PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: August 20, 2012
REVISED: December 16, 2012
ACCEPTED: December 26, 2012
PUBLISHED: January 28, 2013

Quarkonium dissociation by anisotropy

Mariano Chernicoff,® Daniel Fernandez,” David Mateos”¢ and Diego Trancanelli®-
@ Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge, CB3 0WA, U.K.

b Departament de Fisica Fonamental & Institut de Ciéncies del Cosmos (ICC),
Universitat de Barcelona (UB),
Marti @ Franques 1, E-08028 Barcelona, Spain

¢Institucio Catalana de Recerca i Estudis Avangats (ICREA),
Passeig Lluis Companys 23, E-08010, Barcelona, Spain

4 Instituto de Fisica, Universidade de Sao Paulo,
05314-970 Sao Paulo, Brazil
¢ Department of Physics, University of Wisconsin,
Madison, WI 53706, U.S.A.
E-mail: M.Chernicoff@damtp.cam.ac.uk, daniel@ffn.ub.edu,
dmateos@icrea.cat, dtrancan@fma.if .usp.br

ABSTRACT: We compute the screening length for quarkonium mesons moving through an
anisotropic, strongly coupled N = 4 super Yang-Mills plasma by means of its gravity dual.
We present the results for arbitrary velocities and orientations of the mesons, as well as
for arbitrary values of the anisotropy. The anisotropic screening length can be larger or
smaller than the isotropic one, and this depends on whether the comparison is made at
equal temperatures or at equal entropy densities. For generic motion we find that: (i)
mesons dissociate above a certain critical value of the anisotropy, even at zero tempera-
ture; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature;
(iii) in the ultra-relativistic limit the screening length scales as (1 — v?)¢ with e = 1/2, in
contrast with the isotropic result e = 1/4.
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1 Introduction

A remarkable conclusion from the experiments at the Relativistic Heavy Ion Collider
(RHIC) [1, 2] and at the Large Hadron Collider (LHC) (see the contributions on ellip-
tic flow at the LHC in [3]) is that the quark-gluon plasma (QGP) does not behave as a
weakly coupled gas of quarks and gluons, but rather as a strongly coupled fluid [4, 5]. This
places limitations on the applicability of perturbative methods. The lattice formulation of
Quantum Chromodynamics (QCD) is also of limited utility, since for example it is not well
suited for studying real-time phenomena. This has provided a strong motivation for under-
standing the dynamics of strongly coupled non-Abelian plasmas through the gauge/string
duality [6-8] (see [9] for a recent review of applications to the QGP). In general, a neces-
sary requirement for the string description to be tractable is that the plasma be infinitely
strongly coupled, A = g2,/ N, — oo. Of course, the real-world QGP is not infinitely strongly
coupled, and its dynamics involves a complex combination of both weak and strong cou-
pling physics that depend on the possibly multiple scales that characterize the process of
interest. The motivation for studying string models is that they provide examples in which
explicit calculations can be performed from first principles at strong coupling, in particular



in the real-time domain. The hope is then that, by understanding the weak and the strong
coupling limits, one may be able to bracket the dynamics of the real-world QGP, which
lies somewhere in between.

During the initial stage after the collision the plasma is far from equilibrium, and after
a certain time a hydrodynamic description becomes applicable. If one thinks of hydrody-
namics as a gradient expansion around a locally isotropic system, it is somewhat surprising
that the hydrodynamic description actually becomes applicable when the longitudinal and
transverse pressures are still significantly different. This can be explicitly seen, for example,
in holographic descriptions [10-13] in which gravity provides a valid description all the way
from the far-from-equilibrium phase to the locally isotropic phase, across the intermediate
hydrodynamic-but-still-anisotropic phase. Thus, during most of the time that viscous hy-
drodynamics is applied, the plasma created in a heavy ion collision is anisotropic, with the
level of anisotropy in fact increasing as one approaches the edge of the system. The fact that
the range of time and space over which the QGP is anisotropic is larger than traditionally
assumed has provided additional motivation for the study of anisotropic plasmas.

In this paper we will investigate the effect of an intrinsic anisotropy on the screening
length between a quark-antiquark pair in a strongly coupled plasma. As we will review
below, the plasma is static because it is held in anisotropic equilibrium by an external
force [14, 15]. We will discuss all the caveats in more detail below, but we emphasize from
the beginning that there are several reasons why, in terms of potential extrapolations to
the real-world QGP, our results must be interpreted with caution. First, the sources of
anisotropy in the QGP created in a heavy ion collision and in our system are different. In
the QGP the anisotropy is dynamical in the sense that it is due to the initial distribution
of particles in momentum space, which will evolve in time and eventually become isotropic.
In contrast, in our case the anisotropy is due to an external source that keeps the system
in an equilibrium anisotropic state that will not evolve in time. Nevertheless, we hope that
our system might provide a good toy model for processes whose characteristic time scale
is sufficiently shorter than the time scale controlling the evolution of a dynamical plasma.

The second caveat concerns the fact that, even in an static situation, different external
sources can be chosen to hold the plasma in equilibrium, so one may wonder to what extent
the results depend on this choice. We will provide a partial answer to this question in sec-
tion 7, where we will explain that our qualitative results, for example the ultrarelativistic
limit, do not depend on the details of our solution but only on a few general features.
Nevertheless, it would still be very interesting to compute the same observables in other
strongly coupled, static, anisotropic plasmas. Only then a general picture would emerge
that would allow one, for example, to understand which observables are robust, in the sense
that they are truly insensitive to the way in which the plasma is held in anisotropic equi-
librium, and which ones are model-dependent. Obviously it is the first type of observables
that have a better chance of being relevant for the real-world QGP. Our paper should be
regarded as a first step in this general program.

We will consider the screening length in the case in which the quark-antiquark pair is
at rest in the plasma as well as the case in which it is moving through the plasma. For this
purpose we will examine a string with both endpoints on the boundary of an asymptotically



AdS spacetime [14, 15] that is dual to an anisotropic N' = 4 super Yang-Mills plasma. The
gravity solution possesses an anisotropic horizon, it is completely regular on and outside the
horizon, and it is solidly embedded in type IIB string theory. For these reasons it provides
an ideal toy model in which questions about anisotropic effects at strong coupling can be
addressed from first principles. For the particular case of a quark-antiquark pair at rest,
the screening length has also been computed [16] in a different model [17] of a strongly
coupled, anisotropic plasma. The results exhibit some differences with respect to those
presented here. While this may indicate some model dependence of the screening length,
it is important to note that the solution of [17] possesses a naked singularity. Although
this is a rather benign singularity, its presence introduces a certain amount of ambiguity
in the calculations, which can only be performed by prescribing somewhat ad hoc boun-
dary conditions at the singularity. In any case, this discussion is another indication that it
would be interesting to compute the screening length in a larger class of models in order
to ascertain which of its features are model-independent.

To avoid any possible confusion, we clarify from the beginning that the quarks and
antiquarks that we will consider are infinitely massive, i.e. the bound states that we will
consider are the analogue of heavy quarkonium mesons in QCD. Thus, the reader should
always have the word ‘quarkonium’ in mind despite the fact that we will often refer to these
states simply as ‘mesons’, ‘heavy mesons’, ‘quark-antiquark bound states’, ‘dipoles’, etc.
This is specially relevant in the ultra-relativistic limit of the screening length, to which
we will pay particular attention since it can be determined analytically. We emphasize
that our results correspond to sending the quark and antiquark masses to infinity first,
and then sending v — 1. In particular, this means that in any future attempt to connect
our results to the phenomenology of the QGP, this connection can only be made to the
phenomenology of heavy quarkonium moving through the plasma.

The screening length for quarkonium mesons at rest in the anisotropic plasma of [14, 15]
has been previously studied in [16, 18]. Our section 4 has some overlap with these refer-
ences and, wherever they overlap, our results agree with theirs. Other physical properties
of the anisotropic plasma that have been calculated include its shear viscosity [19, 20], the
drag force on a heavy quark [18, 21], the jet quenching parameter [16, 18, 22|, and the
energy lost by a rotating quark [23]. The phase diagram of the zero-coupling version of
the model considered in [14, 15] has been studied in [24]. Dissociation of baryons in the
isotropic A/ = 4 plasma has been analyzed in [25].

2 Gravity solution

The type IIB supergravity solution of [14, 15] in the string frame takes the form

s L7 2 2 2 o | du? 2,4 2
ds® = 5 (—}"Bdt + da? + dy? + Hd=? + f> + L%e2%d02, (2.1)
X =az, ¢=0¢u), (2:2)

where x and ¢ are the axion and the dilaton, respectively, and (¢, z,y, z) are the gauge
theory coordinates. Since there is rotational invariance in the xy-directions, we will refer
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Figure 1. Metric functions for a/T ~ 4.4 (left) and a/T ~ 86 (right).

to these as the transverse directions, and to z as the longitudinal direction. F,B and
‘H are functions of the holographic radial coordinate u that were determined numerically
in [14, 15]. Their form for two values of a/T is plotted in figure 1. The horizon lies at
u = uy, where F = 0, and the boundary at u = 0, where F =B =H =1 and ¢ = 0. The
metric near the boundary asymptotes to AdSs x S°. Note that the axion is linear in the
z-coordinate. The proportionality constant a has dimensions of mass and is a measure of
the anisotropy. The axion profile is dual in the gauge theory to a position-dependent theta
parameter of the form 6 o z. This acts as an isotropy-breaking external source that forces
the system into an anisotropic equilibrium state.

If @ = 0 then the solution reduces to the isotropic black D3-brane solution dual to the
isotropic N’ = 4 theory at finite temperature. In this case

u? 1
and the entropy density takes the form
2
Siso = 7N3T3. (2.4)

Figure 2 shows the entropy density per unit 3-volume in the zyz-directions of the
anisotropic plasma as a function of the dimensionless ratio a/T', normalized to the en-
tropy density of the isotropic plasma at the same temperature. At small a/T" the entropy
density scales as in the isotropic case, whereas at large a/T it scales as [14, 15, 26]

§ = Co N2a'PT8/3 la/T > 1] (2.5)

where c,,, is a constant that can be determined numerically. The transition between the
two asymptotic behaviors of the entropy density takes place at a/T ~ 3.7.

For later use we list here the near-boundary behavior of the different functions that
determine the solution (2.2):

11 7
F=1+ ﬂaQu2 + (.7:4 + ﬁa4 log u) ut + O(ub),



12F -
/
038 i
0.6 /
/

0.2 /

log(s/8ie0)

0.0tr ‘ *
log(a/T)

Figure 2. Log-log plot of the entropy density per unit 3-volume in the zyz-directions as a function
of a/T, with s, defined as in eq. (2.4). The dashed blue line is a straight line with slope 1/3.
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B=1-—d*u’>+ (Bs— —a* logu> ut + O(ub),

24 12
H=1+ 1a2u2 - 234 _ 5 a' — }a4 logu | u* + O(u®) (2.6)
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The coefficients F4 and By depend on a and T" and are known analytically in the limits of
low, and high temperature and numerically for intermediate regimes [15].

A feature of the solution (2.2) that played an important role in the analysis of [14, 15]
is the presence of a conformal anomaly. Its origin lies in the fact that diffeomorphism
invariance in the radial direction u gets broken in the process of renormalization of the
on-shell supergravity action. In the gauge theory this means that scale invariance is
broken by the renormalization process. One manifestation of the anomaly is the fact
that, unlike the entropy density, other thermodynamic quantities do not depend solely
on the ratio a/T but on a and T separately. Fortunately, this will not be the case for the
screening length, as we will see below.

To facilitate a (rough) comparison of the anisotropy in our system to that in other
anisotropic plasmas it is useful to consider the ratio

_4E+ P, - P,

@ 3Ts ’

(2.7)
where E is the energy density and P, , P, are the transverse and longitudinal pressures,
respectively. In addition to being dimensionless, this ratio has the virtue that it does not
depend on a and T separately, but only on the combination a/T'. For the isotropic N' = 4
super Yang-Mills plasma « = 1, whereas for 0 < a/T < 20 the ratio is well approximated
by the expression

a~1—0.0036 (%)2 ~0.000072 (%)4 , (2.8)

as shown in figure 3.

At various points we will refer to the limit 77 = 0 of the anisotropic plasma. The
zero-temperature version of the solution (2.2) was found in [26]. In this case the
string-frame metric exhibits a naked curvature singularity deep in the infra-red, and the
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Figure 3. Ratio (2.7) as a function of a/T. The blue dots are the actual values of the ratio, and
the red curve is the fit (2.8).

Einstein-frame metric exhibits infinite tidal forces [27, 28]. However, we emphasize that,
for any finite temperature, the singularity is hidden behind the horizon and the solution
is completely regular on and outside the horizon, exhibiting no pathologies of any type.
Thus we will think of the T' = 0 results as those obtained by taking the limit T — 0 of
the finite-temperature results. Moreover, regulating the infra-red geometry in this or any
other way is actually unnecessary for most of the physics of quarkonium dissociation. The
reason is that, as we will see, in the limit in which a/T becomes large the penetration
depth into the AdS bulk of the string that is dual to the quarkonium meson becomes very
small. As a result, the dissociation is entirely controlled by the metric near the boundary,
which is insensitive to the infra-red behavior described above.

3 Preliminaries

In this paper we define the screening length L as the separation between a quark and an
antiquark such that for £ < Lg (¢ > L) it is energetically favorable for the quark-antiquark
pair to be bound (unbound) [29, 30]. Obviously this satisfies Ly < L., where L., is the
maximum separation L, for which a bound quark-antiquark solution exists. We will de-
termine Lg by comparing the action S(¢) of the bound pair, which is a function of the quark-
antiquark separation /¢, to the action S,,,ouna Of the unbound system, i.e. by computing:

AS(0) = S(6) = Summouna - (3.1)

The screening length is the maximum value of ¢ for which AS is positive (since we will
work in Lorentzian signature). This may correspond to the value of ¢ at which AS crosses
zero, in which case Ls < L., or the maximum value of ¢ for which a bound state exists,
in which case Ly = L,,,.. In the Euclidean version of our calculations, this criterion cor-
responds to determining which configuration has the lowest free energy, which is therefore
the configuration that is thermodynamically preferred. As shown in figure 4, for a meson
moving through the isotropic plasma (2.3) one has Ly < L., for v < 0., whereas for
V > Vprans ONE finds that Ly = L., where v,,,., =~ 0.45 is the transition velocity between the
two behaviors [31-33]. These qualitative features extend to the anisotropic case, as we have
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Figure 4. Energy difference, as defined in (3.2), between a bound and an unbound quark-antiquark
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pair moving through the isotropic plasma (2.3) with velocities (from the rightmost curve to the
leftmost curve) v = 0,0.35,0.85,0.996. The dipole is oriented orthogonally to its velocity. For
VU < Ugrans ON€ has Ly < Lpay, Whereas for v > vgans one finds L = L., Where vy,.ns ~ 0.45 is the
transition velocity between the two behaviors. At v = 0 the screening length and the maximum
separation are Lg ~ 0.24/T and L., ~ 0.27/T, respectively.

illustrated in figure 5. The transition velocity decreases with the anisotropy, so for large
a/T one has Ly = L., except for very low velocities. Similarly, if the ultra-relativistic
limit v — 1 is taken at fixed a and T, then obviously v > vy..s and again Lg = L.

All our calculations will be done in the rest frame of the quark-antiquark pair, to
which we will refer as the dipole rest frame. Since any observable can be easily translated
between this frame and the plasma rest frame, we will speak interchangeably of ‘mesons
in a plasma wind’ and of ‘mesons in motion in the plasma’. We emphasize however that
all the physical quantities that we will present, e.g. the screening length, are computed in
the dipole rest frame.

The actions are scalar quantities, 50 ASgipoe = ASpaema. Moreover, in the dipole rest
frame we have

ASdipole = _TAEdipole ) (32)

since the dipole is static in its own rest frame. In this expression Eg,,. is the energy
(as opposed to the free energy) of the configuration and 7 = [ d¢ is the length of the
integration region in time. Thus we see that our criterion, which is based on comparing
the actions, can also be thought of as a comparison between the energies of the bound
and the unbound configurations in the dipole rest frame.

We will see that the ultraviolet divergences in the string action associated to integra-
ting all the way to the boundary of AdS cancel out in the difference (3.1), and neither the
bound nor the unbound actions possess infrared divergences associated to integrating all
the way down to the horizon. This can be verified explicitly and it also follows from their
relation to the energy in the rest frame of the dipole: while the energy of the unbound
string pair possesses an infrared logarithmic divergence in the plasma rest frame [34], no
such divergence is present in the dipole rest frame (see e.g. the discussion in [33]).
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Figure 5. Energy difference in an anisotropic plasma, as defined in (3.2), between a bound and
an unbound quark-antiquark pair oriented along the transverse direction x and moving along the
anisotropic direction z. All the curves on the left correspond to a/T = 12.2 and different velocities
(from the rightmost curve to the leftmost curve) v = 0,0.35,0.85,0.996. All the curves on the
right correspond to the same velocity v = 0.25 and different anisotropies (from the rightmost curve
to the leftmost curve) a/T = 0,6.5,43,744. For these anisotropies the corresponding transition
velocities are respectively given by vga.ns = 0.45,0.29,0.19,0.11.

4 Static dipole in an anisotropic plasma

In an anisotropic plasma the screening length depends on the relative orientation between
the dipole and the anisotropic direction z. Given the rotational symmetry in the zy-plane
we assume without loss of generality that the dipole lies in the xz-plane, at an angle 8 with
the z-axis. We thus choose the static gauge t = 7,0 = u and specify the string embedding as

x — sinfx(u), z — cosf z(u). (4.1)

The string action takes the form

S=-

L2 Umax 1
i 2 12 102 2
27r0/2/dt/0 duu2\/B(1+fHCOS 022 + Fsin® 6 a'?) (4.2)

where the 2 comes from the two branches of the string and u,,., will be determined below.
The conserved momenta associated to translation invariance in the z,z directions are



given by

1 1 !
I, = gﬁ/: BFsinfx ’ (4.3)
sin ) Ox u2\/l3 (1 +fH00520z’2+fsin20x’2)
1 %_ BFH cosb 2 (4.4)
cos§ 92’ u2\/B (1+]:Hcos20z’2+.7:sin29x’2)
Inverting these relations we find
/ VH cscfu I, , sec O u? I, (4.5)

r = , Z = .
VF\/BFH —ut (112 + H112) VFH\/BFH —ut (112 + H112)
Substituting back in the action we arrive at

2 Umax
S L) N — )
2ra 0 u? \/BFH — u* (T2 + H112)

For a U-shaped string describing a bound quark-antiquark pair the turning point .,

S =

is determined in terms of the momenta by the condition that #'(tmay) = 2’ (Umax) — 00.
This happens if Uy, = ug, in which case F(tUp.,) = 0, or if

BFH —u* (2 +HIIZ)|  =0. (4.7)

Umax

The first possibility is not physically relevant because the second possibility is always real-
ized first, meaning that the string turns around at u,,,, < uy, before reaching the horizon.
The only exception is the case II, = II, = 0, but this corresponds to ' = 2’ = 0, namely to
an unbound pair of strings that descend from the boundary straight down to the horizon.

The momenta are determined by the boundary conditions that require the string end-
points to lie a distance ¢ apart from each other:

E Umax Umax
- :/ du ' :/ du 2. (4.8)
2 Jo 0

These two equations, together with (4.7), can be solved numerically to express the momenta
and U, in terms of £. In this way the on-shell action (4.6) for a bound pair becomes a
function of ¢ alone. In order to determine L, we subtract from this action the action of a
static, unbound quark-antiquark pair, which is described by two straight strings hanging
down from the boundary to the horizon. The action of this unbound pair is equal to (4.6)
with the momenta set to zero and the range of integration extended down to the horizon:

L2 UH \/E
Sunbound - _% 2 /dt/o\ du? . (49)

We obtain the screening length by numerically determining the value of ¢ at which the
difference S(€) — Sunpouna Crosses zero, since in the static case we always have Ly < L.
The result for this difference as a function of ¢ in the isotropic plasma [29, 30] described
by eq. (2.3) is plotted in figure 4, from which we see that the screening length is

. 0.24

Liso (T) T

[static dipole] . (4.10)
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The scaling with the temperature is expected on dimensional grounds. In the isotropic
case the temperature and the entropy density are related simply through (2.4), so this
result can be recast as

27721\ 1/3
Lio(s) ~ 0.24 (” N°>

5 [static dipole], (4.11)
s

which will be useful later.

The results in the anisotropic case are plotted in figures 6 and 7. Figure 6 shows
the screening length, for several orientations of the dipole, as a function of the anisotropy
measured in units of the temperature (left) and the entropy density (right). The reason

~10 -



for working with both normalizations is that we wish to compare the screening length in
the anisotropic plasma to that in the isotropic plasma, and this can be done at least in two
different ways: the two plasmas can be taken to have the same temperatures but different
entropy densities, or the same entropy densities but different temperatures. Figure 7
shows the screening length as a function of the dipole orientation for several values of the
anisotropy.

We see from figure 6(left) that Ls decreases monotonically as a increases, for any
dipole orientation, if the temperature is kept fixed. We also see from figure 7(left) that this
effect is more pronounced for a dipole oriented along the anisotropic direction. In contrast,
the behavior of the screening length at constant entropy density depends on the dipole’s
orientation, as shown in figures 6(right) and 7(right). For dipole’s aligned sufficiently close
to the anisotropic direction the screening length decreases with the anisotropy, whereas
for orientations sufficiently close to the transverse plane the screening length increases
with the anisotropy.

5 Dipole in an anisotropic plasma wind

In this section we will consider a static quark-antiquark pair in an anisotropic plasma that
is moving with constant velocity with respect to the dipole — a dipole in an ‘anisotropic
plasma wind’. We will pay particular attention to the ultra-relativistic limit, which can
be understood analytically.! This limit, together with the static results from section 4,
will allow us to understand qualitatively the results at any velocity 0 < v < 1.

We will first rewrite the solution (2.2) in a boosted frame, and then place a dipole in it
— see figure 8. Given the rotational symmetry in the zy-plane we assume that the boost
velocity is contained in the zz-plane, and that it lies at an angle 6, with the z-axis. Thus

we first rotate to a new coordinate system defined through

t=t,

x = Zsinb, + T cos b, ,

y=19,

z = Z cosf, —  sinb,, (5.1)

and then perform a boost along the z-direction by setting

tN:fy(t'—vz’) ,

z=2a,

g=y,

Z=q(—vt' +7), (5.2)

where v = 1/v/1 — v? is the usual Lorentz factor. Below we will consider a dipole with an
arbitrary orientation with respect to both the velocity of the plasma and the anisotropic

!We recall that we first send the quark mass to infinity and then v — 1 (see section 1).

- 11 -
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Figure 8. Orientation of the dipole in an anisotropic plasma wind. The wind’s velocity lies in the
original zz-plane (before the boost (5.2)) at an angle 6, with respect to the anisotropic direction z.

The quark lies at angles ¢ = (z,y,2) = g(sinﬁsin ©,sin @ cos @, cos f) with respect to the relabeled

directions (after the boost (5.2)), and the antiquark lies at —¢.

direction z — see figure 8. We parametrize the orientation of the dipole by two angles
0, ¢ so that the quark lies at

7= (2',y,2) = g(sinﬁsin ©,sinf cos @, cos 6) (5.3)

and the antiquark lies at —¢.

For notational simplicity, below we will drop the primes in the final set of coordinates.
To avoid confusion, we emphasize that the direction 6, of the plasma wind is always mea-
sured with respect to the original (x,y, z) axes, i.e. before the rotation and the boost above.
In particular, motion within (outside) the transverse plane refers to a dipole in a plasma
wind with 6, = 7/2 (6, # 7/2). In contrast, the orientation of the dipole is measured
with respect to the final set of coordinates (z',1/, 2'). However, if instead of specifying the
dipole’s orientation through a pair (0, ¢) we specify it by saying that the dipole is aligned
with the x-, y- or z-directions, then we are referring to the original directions. Just as
an illustration, consider the case of a plasma wind blowing along the original x-direction,
i.e. a plasma wind with 6, = 7/2. Then we see from (5.1) and (5.2) that (z,2) ~ (/,2/).
Thus in this case by ‘a dipole oriented along the z-direction” we mean a dipole with 6 = 0.

After dropping the primes from the final set of coordinates in (5.2) the five-dimensional
part of the metric (2.2) takes the form

2 du

I 2
ds? = = <_gttdt2 +gmd$2 +dy2 —i—gzzalz2 4+ grodt dr+gidt dz+ g, dx dz+ )

= (5.4)
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where

BF — v%(sin? 6, + H cos?0,)

gt = 1— 02 ) (5.5)
Gzz = C0S> 0, + Hsin? 0, , (5.6)
sin? 6, + H cos?® 0, — v2BF
oz = o2 , (5.7)
-1
Gto = 7(7-[ Jv sin(26,) , (5.8)

Vi?

20(BF — sin® 6, — H cos? 0,
Gtz = ( ) s (5.9)

1—v?
1-H
Gus = N sin(26,) . (5.10)

In order to determine the screening length for a generic velocity we need to compare the

actions of a bound and an unbound quark-antiquark pair, as in the static case of section 4.
However, in the ultra-relativistic this is not strictly necessary because Ls = L., (see
section 3). In other words, in this limit we only need to determine the maximum possible
quark-antiquark separation for which a bound state exists. Nevertheless, for completeness
we will briefly present the analysis of the unbound configuration. Each of the strings in the
unbound pair is one of the trailing strings studied in [21], so the reader is referred to this
reference for additional details. Note, however, that [21] worked in the plasma rest frame.
Here we will work in the dipole’s rest and focus on the ultra-relativistic limit.

5.1 Unbound quark-antiquark pair

As in section 4 we fix the static gauge t = 7, 0 = u, and specify the embedding of the
unbound string as

xr — z(u), z— z(u). (5.11)

The embedding in the y-direction is simply y = 0 because of rotational symmetry in the

xy-plane and because the string is unbound. As we will see below, in the case of a bound

string (dipole) the boundary conditions will generically imply a non-trivial embedding y(u).
The action for the unbound string reads

L? R
Supound = ———2 [ dt | du—vF 1Ky + Kppa? + K,.2" + Kpoa'2', (5.12)
2mal 0 u?

where
Ko = gut,
BF(cos? 0, + Hsin? 6,) — Ho?
Kyp = 5
1— 02
K.. = BF (sin® 60, + H cos®0,) ,
1—
K, = 8}—77;) sin(26,) . (5.13)
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Introducing the conjugate momenta

a‘Cunbound 8Eunbounc{
I, — Zoumbound oy P unbound 14
oz’ 0z (5-14)
and solving for 2/, 2/ we find
2 Nm 2 Nz
o= —2 , S="1 , (5.15)
FNVBHAND FNVBH D
where
1
Na: = KZZH:c - §sz]-_-[zu
1
Nz = _inzHa: + K:ca:Hz )
D = BHFKq — u* (K112 + K., 112 — K, ILIL) . (5.16)

Substituting into the action we arrive at

Sunbound =

/dt/ du i@i{o (5.17)

The momenta are determined by the condition that (5.15) remain real for a string that
extends all the way from the boundary to the horizon. Following [21] we analyze this
condition by noting that D can be rewritten as

2u*

D= Z—N,N, - b[HmHz - c] [Bf — v%(sin? 0, + H cos? 0,) (5.18)

where
B Hut . BF(1 —H)sin 6, cosb, (5.19)
(1—H)V1—2sinb,cosb, uty/1 — 02 ' '

As in [21] we must require that the zeros of the second summand in (5.18) coincide with

one another and with those of IV, and N,. One of the zeros of the second summand occurs
at a critical value u = u, such that

BeFo—dev?> =0,  d.=Hccos?, +sin?6,, (5.20)
where B. = B(u.), etc. At this point we have

4 . . 2
v* cos 0, sin 0, (He — 1) cos 6, sin b,
NN = (H.—1)d.|d 11, + II,| . 5.21
T Z‘uc m ( c ) c| et m z ( )
Noting that H. > 1 and that K,, < 0, we see that D would be negative at u. unless the
momenta are related through

(1 —H,) cos b, sinb, 0

11, = .
’ dev1 — 2 :

(5.22)

— 14 —



Assuming this relation and requiring that the other zero in the second summand of (5.18)
coincide with u. yields

2 — B.Fe(He — 1)% cos? 0, sin? 6,
ud v ud(1 —v2)d,

(5.23)

Note that II, does not vanish for any value of 6,, whereas II, vanishes if 6, = 0,7/2.
The reason is that for these two particular orientations the plasma wind blows along the
original z- or z-directions and the string orients itself with the corresponding axis [21]. As
a consequence, the momentum along the orthogonal axis vanishes. However, the changes of
coordinates (5.1) and (5.2) always relabel the direction of motion as z, so after these changes
the non-vanishing momentum is labelled II, irrespectively of whether 6, = 0 or 6, = 7 /2.

We will analyze in detail the ultra-relativistic limit. This is facilitated by explicitly
distinguishing the case of motion outside the transverse plane (6, # 7/2) and motion
within the transverse plane (6, = 7/2).

5.1.1 Ultra-relativistic motion outside the transverse plane

In the ultra-relativistic limit u. approaches the boundary, i.e. u. — 0, and we can use the
near-boundary expansion (2.6) to determine it. The condition (5.20) yields in this limit [21]

4(1 —v?)
2
~ 0 2 5.24
(1200829@ [U#ﬂ-/]v ( )
which when substituted in (5.23) gives the momenta
2 ~ a* cos* 0, 2 ~ a* cos? 6, sin® 6,
2T 16(1 - 02)2” T = T16(1 — o2)

(5.25)

In these expressions we have ignored subleading terms in an expansion in 1 — v?, for
example we have set v >~ 1, H, ~ 1, etc. Note that in this expansion II, is subleading
with respect to II,.

For later use we must evaluate how S,,pouna Scales with 1 — v? in the limit v — 1. For
this purpose we split the integration region, and hence the action (5.17), as

Sunbound = S\Srlﬂ))ound + S\Sil)nound ) (526)
(2)

unbound

(1)

unbound

where S is the action with the integral in u ranging between 0 and u., and S
is the action with the integral in u ranging between u. and uy. The reason for this
separation is that in the first interval u is small and hence we will be able to use the
near- boundary expressions (2.6), (5.24) and (5.25). In order to exhibit the dependence

on 1 —v? ofSl(l)

nboun

4 explicitly, it is convenient to work with a rescaled variable r which
remains finite in the v — 1 limit, defined though

u=ry1—0v?, Ue =71V 1 — 02, (5.27)

In terms of this variable we get

1—1a2r2cos? 6, + .
S / dt / dr 4 . (5.28
b d— QﬂYl ff‘f;j TQ\/l ( )

7a2r2 cos? 6, — 6a4r4 cost 0,+. .
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The divergence near r = 0 will cancel out with that in the action for the bound string. The
integrand is smooth across r = r.. The crucial point is that the result is O [(1 - v2)_1/2] in
the counting in powers of 1—v?, and we will find this same scaling in the bound string action
(see below). In contrast, Sﬁigound scales as 1 — v? in the ultra-relativistic limit. The reason
is that « is not small in units of 1 —v? in the corresponding region of integration, so all the
dependence comes from the fact that the action (5.17) scales as 1/II, ~ 1—v? in this region.

5.1.2 Ultra-relativistic motion within the transverse plane

In this case 0, = 7/2 and hence we see from (5.23) that IT, = 0. The condition (5.20) now
gives [21]

1— 0?2
2
- 5.29
RSpEy (5.20
where

121 ,

= —qa — - B 5.30
sre? — T4~ B (5.30)

and we recall that Fy, By are the coefficients that enter the near-boundary expansion (2.6).
Substituting (5.29) into (5.23) and dropping subleading terms as before we obtain the
momentum in the z-direction (recall that this corresponds to the original x-direction):

I, ~ ulg =7 —Cv2 : (5.31)
It is now convenient to work with a rescaled radial coordinate r defined through
w=r(l—0v*)4, (5.32)
Splitting the unbound string action as before, we find
ﬂﬁmz—ii( m/@/‘” tf;; (5.33)
Again, the divergence near r = 0 will cancel out with that in the action for the bound

2

string, which will also be of O [( — 1)2)_1/4] in the counting in powers of 1 — v* (see

below). In contrast, Sﬁngound scales as 1/II, ~ v/1 —v? in the ultra-relativistic limit, and

is therefore subleading.
In summary, we find that in the ultra-relativistic limit

O[(1—v?)~V2] if 6, #7/2 [outside the transverse plane]
Sunbound = (534)
o[- v2)_1/4] if 0, =m/2 [within the transverse plane] .
5.2 Bound quark-antiquark pair

We now consider a dipole with an arbitrary orientation with respect to both the velocity
of the plasma and the anisotropic direction z — see figure 8. As before we fix the static
gauge T = t,0 = u and specify the string embedding via three functions (z(u),y(u), z(u))
subject to the boundary conditions

E Umax
—sinfsinp = / 2 du,
2 0

~16 -



Z . /umax ,
—sinfcosp = ydu,
2 0

f Umax
—cosf = / 2 du, (5.35)
2 0

where Uy, is the turning point of the U-shaped string. The integral in the action of the
bound string extends only up to this point and now includes a term proportional to 3/%:

L2 Umax 1
5= o 2/dt/ du ?\/FilKO + Kppa'? + Kyyy/2 + K. 2% + Ko (5.36)
0

All the K’s were defined in (5.13) except for K,,, which is given by

BF — v?(sin? 0, + H cos®0,)

Ky, = o2 . (5.37)
The momenta are defined as
oL oL oL
Hx:%, Hy:@, HZ:@ (538)
Inverting these equations we get
u? 1
.ZU/ — W <KZZH:E — 2KIEZH,Z) 5
2
uvVBH
y/ g Wﬂy’
, u? 1
= W —§K$ZH$ + K11, |, (5.39)
where
D =BHFKo— u' (K. 112 + BFHIL + Ko 112 — K, 1111 (5.40)
Substituting these expressions into the action (5.36) we get
L? Umax /BHK
S =— ,2/dt du VB Eo. (5.41)
2ma 0 u2vD

As in the case of the unbound string, we will now distinguish between the cases of motion
outside and within the transverse plane, focusing on the ultra-relativistic limit.

5.2.1 Ultra-relativistic motion outside the transverse plane

The turn-around point ., is defined by the condition D(un..) = 0. In the ultra-
relativistic limit we expect that this point approaches the boundary for the string solution
of interest, as in the isotropic case. Thus in this limit u,., can be determined by using
the near-boundary expansions of the metric functions (2.6).

In the limit © — 0 we find the following expansions:

a?u? cos? 0,

K., ~1+ 1 +

(5.42)
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a?u? sin 0, cos 0,

K,. ~0— T 5.43

. W12 (543)
a?u? cos? 0,

Kpp o1 =2 0 44

from which it follows that

a?u? cos? 0,

D~1
4(1 —v?)

— I T+ TI2) + - (5.45)

Similarly, the boundary conditions (5.35) take the form

’LL2

VD
u2

e /Umax
—sinfcosp ~ du —=1I, + -,
2 R N/ B

V4 Umax u? a?u? cos? 0
~cosf ~ d 1— ST+ - -
2 ¢ /0 “@( 4(1—v2>> =

In the ultra-relativistic limit, all the terms that we have omitted in the equations above,

f Umax
isinésinnp o~ / du I, + -, (5.46)
0

in particular in (5.45) and (5.47), are subleading with respect to the terms that we have
retained provided the radial coordinate and the momenta scale as

u=ry1—0v?, II; = Pi 5 (5.47)

1—vw

where r and p; are kept fixed in the limit v — 1. In terms of these rescaled variables (5.47)
the boundary conditions (5.47) take the form

/
isinﬁsinap ~ \/1—0v2p, Ta(p,b,),

14
5 sin @ cos ¢ ~ MPZ, Ta(p, 0y)

a? cos? 0,

gcose ~\1—-v2p, <12(pa ) — 1

Ti(p, av>> , (5.48)

where the integral

7,.71

To(p, 6y) = / " ar (5.49)
0 \/1 _a?

2
7= cos? 0, — 4 (p2 + pz +p?)

is of O(1) in the counting in powers in (1 — v?), and is finite if n > 0. Further noting that

a?u? cos? 0, a?r? cos? 0
Kp=1—-———">"° oo =27 .
0 4(1 — 02) + O(U ) 4 ) (5 50)
we see that the bound action scales as
L2 2 a2 cos? 6
S~ ——— (T_ 0,) — ———Ty(p, 0 dt. 5.51
e s (L2000 - =5 T(p0,)) | (5:51)
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Since both this bound action and the unbound action (5.28) scale as (1 — v?)~1/2, the
divergence at r = 0 in the bound action coming from the Z_5(p, 6,) integral would exactly
cancel that in the unbound action in the difference (3.1). Moreover, by comparing the two
actions we would conclude that the momenta p; introduced in (5.47) are indeed of O(1) in
the counting in powers of (1 — v?) in the ultra-relativistic limit. It would then follow that
the integrals Z,,(p, 6,) are also of O(1), and therefore that the screening length scales as
Ly ~ (1 —v?)Y/2 in the ultra-relativistic limit. However, as explained below (5.10), in the
ultra-relativistic Ly = L., is simply the maximum possible separation between a bound
quark-antiquark pair, so it can be determined by maximizing ¢ in (5.48) with respect to
the momenta. Since the integrals are bounded from above for any value of the p;, and the

maximum is v-independent, it follows that Ly = Lmax ~ (1 — v?)'/2,

5.2.2 Ultra-relativistic motion within the transverse plane

In this case 8, = 7/2 and the expansions of D and of the boundary conditions (5.35) become

Cu' 4772 2 2
D~1——— —u (I +1 + 1) + -+ (5.52)
and

Umax H
2Sin9sinap:/ duu® - = 4+

0 V1 E — (112 4 112 4 112)

Umax H
2sim@coscp:/ duu? - Y + e

0 V1 85— uh (12 + 112 + 112)

—cosf ~ / du u? - L
2 0 V1 E — (112 4 112 4 112)

1—02

_|_...’

where C' was defined in (5.30). As in the previous section, in the ultra-relativistic limit all
the terms that we have omitted in the equations above are subleading with respect to the
terms that we have retained provided the radial coordinate and the momenta scale in this
case as

bi

V1—02’

where r and p; are kept fixed in the limit v — 1. In terms of the rescaled variables the

w=r(l—0v*)"4, I; = (5.53)

boundary conditions (5.53) become

gsinﬁsingp ~ (1= )4 p, Ta(p),
14
2 sinfcosp ~ (1 — v2)1/4py J2(p),

gcosﬁ ~ (1 =) p, (Fa(p) — CTs(p)) . (5.54)
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where the integral

Tn(p) = / ar s (5.55)
0 1O )

is of O(1) in the counting in powers in (1 — v?), and is finite if n > 0. Further noting that

Ko=1-—5u' +0@") = 1-Crt, (5.56)
we see that the bound action becomes
L? 2

Since both this bound action and the unbound action (5.33) scale as (1 — v?)~'/4, the
divergence at r = 0 in the bound action coming from the J_s(p) integral would exactly
cancel that in the unbound action in the difference (3.1). Moreover, by comparing the two
actions we would conclude that the momenta p; introduced in (5.53) are indeed of O(1)
in the counting in powers of (1 — v?) in the ultra-relativistic limit. It would then follow
that the integrals 7, (p) are also of O(1), and therefore that the screening length scales as
Ly~ (1- v2)1/ 4in the ultra-relativistic limit. However, as explained below (5.10), in the
ultra-relativistic Ly = L,,,, is simply the maximum possible separation between a bound
quark-antiquark pair, so it can be determined by maximizing ¢ in (5.54) with respect to
the momenta. Since the integrals are bounded from above for any value of the p;, and the
maximum is v-independent, it follows that Ly = Lmax ~ (1 — v?)1/4,
In summary, we conclude that in the dipole rest frame the screening length scales in
the ultra-relativistic limit as
(1—v)Y2if 6, # /2 [motion outside the transverse plane]
Ly ~ (5.58)
(1—v)V4if 6, =n/2 [motion within the transverse plane]

irrespectively of the dipole orientation.

5.3 Isotropic limit

The results above reduce to the isotropic result of ref. [31, 32] in the limit a — 0. This
limit is most easily recovered from the results for motion within the transverse plane, since
some of the terms in the expansions in section 5.2.1 vanish if @ = 0, thus invalidating the
analysis. In contrast, setting a = 0 in section 5.2.2 boils down to simply setting C to its
isotropic value, which from (5.30) and (2.3) is

= 7iTt. (5.59)

Since the value of C' does not affect the ultra-relativistic scaling of the screening length,
we recover the scaling

L ~ (1 —0?)1/4 [isotropic plasmal (5.60)
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Figure 9. Screening length for a dipole moving through an isotropic plasma in a direction orthog-
onal (top, blue curve) or parallel (bottom, orange curve) to its orientation.

found in the isotropic case by the authors of [31, 32]. As in the anisotropic case, the
ultra-relativistic scaling of the screening length is independent of the dipole’s orientation.
In fact, even for v < 1, the isotropic screening length depends only mildly on the dipole’s
orientation, as shown in figure 9.

5.4 Numerical results for generic velocities

Away from the ultra-relativistic limit the screening length must be obtained numerically.
For this reason we have focused on a few representative cases, namely those in which both
the direction of the plasma wind and the dipole’s orientation are aligned with one of the
original z, y, or z axes. Given the rotational symmetry in the xy-plane, there are only five
inequivalent cases to consider, because if the wind ‘blows’ in the z-direction then orienting
the dipole along x or y gives identical physics. In each case, we plot the screening length
both as a function of the velocity v for different degrees of anisotropy a, and also as a
function of the degree of anisotropy for different values of the velocity. In each case the
result can be qualitatively understood combining the static results from section 4 and
the ultra-relativistic behavior derived analytically in section 5. We recall that in all cases
below, by ‘a dipole oriented along x, y or z’ we are referring to the original directions
before the rotation (5.1) and the boost (5.2).

Wind along z and dipole along z. The numerical results are shown in figures 10
and 11. The curves in figure 10 start at v = 0 with the same value as the § = 0 static result
shown in figure 7, and that they vanish as (1 — v2)'/4 in the limit v — 1, in agreement
with (5.58)(top line) and (5.60). The screening length decreases with the anisotropy,
irrespectively of whether T or s are kept fixed.

Wind along z and dipole along x. The numerical results are shown in figures 12
and 13. We see that the curves in figure 12 start at v = 0 with the same value as the
6 = /2 static result shown in figure 7, and that they vanish as (1 — v2)'/4 in the limit
v — 1, in agreement with (5.58)(top line) and (5.60). In this case the screening length
decreases with the anisotropy for any velocity provided the temperature is kept fixed. The
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Ls/Liso(T)

Figure 10. Screening length for a plasma wind along the z-direction and a dipole oriented
along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =
12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same
order) aNf/S/sl/3 = 6.2,19,35,242. The screening length is plotted in the appropriate units to
facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at
the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic
behavior is given in eq. (5.60). At v = 0 the curves agree with the §# = 0 values in figure 7. As
v — 1 they vanish as (1 — v2)'/%, in agreement with (5.58)(top line) and (5.60).
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Figure 11. Screening length for a plasma wind along the z-direction and a dipole oriented along
the z-direction, at five different velocities (from top to bottom) v = 0.25,0.5,0.7,0.9,0.9995. The
screening length is plotted in the appropriate units to facilitate comparison with the isotropic result
for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic
result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

same behavior is found at constant entropy density for high enough velocities, whereas for

low velocities the screening length at constant s actually increases with a.

Wind along « and dipole along x. The numerical results are shown in figures 14
and 15. The curves in figure 14 start at v = 0 with the same value as the § = 7/2 static
result shown in figure 7, and that they approach a finite, non-zero value as v — 1, in
agreement with (5.58)(bottom line) and (5.60). As in previous cases, the screening length
decreases with the anisotropy for any velocity provided the temperature is kept fixed. The
opposite behavior is found at constant s.
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Figure 12. Screening length for a plasma wind along the z-direction and a dipole oriented along the
a-direction, for four different values of the anisotropy a/T = 12.2 (red, solid), 42.6 (maroon, coarsely
dashed), 86 (violet, dashed), 744 (orange, dot-dashed). The corresponding values in units of the
entropy density are (in the same order) aN2/?/s'/3 = 6.2, 19, 35, 242. The screening length is plotted
in the appropriate units to facilitate comparison with the isotropic result for a plasma at the same
temperature (left), or at the same entropy density (right). The isotropic result is plotted in figure 9,
and its ultra-relativistic behavior is given in eq. (5.60). At v = 0 the curves agree with the § = 7/2
values in figure 7. As v — 1 they vanish as (1—v?)'/4, in agreement with (5.58)(top line) and (5.60).
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Figure 13. Screening length for a plasma wind along the z-direction and a dipole oriented along
the x-direction, at five different velocities (from top to bottom) v = 0.25,0.5,0.7,0.9,0.9995. The
screening length is plotted in the appropriate units to facilitate comparison with the isotropic result
for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic
result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

Wind along « and dipole along y. The numerical results are shown in figures 16
and 17. We see that the curves in figure 16 start at v = 0 with the same value as the
0 = /2 static result shown in figure 7, and that they approach a finite, non-zero value as
v — 1, in agreement with (5.58)(bottom line) and (5.60). The qualitative behavior in as
in the case of motion and orientation along x.

Wind along x and dipole along z. The numerical results are shown in figures 18
and 19. We see that the curves in figure 18 start at v = 0 with the same value as the
0 = 0 static result shown in figure 7, and that they approach a finite, non-zero value as
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Figure 14. Screening length for a plasma wind along the z-direction and a dipole oriented
along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =
12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same
order) aNCQ/?’/sl/3 = 6.2,19,35,242. The screening length is plotted in the appropriate units to
facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at
the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic
behavior is given in eq. (5.60). At v = 0 the curves agree with the § = 7/2 values in figure 7. As
v — 1 they approach a finite, non-zero value, in agreement with (5.58)(bottom line) and (5.60).
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Figure 15. Screening length for a plasma wind along the z-direction and a dipole oriented along
the a-direction, at five different velocities v =0.25 (yellow, dot-dashed), 0.5 (green, short dashed),
0.7 (brown, medium dashed), 0.9 (cyan, long dashed), 0.9995 (blue, solid). The screening length is
plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at
the same temperature (left), or at the same entropy density (right). The isotropic result is plotted
in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

v — 1, in agreement with (5.58)(bottom line) and (5.60). The screening length decreases
with the anisotropy for any velocity provided the temperature is kept fixed. The same is
true at large anisotropies if the entropy density is kept fixed.

6 Dissociation temperature and dissociation anisotropy

In previous sections we have focused on computing the screening length in an anisotropic
plasma, L¢(T,a), and on comparing it to its isotropic counterpart Li, = Lg(7,0). The
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Figure 16. Screening length for a plasma wind along the z-direction and a dipole oriented along
the y-direction, for four different values of the anisotropy a/T = 12.2 (red, solid), 42.6 (maroon,
coarsely dashed), 86 (violet, dashed), 744 (orange, dot-dashed). The corresponding values in units
of the entropy density are (in the same order) aN3/3/51/3 = 6.2,19,35,242. The screening length
is plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at
the same temperature (left), or at the same entropy density (right). The isotropic result is plotted
in figure 9, and its ultra-relativistic behavior is given in eq. (5.60). At v = 0 the curves agree with
the 8 = m/2 values in figure 7. As v — 1 they approach a finite, non-zero value, in agreement
with (5.58)(bottom line) and (5.60).
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Figure 17. Screening length for a plasma wind along the z-direction and a dipole oriented along
the y-direction, at five different velocities v =0.25 (yellow, dot-dashed), 0.5 (green, short dashed),
0.7 (brown, medium dashed), 0.9 (cyan, long dashed), 0.9995 (blue, solid). The screening length is
plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at
the same temperature (left), or at the same entropy density (right). The isotropic result is plotted
in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

screening length characterizes the dissociation of a quark-antiquark pair for fixed 7" and
a: a pair separated a distance ¢ < Lg forms a bound state, but if £ is increased above
L then the bound state dissociates. Similarly, one may define a dissociation temperature
Tuis(a, £) that characterizes the dissociation of a quark-antiquark pair of fixed size £ in a
plasma with a given degree of anisotropy a: for T" < T, the pair forms a bound state,
but if 7" is increased above T, then the bound state dissociates. Analogously, one may
define a dissociation anisotropy a4 (7, ¢) such that a bound state forms for a < ag but
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Figure 18. Screening length for a plasma wind along the z-direction and a dipole oriented
along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =
12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same
order) aNf/S/sl/3 = 6.2,19,35,242. The screening length is plotted in the appropriate units to
facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at
the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic
behavior is given in eq. (5.60). At v = 0 the curves agree with the §# = 0 values in figure 7. As
v — 1 they approach a finite, non-zero value, in agreement with (5.58)(bottom line) and (5.60).
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Figure 19. Screening length for a plasma wind along the z-direction and a dipole oriented along
the z-direction, at five different velocities (from bottom to top) v = 0.25,0.5,0.7,0.9,0.9995. The
screening length is plotted in the appropriate units to facilitate comparison with the isotropic result
for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic
result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

not for a > ag.. It is useful to think of the three-dimensional space parametrized by
(T, a,l) as divided in two disconnected regions by a two-dimensional surface: in one region
quark-antiquark pairs bind together, while in the other one they do not. The functions
Ly(T,a), Tuy(a, ) and ag. (T, £) are then simply different parametrizations of the dividing
surface. It is therefore clear that if a triplet (7', a,?) lies on the dividing surface then

TLs(a,T) = Tys(a,0)l, aLls(T,a) = aq.(T,0)C, etc. (6.1)

In this section we will focus on the qualitative form of T, and ag.. As we will
see, most of the analysis follows from the asymptotic behavior of the screening length for

— 96 —



/'/I
2.0: /, /,' /

i ’
[ 4
1.8 G 7
L Y2 -
QN r /' /,
g t S/ o’
- 1'6 [ 4 v'
g r /I R
[ R
2 i / T
o ’
> 14 7 -
/ 7 /

L K °
Li / R3
1.2 -
* L *

10..,
0.0 0.2 0.4 0.6 0.8 1.0

u/uy
Figure 20. Proper velocity in the z-direction at a position u away from the boundary, as defined
in (6.2), for different values of a/T. From right to left, a/T = 1.38, 33, 86, 249.

a > T. This means that, at the qualitative level, most of the results that we will obtain
would also apply if we were to replace the temperature by the entropy density as one of our
variables. The reason is that, by virtue of (2.5), the limit a > T corresponds to the limit
a > s'/3 and vice versa. In addition, we will see that for generic dipole’s orientations and
velocities, the large-anisotropy limit is entirely controlled by the near-boundary behavior
of the metric at O(u?), which depends solely on a and is therefore completely insensitive
to the values of the temperature or of the entropy density.

The key point in the large-a analysis is the requirement that no point on the string
can move faster than the local speed of light in the bulk. Consider a meson moving with a
velocity v that has a non-zero component v, along the z-direction. Then we see from (2.2)
that the proper velocity along this direction of a point on the string sitting at a value u
of the radial coordinate is

gu(w) ~ "\ Fw)Bw) (6.2)

Uproper (u) = UZ

The function H(u) increases monotonically from the boundary to the horizon, and is does
so more steeply as a/T increases, as illustrated in figure 1. The combination F(u)B(u)
has the opposite behavior, as expected from the fact that gravity is attractive: it decreases
monotonically from the boundary to the horizon. In the isotropic case H =1 and FB de-
creases more steeply as T  increases. This is thus the first hint that increasing the anisotropy
has an effect similar to increasing the temperature: both make v,,.pe. (%) & more steeply in-
creasing function away from the boundary. We have illustrated the effect of the anisotropy
in figure 20, where we see that v,,..p./v, becomes a steeper function of u as a/T increases.
It follows that, for fixed v, # 0, there is a maximum value of ., beyond which v,y
becomes superluminal, so no string solution can penetrate to u > Up... As we will corrobo-
rate numerically, this upper bound on u,,,, translates into an upper bound on L,. Moreover,
Umax decreases as a/T increases. This means that for sufficiently large anisotropies we can
use the near-boundary expansions (2.6) in order to determine Lg, in analogy to what we
did in the ultra-relativistic limit. As in that case, for v, # 0 the analysis is controlled by

—97 —



the O(u?) terms in (2.6). The key point is that these terms depend on a but not on 7, so by
dimensional analysis it follows that ., ~ a~ ! and Ly ~ a~! in the limit a/T > 1. This
limit can be understood as a — oo at fixed T, or as T' — 0 at fixed a. We thus conclude
that, even at T' = 0, a generic meson will dissociate for a sufficiently large anisotropy agss.

Mesons at rest and mesons whose velocity is exactly aligned with the transverse plane
constitute an exception to the argument above, since in this case v, = 0 and their physics
is mostly insensitive to the function #(u) which characterizes the anisotropic direction.
Therefore in this case we expect that u,,., and Lg will remain finite as we send a — oo at
fixed T, and hence that dimensional analysis will imply L, ~ T~ 1.

In summary, the heuristic argument above suggests that in the limit a/7 > 1 we
should have

const. x ! if the meson is static or in motion within the transverse plane,
Ly(T,a)~

const. xa~! otherwise.

(6.3)

The constants may depend on all the dimensionless parameters such as the velocity and
the dipole’s orientation. We will refer to the behavior in the second line as ‘generic’ and to
that in the first line as ‘non-generic’, since the latter only applies if the velocity is exactly
zero or if the motion is exactly aligned with the transverse plane. The generic behavior
is of course consistent with the analysis of section 5.2.1. Indeed, we saw in that section
that for motion outside the transverse plane the ultra-relativistic behavior of L is entirely
controlled by the O(u?) terms in the metric, which depend on a but not on 7.

Figure 21 shows our numerical results for u,,,,, in units of 7-! and a~!, as a function
of a/T, for the five physically distinct cases discussed in section 5.4. From the continuous,
magenta curves in the first two rows we see that u,,., goes to zero at large a/T in the cases
of motion along z, irrespectively of the dipole’s orientation. In contrast, we see that .,
does not go zero for a static meson (dashed, blue curves) or for a meson moving along the
x-direction (continuous, magenta curves in the last three rows).

Recalling that the isotropic screening length is of the form L, o 1/T, we see that
the quantity plotted on the vertical axes in figures 6, 11, 13, 15, 17 and 19 is precisely
proportional to T'Ls(T,a). However, the asymptotic behavior (6.3) is not apparent in
these plots because in most cases the horizontal axes do not extend to high enough values
of a/T. For this reason we have illustrated the two possible asymptotic behaviors of L in
figure 22, where we have extended the horizontal axes to larger values of a/T. We see from
the continuous, magenta curves in the first two rows that Ls ~ 1/a for motion along the
z-direction. For motion within the transverse plane we see from the same curves in the last
three rows that Ls ~ 1/T. This approximate scaling relation seems to hold quite precisely
for a dipole oriented within the transverse plane (3rd and 4th rows), whereas for a dipole
oriented in the z-direction the product T'L, seems to retain a slight (perhaps logarithmic)
dependence on a/T at large a/T. We can draw similar conclusions from the dashed, blue
curves in the figure, which correspond to static mesons. We see that for mesons oriented
within the transverse plane (2nd, 3rd and 4th rows) the relation T'Ls ~ constant holds
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Figure 21. Value of u,,,, in units of 1/T" (left) or 1/a (right), as a function of the ratio a/T, for
a dipole at rest (dashed, blue curve) and for a dipole moving with v = 0.45 (continuous, magenta
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the second one indicates the orientation of the dipole.
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Figure 23. Dissociation temperature (left) Tys(a,f) = ¢~1f(af) and dissociation anisotropy
(right) agiss(T,€) = £~ 1g(T¥) for a dipole at rest (dashed curves) and for a dipole moving along
the z-direction with v = 0.45 (continuous curves). The orientation of the dipole is indicated by a
letter next to each curve.
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Figure 24. Limiting velocity, for fixed anisotropy and 7" = 0, beyond which a meson oriented along
the z-direction and moving along the z-direction will dissociate.
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quite precisely, whereas for mesons oriented in the z-direction (1st and 5th rows) there
seems to be some slight residual dependence on a/T at large a/T.

Combining the two plots on the left and the right columns of figure 22 we can eliminate
a/T and obtain T'Ly as a function of aLs and vice versa. Recalling (6.1) we see that we can
interpret the result in the first case as Ty (a,f) = =1 f(af), whereas in the second case we
get aqis(T,¢) = £1g(T¥). The functions f and g are the curves shown in figure 23(left) and
figure 23(right), respectively. The right plot is of course the mirror image along a 45 degree
line of the left plot. We see in figure 23(left) that the dissociation temperature decreases
monotonically with increasing anisotropy and vanishes at af ~ 9.75 (for the chosen velocity
and orientation). On the right plot this corresponds to the dissociation anisotropy at zero
temperature. As anticipated above, even at zero temperature, a generic meson of size ¢ will
dissociate if the anisotropy is increased above ag (T = 0,¢) o 1/¢. The proportionality
constant in this relation is a decreasing function of the meson velocity in the plasma. This
implies that for a fixed anisotropy there is a limiting velocity vy, above which a meson will
dissociate, even at zero temperature. The form of vy, (af) for T' = 0 is plotted in figure 24.
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Figure 25. Dissociation temperature for a meson moving along the z-direction and oriented along
the z-direction (left) or along the x-direction (right). Each curve corresponds to a fixed value of
the product af = 0 (blue curve), 1.4 (green curve), 25 (red curve).

The existence of a limiting velocity for quarkonium mesons is well known in a strongly
coupled isotropic plasma [35, 36], in which case the dissociation at v = vy, is caused by
the temperature. What we see here is that in our anisotropic plasma this behavior persists
as T — 0 for generic motion. In this limit it is the anisotropy that is responsible for the
dissociation. In the case of ultra-relativistic motion the relation between ag or Ty and
Ui can be obtained by combining the scalings (5.58) and (6.3). For generic motion these

relations yield
1
adiSS(T7 f) ~ Z(l - UIQim)l/Q ) [(I > T y Vlim 5 1] (64)
whereas for motion within the transverse plane we obtain

T (a,0) ~ (1= 0, )4 (0> T, 04 S 1] (6.5)

The scaling (6.5) agrees with the isotropic result [31, 32] and illustrates the fact that,
for motion within the transverse plane, the limiting velocity in our anisotropic plasma
approaches unity as 7" — 0. This behavior is the same for a meson at rest, as illustrated
in figure 23, where we see that a sufficiently small meson will remain bound in the plasma
for any value of the anisotropy provided the plasma is cold enough. In fact, the form of
the dissociation temperature for all anisotropies and all velocities within the transverse
plane is qualitatively analogous to that of the isotropic case, as shown in figure 25. The
fact that the curves in this figure approximately overlap one another signals that the
dependence of the dissociation temperature on v and af can be approximately factorized
over the entire range 0 < v < 1.

In contrast, for generic motion we saw above that the limiting velocity is subluminal
even at T =0, v, (T = 0,af) < 1. Increasing the temperature simply decreases the value
of the limiting velocity, vy, (TY, al) < vy, (T = 0,af). Turning these statements around we
see that, at a fixed anisotropy, the dissociation temperature is a decreasing function of the
velocity that vanishes at v = vy, (T = 0, af). This is illustrated in figure 26, where we see
that vy, (T = 0, af) decreases as the anisotropy increases, in agreement with figure 24. In
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Figure 26. Dissociation temperature for a meson moving along the z-direction and oriented along
the z-direction (left) or along the z-direction (right). Each curve corresponds to a fixed value of
the product af. From right to left, af = 0,1, 5.4, 25.

order to facilitate comparison with the isotropic results of [31-33], in figure 26 we have
chosen to normalize the dissociation temperature by its value at v = 0 instead of by the
dipole’s size £. Our numerical results suggest that as v approaches vy, the dissociation
temperature may vanish as - ,

T~ (2 6
In this equation vy, = V(T = 0,af) and € = £(af) > 0 is an anisotropy-dependent
exponent. Unfortunately, the limit v — vy, is difficult to analyze numerically, so our
results are not precise enough to allow us to establish (6.6) unambiguously. To emphasize
this point, in figure 26 we have plotted as discontinuous the part of the curves between
the last two data points. The last point lies on the horizontal axis at (v, T) = (Vym, 0), and
the penultimate point lies at a certain height at (v < vym, T > 0). Since this last bit of
the curves is an interpolation between these data points, it is difficult to establish whether
the slopes of the curves diverge as they meet the horizontal axis, as would be implied by
the scaling (6.6). Presumably, this scaling could be verified or falsified analytically by
including the first correction in 7'/a to the scaling in the second line of (6.3).

7 Discussion

We have considered an anisotropic N' = 4 SYM plasma in which the x,y directions are
rotationally symmetric, but the z-direction is not. In the context of heavy ion collisions
the latter would correspond to the beam direction, and the former to the transverse plane.
The screening length of a quarkonium meson in motion in the plasma depends on the
relative orientation between these directions, on the one hand, and the direction of motion
of the meson and its orientation, on the other. This dependence can be parametrized by
three angles (6,,60,¢), as shown in figure 8. We have determined the screening length
for the most general geometric parameters and for any anisotropy. Our results are valid
in the strong-coupling, large-NN. limit, since we have obtained them by means of the
gravity dual [14, 15] of the anisotropic N' = 4 plasma. The anisotropy is induced by a
position-dependent theta term in the gauge theory, or equivalently by a position-dependent
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axion on the gravity side. One may therefore wonder how sensitive the conclusions may be
to the specific source of the anisotropy. In this respect it is useful to note that the gravity
calculation involves only the coupling of the string to the background metric. This means
that any anisotropy that gives rise to a qualitatively similar metric (and no Neveu-Schwarz
B-field) will yield qualitatively similar results for the screening length, irrespectively of
the form of the rest of supergravity fields.

An example of a rather robust conclusion is the ultra-relativistic behavior? of the
screening length (5.58), which for motion not exactly aligned with the transverse plane
is Ly ~ (1 —v?)/2. The 1/2 exponent contrasts with the 1/4 isotropic result [31, 32],
and follows from the fact that the near-boundary fall-off of the metric (2.2) takes the

schematic form
L2

o= 5 (mw +u2g® 4 utgY +) , (7.1)

As v grows closer and closer to 1 the point of maximum penetration of the string into the
bulk, ..., moves closer and closer to the AdS boundary at u = 0. As a consequence, the
physics in this limit is solely controlled by the near-boundary behavior of the metric. For
generic motion the behavior is in fact governed by the O(u?) terms alone, and a simple
scaling argument then leads to the 1/2 exponent above. In the isotropic case the O(u?)
terms are absent and the same scaling argument leads to the 1/4 exponent.

In fact, a similar reasoning allowed us to determine the large-anisotropy limit. Since
the metric component g,, « H(u) grows as one moves from the boundary to the horizon,
a subluminal velocity of the meson at the boundary would eventually translate into a
superluminal proper velocity (6.2) at a sufficiently large value of u.? This sets an upper
limit on the maximum penetration length ., of the string into the bulk and hence on
Ls. Moreover, g,, becomes steeper as a/T increases, so in the limit a/T > 1 the point
Umax approaches the AdS boundary (unless the motion is aligned with the transverse
plane), just as in the ultra-relativistic limit. In this limit the physics is again controlled by
the O(u?) terms in the metric, which depend on a but not on 7. Therefore dimensional

analysis implies that Ly = const. x ¢!

, were the proportionality ‘constant’ is a decreasing
function of the velocity. This led us to one of our main conclusions: even in the limit
T — 0, a generic meson of size £ will dissociate at some high enough anisotropy ag, ~ £71.
Similarly, for fixed a and T, even if T' = 0, a generic meson will dissociate if its velocity
exceeds a limiting velocity vy, (a,T) < 1, as shown in figure 24 for 7' = 0. As explained
in section 6, the conclusions in this paragraph would remain unchanged if we worked at
constant entropy density instead of at constant temperature, since in the limit a > s*/3
the physics would again be controlled only by the O(u?) terms in the metric.

The above discussion makes it clear that, at the qualitative level, much of the physics
depends only on a few features of the solution: the presence of the gsz,,) term in the near-
boundary expansion of the metric, the fact that the metric (7.1) be non-boost-invariant

at order u? (i.e. that gg,) not be proportional to 7,,), and the fact that g,, increases as

*We recall that we first send the quark mass to infinity and then v — 1 (see section 1).
%Note that the overall conformal factor 1/u? in (2.2) plays no role in this argument, since it cancels out
in the ratio (6.2).
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a function of both u and a/T.* The second condition is necessary because otherwise the
physics of a meson in motion would be equivalent to that of a meson at rest, and we
have seen that the latter is very similar to that of a meson in an isotropic plasma. The
third condition ensures that w,,., moves close to the boundary as a/T increases. Note that
adding temperature to an otherwise boost-invariant metric will only affect gfﬁ,), and thus
this is not enough to make g,(ﬁ,) non-boost-invariant. This conclusion is consistent with the
fact that g,(fy) is only a function of the external sources which the theory is coupled to.

From the gauge theory viewpoint, some heuristic intuition can be gained by recalling
that the anisotropy is induced by dissolving along the z-direction objects that extend along
the xy-directions [14, 15, 26]. The number density of such objects along the z-direction,
dn/dz, is proportional to a. On the gravity side these are D7-branes that wrap the
five-sphere in the metric (2.2), extend along the zy-directions, and are homogeneously
distributed in the z-direction. Increasing a has a large effect on the entropy density
per unit 3-volume in the wyz-directions, in the sense that s/7° — oo as a/T — oo, as
shown in figure 2. In contrast, the entropy density per unit 2-area in the zy-directions
on a constant-z slice, s*®/T?, approaches a constant in the limit a/7 — oo. This is
illustrated in figure 27, which is based on our numerical calculations, but it can also be
proven analytically following the argument in section 2.5 of ref. [26]. In view of these
differences, it is perhaps not surprising that the anisotropy has the largest effect on the
physics of mesons moving along the z-direction, and the smallest effect on the physics
of mesons moving within the transverse plane. Mesons at rest are also more sensitive to
the anisotropy if they extend along the z-direction than if they are contained within the
transverse plane. Presumably, the correct intuition behind this physics is that moving
against the D7-branes is harder than moving along them.

We close with a few comments on existing weak-coupling results on the physics
of quarkonium dissociation in the real-world QGP. In the isotropic case the velocity
dependence of the heavy quark potential has been studied using perturbative and effective
field theory methods, see e.g. [37—40]. These analyses include modifications of both the

4Again, up to possible overall conformal factors.
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real and imaginary parts of the potential, which are related to screening and to the
thermal width of the states, respectively. They find that meson dissociation at non-zero
velocity results form a complex interplay between the real and the imaginary parts of
the potential. However, the general trend that seems to emerge is that screening effects
increase with the velocity, while the width of the states decreases. The behavior of the
real part is thus in qualitative agreement with the isotropic limit of our results. However,
the extraction of a screening length from these analyses is not immediate due to the fact
that the real part of the potential is not approximately Yukawa-like [39, 40], in contrast
with the holographic result. In any case, an interesting consequence of the dominance of
the real part of the potential is that, at sufficiently high velocities, dissociation is caused
by screening rather than by Landau damping [39, 40]. In the holographic framework, the
thermal widths of our mesons could presumably be computed along the lines of [41].

To the best of our knowledge no results at non-zero velocity exist in the presence of
anisotropies, so in this case we will limit ourselves to the static situation. We emphasize
though that any comparison between these results and ours should be interpreted with
caution, because the sources of anisotropy in the QGP created in a heavy ion collision
and in our system are different. In the QGP the anisotropy is dynamical in the sense that
it is due to the initial distribution of particles in momentum space, which will evolve in
time and eventually become isotropic. In contrast, in our case the anisotropy is due to
an external source that keeps the system in an equilibrium anisotropic state that will not
evolve in time. We hope that, nevertheless, our system might provide a good toy model
for processes whose characteristic time scale is sufficiently shorter than the time scale
controlling the time evolution of the QGP.

A general conclusion of refs. [42-44] is that, if the comparison between the anisotropic
plasma and its isotropic counterpart is made at equal temperatures, then the screening
length increases with the anisotropy. This effect occurs for dipoles oriented both along
and orthogonally to the anisotropic direction, but it is more pronounced for dipoles along
the anisotropic direction. The dependence on the anisotropy in these weak-coupling
results is the opposite of what we find in our strongly coupled plasma. In our case the
screening length in the anisotropic plasma is smaller than in its isotropic counterpart if
both plasmas are taken to have the same temperature, as shown in figure 6(left). We
also find that the effect is more pronounced for dipoles extending along the anisotropic
direction, as illustrated in figure 7(left).

Refs. [44, 45] argued that if the comparison between the anisotropic and the isotropic
plasmas is made at equal entropy densities, then the physics of quarkonium dissociation
exhibits little or no sensitivity to the value of the anisotropy. This is again in contrast
to our results since, as shown in figure 6(right) and figure 7(right), the screening length
in this case is just as sensitive to the anisotropy as in the equal-temperature comparison.
The difference in the equal-entropy case is simply that the screening length may increase
or decrease with the anisotropy depending on the dipole’s orientation.
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