det( + ) ε∇ ≥1 v . For 
even larger values of p , we then have that det( + ) ε∇ =1 v  in the whole disk region. 
 Recently, Fosdick, Freddi, and Royer-Carfagni (2007) have considered the full 
bidimensional disk problem, where we recall from above that the disk corresponds to a pipe 
with zero inner radius, and have shown numerical results which indicate that the radial 
symmetry may not persist for all values of the shear elastic modulus. Because the constrained 
theory is nonlinear, there are values of the shear modulus for which bifurcation from radial 
symmetry to non-radial symmetry is a definite possibility. 
 Aguiar (2004, 2006a) assume radial symmetry to solve different classes of constrained 
problems and present a finite element approach to find numerical approximations to these 
problems. The approach is based on an interior penalty formulation, which consists of 
replacing the total potential energy E  of an elastic body by a penalized functional 

/γ γ= +E E Q , where γ  is an arbitrary positive number and Q  is a penalty functional 

defined on a constraint set εA  of displacement fields v  that satisfy both the injective 
constraint ( )det 0ε∇ ≥ >1 + v  and essential boundary conditions on the external surface of 



the body. The penalty functional is non-negative on εA , satisfies [ ]→∞vQ  as v  approaches 

the boundary of εA , and is designed so that minimizers of γE  lie in the interior of the 

constraint set εA . Thus, the interior penalty formulation consists of finding γ ε∈u A that 

minimizes the penalized functional γE  over the constraint set εA .  The solution of the 
original constrained minimization problem is obtained as the limit function of a sequence of 
minimizers of γE , parameterized by γ , as ∞→γ .  
 Aguiar (2006b) and Aguiar et al (2008) present a different finite element approach, 
which is based on an exterior penalty formulation. It also consists of replacing E  by a 
penalized functional /δ δ= +E E P , where now δ  is an arbitrary small number and P  is a 
penalty functional defined on a set A  of displacement fields that is only required to satisfy 
the essential boundary conditions. Clearly, ε ⊂A A . The penalty functional is non-negative 

on A  and satisfies [ ] 0→vP  as v  approaches the boundary of εA . Thus, the exterior 
penalty formulation consists of finding δ ∈u A  that minimizes the penalized functional δE  
over the set A . The solution of the original constrained minimization problem is obtained as 
the limit function of a sequence of minimizers of δE , parameterized by δ , as 0δ → .  
 Aguiar (2007) applies both penalty formulations in the analysis of the constrained disk 
problem considered by Fosdick and Royer (2001). In particular, he constructs convergent 
sequences of minimizers for either increasing values of γ  or decreasing values of δ  and 
show numerically that the resulting limit functions are the same for a given characteristic 
length of the finite element. We recall from the exposition above that the solution of the 
corresponding unconstrained problem yields not only self-intersection of material, but also 
singular stresses and strains at the center of the disk. In this work, we apply both penalty 
formulations in the analysis of the constrained pipe problem. In this way, we investigate the 
self-intersection behavior without the coupling effect of the singular stresses and strains. 
Results presented here first appeared in Aguiar et al (2008). 
 In Sections 2 and 3 we present some results concerning the compressed pipe problem in 
the context of the unconstrained and the constrained theories, respectively. In Section 4 we 
present both the interior and the exterior penalty formulations of the constrained pipe 
problem. These formulations yield numerical schemes that are simple to implement and can 
be applied in the numerical solution of problems in any dimension. In Section 5 we compare 
the numerical results obtained from the solutions of the corresponding discrete problems with 
analytical results obtained from the closed form solution of the constrained minimization 
problem considered in Section 3.  
 
 
2. THE UNCONSTRAINED PIPE PROBLEM 
 

In classical linear elasticity, the pipe problem described in Section 1 is two-dimensional 
so that, relative to the usual orthonormal cylindrical basis ( , )ρ θe e , the pipe cross-section 

occupies the region { }: i e= ρ ρ ρ ρ≡ ≤ ≤x eB ρ , where iρ  and eρ  are, respectively, the inner 
radius and the outer radius of the pipe. Also, the components of the stress and strain tensors 
are related to each other by the linear constitutive relations  

 



θθρρρρ εεσ 1211 cc += ,  θθρρθθ εεσ 2212 cc += ,  ρθρθ εσ G2= ,       (1) 
 

where 011 >c , 22 0c > , and 0>G  are elastic constants that satisfy 02
122211 >− ccc . Since 

uniqueness is guaranteed in classical linear elasticity, the displacement field must be radially 
symmetric with respect to the center of the pipe, i.e., ( , ) ( )u ρρ θ ρ=u e . Thus, the strain 
components take the form  
 

)(' ρε ρρ u= ,     ρρεθθ /)(u= ,  0=ρθε ,      (2) 
 
where ρdd /)()'( ⋅⋅ = . In view of both Eq. (1) and Eq. (2), the equilibrium equations in the 
absence of body force yield  
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The solution of this ordinary differential equation that satisfies the displacement and traction 
boundary conditions 
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respectively, is given by  
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In the limit, as 0iρ → , we obtain from Eq. (5) together with Eq. (6) the solution of the solid 
disk problem presented by Lekhnitskii (1968). 
 It follows from Eq. (5) that both 0)(' <ρu  and 0)('' >ρu  for ( )ei ρρρ ,∈  and for 

10 << κ , which means that u  is a convex function of ρ  and that its derivative 'u  is a 
monotonically increasing function of ρ  with its minimum at iρρ = . Since our main interest 
in this work is to analyze the sign of the Jacobian determinant  
 

( )det( + ) 1 ' 1 uJ u
ρ

⎛ ⎞
≡ ∇ = + +⎜ ⎟
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we see from Eq. (5) - Eq. (7) that a critical value of the load p  that yields 0J <  is obtained 
from '( ) 1u ρ = −  and is given by 1p p= , where 1p  is defined by Eq. (6.a). Clearly, we may 



have 1p , and hence p , as small as we wish by decreasing the value of iρ  and still have 
bounded stresses and strains everywhere. In this work, we are only concerned with 10 << κ .  
 Similarly, we can show that ( ) /u ρ ρ  is convex at iρ ρ=  and, for 10 << κ , has a 
unique minimum at a point with radius m iρ ρ> . The critical value of p  for which 

( ) / 1m mu ρ ρ = −  is given by  
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which is greater than 1p  for 10 << κ . In fact, 2 12p p> .  
 To avoid crushing of the outer surface into the inner surface of the pipe, we must have 

( ) / 1 /e e i eu ρ ρ ρ ρ− = − , which, because of Eq. (5), imposes the restriction  
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Since 1cp p�  for both i eρ ρ  and 1κ < , we conclude from the above that local injectivity 
is lost for non-zero values of p  that are small compared to the critical value cp .  
 Thus, for 10 << κ , the classical solution has no physical meaning and therefore 
should be rejected as a viable solution. In the next section, we use the constrained 
minimization theory of Fosdick & Royer-Carfagni (2001) to derive a solution for the pipe 
problem described in Section 1 that is everywhere injective, i.e., a solution for which 0J > .  
 
 
3. THE CONSTRAINED PIPE PROBLEM 
 

 Recall from Section 2 that B  is the region occupied by the pipe cross-section. Here, 
we consider that = >≡ ∪B  B B , where ( ){ }: det + , i a= ρ ε ρ ρ ρ= ≡ ∇ = ≤ ≤x e 1 uB ρ , and 

( ){ }: det + , a e= ρ ε ρ ρ ρ> ≡ ∇ ≥ ≤ ≤x e 1 uB ρ  for both 0ε >  and some ( , )a i eρ ρ ρ∈  yet to be 
determined. Assuming that the displacement field is radially symmetric with respect to the 
center of the pipe in a state of plane strain1, i.e., that ( , ) ( )u ρρ θ ρ=u e , we find that the 
necessary first variation conditions for the existence of a minimizer are satisfied by  
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where  
                                                           
1 Recently, Fosdick, Freddi, and Royer-Carfagni (2007) have considered the full bidimensional disk problem, for 
which 0iρ = , and have shown numerical results that indicate that this symmetry may not persist for all values of 

the elastic constant G  in Eq. (1). 
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and aρ  satisfies the algebraic equation  
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In Eq. (12),  
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is a function of ζ  parameterized by κ , where ( ) ( )2 2 2ˆ i ig ζ ζ ζ ε ζ≡ − +  and i
i

e

ρζ
ρ

≡ .  

Notice from Eq. (12) together with Eq. (13) that ( ) ( ) 1 111 /ir p p cζ ε⎡ ⎤= − −⎣ ⎦ , where 1p  

is given by Eq. (6). Notice also that ( ) 01r p p= − , where 
2

0 11 1
ˆ (1)1

ˆ(1)
gp c p

g
θ

θ
ε μμ

⎧ ⎫⎡ ⎤+⎪ ⎪≡ + − >⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 since both iζ  and 0ε >  are sufficiently small. Taking 

the derivative of r  in Eq. (12), we obtain that ( )'r ζ  is negative, because 0θκ μ+ > , 

0θκ μ− > , and 0ε >  is sufficiently small. Thus, if ( ) 0ir ζ < , then ( ) 0r ζ =  has no roots, 
which is consistent with results obtained in Section 2, according to which 1 0p p− <  implies 
no self-intersection. If, on the other hand, both ( ) 0ir ζ ≥  and ( )1 0r ≤ , then there exists a 

unique [ ]0,1ζ ∈  that satisifies ( ) 0r ζ = . In particular, if ( ) 11p pε= − , then iζ ζ=  and if 

op p= , 1ζ = . Furthermore, if op p> , no [ ],1iζ ζ∈  exists that satisfies ( ) 0r ζ = . In this 
case, a eρ ρ= .  

Using Eq. (10) together with Eq. (11) in Eq. (7), we can easily obtain an expression for 
J , which is positive everywhere in [ ],i eρ ρ . Thus, the solution given by Eq. (10) together 
with Eq. (11) describes the deformation of the pipe under radial pressure, which is both 
locally and globally injective.  

In general, constrained minimization problems are highly nonlinear and require a 
numerical solution. In the next section we use a penalty method together with a standard finite 
element procedure to find an approximate solution of the constrained pipe problem. The 
numerical scheme forms the computational basis for the analysis of problems for which no 
symmetry considerations exist and is being applied in the approximate solution of full two-, 
or, three-dimensional problems.  
 
 
 
 
 



4. THE PENALTY FORMULATION 
 

The formulation presented here is general and applies to any bounded domain in 2\  
with smooth boundary. Thus, let 2⊂ \B  be the undistorted natural reference configuration of 
a body. Points ∈x B  are mapped to points ( ) ( ) 2= ≡ + ∈y f x x u x \ , where ( )u x is the 
displacement of x . The boundary ∂B  of B  is composed of two non-intersecting parts, 1∂ B  
and 2∂ B , 1 2∂ ∂ = ∂B B B∪ , 1 2∂ ∂ =∅B B∩ , such that ( ) =u x 0  for 1∈∂x B  and such that a 

dead load traction field ( )t x  is prescribed for 2∈∂x B . In addition, a body force ( )b x  per 
unit volume of B  acts on points ∈x B .  
 Let  
 

( ){ }1,2 2
1: | =  a.e. on W≡ → ∂v v 0RA B B          (14) 

 
be the class of displacement fields that respect essential boundary conditions and let  
 

( ){ }2: | det + 0ε ε≡ → ∇ ≥ >v 1 vRA A             (15) 
 
be the class of admissible displacement fields. We suppose that 0ε >  in Eq. (15) is 
sufficiently small. We then consider the problem of minimum potential energy:  
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B
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In Eq. (17), ( )=^ ^ x  is the elasticity tensor, assumed to be positive definite and totally 

symmetric, and ( ) 2T⎡ ⎤≡ ∇ + ∇⎣ ⎦E v v  is the infinitesimal strain tensor field. The functional 

[ ]⋅E  is the total potential energy of classical linear theory of elasticity.  
Fosdick and Royer-Cafagni (2001) fully characterize the solutions of the minimization 

problem given by both Eq. (16) and Eq. (17). In particular, they show that there exists a 
solution to this problem and they derive first variation conditions for a minimizer ε∈u A  of 

[ ]⋅E . 
Aguiar (2006a) presents an interior penalty functional formulation of the minimization 

problem given by both Eq. (16) and Eq. (17), which consists of replacing the energy 
functional given by Eq. (16.b) by a penalized potential energy functional 

{ }: ,γ ε → ≡ ∪ ∞\ \ \AE , of the form  
 

[ ] [ ] [ ]1
γ γ

= +u u uE E Q ,           (18) 

 



where 0γ >  is a penalty parameter and : ε → \AQ  is a barrier functional, given by 
 

[ ] ( )
1 d

p
= ∫v x

v
Q

B

,  ( )( ) det 1p ε≡ +∇ −v v ,  ε∀ ∈v A .   (19) 

 
Observe from Eq. (19) that Q  is non-negative on εA  and satisfies [ ]→∞vQ  as v  
approaches the boundary of εA . The interior penalty formulation consists of finding an 
admissible displacement field ε∈u A  that minimizes the penalized potential [ ]γ ⋅E , i.e.,  
 

[ ]min
ε

γ∈v
v

A
E  .            (20) 

 
This is a constrained problem, and indeed the functional to be minimized is somewhat more 
complicated than the original energy functional given by Eq. (16.b). The advantage of 
considering this problem, however, is that we can use numerical procedures commonly 
employed in the numerical approximation of solutions of unconstrained problems.  

On the other hand, an exterior penalty functional formulation of the minimization 
problem given by both Eq. (16) and Eq. (17) consists of replacing the energy functional given 
by Eq. (16.b) by a penalized potential energy functional δE  of the form  
 

[ ] [ ] [ ]1
δ δ

= +u u uE E P ,          (21) 

 
where 0δ >  is a penalty parameter and → \: AP  is a  penalty functional, which is non-
negative in A  and is designed so that  [ ]vP  increases with the distance from v  to the 
constraint set εA . In this work, we consider 
 

[ ] ( ) 21 max 0, ( )
2

p d⎡ ⎤= −⎣ ⎦∫v v xP
B

 ,   ∀ ∈v A ,      (22) 

 
where ( )max 0, ( ) / 2p p p− ≡ − + , and ( )p v  is given by Eq. (19.b). Clearly, [ ] 0=vP  if the 

injectivity constraint is satisfied; otherwise, [ ] 0>vP . The choice given by Eq. (22) for P  
leads to a discrete version of the penalized energy functional δE  that is continuous and 
differentiable everywhere. We then want to find an admissible displacement field δ ε∈u A  
that minimizes the penalized potential [ ]δ ⋅E  , i.e.,  
 

[ ]min δ∈v
v

A
E .            (23) 

 
This is an unconstrained problem, which has the advantage of yielding discrete minimization 
problems that can be solved by classical unconstrained nonlinear programming techniques.  



In the next section we use both the interior and the exterior penalty formulations 
together with a standard finite element technique and a classical nonlinear programming 
method2 to find the solution of the constrained pipe problem presented in Section 3.  
 
 
5. NUMERICAL RESULTS 
 

We have normalized all lengths by setting 1eρ = , where we recall from Section 2 that 

eρ  is the outer radius of the pipe. Furthermore, in dimensionless units, the inner radius of the 
pipe is 0.001iρ = , the applied load on the outer surface of the pipe is 500p = , and the elastic 
constants are 5

11 10c = , 3
22 10c = , 3

12 10c = , which, in view of Eq. (3.b), yield 0.1 1κ = < . We 
then have from Eq. (6) that 1 0.00132p = , from Eq. (8) that 2 0.00359p = , and from Eq. (9) 
that 1.76913cp = . As observed in Section 2, 2 12cp p p>> > . Also, we take 0.1ε =  for the 
lower bound of the injectivity constraint. The radius of the core subregion =B , where the 
constraint is active, is obtained from both Eq. (12) and Eq. (13) and is given by 0.00554aρ ≅ .  

In Fig. 1 we show curves for the radial deformation 1 '( )u ρ+ , the tangential 
deformation 1 ( ) /u ρ ρ+ , and the Jacobian determinant J , which is given by Eq. (7), versus 
the radius ρ  in the interval (0.001, 0.010) for the unconstrained pipe problem presented in 
Section 2. Observe from this figure that the radial deformation is monotonically increasing 
and is zero at 1 0.00381α ≅ . Observe also that the tangential deformation is zero at both 

2 0.00148α ≅  and 3 0.00784α ≅ . This is in agreement with our analysis in Section 2, since 

2p p> . As a result, we obtain from Eq. (7) that J  is positive in the interval (0.00784, 1) , 
negative in the interval (0.00381,0.00784) , positive again in the interval (0.00148,0.00381) , 
and negative again in the interval (0.001,0.00148) . Although the positive values of J  in the 
interval (0.00148,0.00381)  have no physical meaning, they represent eversion of material 
taking place in both radial and tangential directions.  

In Fig. 2 we show the Jacobian determinant J  versus the radius ρ  in the interval 
(0.001, 0.010) for both the unconstrained and the constrained pipe problems presented in 
Sections 2 and 3, respectively. Observe from this figure that J  for the constrained problem, 
which is represented by the solid line, is positive everywhere. In particular, it is constant and 
equals to 0.1ε =  in the interval (0.001, 0.00554) .  

In Fig. 3 we show curves representing both exact analytical solutions and numerical 
solutions. The numerical solutions were obtained with either the interior penalty formulation 
using a large value of γ  or the exterior penalty formulation using a small value of δ . The 
solid line corresponds to the solution of the constrained pipe problem, given by Eq. (10) – Eq. 
(13), and the dash-dotted line corresponds to numerical solutions of the constrained pipe 
problem for an increasing number of finite elements (480, 960, …, 7680 elements). Observe 
from Fig. 3.a that both the exact and the numerical solutions of the constrained problem are 
indistinguishable and from Fig. 3.b, which corresponds to a zoom in a neighborhood of 

0.00554aρ ≅ , that the sequence of numerical solutions obtained with increasing number of 
finite elements converges to the constrained exact solution. We also show in Fig. 3.a the 
unconstrained exact solution, which is given by both Eq. (5) and Eq. (6) and is represented by 
the dashed line. By comparing this line with the solid line, we conclude that the imposition of 
                                                           
2 Details of the numerical scheme for the interior penalty formulation are presented in Aguiar (2006a).  



the injective constraint has the effect of stiffening the pipe. Similar conclusions are reached 
by Aguiar (2006a) and Fosdick and Royer-Carfagni (2001) in their treatment of radially 
symmetric constrained problems.  
 
 

 
 

Figure 1. Radial deformation ( -.- ), tangential deformation ( --- ), and the Jacobian 
determinant ( __ ) versus radius ρ  for the unconstrained pipe problem. 

 
 

 
 
Figure 2. The Jacobian determinant J  versus radius ρ  for both the unconstrained ( --- ) and 

the constrained ( __ ) pipe problems. 
 
 
 



 
(3.a) Entire interval (0.001, 1).  

 

 
(3.b) Zoom in a neighborhood of 0.00554aρ ≅ .  

 
Figure 3. Radial displacement u  versus radius ρ  for the constrained pipe problem for either 

large γ  or small δ  and for an increasing number of finite elements. 
 
 

In Fig. 4 we show the determinant of the deformation gradient, J , calculated from 
both the exact solution of the constrained problem, represented by the solid line, and the 
corresponding numerical approximations, obtained with increasing values of either γ  or 1/δ  
and represented by dash-dotted lines, for the most refined mesh of 7680 elements. Figures 4.a 
and 4.b refer to the approximations hJ  obtained with, respectively, the interior and the 
exterior penalty formulations. Observe from both figures that hJ  converges to a limit function 



as the penalty parameter is enforced in each case, i.e., as γ →∞  in Fig. 4.a and as 0δ →  in 
Fig. 4.b. Observe from Fig. 4.b that, in the interval (0.001, 0.00554), the approximations hu  of 

the minimizer u  lie in the exterior of the set εA  for large δ  since, in this case, hJ ε< . 
Nevertheless, contrary to what one might expect, as 0δ → , the sequence of approximations 
{ }hu  converges to a limit function that belongs to the constrained set εA . 

 

 
 

(4.a) Interior Penalty Formulation.  
 

 
 

(4.b) Exterior Penalty Formulation.  
 

Figure 4. Jacobian determinant J versus radius ρ  for a large number of finite elements (7680 
elements) and for increasing values of both (a)γ  and (b)1/δ .  
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