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equal temperatures or at equal entropy densities. For generic motion we find that: (i)

mesons dissociate above a certain critical value of the anisotropy, even at zero tempera-

ture; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature;

(iii) in the ultra-relativistic limit the screening length scales as (1 − v2)ε with ε = 1/2, in

contrast with the isotropic result ε = 1/4.
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1 Introduction

A remarkable conclusion from the experiments at the Relativistic Heavy Ion Collider

(RHIC) [1, 2] and at the Large Hadron Collider (LHC) (see the contributions on ellip-

tic flow at the LHC in [3]) is that the quark-gluon plasma (QGP) does not behave as a

weakly coupled gas of quarks and gluons, but rather as a strongly coupled fluid [4, 5]. This

places limitations on the applicability of perturbative methods. The lattice formulation of

Quantum Chromodynamics (QCD) is also of limited utility, since for example it is not well

suited for studying real-time phenomena. This has provided a strong motivation for under-

standing the dynamics of strongly coupled non-Abelian plasmas through the gauge/string

duality [6–8] (see [9] for a recent review of applications to the QGP). In general, a neces-

sary requirement for the string description to be tractable is that the plasma be infinitely

strongly coupled, λ = g2YMNc →∞. Of course, the real-world QGP is not infinitely strongly

coupled, and its dynamics involves a complex combination of both weak and strong cou-

pling physics that depend on the possibly multiple scales that characterize the process of

interest. The motivation for studying string models is that they provide examples in which

explicit calculations can be performed from first principles at strong coupling, in particular
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in the real-time domain. The hope is then that, by understanding the weak and the strong

coupling limits, one may be able to bracket the dynamics of the real-world QGP, which

lies somewhere in between.

During the initial stage after the collision the plasma is far from equilibrium, and after

a certain time a hydrodynamic description becomes applicable. If one thinks of hydrody-

namics as a gradient expansion around a locally isotropic system, it is somewhat surprising

that the hydrodynamic description actually becomes applicable when the longitudinal and

transverse pressures are still significantly different. This can be explicitly seen, for example,

in holographic descriptions [10–13] in which gravity provides a valid description all the way

from the far-from-equilibrium phase to the locally isotropic phase, across the intermediate

hydrodynamic-but-still-anisotropic phase. Thus, during most of the time that viscous hy-

drodynamics is applied, the plasma created in a heavy ion collision is anisotropic, with the

level of anisotropy in fact increasing as one approaches the edge of the system. The fact that

the range of time and space over which the QGP is anisotropic is larger than traditionally

assumed has provided additional motivation for the study of anisotropic plasmas.

In this paper we will investigate the effect of an intrinsic anisotropy on the screening

length between a quark-antiquark pair in a strongly coupled plasma. As we will review

below, the plasma is static because it is held in anisotropic equilibrium by an external

force [14, 15]. We will discuss all the caveats in more detail below, but we emphasize from

the beginning that there are several reasons why, in terms of potential extrapolations to

the real-world QGP, our results must be interpreted with caution. First, the sources of

anisotropy in the QGP created in a heavy ion collision and in our system are different. In

the QGP the anisotropy is dynamical in the sense that it is due to the initial distribution

of particles in momentum space, which will evolve in time and eventually become isotropic.

In contrast, in our case the anisotropy is due to an external source that keeps the system

in an equilibrium anisotropic state that will not evolve in time. Nevertheless, we hope that

our system might provide a good toy model for processes whose characteristic time scale

is sufficiently shorter than the time scale controlling the evolution of a dynamical plasma.

The second caveat concerns the fact that, even in an static situation, different external

sources can be chosen to hold the plasma in equilibrium, so one may wonder to what extent

the results depend on this choice. We will provide a partial answer to this question in sec-

tion 7, where we will explain that our qualitative results, for example the ultrarelativistic

limit, do not depend on the details of our solution but only on a few general features.

Nevertheless, it would still be very interesting to compute the same observables in other

strongly coupled, static, anisotropic plasmas. Only then a general picture would emerge

that would allow one, for example, to understand which observables are robust, in the sense

that they are truly insensitive to the way in which the plasma is held in anisotropic equi-

librium, and which ones are model-dependent. Obviously it is the first type of observables

that have a better chance of being relevant for the real-world QGP. Our paper should be

regarded as a first step in this general program.

We will consider the screening length in the case in which the quark-antiquark pair is

at rest in the plasma as well as the case in which it is moving through the plasma. For this

purpose we will examine a string with both endpoints on the boundary of an asymptotically
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AdS spacetime [14, 15] that is dual to an anisotropic N = 4 super Yang-Mills plasma. The

gravity solution possesses an anisotropic horizon, it is completely regular on and outside the

horizon, and it is solidly embedded in type IIB string theory. For these reasons it provides

an ideal toy model in which questions about anisotropic effects at strong coupling can be

addressed from first principles. For the particular case of a quark-antiquark pair at rest,

the screening length has also been computed [16] in a different model [17] of a strongly

coupled, anisotropic plasma. The results exhibit some differences with respect to those

presented here. While this may indicate some model dependence of the screening length,

it is important to note that the solution of [17] possesses a naked singularity. Although

this is a rather benign singularity, its presence introduces a certain amount of ambiguity

in the calculations, which can only be performed by prescribing somewhat ad hoc boun-

dary conditions at the singularity. In any case, this discussion is another indication that it

would be interesting to compute the screening length in a larger class of models in order

to ascertain which of its features are model-independent.

To avoid any possible confusion, we clarify from the beginning that the quarks and

antiquarks that we will consider are infinitely massive, i.e. the bound states that we will

consider are the analogue of heavy quarkonium mesons in QCD. Thus, the reader should

always have the word ‘quarkonium’ in mind despite the fact that we will often refer to these

states simply as ‘mesons’, ‘heavy mesons’, ‘quark-antiquark bound states’, ‘dipoles’, etc.

This is specially relevant in the ultra-relativistic limit of the screening length, to which

we will pay particular attention since it can be determined analytically. We emphasize

that our results correspond to sending the quark and antiquark masses to infinity first,

and then sending v → 1. In particular, this means that in any future attempt to connect

our results to the phenomenology of the QGP, this connection can only be made to the

phenomenology of heavy quarkonium moving through the plasma.

The screening length for quarkonium mesons at rest in the anisotropic plasma of [14, 15]

has been previously studied in [16, 18]. Our section 4 has some overlap with these refer-

ences and, wherever they overlap, our results agree with theirs. Other physical properties

of the anisotropic plasma that have been calculated include its shear viscosity [19, 20], the

drag force on a heavy quark [18, 21], the jet quenching parameter [16, 18, 22], and the

energy lost by a rotating quark [23]. The phase diagram of the zero-coupling version of

the model considered in [14, 15] has been studied in [24]. Dissociation of baryons in the

isotropic N = 4 plasma has been analyzed in [25].

2 Gravity solution

The type IIB supergravity solution of [14, 15] in the string frame takes the form

ds2 =
L2

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ L2e

1
2
φdΩ2

5, (2.1)

χ = az , φ = φ(u) , (2.2)

where χ and φ are the axion and the dilaton, respectively, and (t, x, y, z) are the gauge

theory coordinates. Since there is rotational invariance in the xy-directions, we will refer
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Figure 1. Metric functions for a/T ' 4.4 (left) and a/T ' 86 (right).

to these as the transverse directions, and to z as the longitudinal direction. F ,B and

H are functions of the holographic radial coordinate u that were determined numerically

in [14, 15]. Their form for two values of a/T is plotted in figure 1. The horizon lies at

u = uH, where F = 0, and the boundary at u = 0, where F = B = H = 1 and φ = 0. The

metric near the boundary asymptotes to AdS5 × S5. Note that the axion is linear in the

z-coordinate. The proportionality constant a has dimensions of mass and is a measure of

the anisotropy. The axion profile is dual in the gauge theory to a position-dependent theta

parameter of the form θ ∝ z. This acts as an isotropy-breaking external source that forces

the system into an anisotropic equilibrium state.

If a = 0 then the solution reduces to the isotropic black D3-brane solution dual to the

isotropic N = 4 theory at finite temperature. In this case

B = H = 1 , χ = φ = 0 , F = 1− u4

u4H
, uH =

1

πT
(2.3)

and the entropy density takes the form

siso =
π2

2
N2

c T
3 . (2.4)

Figure 2 shows the entropy density per unit 3-volume in the xyz-directions of the

anisotropic plasma as a function of the dimensionless ratio a/T , normalized to the en-

tropy density of the isotropic plasma at the same temperature. At small a/T the entropy

density scales as in the isotropic case, whereas at large a/T it scales as [14, 15, 26]

s = centN
2
c a

1/3T 8/3 , [a/T � 1] (2.5)

where cent is a constant that can be determined numerically. The transition between the

two asymptotic behaviors of the entropy density takes place at a/T ' 3.7.

For later use we list here the near-boundary behavior of the different functions that

determine the solution (2.2):

F = 1 +
11

24
a2u2 +

(
F4 +

7

12
a4 log u

)
u4 +O(u6) ,
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Figure 2. Log-log plot of the entropy density per unit 3-volume in the xyz-directions as a function

of a/T , with siso defined as in eq. (2.4). The dashed blue line is a straight line with slope 1/3.

B = 1− 11

24
a2u2 +

(
B4 −

7

12
a4 log u

)
u4 +O(u6) ,

H = 1 +
1

4
a2u2 −

(
2

7
B4 −

5

4032
a4 − 1

6
a4 log u

)
u4 +O(u6) . (2.6)

The coefficients F4 and B4 depend on a and T and are known analytically in the limits of

low, and high temperature and numerically for intermediate regimes [15].

A feature of the solution (2.2) that played an important role in the analysis of [14, 15]

is the presence of a conformal anomaly. Its origin lies in the fact that diffeomorphism

invariance in the radial direction u gets broken in the process of renormalization of the

on-shell supergravity action. In the gauge theory this means that scale invariance is

broken by the renormalization process. One manifestation of the anomaly is the fact

that, unlike the entropy density, other thermodynamic quantities do not depend solely

on the ratio a/T but on a and T separately. Fortunately, this will not be the case for the

screening length, as we will see below.

To facilitate a (rough) comparison of the anisotropy in our system to that in other

anisotropic plasmas it is useful to consider the ratio

α =
4E + P⊥ − PL

3Ts
, (2.7)

where E is the energy density and P⊥, PL are the transverse and longitudinal pressures,

respectively. In addition to being dimensionless, this ratio has the virtue that it does not

depend on a and T separately, but only on the combination a/T . For the isotropic N = 4

super Yang-Mills plasma α = 1, whereas for 0 < a/T . 20 the ratio is well approximated

by the expression

α ' 1− 0.0036
( a
T

)2
− 0.000072

( a
T

)4
, (2.8)

as shown in figure 3.

At various points we will refer to the limit T = 0 of the anisotropic plasma. The

zero-temperature version of the solution (2.2) was found in [26]. In this case the

string-frame metric exhibits a naked curvature singularity deep in the infra-red, and the
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Figure 3. Ratio (2.7) as a function of a/T . The blue dots are the actual values of the ratio, and

the red curve is the fit (2.8).

Einstein-frame metric exhibits infinite tidal forces [27, 28]. However, we emphasize that,

for any finite temperature, the singularity is hidden behind the horizon and the solution

is completely regular on and outside the horizon, exhibiting no pathologies of any type.

Thus we will think of the T = 0 results as those obtained by taking the limit T → 0 of

the finite-temperature results. Moreover, regulating the infra-red geometry in this or any

other way is actually unnecessary for most of the physics of quarkonium dissociation. The

reason is that, as we will see, in the limit in which a/T becomes large the penetration

depth into the AdS bulk of the string that is dual to the quarkonium meson becomes very

small. As a result, the dissociation is entirely controlled by the metric near the boundary,

which is insensitive to the infra-red behavior described above.

3 Preliminaries

In this paper we define the screening length Ls as the separation between a quark and an

antiquark such that for ` < Ls (` > Ls) it is energetically favorable for the quark-antiquark

pair to be bound (unbound) [29, 30]. Obviously this satisfies Ls ≤ Lmax, where Lmax is the

maximum separation Lmax for which a bound quark-antiquark solution exists. We will de-

termine Ls by comparing the action S(`) of the bound pair, which is a function of the quark-

antiquark separation `, to the action Sunbound of the unbound system, i.e. by computing:

∆S(`) = S(`)− Sunbound . (3.1)

The screening length is the maximum value of ` for which ∆S is positive (since we will

work in Lorentzian signature). This may correspond to the value of ` at which ∆S crosses

zero, in which case Ls < Lmax, or the maximum value of ` for which a bound state exists,

in which case Ls = Lmax. In the Euclidean version of our calculations, this criterion cor-

responds to determining which configuration has the lowest free energy, which is therefore

the configuration that is thermodynamically preferred. As shown in figure 4, for a meson

moving through the isotropic plasma (2.3) one has Ls < Lmax for v < vtrans, whereas for

v > vtrans one finds that Ls = Lmax, where vtrans ' 0.45 is the transition velocity between the

two behaviors [31–33]. These qualitative features extend to the anisotropic case, as we have

– 6 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

0.00 0.05 0.10 0.15 0.20 0.25
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

∆
E

d
ip

o
le
/T
√
λ

T `
Figure 4. Energy difference, as defined in (3.2), between a bound and an unbound quark-antiquark

pair moving through the isotropic plasma (2.3) with velocities (from the rightmost curve to the

leftmost curve) v = 0, 0.35, 0.85, 0.996. The dipole is oriented orthogonally to its velocity. For

v < vtrans one has Ls < Lmax, whereas for v > vtrans one finds L = Lmax, where vtrans ' 0.45 is the

transition velocity between the two behaviors. At v = 0 the screening length and the maximum

separation are Ls ' 0.24/T and Lmax ' 0.27/T , respectively.

illustrated in figure 5. The transition velocity decreases with the anisotropy, so for large

a/T one has Ls = Lmax except for very low velocities. Similarly, if the ultra-relativistic

limit v → 1 is taken at fixed a and T , then obviously v > vtrans and again Ls = Lmax.

All our calculations will be done in the rest frame of the quark-antiquark pair, to

which we will refer as the dipole rest frame. Since any observable can be easily translated

between this frame and the plasma rest frame, we will speak interchangeably of ‘mesons

in a plasma wind’ and of ‘mesons in motion in the plasma’. We emphasize however that

all the physical quantities that we will present, e.g. the screening length, are computed in

the dipole rest frame.

The actions are scalar quantities, so ∆Sdipole = ∆Splasma. Moreover, in the dipole rest

frame we have

∆Sdipole = −T ∆Edipole , (3.2)

since the dipole is static in its own rest frame. In this expression Edipole is the energy

(as opposed to the free energy) of the configuration and T =
∫
dt is the length of the

integration region in time. Thus we see that our criterion, which is based on comparing

the actions, can also be thought of as a comparison between the energies of the bound

and the unbound configurations in the dipole rest frame.

We will see that the ultraviolet divergences in the string action associated to integra-

ting all the way to the boundary of AdS cancel out in the difference (3.1), and neither the

bound nor the unbound actions possess infrared divergences associated to integrating all

the way down to the horizon. This can be verified explicitly and it also follows from their

relation to the energy in the rest frame of the dipole: while the energy of the unbound

string pair possesses an infrared logarithmic divergence in the plasma rest frame [34], no

such divergence is present in the dipole rest frame (see e.g. the discussion in [33]).

– 7 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

0.00 0.05 0.10 0.15 0.20 0.25
-12

-10

-8

-6

-4

-2

0
∆
E

d
ip

o
le
/T
√
λ

T `
0.00 0.05 0.10 0.15 0.20 0.25

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

∆
E

d
ip

o
le
/T
√
λ

T `

Figure 5. Energy difference in an anisotropic plasma, as defined in (3.2), between a bound and

an unbound quark-antiquark pair oriented along the transverse direction x and moving along the

anisotropic direction z. All the curves on the left correspond to a/T = 12.2 and different velocities

(from the rightmost curve to the leftmost curve) v = 0, 0.35, 0.85, 0.996. All the curves on the

right correspond to the same velocity v = 0.25 and different anisotropies (from the rightmost curve

to the leftmost curve) a/T = 0, 6.5, 43, 744. For these anisotropies the corresponding transition

velocities are respectively given by vtrans = 0.45, 0.29, 0.19, 0.11.

4 Static dipole in an anisotropic plasma

In an anisotropic plasma the screening length depends on the relative orientation between

the dipole and the anisotropic direction z. Given the rotational symmetry in the xy-plane

we assume without loss of generality that the dipole lies in the xz-plane, at an angle θ with

the z-axis. We thus choose the static gauge t = τ, σ = u and specify the string embedding as

x→ sin θ x(u) , z → cos θ z(u) . (4.1)

The string action takes the form

S = − L2

2πα′
2

∫
dt

∫ umax

0
du

1

u2

√
B
(
1 + FH cos2 θ z′2 + F sin2 θ x′2

)
, (4.2)

where the 2 comes from the two branches of the string and umax will be determined below.

The conserved momenta associated to translation invariance in the x, z directions are
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given by

Πx =
1

sin θ

∂L
∂x′

=
BF sin θ x′

u2
√
B
(
1 + FH cos2 θ z′2 + F sin2 θ x′2

) , (4.3)

Πz =
1

cos θ

∂L
∂z′

=
BFH cos θ z′

u2
√
B
(
1 + FH cos2 θ z′2 + F sin2 θ x′2

) . (4.4)

Inverting these relations we find

x′ =

√
H csc θ u2 Πx√

F
√
BFH − u4 (Π2

z +HΠ2
x)
, z′ =

sec θ u2 Πz√
FH

√
BFH − u4 (Π2

z +HΠ2
x)
. (4.5)

Substituting back in the action we arrive at

S = − L2

2πα′
2

∫
dt

∫ umax

0
du

1

u2
B
√
FH√

BFH − u4 (Π2
z +HΠ2

x)
. (4.6)

For a U-shaped string describing a bound quark-antiquark pair the turning point umax

is determined in terms of the momenta by the condition that x′(umax) = z′(umax) → ∞.

This happens if umax = uH, in which case F(umax) = 0, or if

BFH − u4
(
Π2
z +HΠ2

x

)∣∣
umax

= 0 . (4.7)

The first possibility is not physically relevant because the second possibility is always real-

ized first, meaning that the string turns around at umax < uH, before reaching the horizon.

The only exception is the case Πx = Πz = 0, but this corresponds to x′ = z′ = 0, namely to

an unbound pair of strings that descend from the boundary straight down to the horizon.

The momenta are determined by the boundary conditions that require the string end-

points to lie a distance ` apart from each other:

`

2
=

∫ umax

0
dux′ =

∫ umax

0
du z′ . (4.8)

These two equations, together with (4.7), can be solved numerically to express the momenta

and umax in terms of `. In this way the on-shell action (4.6) for a bound pair becomes a

function of ` alone. In order to determine Ls we subtract from this action the action of a

static, unbound quark-antiquark pair, which is described by two straight strings hanging

down from the boundary to the horizon. The action of this unbound pair is equal to (4.6)

with the momenta set to zero and the range of integration extended down to the horizon:

Sunbound = − L2

2πα′
2

∫
dt

∫ uH

0
du

√
B
u2

. (4.9)

We obtain the screening length by numerically determining the value of ` at which the

difference S(`)− Sunbound crosses zero, since in the static case we always have Ls < Lmax.

The result for this difference as a function of ` in the isotropic plasma [29, 30] described

by eq. (2.3) is plotted in figure 4, from which we see that the screening length is

Liso(T ) ' 0.24

T
[static dipole] . (4.10)
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comparison with the isotropic result for a plasma at the same temperature (left), or at the same
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(orange, dot-dashed). The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is given in eqs. (4.10) and (4.11).

The scaling with the temperature is expected on dimensional grounds. In the isotropic

case the temperature and the entropy density are related simply through (2.4), so this

result can be recast as

Liso(s) ' 0.24

(
π2N2

c

2s

)1/3

[static dipole] , (4.11)

which will be useful later.

The results in the anisotropic case are plotted in figures 6 and 7. Figure 6 shows

the screening length, for several orientations of the dipole, as a function of the anisotropy

measured in units of the temperature (left) and the entropy density (right). The reason
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for working with both normalizations is that we wish to compare the screening length in

the anisotropic plasma to that in the isotropic plasma, and this can be done at least in two

different ways: the two plasmas can be taken to have the same temperatures but different

entropy densities, or the same entropy densities but different temperatures. Figure 7

shows the screening length as a function of the dipole orientation for several values of the

anisotropy.

We see from figure 6(left) that Ls decreases monotonically as a increases, for any

dipole orientation, if the temperature is kept fixed. We also see from figure 7(left) that this

effect is more pronounced for a dipole oriented along the anisotropic direction. In contrast,

the behavior of the screening length at constant entropy density depends on the dipole’s

orientation, as shown in figures 6(right) and 7(right). For dipole’s aligned sufficiently close

to the anisotropic direction the screening length decreases with the anisotropy, whereas

for orientations sufficiently close to the transverse plane the screening length increases

with the anisotropy.

5 Dipole in an anisotropic plasma wind

In this section we will consider a static quark-antiquark pair in an anisotropic plasma that

is moving with constant velocity with respect to the dipole — a dipole in an ‘anisotropic

plasma wind’. We will pay particular attention to the ultra-relativistic limit, which can

be understood analytically.1 This limit, together with the static results from section 4,

will allow us to understand qualitatively the results at any velocity 0 < v < 1.

We will first rewrite the solution (2.2) in a boosted frame, and then place a dipole in it

— see figure 8. Given the rotational symmetry in the xy-plane we assume that the boost

velocity is contained in the xz-plane, and that it lies at an angle θv with the z-axis. Thus

we first rotate to a new coordinate system defined through

t = t̃ ,

x = z̃ sin θv + x̃ cos θv ,

y = ỹ ,

z = z̃ cos θv − x̃ sin θv , (5.1)

and then perform a boost along the z̃-direction by setting

t̃ = γ
(
t′ − v z′

)
,

x̃ = x′ ,

ỹ = y′ ,

z̃ = γ
(
−v t′ + z′

)
, (5.2)

where γ = 1/
√

1− v2 is the usual Lorentz factor. Below we will consider a dipole with an

arbitrary orientation with respect to both the velocity of the plasma and the anisotropic

1We recall that we first send the quark mass to infinity and then v → 1 (see section 1).
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Figure 8. Orientation of the dipole in an anisotropic plasma wind. The wind’s velocity lies in the

original xz-plane (before the boost (5.2)) at an angle θv with respect to the anisotropic direction z.

The quark lies at angles ~q = (x, y, z) = `
2 (sin θ sinϕ, sin θ cosϕ, cos θ) with respect to the relabeled

directions (after the boost (5.2)), and the antiquark lies at −~q.

direction z — see figure 8. We parametrize the orientation of the dipole by two angles

θ, ϕ so that the quark lies at

~q = (x′, y′, z′) =
`

2
(sin θ sinϕ, sin θ cosϕ, cos θ) (5.3)

and the antiquark lies at −~q.
For notational simplicity, below we will drop the primes in the final set of coordinates.

To avoid confusion, we emphasize that the direction θv of the plasma wind is always mea-

sured with respect to the original (x, y, z) axes, i.e. before the rotation and the boost above.

In particular, motion within (outside) the transverse plane refers to a dipole in a plasma

wind with θv = π/2 (θv 6= π/2). In contrast, the orientation of the dipole is measured

with respect to the final set of coordinates (x′, y′, z′). However, if instead of specifying the

dipole’s orientation through a pair (θ, ϕ) we specify it by saying that the dipole is aligned

with the x-, y- or z-directions, then we are referring to the original directions. Just as

an illustration, consider the case of a plasma wind blowing along the original x-direction,

i.e. a plasma wind with θv = π/2. Then we see from (5.1) and (5.2) that (x, z) ∼ (z′, x′).

Thus in this case by ‘a dipole oriented along the x-direction’ we mean a dipole with θ = 0.

After dropping the primes from the final set of coordinates in (5.2) the five-dimensional

part of the metric (2.2) takes the form

ds2=
L2

u2

(
−gttdt2+gxxdx

2+dy2+gzzdz
2+gtxdt dx+gtzdt dz+gxzdx dz+

du2

F

)
, (5.4)
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where

gtt =
BF − v2(sin2 θv +H cos2 θv)

1− v2
, (5.5)

gxx = cos2 θv +H sin2 θv , (5.6)

gzz =
sin2 θv +H cos2 θv − v2BF

1− v2
, (5.7)

gtx =
(H− 1)v√

1− v2
sin(2θv) , (5.8)

gtz =
2v(BF − sin2 θv −H cos2 θv)

1− v2
, (5.9)

gxz =
1−H√
1− v2

sin(2θv) . (5.10)

In order to determine the screening length for a generic velocity we need to compare the

actions of a bound and an unbound quark-antiquark pair, as in the static case of section 4.

However, in the ultra-relativistic this is not strictly necessary because Ls = Lmax (see

section 3). In other words, in this limit we only need to determine the maximum possible

quark-antiquark separation for which a bound state exists. Nevertheless, for completeness

we will briefly present the analysis of the unbound configuration. Each of the strings in the

unbound pair is one of the trailing strings studied in [21], so the reader is referred to this

reference for additional details. Note, however, that [21] worked in the plasma rest frame.

Here we will work in the dipole’s rest and focus on the ultra-relativistic limit.

5.1 Unbound quark-antiquark pair

As in section 4 we fix the static gauge t = τ , σ = u, and specify the embedding of the

unbound string as

x→ x(u) , z → z(u) . (5.11)

The embedding in the y-direction is simply y = 0 because of rotational symmetry in the

xy-plane and because the string is unbound. As we will see below, in the case of a bound

string (dipole) the boundary conditions will generically imply a non-trivial embedding y(u).

The action for the unbound string reads

Sunbound = − L2

2πα′
2

∫
dt

∫ uH

0
du

1

u2

√
F−1K0 +Kxxx′2 +Kzzz′2 +Kxzx′z′ , (5.12)

where

K0 = gtt ,

Kxx =
BF(cos2 θv +H sin2 θv)−Hv2

1− v2
,

Kzz = BF
(
sin2 θv +H cos2 θv

)
,

Kxz =
BF(1−H)√

1− v2
sin(2θv) . (5.13)
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Introducing the conjugate momenta

Πx =
∂Lunbound

∂x′
, Πz =

∂Lunbound

∂z′
(5.14)

and solving for x′, z′ we find

x′ =
u2

F
√
BH

Nx√
D
, z′ =

u2

F
√
BH

Nz√
D
, (5.15)

where

Nx = KzzΠx −
1

2
KxzΠz ,

Nz = −1

2
KxzΠx +KxxΠz ,

D = BHFK0 − u4
(
KzzΠ

2
x +KxxΠ2

z −KxzΠxΠz

)
. (5.16)

Substituting into the action we arrive at

Sunbound = − L2

2πα′
2

∫
dt

∫ uH

0
du

√
BHK0

u2
√
D

. (5.17)

The momenta are determined by the condition that (5.15) remain real for a string that

extends all the way from the boundary to the horizon. Following [21] we analyze this

condition by noting that D can be rewritten as

D =
2u4

Kxz
NxNz − b

[
ΠxΠz − c

][
BF − v2(sin2 θv +H cos2 θv)

]
(5.18)

where

b =
Hu4

(1−H)
√

1− v2 sin θv cos θv
, c =

BF(1−H) sin θv cos θv

u4
√

1− v2
. (5.19)

As in [21] we must require that the zeros of the second summand in (5.18) coincide with

one another and with those of Nx and Nz. One of the zeros of the second summand occurs

at a critical value u = uc such that

BcFc − dc v2 = 0 , dc ≡ Hc cos2 θv + sin2 θv , (5.20)

where Bc = B(uc), etc. At this point we have

NxNz|uc =
v4 cos θv sin θv√

1− v2
(Hc − 1) dc

[
dcΠx +

(Hc − 1) cos θv sin θv√
1− v2

Πz

]2
. (5.21)

Noting that Hc > 1 and that Kxz < 0, we see that D would be negative at uc unless the

momenta are related through

Πx =
(1−Hc) cos θv sin θv

dc
√

1− v2
Πz . (5.22)
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Assuming this relation and requiring that the other zero in the second summand of (5.18)

coincide with uc yields

Π2
z =
BcFc dc
u4c

, Π2
x =
BcFc(Hc − 1)2 cos2 θv sin2 θv

u4c(1− v2)dc
. (5.23)

Note that Πz does not vanish for any value of θv, whereas Πx vanishes if θv = 0, π/2.

The reason is that for these two particular orientations the plasma wind blows along the

original z- or x-directions and the string orients itself with the corresponding axis [21]. As

a consequence, the momentum along the orthogonal axis vanishes. However, the changes of

coordinates (5.1) and (5.2) always relabel the direction of motion as z, so after these changes

the non-vanishing momentum is labelled Πz irrespectively of whether θv = 0 or θv = π/2.

We will analyze in detail the ultra-relativistic limit. This is facilitated by explicitly

distinguishing the case of motion outside the transverse plane (θv 6= π/2) and motion

within the transverse plane (θv = π/2).

5.1.1 Ultra-relativistic motion outside the transverse plane

In the ultra-relativistic limit uc approaches the boundary, i.e. uc → 0, and we can use the

near-boundary expansion (2.6) to determine it. The condition (5.20) yields in this limit [21]

u2c '
4(1− v2)
a2 cos2 θv

[θv 6= π/2] , (5.24)

which when substituted in (5.23) gives the momenta

Π2
z '

a4 cos4 θv
16(1− v2)2

, Π2
x '

a4 cos2 θv sin2 θv
16(1− v2)

. (5.25)

In these expressions we have ignored subleading terms in an expansion in 1 − v2, for

example we have set v ' 1, Hc ' 1, etc. Note that in this expansion Πx is subleading

with respect to Πz.

For later use we must evaluate how Sunbound scales with 1− v2 in the limit v → 1. For

this purpose we split the integration region, and hence the action (5.17), as

Sunbound = S
(1)
unbound + S

(2)
unbound , (5.26)

where S
(1)
unbound is the action with the integral in u ranging between 0 and uc, and S

(2)
unbound

is the action with the integral in u ranging between uc and uH. The reason for this

separation is that in the first interval u is small and hence we will be able to use the

near-boundary expressions (2.6), (5.24) and (5.25). In order to exhibit the dependence

on 1 − v2 of S
(1)
unbound explicitly, it is convenient to work with a rescaled variable r which

remains finite in the v → 1 limit, defined though

u = r
√

1− v2 , uc = rc
√

1− v2 . (5.27)

In terms of this variable we get

S
(1)
unbound =− L2

2πα′
2√

1−v2

∫
dt

∫ rc

0
dr

1− 1
4a

2r2 cos2 θv + . . .

r2
√

1− 1
4a

2r2 cos2 θv− 1
16a

4r4 cos4 θv+. . .
. (5.28)
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The divergence near r = 0 will cancel out with that in the action for the bound string. The

integrand is smooth across r = rc. The crucial point is that the result is O
[
(1− v2)−1/2

]
in

the counting in powers of 1−v2, and we will find this same scaling in the bound string action

(see below). In contrast, S
(2)
unbound scales as 1− v2 in the ultra-relativistic limit. The reason

is that u is not small in units of 1−v2 in the corresponding region of integration, so all the

dependence comes from the fact that the action (5.17) scales as 1/Πz ∼ 1−v2 in this region.

5.1.2 Ultra-relativistic motion within the transverse plane

In this case θv = π/2 and hence we see from (5.23) that Πx = 0. The condition (5.20) now

gives [21]

u2c '
√

1− v2
C

, (5.29)

where

C =
121

576
a4 −F4 − B4 , (5.30)

and we recall that F4,B4 are the coefficients that enter the near-boundary expansion (2.6).

Substituting (5.29) into (5.23) and dropping subleading terms as before we obtain the

momentum in the z-direction (recall that this corresponds to the original x-direction):

Πz '
1

u2c
=

√
C

1− v2
. (5.31)

It is now convenient to work with a rescaled radial coordinate r defined through

u = r(1− v2)1/4 . (5.32)

Splitting the unbound string action as before, we find

S
(1)
unbound = − L2

2πα′
2

(1− v2)1/4

∫
dt

∫ rc

0
dr

1− Cr4 + . . .

r2
√

1− 2Cr4 + . . .
. (5.33)

Again, the divergence near r = 0 will cancel out with that in the action for the bound

string, which will also be of O
[
(1− v2)−1/4

]
in the counting in powers of 1 − v2 (see

below). In contrast, S
(2)
unbound scales as 1/Πx ∼

√
1− v2 in the ultra-relativistic limit, and

is therefore subleading.

In summary, we find that in the ultra-relativistic limit

Sunbound =


O
[
(1− v2)−1/2

]
if θv 6= π/2 [outside the transverse plane]

O
[
(1− v2)−1/4

]
if θv = π/2 [within the transverse plane] .

(5.34)

5.2 Bound quark-antiquark pair

We now consider a dipole with an arbitrary orientation with respect to both the velocity

of the plasma and the anisotropic direction z — see figure 8. As before we fix the static

gauge τ = t, σ = u and specify the string embedding via three functions (x(u), y(u), z(u))

subject to the boundary conditions

`

2
sin θ sinϕ =

∫ umax

0
x′du ,
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`

2
sin θ cosϕ =

∫ umax

0
y′du ,

`

2
cos θ =

∫ umax

0
z′du , (5.35)

where umax is the turning point of the U-shaped string. The integral in the action of the

bound string extends only up to this point and now includes a term proportional to y′2:

S = − L2

2πα′
2

∫
dt

∫ umax

0
du

1

u2

√
F−1K0 +Kxxx′2 +Kyyy′2 +Kzzz′2 +Kxzx′z′ . (5.36)

All the K’s were defined in (5.13) except for Kyy, which is given by

Kyy =
BF − v2(sin2 θv +H cos2 θv)

1− v2
. (5.37)

The momenta are defined as

Πx =
∂L
∂x′

, Πy =
∂L
∂y′

, Πz =
∂L
∂z′

. (5.38)

Inverting these equations we get

x′ =
u2

F
√
BH
√
D

(
KzzΠx −

1

2
KxzΠz

)
,

y′ =
u2
√
BH√
D

Πy ,

z′ =
u2

F
√
BH
√
D

(
−1

2
KxzΠx +KxxΠz

)
, (5.39)

where

D = BHFK0 − u4
(
Kzz Π2

x + BFHΠ2
y +Kxx Π2

z −Kxz ΠxΠz

)
. (5.40)

Substituting these expressions into the action (5.36) we get

S = − L2

2πα′
2

∫
dt

∫ umax

0
du

√
BHK0

u2
√
D

. (5.41)

As in the case of the unbound string, we will now distinguish between the cases of motion

outside and within the transverse plane, focusing on the ultra-relativistic limit.

5.2.1 Ultra-relativistic motion outside the transverse plane

The turn-around point umax is defined by the condition D(umax) = 0. In the ultra-

relativistic limit we expect that this point approaches the boundary for the string solution

of interest, as in the isotropic case. Thus in this limit umax can be determined by using

the near-boundary expansions of the metric functions (2.6).

In the limit u→ 0 we find the following expansions:

Kzz ' 1 +
a2u2 cos2 θv

4
+ · · · , (5.42)
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Kxz ' 0− a2u2 sin θv cos θv

2
√

1− v2
+ · · · , (5.43)

Kxx ' 1− a2u2 cos2 θv
4(1− v2)

+ · · · , (5.44)

from which it follows that

D ' 1− a2u2 cos2 θv
4(1− v2)

− u4(Π2
x + Π2

y + Π2
z) + · · · . (5.45)

Similarly, the boundary conditions (5.35) take the form

`

2
sin θ sinϕ '

∫ umax

0
du

u2√
D

Πx + · · · , (5.46)

`

2
sin θ cosϕ '

∫ umax

0
du

u2√
D

Πy + · · · ,

`

2
cos θ '

∫ umax

0
du

u2√
D

(
1− a2u2 cos2 θv

4(1− v2)

)
Πz + · · · ,

In the ultra-relativistic limit, all the terms that we have omitted in the equations above,

in particular in (5.45) and (5.47), are subleading with respect to the terms that we have

retained provided the radial coordinate and the momenta scale as

u = r
√

1− v2 , Πi =
pi

1− v2
, (5.47)

where r and pi are kept fixed in the limit v → 1. In terms of these rescaled variables (5.47)

the boundary conditions (5.47) take the form

`

2
sin θ sinϕ '

√
1− v2 px I2(p, θv) ,

`

2
sin θ cosϕ '

√
1− v2 py I2(p, θv) ,

`

2
cos θ '

√
1− v2 pz

(
I2(p, θv)−

a2 cos2 θv
4

I4(p, θv)
)
, (5.48)

where the integral

In(p, θv) ≡
∫ rmax

0
dr

rn√
1− a2r2

4 cos2 θv − r4(p2x + p2y + p2z)
(5.49)

is of O(1) in the counting in powers in (1− v2), and is finite if n ≥ 0. Further noting that

K0 = 1− a2u2 cos2 θv
4(1− v2)

+O(u4) ' 1− a2r2 cos2 θv
4

, (5.50)

we see that the bound action scales as

S ' − L2

2πα′
2√

1− v2

(
I−2(p, θv)−

a2 cos2 θv
4

I0(p, θv)
)∫

dt . (5.51)
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Since both this bound action and the unbound action (5.28) scale as (1 − v2)−1/2, the

divergence at r = 0 in the bound action coming from the I−2(p, θv) integral would exactly

cancel that in the unbound action in the difference (3.1). Moreover, by comparing the two

actions we would conclude that the momenta pi introduced in (5.47) are indeed of O(1) in

the counting in powers of (1− v2) in the ultra-relativistic limit. It would then follow that

the integrals In(p, θv) are also of O(1), and therefore that the screening length scales as

Ls ∼ (1− v2)1/2 in the ultra-relativistic limit. However, as explained below (5.10), in the

ultra-relativistic Ls = Lmax is simply the maximum possible separation between a bound

quark-antiquark pair, so it can be determined by maximizing ` in (5.48) with respect to

the momenta. Since the integrals are bounded from above for any value of the pi, and the

maximum is v-independent, it follows that Ls = Lmax ∼ (1− v2)1/2.

5.2.2 Ultra-relativistic motion within the transverse plane

In this case θv = π/2 and the expansions of D and of the boundary conditions (5.35) become

D ' 1− Cu4

1− v2
− u4(Π2

x + Π2
y + Π2

z) + · · · (5.52)

and

`

2
sin θ sinϕ '

∫ umax

0
duu2

Πx√
1− Cu4

1−v2 − u4(Π2
x + Π2

y + Π2
z)

+ · · · ,

`

2
sin θ cosϕ '

∫ umax

0
duu2

Πy√
1− Cu4

1−v2 − u4(Π2
x + Π2

y + Π2
z)

+ · · · ,

`

2
cos θ '

∫ umax

0
duu2

(
1− Cu4

1−v2

)
Πz√

1− Cu4

1−v2 − u4(Π2
x + Π2

y + Π2
z)

+ · · · ,

where C was defined in (5.30). As in the previous section, in the ultra-relativistic limit all

the terms that we have omitted in the equations above are subleading with respect to the

terms that we have retained provided the radial coordinate and the momenta scale in this

case as

u = r(1− v2)1/4 , Πi =
pi√

1− v2
, (5.53)

where r and pi are kept fixed in the limit v → 1. In terms of the rescaled variables the

boundary conditions (5.53) become

`

2
sin θ sinϕ ' (1− v2)1/4 px J2(p) ,

`

2
sin θ cosϕ ' (1− v2)1/4 py J2(p) ,

`

2
cos θ ' (1− v2)1/4 pz (J2(p)− CJ6(p)) , (5.54)
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where the integral

Jn(p) =

∫ rmax

0
dr

rn√
1− r4(C + p2x + p2y + p2z)

(5.55)

is of O(1) in the counting in powers in (1− v2), and is finite if n ≥ 0. Further noting that

K0 = 1− C

1− v2
u4 +O(u6) ' 1− Cr4 , (5.56)

we see that the bound action becomes

S ' − L2

2πα′
2

(1− v2)1/4
(
J−2(p)− CJ2(p)

)∫
dt . (5.57)

Since both this bound action and the unbound action (5.33) scale as (1 − v2)−1/4, the

divergence at r = 0 in the bound action coming from the J−2(p) integral would exactly

cancel that in the unbound action in the difference (3.1). Moreover, by comparing the two

actions we would conclude that the momenta pi introduced in (5.53) are indeed of O(1)

in the counting in powers of (1 − v2) in the ultra-relativistic limit. It would then follow

that the integrals Jn(p) are also of O(1), and therefore that the screening length scales as

Ls ∼ (1− v2)1/4 in the ultra-relativistic limit. However, as explained below (5.10), in the

ultra-relativistic Ls = Lmax is simply the maximum possible separation between a bound

quark-antiquark pair, so it can be determined by maximizing ` in (5.54) with respect to

the momenta. Since the integrals are bounded from above for any value of the pi, and the

maximum is v-independent, it follows that Ls = Lmax ∼ (1− v2)1/4.
In summary, we conclude that in the dipole rest frame the screening length scales in

the ultra-relativistic limit as

Ls ∼


(1− v2)1/2 if θv 6= π/2 [motion outside the transverse plane]

(1− v2)1/4 if θv = π/2 [motion within the transverse plane]

(5.58)

irrespectively of the dipole orientation.

5.3 Isotropic limit

The results above reduce to the isotropic result of ref. [31, 32] in the limit a → 0. This

limit is most easily recovered from the results for motion within the transverse plane, since

some of the terms in the expansions in section 5.2.1 vanish if a = 0, thus invalidating the

analysis. In contrast, setting a = 0 in section 5.2.2 boils down to simply setting C to its

isotropic value, which from (5.30) and (2.3) is

C = −F4 =
1

u4H
= π4T 4 . (5.59)

Since the value of C does not affect the ultra-relativistic scaling of the screening length,

we recover the scaling

Liso ∼ (1− v2)1/4 [isotropic plasma] (5.60)
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Figure 9. Screening length for a dipole moving through an isotropic plasma in a direction orthog-

onal (top, blue curve) or parallel (bottom, orange curve) to its orientation.

found in the isotropic case by the authors of [31, 32]. As in the anisotropic case, the

ultra-relativistic scaling of the screening length is independent of the dipole’s orientation.

In fact, even for v < 1, the isotropic screening length depends only mildly on the dipole’s

orientation, as shown in figure 9.

5.4 Numerical results for generic velocities

Away from the ultra-relativistic limit the screening length must be obtained numerically.

For this reason we have focused on a few representative cases, namely those in which both

the direction of the plasma wind and the dipole’s orientation are aligned with one of the

original x, y, or z axes. Given the rotational symmetry in the xy-plane, there are only five

inequivalent cases to consider, because if the wind ‘blows’ in the z-direction then orienting

the dipole along x or y gives identical physics. In each case, we plot the screening length

both as a function of the velocity v for different degrees of anisotropy a, and also as a

function of the degree of anisotropy for different values of the velocity. In each case the

result can be qualitatively understood combining the static results from section 4 and

the ultra-relativistic behavior derived analytically in section 5. We recall that in all cases

below, by ‘a dipole oriented along x, y or z’ we are referring to the original directions

before the rotation (5.1) and the boost (5.2).

Wind along z and dipole along z. The numerical results are shown in figures 10

and 11. The curves in figure 10 start at v = 0 with the same value as the θ = 0 static result

shown in figure 7, and that they vanish as (1 − v2)1/4 in the limit v → 1, in agreement

with (5.58)(top line) and (5.60). The screening length decreases with the anisotropy,

irrespectively of whether T or s are kept fixed.

Wind along z and dipole along x. The numerical results are shown in figures 12

and 13. We see that the curves in figure 12 start at v = 0 with the same value as the

θ = π/2 static result shown in figure 7, and that they vanish as (1 − v2)1/4 in the limit

v → 1, in agreement with (5.58)(top line) and (5.60). In this case the screening length

decreases with the anisotropy for any velocity provided the temperature is kept fixed. The
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Figure 10. Screening length for a plasma wind along the z-direction and a dipole oriented

along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =

12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic

behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = 0 values in figure 7. As

v → 1 they vanish as (1− v2)1/4, in agreement with (5.58)(top line) and (5.60).
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Figure 11. Screening length for a plasma wind along the z-direction and a dipole oriented along

the z-direction, at five different velocities (from top to bottom) v = 0.25, 0.5, 0.7, 0.9, 0.9995. The

screening length is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic

result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

same behavior is found at constant entropy density for high enough velocities, whereas for

low velocities the screening length at constant s actually increases with a.

Wind along x and dipole along x. The numerical results are shown in figures 14

and 15. The curves in figure 14 start at v = 0 with the same value as the θ = π/2 static

result shown in figure 7, and that they approach a finite, non-zero value as v → 1, in

agreement with (5.58)(bottom line) and (5.60). As in previous cases, the screening length

decreases with the anisotropy for any velocity provided the temperature is kept fixed. The

opposite behavior is found at constant s.
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Figure 12. Screening length for a plasma wind along the z-direction and a dipole oriented along the

x-direction, for four different values of the anisotropy a/T = 12.2 (red, solid), 42.6 (maroon, coarsely

dashed), 86 (violet, dashed), 744 (orange, dot-dashed). The corresponding values in units of the

entropy density are (in the same order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted

in the appropriate units to facilitate comparison with the isotropic result for a plasma at the same

temperature (left), or at the same entropy density (right). The isotropic result is plotted in figure 9,

and its ultra-relativistic behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = π/2

values in figure 7. As v → 1 they vanish as (1−v2)1/4, in agreement with (5.58)(top line) and (5.60).
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Figure 13. Screening length for a plasma wind along the z-direction and a dipole oriented along

the x-direction, at five different velocities (from top to bottom) v = 0.25, 0.5, 0.7, 0.9, 0.9995. The

screening length is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic

result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

Wind along x and dipole along y. The numerical results are shown in figures 16

and 17. We see that the curves in figure 16 start at v = 0 with the same value as the

θ = π/2 static result shown in figure 7, and that they approach a finite, non-zero value as

v → 1, in agreement with (5.58)(bottom line) and (5.60). The qualitative behavior in as

in the case of motion and orientation along x.

Wind along x and dipole along z. The numerical results are shown in figures 18

and 19. We see that the curves in figure 18 start at v = 0 with the same value as the

θ = 0 static result shown in figure 7, and that they approach a finite, non-zero value as
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Figure 14. Screening length for a plasma wind along the x-direction and a dipole oriented

along the x-direction, for four different values of the anisotropy (from top to bottom) a/T =

12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic

behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = π/2 values in figure 7. As

v → 1 they approach a finite, non-zero value, in agreement with (5.58)(bottom line) and (5.60).
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Figure 15. Screening length for a plasma wind along the x-direction and a dipole oriented along

the x-direction, at five different velocities v =0.25 (yellow, dot-dashed), 0.5 (green, short dashed),

0.7 (brown, medium dashed), 0.9 (cyan, long dashed), 0.9995 (blue, solid). The screening length is

plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (left), or at the same entropy density (right). The isotropic result is plotted

in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

v → 1, in agreement with (5.58)(bottom line) and (5.60). The screening length decreases

with the anisotropy for any velocity provided the temperature is kept fixed. The same is

true at large anisotropies if the entropy density is kept fixed.

6 Dissociation temperature and dissociation anisotropy

In previous sections we have focused on computing the screening length in an anisotropic

plasma, Ls(T, a), and on comparing it to its isotropic counterpart Liso = Ls(T, 0). The
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Figure 16. Screening length for a plasma wind along the x-direction and a dipole oriented along

the y-direction, for four different values of the anisotropy a/T = 12.2 (red, solid), 42.6 (maroon,

coarsely dashed), 86 (violet, dashed), 744 (orange, dot-dashed). The corresponding values in units

of the entropy density are (in the same order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length

is plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (left), or at the same entropy density (right). The isotropic result is plotted

in figure 9, and its ultra-relativistic behavior is given in eq. (5.60). At v = 0 the curves agree with

the θ = π/2 values in figure 7. As v → 1 they approach a finite, non-zero value, in agreement

with (5.58)(bottom line) and (5.60).
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Figure 17. Screening length for a plasma wind along the x-direction and a dipole oriented along

the y-direction, at five different velocities v =0.25 (yellow, dot-dashed), 0.5 (green, short dashed),

0.7 (brown, medium dashed), 0.9 (cyan, long dashed), 0.9995 (blue, solid). The screening length is

plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (left), or at the same entropy density (right). The isotropic result is plotted

in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

screening length characterizes the dissociation of a quark-antiquark pair for fixed T and

a: a pair separated a distance ` < Ls forms a bound state, but if ` is increased above

Ls then the bound state dissociates. Similarly, one may define a dissociation temperature

Tdiss(a, `) that characterizes the dissociation of a quark-antiquark pair of fixed size ` in a

plasma with a given degree of anisotropy a: for T < Tdiss the pair forms a bound state,

but if T is increased above Tdiss then the bound state dissociates. Analogously, one may

define a dissociation anisotropy adiss(T, `) such that a bound state forms for a < adiss but
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Figure 18. Screening length for a plasma wind along the x-direction and a dipole oriented

along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =

12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic

behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = 0 values in figure 7. As

v → 1 they approach a finite, non-zero value, in agreement with (5.58)(bottom line) and (5.60).
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Figure 19. Screening length for a plasma wind along the x-direction and a dipole oriented along

the z-direction, at five different velocities (from bottom to top) v = 0.25, 0.5, 0.7, 0.9, 0.9995. The

screening length is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic

result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

not for a > adiss. It is useful to think of the three-dimensional space parametrized by

(T, a, `) as divided in two disconnected regions by a two-dimensional surface: in one region

quark-antiquark pairs bind together, while in the other one they do not. The functions

Ls(T, a), Tdiss(a, `) and adiss(T, `) are then simply different parametrizations of the dividing

surface. It is therefore clear that if a triplet (T, a, `) lies on the dividing surface then

TLs(a, T ) = Tdiss(a, `)` , aLs(T, a) = adiss(T, `)` , etc. (6.1)

In this section we will focus on the qualitative form of Tdiss and adiss. As we will

see, most of the analysis follows from the asymptotic behavior of the screening length for
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Figure 20. Proper velocity in the z-direction at a position u away from the boundary, as defined

in (6.2), for different values of a/T . From right to left, a/T = 1.38, 33, 86, 249.

a � T . This means that, at the qualitative level, most of the results that we will obtain

would also apply if we were to replace the temperature by the entropy density as one of our

variables. The reason is that, by virtue of (2.5), the limit a� T corresponds to the limit

a� s1/3 and vice versa. In addition, we will see that for generic dipole’s orientations and

velocities, the large-anisotropy limit is entirely controlled by the near-boundary behavior

of the metric at O(u2), which depends solely on a and is therefore completely insensitive

to the values of the temperature or of the entropy density.

The key point in the large-a analysis is the requirement that no point on the string

can move faster than the local speed of light in the bulk. Consider a meson moving with a

velocity v that has a non-zero component vz along the z-direction. Then we see from (2.2)

that the proper velocity along this direction of a point on the string sitting at a value u

of the radial coordinate is

vproper(u) = vz

√
−gzz(u)

gtt(u)
= vz

√
H(u)

F(u)B(u)
. (6.2)

The function H(u) increases monotonically from the boundary to the horizon, and is does

so more steeply as a/T increases, as illustrated in figure 1. The combination F(u)B(u)

has the opposite behavior, as expected from the fact that gravity is attractive: it decreases

monotonically from the boundary to the horizon. In the isotropic case H = 1 and FB de-

creases more steeply as T increases. This is thus the first hint that increasing the anisotropy

has an effect similar to increasing the temperature: both make vproper(u) a more steeply in-

creasing function away from the boundary. We have illustrated the effect of the anisotropy

in figure 20, where we see that vproper/vz becomes a steeper function of u as a/T increases.

It follows that, for fixed vz 6= 0, there is a maximum value of umax beyond which vproper
becomes superluminal, so no string solution can penetrate to u > umax. As we will corrobo-

rate numerically, this upper bound on umax translates into an upper bound on Ls. Moreover,

umax decreases as a/T increases. This means that for sufficiently large anisotropies we can

use the near-boundary expansions (2.6) in order to determine Ls, in analogy to what we

did in the ultra-relativistic limit. As in that case, for vz 6= 0 the analysis is controlled by
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the O(u2) terms in (2.6). The key point is that these terms depend on a but not on T , so by

dimensional analysis it follows that umax ∼ a−1 and Ls ∼ a−1 in the limit a/T � 1. This

limit can be understood as a → ∞ at fixed T , or as T → 0 at fixed a. We thus conclude

that, even at T = 0, a generic meson will dissociate for a sufficiently large anisotropy adiss.

Mesons at rest and mesons whose velocity is exactly aligned with the transverse plane

constitute an exception to the argument above, since in this case vz = 0 and their physics

is mostly insensitive to the function H(u) which characterizes the anisotropic direction.

Therefore in this case we expect that umax and Ls will remain finite as we send a→∞ at

fixed T , and hence that dimensional analysis will imply Ls ∼ T−1.
In summary, the heuristic argument above suggests that in the limit a/T � 1 we

should have

Ls(T, a)∼


const.×T−1 if the meson is static or in motion within the transverse plane,

const.×a−1 otherwise.

(6.3)

The constants may depend on all the dimensionless parameters such as the velocity and

the dipole’s orientation. We will refer to the behavior in the second line as ‘generic’ and to

that in the first line as ‘non-generic’, since the latter only applies if the velocity is exactly

zero or if the motion is exactly aligned with the transverse plane. The generic behavior

is of course consistent with the analysis of section 5.2.1. Indeed, we saw in that section

that for motion outside the transverse plane the ultra-relativistic behavior of Ls is entirely

controlled by the O(u2) terms in the metric, which depend on a but not on T .

Figure 21 shows our numerical results for umax, in units of T−1 and a−1, as a function

of a/T , for the five physically distinct cases discussed in section 5.4. From the continuous,

magenta curves in the first two rows we see that umax goes to zero at large a/T in the cases

of motion along z, irrespectively of the dipole’s orientation. In contrast, we see that umax

does not go zero for a static meson (dashed, blue curves) or for a meson moving along the

x-direction (continuous, magenta curves in the last three rows).

Recalling that the isotropic screening length is of the form Liso ∝ 1/T , we see that

the quantity plotted on the vertical axes in figures 6, 11, 13, 15, 17 and 19 is precisely

proportional to TLs(T, a). However, the asymptotic behavior (6.3) is not apparent in

these plots because in most cases the horizontal axes do not extend to high enough values

of a/T . For this reason we have illustrated the two possible asymptotic behaviors of Ls in

figure 22, where we have extended the horizontal axes to larger values of a/T . We see from

the continuous, magenta curves in the first two rows that Ls ∼ 1/a for motion along the

z-direction. For motion within the transverse plane we see from the same curves in the last

three rows that Ls ∼ 1/T . This approximate scaling relation seems to hold quite precisely

for a dipole oriented within the transverse plane (3rd and 4th rows), whereas for a dipole

oriented in the z-direction the product TLs seems to retain a slight (perhaps logarithmic)

dependence on a/T at large a/T . We can draw similar conclusions from the dashed, blue

curves in the figure, which correspond to static mesons. We see that for mesons oriented

within the transverse plane (2nd, 3rd and 4th rows) the relation TLs ∼ constant holds
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Figure 21. Value of umax in units of 1/T (left) or 1/a (right), as a function of the ratio a/T , for

a dipole at rest (dashed, blue curve) and for a dipole moving with v = 0.45 (continuous, magenta

curve). The first letter on the top right corner of each plot indicates the direction of motion, and

the second one indicates the orientation of the dipole.
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Figure 22. Screening length in units of 1/T (left) or 1/a (right), as a function of the ratio a/T , for

a dipole at rest (dashed, blue curve) and for a dipole moving with v = 0.45 (continuous, magenta

curve). The first letter on the top right corner of each plot indicates the direction of motion, and

the second one indicates the orientation of the dipole.
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Figure 23. Dissociation temperature (left) Tdiss(a, `) = `−1f(a`) and dissociation anisotropy

(right) adiss(T, `) = `−1g(T`) for a dipole at rest (dashed curves) and for a dipole moving along

the z-direction with v = 0.45 (continuous curves). The orientation of the dipole is indicated by a

letter next to each curve.
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Figure 24. Limiting velocity, for fixed anisotropy and T = 0, beyond which a meson oriented along

the x-direction and moving along the z-direction will dissociate.

quite precisely, whereas for mesons oriented in the z-direction (1st and 5th rows) there

seems to be some slight residual dependence on a/T at large a/T .

Combining the two plots on the left and the right columns of figure 22 we can eliminate

a/T and obtain TLs as a function of aLs and vice versa. Recalling (6.1) we see that we can

interpret the result in the first case as Tdiss(a, `) = `−1f(a`), whereas in the second case we

get adiss(T, `) = `−1g(T`). The functions f and g are the curves shown in figure 23(left) and

figure 23(right), respectively. The right plot is of course the mirror image along a 45 degree

line of the left plot. We see in figure 23(left) that the dissociation temperature decreases

monotonically with increasing anisotropy and vanishes at a` ' 9.75 (for the chosen velocity

and orientation). On the right plot this corresponds to the dissociation anisotropy at zero

temperature. As anticipated above, even at zero temperature, a generic meson of size ` will

dissociate if the anisotropy is increased above adiss(T = 0, `) ∝ 1/`. The proportionality

constant in this relation is a decreasing function of the meson velocity in the plasma. This

implies that for a fixed anisotropy there is a limiting velocity vlim above which a meson will

dissociate, even at zero temperature. The form of vlim(a`) for T = 0 is plotted in figure 24.
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Figure 25. Dissociation temperature for a meson moving along the x-direction and oriented along

the z-direction (left) or along the x-direction (right). Each curve corresponds to a fixed value of

the product a` = 0 (blue curve), 1.4 (green curve), 25 (red curve).

The existence of a limiting velocity for quarkonium mesons is well known in a strongly

coupled isotropic plasma [35, 36], in which case the dissociation at v = vlim is caused by

the temperature. What we see here is that in our anisotropic plasma this behavior persists

as T → 0 for generic motion. In this limit it is the anisotropy that is responsible for the

dissociation. In the case of ultra-relativistic motion the relation between adiss or Tdiss and

vlim can be obtained by combining the scalings (5.58) and (6.3). For generic motion these

relations yield

adiss(T, `) ∼
1

`
(1− v2lim)1/2 , [a� T , vlim . 1] (6.4)

whereas for motion within the transverse plane we obtain

Tdiss(a, `) ∼
1

`
(1− v2lim)1/4 . [a� T , vlim . 1] (6.5)

The scaling (6.5) agrees with the isotropic result [31, 32] and illustrates the fact that,

for motion within the transverse plane, the limiting velocity in our anisotropic plasma

approaches unity as T → 0. This behavior is the same for a meson at rest, as illustrated

in figure 23, where we see that a sufficiently small meson will remain bound in the plasma

for any value of the anisotropy provided the plasma is cold enough. In fact, the form of

the dissociation temperature for all anisotropies and all velocities within the transverse

plane is qualitatively analogous to that of the isotropic case, as shown in figure 25. The

fact that the curves in this figure approximately overlap one another signals that the

dependence of the dissociation temperature on v and a` can be approximately factorized

over the entire range 0 ≤ v ≤ 1.

In contrast, for generic motion we saw above that the limiting velocity is subluminal

even at T = 0, vlim(T = 0, a`) < 1. Increasing the temperature simply decreases the value

of the limiting velocity, vlim(T`, a`) < vlim(T = 0, a`). Turning these statements around we

see that, at a fixed anisotropy, the dissociation temperature is a decreasing function of the

velocity that vanishes at v = vlim(T = 0, a`). This is illustrated in figure 26, where we see

that vlim(T = 0, a`) decreases as the anisotropy increases, in agreement with figure 24. In

– 32 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

v

T
d
is
s
(v

)/
T

d
is
s
(0

)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

v

T
d
is
s
(v

)/
T

d
is
s
(0

)

Figure 26. Dissociation temperature for a meson moving along the z-direction and oriented along

the x-direction (left) or along the z-direction (right). Each curve corresponds to a fixed value of

the product a`. From right to left, a` = 0, 1, 5.4, 25.

order to facilitate comparison with the isotropic results of [31–33], in figure 26 we have

chosen to normalize the dissociation temperature by its value at v = 0 instead of by the

dipole’s size `. Our numerical results suggest that as v approaches vlim the dissociation

temperature may vanish as
Tdiss(v, a`)

Tdiss(0, a`)
∼
(
v2lim − v2

)ε
. (6.6)

In this equation vlim = vlim(T = 0, a`) and ε = ε(a`) > 0 is an anisotropy-dependent

exponent. Unfortunately, the limit v → vlim is difficult to analyze numerically, so our

results are not precise enough to allow us to establish (6.6) unambiguously. To emphasize

this point, in figure 26 we have plotted as discontinuous the part of the curves between

the last two data points. The last point lies on the horizontal axis at (v, T ) = (vlim, 0), and

the penultimate point lies at a certain height at (v . vlim, T > 0). Since this last bit of

the curves is an interpolation between these data points, it is difficult to establish whether

the slopes of the curves diverge as they meet the horizontal axis, as would be implied by

the scaling (6.6). Presumably, this scaling could be verified or falsified analytically by

including the first correction in T/a to the scaling in the second line of (6.3).

7 Discussion

We have considered an anisotropic N = 4 SYM plasma in which the x, y directions are

rotationally symmetric, but the z-direction is not. In the context of heavy ion collisions

the latter would correspond to the beam direction, and the former to the transverse plane.

The screening length of a quarkonium meson in motion in the plasma depends on the

relative orientation between these directions, on the one hand, and the direction of motion

of the meson and its orientation, on the other. This dependence can be parametrized by

three angles (θv, θ, ϕ), as shown in figure 8. We have determined the screening length

for the most general geometric parameters and for any anisotropy. Our results are valid

in the strong-coupling, large-Nc limit, since we have obtained them by means of the

gravity dual [14, 15] of the anisotropic N = 4 plasma. The anisotropy is induced by a

position-dependent theta term in the gauge theory, or equivalently by a position-dependent
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axion on the gravity side. One may therefore wonder how sensitive the conclusions may be

to the specific source of the anisotropy. In this respect it is useful to note that the gravity

calculation involves only the coupling of the string to the background metric. This means

that any anisotropy that gives rise to a qualitatively similar metric (and no Neveu-Schwarz

B-field) will yield qualitatively similar results for the screening length, irrespectively of

the form of the rest of supergravity fields.

An example of a rather robust conclusion is the ultra-relativistic behavior2 of the

screening length (5.58), which for motion not exactly aligned with the transverse plane

is Ls ∼ (1 − v2)1/2. The 1/2 exponent contrasts with the 1/4 isotropic result [31, 32],

and follows from the fact that the near-boundary fall-off of the metric (2.2) takes the

schematic form

gµν =
L2

u2

(
ηµν + u2g(2)µν + u4g(4)µν + · · ·

)
. (7.1)

As v grows closer and closer to 1 the point of maximum penetration of the string into the

bulk, umax, moves closer and closer to the AdS boundary at u = 0. As a consequence, the

physics in this limit is solely controlled by the near-boundary behavior of the metric. For

generic motion the behavior is in fact governed by the O(u2) terms alone, and a simple

scaling argument then leads to the 1/2 exponent above. In the isotropic case the O(u2)

terms are absent and the same scaling argument leads to the 1/4 exponent.

In fact, a similar reasoning allowed us to determine the large-anisotropy limit. Since

the metric component gzz ∝ H(u) grows as one moves from the boundary to the horizon,

a subluminal velocity of the meson at the boundary would eventually translate into a

superluminal proper velocity (6.2) at a sufficiently large value of u.3 This sets an upper

limit on the maximum penetration length umax of the string into the bulk and hence on

Ls. Moreover, gzz becomes steeper as a/T increases, so in the limit a/T � 1 the point

umax approaches the AdS boundary (unless the motion is aligned with the transverse

plane), just as in the ultra-relativistic limit. In this limit the physics is again controlled by

the O(u2) terms in the metric, which depend on a but not on T . Therefore dimensional

analysis implies that Ls = const.× a−1, were the proportionality ‘constant’ is a decreasing

function of the velocity. This led us to one of our main conclusions: even in the limit

T → 0, a generic meson of size ` will dissociate at some high enough anisotropy adiss ∼ `−1.
Similarly, for fixed a and T , even if T = 0, a generic meson will dissociate if its velocity

exceeds a limiting velocity vlim(a, T ) < 1, as shown in figure 24 for T = 0. As explained

in section 6, the conclusions in this paragraph would remain unchanged if we worked at

constant entropy density instead of at constant temperature, since in the limit a � s1/3

the physics would again be controlled only by the O(u2) terms in the metric.

The above discussion makes it clear that, at the qualitative level, much of the physics

depends only on a few features of the solution: the presence of the g
(2)
µν term in the near-

boundary expansion of the metric, the fact that the metric (7.1) be non-boost-invariant

at order u2 (i.e. that g
(2)
µν not be proportional to ηµν), and the fact that gzz increases as

2We recall that we first send the quark mass to infinity and then v → 1 (see section 1).
3Note that the overall conformal factor 1/u2 in (2.2) plays no role in this argument, since it cancels out

in the ratio (6.2).
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a function of both u and a/T .4 The second condition is necessary because otherwise the

physics of a meson in motion would be equivalent to that of a meson at rest, and we

have seen that the latter is very similar to that of a meson in an isotropic plasma. The

third condition ensures that umax moves close to the boundary as a/T increases. Note that

adding temperature to an otherwise boost-invariant metric will only affect g
(4)
µν , and thus

this is not enough to make g
(2)
µν non-boost-invariant. This conclusion is consistent with the

fact that g
(2)
µν is only a function of the external sources which the theory is coupled to.

From the gauge theory viewpoint, some heuristic intuition can be gained by recalling

that the anisotropy is induced by dissolving along the z-direction objects that extend along

the xy-directions [14, 15, 26]. The number density of such objects along the z-direction,

dn/dz, is proportional to a. On the gravity side these are D7-branes that wrap the

five-sphere in the metric (2.2), extend along the xy-directions, and are homogeneously

distributed in the z-direction. Increasing a has a large effect on the entropy density

per unit 3-volume in the xyz-directions, in the sense that s/T 3 → ∞ as a/T → ∞, as

shown in figure 2. In contrast, the entropy density per unit 2-area in the xy-directions

on a constant-z slice, s2D/T 2, approaches a constant in the limit a/T → ∞. This is

illustrated in figure 27, which is based on our numerical calculations, but it can also be

proven analytically following the argument in section 2.5 of ref. [26]. In view of these

differences, it is perhaps not surprising that the anisotropy has the largest effect on the

physics of mesons moving along the z-direction, and the smallest effect on the physics

of mesons moving within the transverse plane. Mesons at rest are also more sensitive to

the anisotropy if they extend along the z-direction than if they are contained within the

transverse plane. Presumably, the correct intuition behind this physics is that moving

against the D7-branes is harder than moving along them.

We close with a few comments on existing weak-coupling results on the physics

of quarkonium dissociation in the real-world QGP. In the isotropic case the velocity

dependence of the heavy quark potential has been studied using perturbative and effective

field theory methods, see e.g. [37–40]. These analyses include modifications of both the

4Again, up to possible overall conformal factors.
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real and imaginary parts of the potential, which are related to screening and to the

thermal width of the states, respectively. They find that meson dissociation at non-zero

velocity results form a complex interplay between the real and the imaginary parts of

the potential. However, the general trend that seems to emerge is that screening effects

increase with the velocity, while the width of the states decreases. The behavior of the

real part is thus in qualitative agreement with the isotropic limit of our results. However,

the extraction of a screening length from these analyses is not immediate due to the fact

that the real part of the potential is not approximately Yukawa-like [39, 40], in contrast

with the holographic result. In any case, an interesting consequence of the dominance of

the real part of the potential is that, at sufficiently high velocities, dissociation is caused

by screening rather than by Landau damping [39, 40]. In the holographic framework, the

thermal widths of our mesons could presumably be computed along the lines of [41].

To the best of our knowledge no results at non-zero velocity exist in the presence of

anisotropies, so in this case we will limit ourselves to the static situation. We emphasize

though that any comparison between these results and ours should be interpreted with

caution, because the sources of anisotropy in the QGP created in a heavy ion collision

and in our system are different. In the QGP the anisotropy is dynamical in the sense that

it is due to the initial distribution of particles in momentum space, which will evolve in

time and eventually become isotropic. In contrast, in our case the anisotropy is due to

an external source that keeps the system in an equilibrium anisotropic state that will not

evolve in time. We hope that, nevertheless, our system might provide a good toy model

for processes whose characteristic time scale is sufficiently shorter than the time scale

controlling the time evolution of the QGP.

A general conclusion of refs. [42–44] is that, if the comparison between the anisotropic

plasma and its isotropic counterpart is made at equal temperatures, then the screening

length increases with the anisotropy. This effect occurs for dipoles oriented both along

and orthogonally to the anisotropic direction, but it is more pronounced for dipoles along

the anisotropic direction. The dependence on the anisotropy in these weak-coupling

results is the opposite of what we find in our strongly coupled plasma. In our case the

screening length in the anisotropic plasma is smaller than in its isotropic counterpart if

both plasmas are taken to have the same temperature, as shown in figure 6(left). We

also find that the effect is more pronounced for dipoles extending along the anisotropic

direction, as illustrated in figure 7(left).

Refs. [44, 45] argued that if the comparison between the anisotropic and the isotropic

plasmas is made at equal entropy densities, then the physics of quarkonium dissociation

exhibits little or no sensitivity to the value of the anisotropy. This is again in contrast

to our results since, as shown in figure 6(right) and figure 7(right), the screening length

in this case is just as sensitive to the anisotropy as in the equal-temperature comparison.

The difference in the equal-entropy case is simply that the screening length may increase

or decrease with the anisotropy depending on the dipole’s orientation.
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