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In 1990, Comfort asked: is there, for every cardinal number o < 2¢, a topological
group G such that G7 is countably compact for all cardinals v < «, but G% is not
countably compact? A similar question can also be asked for countably pracompact
groups: for which cardinals « is there a topological group G such that G7 is
countably pracompact for all cardinals v < «, but G is not countably pracompact?
In this paper we construct such group in the case @ = w, assuming the existence
of ¢ incomparable selective ultrafilters, and in the case a = kt, with w < k < 2°,
assuming the existence of 2¢ incomparable selective ultrafilters. In particular, under
the second assumption, there exists a topological group G so that G2* is countably
pracompact, but G2 s not countably pracompact, unlike the countably compact
case.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, every topological space will be Tychonoff (Hausdorff and completely regular) and

every topological group will be Hausdorff (thus, also Tychonoff). For an infinite set X, [X]<“ will denote
the family of all finite subsets of X, and [X]“ will denote the family of all countable subsets of X. Recall
that an infinite topological space X is said to be

o pseudocompact if each continuous real-valued function on X is bounded;

e countably compact if every infinite subset of X has an accumulation point in X;

e countably pracompact if there exists a dense subset D in X such that every infinite subset of D has an

accumulation point in X.
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We denote the set of non-principal (free) ultrafilters on w by w*. The following notion was introduced by
Bernstein [3]:

Definition 1.1 (/3]). Let p € w* and {x,, : n € w} be a sequence in a topological space X. We say that z € X
is a p-limit point of {x, :n € w} if {n € w: x, € U} € p for every neighborhood U of x.

Notice that if X is a Hausdorff space, for each p € w* a sequence {z, : n € w} C X has at most one
p-limit point x and we write x = p — lim,,¢,, ©,, in this case.

One may write the compact-like definitions above using the notion of p-limits. In fact, it is not hard to
show that x € X is an accumulation point of a sequence {x,, : n € w} C X if and only if there exists p € w*
such that x = p — lim, ¢, . Thus, we have that

o X is countably compact if and only if every sequence {z,, : n € w} C X has a p-limit, for some p € w*.
e X is countably pracompact if and only if there exists a dense subset D in X such that every sequence
{z, :n € w} C D has a p-limit in X, for some p € w*.

For pseudocompact spaces, a similar equivalence holds: X is pseudocompact if and only if for every countable
family {U, : n € w} of nonempty open sets of X, there exists © € X and p € w* such that, for each
neighborhood V of z, {n € w: VN U, # 0} € p.

There are many concepts related to compactness and pseudocompactness which have emerged in the last
years. In this paper, we highlight the following, which was introduced in [8].

Definition 1.2 (/8/). A topological space X is called selectively pseudocompact® if for each sequence {U,, :
n € w} of nonempty open subsets of X there is a sequence {z, : n € w} C X, x € X and p € w* such that
x = p — lim,e, xy, and, for each n € w, z,, € U,,.

It is clear that every selectively pseudocompact space is pseudocompact and every countably pracompact
space is selectively pseudocompact. Also, it was proved in [9] that there exists a pseudocompact topological
group which is not selectively pseudocompact, and in [17] that there exists a selectively pseudocompact
group which is not countably pracompact.

We shall now briefly recall the definitions and some facts about selective ultrafilters and the Rudin-Keisler
order.

Definition 1.3. A selective ultrafilter on w is a free ultrafilter p on w such that for every partition {A, : n € w}
of w, either there exists n € w such that A, € p or there exists B € p such that |[BN A,| = 1 for every
necw.

Given an ultrafilter p on w and a function f :w — w, note that
fip) ={AcCw: f71(4) € p}
is also an ultrafilter on w. Consider then the following definition.

Definition 1.4. Given p,q € w*, we say that p <k ¢ if there exists a function f:w — w so that f.(q) = p.
Such relation on w* is a preorder called the Rudin-Keisler order.

3 This concept was originally defined under the name strong pseudocompactness, but later the name was changed, since there
were already two different properties named in the previous way (in [1] and [7]).
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We say that p,q € w* are:

o incomparable if neither p <rg q or ¢ <rK p;
o equivalent if p <gr q and ¢ <grg p.

The existence of selective ultrafilters is independent of ZFC. In fact, there exists a model of ZFC in which
there are no P-points* in w* [19], while Martin’s axiom (MA) implies the existence of 2° incomparable
selective ultrafilters [4].

Pseudocompactness is not preserved under products for arbitrary topological spaces [15], but interest-
ingly Comfort and Ross proved that the product of any family of pseudocompact topological groups is
pseudocompact [6]. This result motivated Comfort to question whether the product of countably compact
groups is also countably compact. More generally, he asked the following question [5]:

Question 1.5 ([5], Question 477). Is there, for every (not necessarily infinite) cardinal number o < 2¢, a
topological group G such that G7 is countably compact for all cardinals v < «, but G% is not countably
compact?

The restriction o < 2° in the question above is due to the following result:

Theorem 1.6 ([12], Theorem 2.6). Let X be a Hausdorff topological space. The following statements are
equivalent:

(i) every power of X is countably compact;
i " is countably compact;
i) X2 tably pact
b71) " is countably compact;
jii) XX tabl t
iv) there exists p € w* such tha is p-compact.
v) th ists p € w* such that X is p pact.’

Van Douwen was the first to prove consistently (under MA) that there are two countably compact groups
whose product is not countably compact [18]. Also, Question 1.5 was answered positively in [16], assuming
the existence of 2¢ selective ultrafilters and that 2¢ = 2<2°. Finally, in 2021, it was proved in ZFC that there
are two countably compact groups whose product is not countably compact [13].

It is natural also to ask productivity questions for countably pracompact and selectively pseudocompact
groups. In this regard, Garcia-Ferreira and Tomita proved that if p and ¢ are non-equivalent (according
to the Rudin-Keisler order in w*) selective ultrafilters on w, then there are a p-compact group and a g-
compact group whose product is not selectively pseudocompact [11]. Also, Bardyla, Ravsky and Zdomskyy
constructed, under MA, a Boolean countably compact topological group whose square is not countably
pracompact [2]. However, the following questions remain unsolved in ZFC.

Question 1.7 (ZFC). Ts it true that selective pseudocompactness is non-productive in the class of topological
groups?

Question 1.8 (ZFC). Is it true that countable pracompactness is non-productive in the class of topological
groups?

4 A free ultrafilter p € w* is a P-point if, for every sequence (A, )ne, of elements of p, there exists A € p so that A\ A,, is finite
for each n € w. Every selective ultrafilter is a P-point.

5 Given p € w*, a topological space X is p-compact if every sequence of points in X has a p-limit. The product of p-compact
spaces is p-compact, for every p € w™.
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More generally, one can ask Comfort-like questions, such as Question 1.5, for selectively pseudocompact
and countably pracompact groups. In the case of selectively pseudocompact groups, the question is restricted
to cardinals o < w, due to the next result.

Lemma 1.9. If G is a topological group such that G¥ is selectively pseudocompact, then G* is selectively
pseudocompact for every cardinal kK > w.

Proof. Indeed, let k > w and (U,)ne, be a family of open subsets of G*. For every n € w, there are open
subsets U}, C G, for each j < r, so that [[ ., Ul C U, and U}, # G if and only if j € F},, for a finite subset
F, C k. Let F =, ¢, Fn. For each n € w, consider the open subsets V,, = [[;cp Uj x [jerr G C GF.
By assumption, G¥' is selectively pseudocompact, thus there is a sequence {y, : n € w} C G so that
Yn € Vy, for every n € w, which has an accumulation point y in G¥'. Then, given ¢ € G arbitrarily, the
sequence {z, : n € w} C G defined coordinatewise, for each n € w, by

n

syl ifjeF
€T =
g, ifjer\F

is such that x, € U, for every n € w, and has x € G* given by

iy, itjer
€T’ =
g, ifjer\F

as accumulation point. O

Question 1.10. For which cardinals a < w is there a topological group G such that G7 is selectively pseudo-
compact for all cardinals v < «, but G% is not selectively pseudocompact?

In the case of countably pracompact groups, it is still not known whether there exists a cardinal k
satisfying that: if a topological group G is such that G* countably pracompact, then G is countably
pracompact, for each a > k. Thus, there is no restriction to the cardinals « yet:

Question 1.11. For which cardinals « is there a topological group G such that G” is countably pracompact
for all cardinals v < a, but G is not countably pracompact?

It is worth observing that if G is countably compact and x > w, then
Y={geG":|{a€r:g” #0} <w}

is a dense subset of G* for which every infinite subset has an accumulation point. Thus, in this case G* is
countably pracompact.

In [10], under the assumption of CH, the authors showed that for every positive integer & > 0, there
exists a topological group G for which G¥ is countably compact but G**! is not selectively pseudocompact.
Thus, Question 1.10 and Question 1.11 are already solved for finite cardinals under CH. The cardinal o = w
is the only one for which there are still no consistent answers to the Question 1.10.

In this paper:

o assuming the existence of ¢ incomparable selective ultrafilters, we answer Question 1.11 for a = w;
o assuming the existence of 2° incomparable selective ultrafilters, we answer Question 1.11 for each suc-
cessor cardinal a = kT, with w < k < 2°.
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We will be dealing with Boolean groups, which are also vector spaces over the field 2 = {0,1}, and thus
we can talk about general linear algebra concepts concerning these groups, such as linearly independent
subsets. More specifically, if D C 2° is an infinite set, we will consider [D]<“ as a Boolean group, with the
symmetric difference /A as the group operation and @ as the neutral element.

Given p € w*, one may define an equivalence relation on ([D]<“)* by letting f =, g iff {n € w: f(n) =
g(n)} € p. We let [f], be the equivalence class determined by f and ([D]<*)¥/p be ([D]<%)*¥/ =,. Notice
that this set has a natural vector space structure (over the field 2). For each Dy € [D]<%, the constant
function in ([D]<¥)“ which takes only the value Dy will be denoted by Dy.

2. Auxiliary results

In this section we present the auxiliary results that we will use in the constructions. We start with a
simple linear algebra lemma, stated and proved in [17].

Lemma 2.1 ([17]). Let A, B and C be subsets in a Boolean group. Suppose that A is a finite set and that
AUC, BUC are linearly independent. Then there exists B’ C B such that |B'| < |A| and AUC U (B\ B’)
is linearly independent.

The next two technical lemmas will also be useful.

Lemma 2.2. Let X be an infinite set and {Xo, ..., Xn} be a partition of X. Let also (x)kew and (Yr)kew De
sequences in the Boolean group [X]|<“ so that:

o {zp:kewtU{yr: k €w} is linearly independent;
o for every p € {0,...,n}, both {zx; N X, : k € w} and {yx N X, : k € w} are linearly independent.

Then, there exist a subsequence {k,, : m € w} and ng € {0,...,n} so that
{zK, N Xp, :m €wlU{y, NX,, :m € w}
is linearly independent.

Proof. We shall construct inductively a sequence (A%);c. of subsets of w as follows. Firstly, if does not
exist k € w so that {x; N Xo} U {yx N Xo} is linearly independent, we put AY = (). Otherwise, we choose
the minimum ko € w with this property and put AJ = {ko}. Suppose that for I € w we have constructed
AY, ..., AL C w such that:

|A}| <i+1, for each i =0, ...,1[;
AL Cc A if0<i<j<lI;
{z,NXo: ke ALY U{yr N Xo: k€ A} is linearly independent.
for each 0 < i < I, AT\ A} = 0 if, and only if,
{.’EkﬂXo 1k GA%}U{ykao 1k GA%}U{IL’%OX()}U{,U%OX()}
is linearly dependent for every k& > max(AY).

In what follows, we will construct Aé“. If does not exist k € w, k > max(A}), so that

{zrNXo: ke ALY U{ypNXo: k€ AL} U {z;,N Xo} U {y; N Xo}
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is linearly independent, we put Aff'l = Al. Otherwise, we choose the minimum k;,; € w with this property,
and put Aé“ = AL U {kiy1}. In any case, A, ..., Aé“ satisfy items i)-iv), and then, by induction, there
exists a sequence (A});c,, satisfying them. Now, let Ag = Uicw Ab. If Ap is infinite, then {x, N X : k €
Aot U{xp N Xp: k € Ap} is linearly independent, and we are done.

On the other hand, suppose that Ay is finite. We may repeat the process above for X1, ..., X,,, constructing
analogous subsets Aq, ..., A, C w. If either of them is infinite, we are done.

Suppose then that Ay, ..., A, are finite sets. By construction, for each k& > max(A4y U ... U A4,) and
j=0,...,n,

{zpnNX; ke A U{ynNX; ke A} U{zp N XU {y; N X}
is linearly dependent. Also, since, for every j =0, ..., n,
Cj=span({zxNX,; ke Aj}U{ys N X, : k € A;})
is finite and both {z N X; : k € w} and {yx N X, : k € w} are linearly independent, we can fix:

« an infinite subset A C w;
e c; €Cj, for each j =0,...,n,

so that
z;, N X; = (yp N X;)Agy,
for every k € A and j = 0,...,n. Thus,
z; = (27 N Xo) AL A (2 N Xy) = (Y5 N Xo)ALA(y; N X)) Ao Acy) = Y A(co .. Aey),

for every k € A, which is a contradiction, as {zj : k € w} U {yx : k € w} is linearly independent. Hence,
Ag, ..., A, cannot all be finite. O

Lemma 2.3. Let X be an infinite set, k > 0 and {(22,...,2571) : n € w} C ([X]<®)* be a sequence. Then,

n
there are:

o elements dy, ...,dx_1 € [X]|<¥;

o a subsequence {(z0 ,...,a%"1) 1l € w};

o for some® 0 <t <k, a sequence {(y5,, ...y, ") : l € w} C ([X]=9);
for each 0 < s < k, a function Ps :t — 2,

satisfying that
t—1
i) xy, = (ZPS(i)y:”)Ads, for everyl € w and 0 < s < k;
i=0
i) {yb, 11 € w,0<i <t} is linearly independent.
Proof. Fix ¢ € w*, and let

M= {ee [X]% - [dy € span({[a]y, - [ 1a)) }-

6 If t = 0, we understand that there is no such sequence and item i) becomes: zf” =ds, for every l € wand 0 < s < k.
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It is clear that M is a finite set, thus let 5 > 0 and {c°,...,¢/"!} C M be so that {c',...,c/"1}
is a basis for span(M) C [X]<“. Then, let also ¢ > 0 and y°,..,y*"' € ([X]<)* be so that B =
(g oors [ g W0 gs - [yt 1], } is & basis for span({[z°],, ..., [£*~1],}). Hence, there are A € q, Py : t — 2
and C : j — 2, for each 0 < s < k, so that

1’:

Py(i ynAZC

t—1
1=0
for every n € Aand 0 < s < k. For each 0 < s < k, let dy = ZZ;& Cs(i)ct.

We shall prove that there exists an infinite subset I C A so that {y% : n € I,0 < i < t} is linearly
independent. First, note that for each ¢ € [X]<“ and nontrivial function P : ¢ — 2 we have that

t—1

> PO)lyla # @

Therefore, there exists a subset Ap. C A, Ap. € g, so that

t—1

> Py, #c

=0

for each n € Ap.. In particular, we conclude that {y/ : 0 < i < t — 1} is linearly independent for every
n e ﬂ Apy = Ap. We may choose ng € Ay.
P:t—2
P#£0
Now, suppose that, given p > 1, for each [ = 0,...,p — 1 we have constructed A; € ¢ and n; € A4; so
that {yf” 10 <1<p,0<i<t}is linearly independent, (n;)o<i<p is strictly increasing and A; C A. Let

Cp =span({y},, : 0 <1 <p,0<i<t}),

(] Ape (C A),

ceCp

P:t—2

P20
and fix n, € Ay, np, > np_1. It is clear that A, € ¢ and also {y},, : 0 <1 < p,0 < i < t} is linearly
independent, by construction. Then, by induction, there are a sequence (A;);c, of elements of ¢ and a
strictly increasing sequence (1n;);c,, of naturals so that n; € A; and {yfll :l € w,0 < i <t} is linearly
independent. Furthermore,

foreverylcwand 0 <s< k. O

Next, we enunciate Lemma 3.5 and Lemma 3.6 of [16], and an immediate consequence of Lemma 2.1 of
[9]-

Lemma 2.4 ([16], Lemma 3.5). Let po and p1 be incomparable selective ultrafilters. Let {ai tkew}lep; be

a strictly increasing sequence such that ai > k for every k € w and j € 2. Then there exist subsets Iy and
Iy of w such that:

(i) {a] : k € I;} € p; for each j € 2;
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(i) {[k,al] : j €2,k € I;} are pairwise disjoint intervals of w.
As a corollary of the previous lemma, we obtain:

Lemma 2.5. Let n > 0 and {p; : j < n} be incomparable selective ultrafilters. Let {ai tk € w} € p; be

a strictly increasing sequence such that aj, > k for every k € w and j < n. Then there exists a family

{I; : j <n} of subsets of w such that:

(i) {ai, 1k € I;} € p; for each j <m;
(it) {[k,a;]: j <n,k € I;} are pairwise disjoint intervals of w.

Proof. We will show that the lemma is true for each n > 0 by induction. The case n = 1 is just Lemma 2.4.

Suppose that the result is true for a given ng > 0. We claim that it is also true for ng + 1. Indeed, let
{p; : 7 < ng + 1} be incomparable selective ultrafilters and {ai : k € w} € p; be a strictly increasing
sequence such that a']i > k for every k € w and j < ng+ 1. By hypothesis, there exists a family {INJ :j<ng}
of subsets of w so that:

o {al : k€ I;} € pj for each j < ng;
o {[k,al]:j <no,k € I} are pairwise disjoint intervals of w.

Also, by Lemma 2.4, for each j < ng there exist I; C I; and K; C w so that:

o {a]: k€ I;} € p; and {afot 1k € K;} € pngi1;
o {[k,al]: k€ L} U{[k,a}°™]: k € K;} are pairwise disjoint intervals of w.

Then, defining I,,,+1 = (;2 Kj, we have that {I; : j < no + 1} satisfies the hypothesis we want. Therefore,
the lemma is true for every n > 0. 0O

The countable version of the previous result is Lemma 3.6 of [16]:
Lemma 2.6 ([16], Lemma 3.6). Let {p; : j € w} be incomparable selective ultrafilters. Let {ai tkew}ep,
be a strictly increasing sequence such that aj, > k for each k,j € w. Then there exists a family {I; : j € w}

of subsets of w such that:

(i) {a] : k € I;} € p; for each j € w;
(ii) {[k,a;]: j € w,k € I;} are pairwise disjoint intervals of w.

Lemma 2.7 ([9]). Let G be a non-discrete Boolean topological group. Then there exist nonempty open sets
{U] 1k € w,j € w} such that if u), € U for each k,j € w, then {u], : k,j € w} is linearly independent.

The following results ensure the existence of certain homomorphisms, necessary to construct the topo-
logical groups we want. Their proofs are based on Lemma 3.7 and Lemma 4.1 of [16], and also Lemma 4.1
of [11].

Lemma 2.8. Let:

e E be a countable subset of 2° and I C E;
e I C FE be a finite subset;
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o foreach €1, ke € w;

{pe : € € I} be a family of incomparable selective ultrafilters.

o foreach& €1, ge : w— ([E]<“)k¢ be a function so that {gg (m) : j < ke,m € w} is linearly independent;
o foreach & €1, de € ([E]<%)ks.

Then there exist an increasing sequence {b; : i € w} C w, a surjective function r : w — I and a sequence
{E; :i € w} of finite subsets of E such that:

a) F C Ey;

b) E= UiEw Ei’.

¢) r(m) € Ey, for each m € w;

d) U{df;(m) 1 J <kpm)} C Em, for each m € w;

e) Em1 DUl (bm) 1 € € BN, j <ke})U En, for eachm € w;

f) {gi(m)(bm) 2J < kpemy} U{{p} s p € En}ois linearly independent, for each m € w;

g) {bi:i€r~(&)} € pe, for every £ € 1.
Furthermore, if {yn : n € w} C E is faithfully indexed, then E; can be arranged for each i € w so that

h) {n €w:y, € E;} =2N,, for some N; € w, and (N;);c., is a strictly increasing sequence.”

Proof. Suppose first that I is infinite. Let E = {&, : n € w} be an enumeration and s : w — w be a strictly
increasing function such that {{,(;) : j € w} = I. We will first define a family {F, : n € w} of finite subsets
of E. This family will be used to construct the family {E, : n € w}.

Choose Ny € w so that {n Ew:y, € FU{&HIU (U{d§ o0 I < k‘gs(o)})} C 2Ny, and define

Fy = {yn:n <2Noy UF U{&} U (AL, J < ke }):

Suppose that we have defined finite subsets Fy,..., F; C E so that

1) & € F, for each 0 <p < ;

2) p+1DU({gﬁ( m):m<p, f€F,NI, j<kg})UF,foreach0<p<I.
3) U{df I < ke, } C Fp, for each 0 < p <.

4) {n € w:y, € F,} = 2N, for some N, € w, for each 0 < p <.

Now choose Ni4+1 > N so that

{n cwiymelJ ({gg( Jim<l feRNI, j<kg}U{dl  :j< kgsw}) UFRU {@H}} C 2N1,
and then define

Fron = {0 < 2N Ul ({gh(m) sm <1 B € BINT, < kghU{dL | )15 < ke }) URULG)-

It is clear that 1), 2), 3) and 4) are also satisfied for Fp, ..., F;11. Then, we may construct recursively a
family {F, : n € w} of finite subsets of F satisfying 1)-4) for every p € w. We also have that £ = J,
For each £ € I and n € w, let

zEw

A= {mew: {gg(m) 1 < kel U{{u} : p € F,} is linearly independent}.

7 For every K € w, K > 2, we could also arrange E; for each ¢ € w so that {n € w: y, € E;} C KN;, for some N; € w, and
(Ni)icw is strictly increasing. The proof would be analogous.
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Since {gg (m) : j < ke,m € w} is linearly independent and F), is finite, we have that AS is cofinite, and
then A$ € pg, for every n € w and € € I. Since selective ultrafilters are P-points, for each ¢ € I there exists
Ag¢ € pe so that Ag \ AS is finite for every n € w.

Now, for each € € I, let v : w — w be a strictly increasing function so that A¢\ A% C ve(n), for each n €
w. As every pe is a selective ultrafilter, for each £ € I there exists Be € pe such that

BeNwg(1) =0,Be C Ae and |[vg(n) +1,v¢(n+1)] N Be| < 1, for each n € w.

Let {a$, : n € w} be the strictly increasing enumeration of Bg, for each & € I. Notice that a$, > ve(n) > n
for each n € w and & € I. Thus,

afl S AfL, for each £ € [ and n € w,
and, by Lemma 2.6, there exists a family {Ir : £ € I'} of subsets of w such that:

i) {a$:ie I} € pe for each € € I
ii) {[i,af]: € € I and i € I} are pairwise disjoint intervals of w.

By ii), the sets {I¢ : £ € I} are pairwise disjoint. We may also assume without loss of generality that
e,y Cw\ (k) for every k € w. Let {iy, : m € w} be the strictly increasing enumeration of |, ¢, I, and

for

(2 m)

r:w — I be such that r(m) = & if and only if i, € I, . - Define also b, = a’-“im) and E,, = F;
each m € w.
Conditions a) and b) are trivially satisfied. Moreover, given m € w, if i, € I, then i, > s(i),

and hence r(m) € E,,. Therefore, conditions ¢) and d) are satisfied. To check condition e), note that

by, = a;(nm) <imy1—1land B, = F; C F; ., 1 for each m € w, thus

Em U J{gl(bm) 1§ € En N1, < ke})
C Fimﬁ#l_l U U({gg(p) :p S Zm-‘rl - 17 5 G Fim,+1_l ﬂ I, ] < kf;‘})

CFipiy = Emy1.

Condition f) is also satisfied, since b, = a:(m) € A;i@ for each m € w, and hence,

{gi(m)(bm) 1 J <kpemy}U{{p} s p € Fj, } is linearly independent.

To check condition g), simply note that, given £ € I,

(b :m e r (&)} = {af - i € I} € pe.

Condition h) follows by construction.
If I is finite, the proof is basically the same, replacing the use of Lemma 2.6 by Lemma 2.5. O

Lemma 2.9. Let:

e Zy and Zy be disjoint countable subsets of 2°, and E = Zy\J Zy;

o InCZy, 1 CZy, and I =g ly;

o F C[E]<¥ be a finite linearly independent subset and, for each f € F, let ny € 2;
o foreach&cl, ke €w;



A.H. Tomita, J. Trianon-Fraga / Topology and its Applications 327 (2023) 108434 11

{pe : £ € I} be a family of incomparable selective ultrafilters;
foreach &€ 1,0 =0if&€lyandde =14f€ € lqy;
o for every £ € I, ge : w — ([Z5€]<‘”)k5 be a function so that {gg(m) 1 j < ke,m € w}ois linearly

independent;
o for each & € I, de € ([Z5]<%)";
e {22:newlCZyand{z:n€w}C Z besequences of pairwise distinct elements.

Then, given (ap, 1) € 2 X 2, there exists a homomorphism ® : [E]<Y — 2 such that:

(i) ©(f) =ny, for every f € F;
(ii) for every & € 1,

{new: (2(g2m), . @ge ™ () = (@(dD), .. 0(de= ) } € pes

(iii) {n € w: (®({z5}), ®({2}})) = (v, 1)} is finite.

Proof. Firstly we apply Lemma 2.8 using the elements given in the hypothesis, F' = |J F, and the following
sequence y : w — E for item h): for each n € w, write n = 2¢ + j for the unique ¢ € w and j € 2, and put

22, ifj=0
Y2q+5 =
e, =1

Thus we obtain {b; : i € w} Cw, r:w — I and {E,, : m € w} C [E]<¥ satisfying a)-h).

We shall define auxiliary homomorphisms ®,,, : [E,,]<* — 2 inductively. First, we define ®¢ : [Ep]<* — 2
so that ®o(f) = ny for each f € F. Now, suppose that, for | € w, we have defined homomorphisms
D, : [E]<Y — 2 for each m =0, ..., 1, so that

(1) ®@,,41 extends @, for each 0 < m < [;
(2) for every 0 < m </,

Kr(my—1 Er(m)y—1
(©m+1(gg(m)(bm»a s ¢m+1(gr(7(n)) (bm))) = ((I)m(dg(m))a ) ‘@m(dr(ﬁn)) ))a
(3) (®m({22}), @ ({2L})) # (w0, 1) for each 0 < m <l and n € w so that 28 € E,, \ Ep—1.

We shall prove that we may define ®;4; : [E41]<¥ — 2 so that P, ..., P;11 also satisfy (1), (2) and
(3). For this, suppose without loss of generality that r(I) € Ip. By item f) of Lemma 2.8, {gi(l)(bl) 1j<
Erayy U{{u} : p € Ep} is linearly independent, and, by item h), for every n,m € w, 2% € E,, if, and only if,

2L € E,,. Since gi(l)(bl) € [Zp]<¥ for every j < k., and 2z} € Z; for every n € w, we conclude that

{{za} 2 € B \ B} U{gl ) (b) 1§ < ko } U {1} s p € B} (1)

is linearly independent. Therefore, using items d) and e) of Lemma 2.8, we may define ®;1; : [E;11]<¥ — 2
extending ®; so that

Ky —1 Koy —1
(141 (920 (00)s oo Praa (077 (00))) = (@)oo B0 )

and
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C1({z}) # (®

for each n € w such that 20 € E;1 \ E;. Thus, we have that @, ..., ®; ;1 also satisfy (1), (2) and (3), and

therefore there exists a sequence (P, )mew of homomorphisms @, : [F,,]<“ — 2 satisfying these properties.
We claim that the homomorphism ® = J,,c., ®» : [E]<¥ — 2 satisfies the hypothesis we want. In fact,

items (i) and (iii) are clear from the construction and item (ii) follows from the fact that for every & € I,

(B(gR0)), - D(gE° " (b)) = (B(dR), .., B(d" ),
for each i € r=1(€), and that {b; : i € =1 (&)} € p¢, by item g) of Lemma 2.8. O
The next result is a stronger version of the previous lemma, and uses it in its proof.
Lemma 2.10. Let:

e Zy and Zy be disjoint countable subsets of 2°, and £ = ZyWJ Zy;

o InCZy, 11 CZy,and I = Iy Uly;

o F C[E]=¥ be a linearly independent finite subset and, for each f € F, let ny € 2;

o foreach & €1, ke € w;

o {pe:& €I} bea family of incomparable selective ultrafilters;

o foreach&e€l, 0 =0ifE€ly andde =14 € € Iy

o for every & € I, g¢ + w — ([Zs,]<%)*¢ be a function so that {gg(m) 1§ < ke, mo€ w}ois linearly
independent;

o for each & € I, de € ([Z5]<%)";

o {0 :new} 2] and {y} :n € w} C [Z1]<¥ be linearly independent subsets.

Suppose that |Z; \ | J{yl : n € w}| = w, for each i € 2. Then, given (ag,a1) € 2 x 2, there exists a
homomorphism ® : [E]<¥ — 2 such that:

(i) ®(f) =ny, for every f € F;
(ii) for every & € 1,

ke— ke —
{new: (@2, g ) = (@(D), .. ®(dH) } € pes
(ii5) {n € w: (®(y2), ®(yl)) = (o, 1)} is finite.
Proof. For each i € 2, let {2 : n € w} be an enumeration of J{y’, : n € w}. Next, we extend {y’ : n € w}
to a basis B' of [Z;]<* and also {{z} : n € w} to a basis C? of [Z;]<%, for each i € 2. By assumption,
ICE\{{zL} :n € w}| = [B'\{y, : n € w} = w, thus we may consider enumerations {e} : k € w} of
Co\{{zi} :n € w}} and {f} : k € w} of B'\ {yf, : n € w}. It is clear that both B® U B! and C° UC! are

basis of [E]<%.
Let 0 : [E]<¥ — [E]<“ be the isomorphism defined by

0(yy,) = {1},
and

0(fi) = ek,
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for each i € 2 and n, k € w. Note that 9|[Zi]<w (2<% = [Z,]<* is also an isomorphism, for each i € 2.
Let, for every £ € I, he 1 w — ([Z5§]<W)k€ be given by hg(n) = G(gg(n)) for each n € w and j < k¢, and
de € ([Z5]<*)"¢ be given by Eg = 0(dy), for each j < ke.
By Lemma 2.9, there exists a homomorphism @ : [E]<* — 2 so that:

(i) ®(0(f)) = ny, for every f € F; . -
(i) For every § € 1, {n€w: (B(h2(n)), .. B¢ (n)) = (B(dp), .. B(de ) } € pes
(iii) {n € w: (®({z0}), ®({zL})) = (g, 1)} is finite.

Thus, the homomorphism ® = ® 0 § : [E]<¥ — 2 satisfies the hypothesis we want. O

Remark 1. Note that in the statement of the previous lemma, item (iii) can be replaced by the following
(stronger) condition, for a given « € 2:

(iii) {n € w: ®(y2 Ayl) = a} is finite.
Indeed, we could replace condition (f) in the proof of Lemma 2.9 by the fact that

{{zn 20} i 20 € Erpn \ B U{gly(0n) : 5 < ke } U {1} : o € Ei}

is linearly independent, thus in equation () we could choose

Pip1({zn, 20}) # @

0
n

for each n € w such that z) € FE;y1 \ E;. Then, the proof of Lemma 2.10 would remain the same, just

replacing the old condition with the new one when required.
The next result is an easy corollary of the previous lemma.
Corollary 2.11. Let:

o FE be a countable subset of 2¢;

o« ICE;

o F C[E]<¥ be a linearly independent finite subset and, for each f € F, let ny € 2;

o foreach&el, ke €w.

o {pe: & €I} bea family of incomparable selective ultrafilters;

o for every £ € I, g¢ : w — ([E]<%)*¢ be a function so that {gg(m) 1 j < ke, mo€ w} s linearly
independent;

o for every £ € I, d¢ € ([E]<%)Pe.

Then there exists a homomorphism ® : [E]<¥ — 2 such that:

(i) ©(f) =ny, for every f € F;
(i) For every € € 1, {n cw: (@(gg(n)), ...,cp(ggf‘l(n))) - (@(dg), ...@(d’gﬁ‘l))} € pe.

Although the proof of the following result is similar to the proof of Lemma 2.9 and Lemma 2.10, we
present it here for the sake of completeness.
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Lemma 2.12. Let:

e E be a countable subset of 2¢;

o« ICE;

o F C[E]<¥ be a linearly independent finite subset and, for each f € F, let ny € 2;

e N Ew,

o {pe: & €I} bea family of incomparable selective ultrafilters;

o forevery& €1, ge:w — ([E]<Y)" be a function so that {gg(m) 1 j <n, m € w} is linearly independent;
o for every & € I, de € ([E]<¥)";

o {yl:kecw, j<n}C[E|<¥ be a linearly independent subset.

Suppose that \E\U{y{c :k €w, j <n}| =w. Then, given (ag,...,an) € 2"TL, there exists a homomorphism
®: [E]<Y — 2 such that:

(i) ®(f) =ny, for every f € F;
(ii) for every € € 1, {k Ew: (@(gg(k)), @(gg—l(k))) - (@(dg), ...@(dg—l))} € pes
(iii) {k € w: (P(YR), ..., (y})) = (0, ..o ) } s finite.

Proof. We split the proof in two cases.
Case 1: Suppose that each y, is a singleton, that is, y; = {z]}, for some 2] € E, for every j < n and
ke w.

In this case, we apply Lemma 2.8 using the elements of the statement, F' = |JF, k¢ = n for each £ € I,
and the following sequence w : w — F in item h): for each m € w, write m = (n + 1)g + j for the unique
g€ wandj€ (n+1), and put w, = zg. Thus, we obtain {b; : i € w}, r:w — I and {E,, : m € w} C [E]<¥
satisfying a)-h) of this lemma.

We shall again define auxiliary homomorphisms ®,, : [E,,]<% — 2, for each m € w, inductively. First,
define ®¢ : [Ep]<“¥ — 2 so that ®o(f) = ny, for each f € F. Suppose that, for | € w, we have defined
D, : [En]< — 2, for each m =0, ..., [, satisfying that:

(1) @41 extends P, for each 0 < m < I;
(2) for every 0 <m <,

(3) (Pm({22}), .. @m({21})) # (a0, ..., ) for each 0 < m <l and k € w so that z) € Ep, \ Epp—1.®
Now, since by construction {gi(l)(bl) :j<npU{{u}: u € E} is linearly independent, we may apply

Lemma 2.1 with A = {gz(l)(bl) cj<n}, B={{z]}:20€ E1,\E;, j <n}and C = {{u}:pc E} to
obtain a subset B’ C B such that |B’| < |A| = n and

{gﬁ(l)(bl) j<n}u{{p}pe BYU{{z}: R € By \ By, j <n}\B)

is linearly independent. Then, for each k € w so that zg € Ei41 \ Ey, there exists 0 < j* < n such that
zik € ({{zi} 20 € Eip1 \ By, j <n}\ B’). Thus, we may define ®;41 : [Ej41]<% — 2 extending ®; so that

8 Recall that, by construction, given k,m € w, zi € E,, for some 0 < j < n if, and only if, zi € E,, for every 0 < j < n.
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(@rr1(970) (B0)), oo Pran gy (B1))) = (Ru(dg))s oo Ruld))))

and

Bra1({2] }) # age,

for every k € w so that 22 € Ej41 \ E;. Similarly to the proof of Lemma 2.9, we have that ®, ..., ®; 41
also satisfy (1)-(3), and therefore there exists a sequence (®y,)mew of homomorphisms @, : [E,,]<“ — 2
satisfying such properties. Again, the homomorphism defined by ® = | D, : [E]<¥ — 2 satisfies the
hypothesis we want.

new

Case 2: The general case. There is no restriction on elements yi

Let {2 : k € w} be an enumeration of J{y) : k € w,j < n} and {20 : k € w}, .., {2 : k € w} be a
partition of {z, : k € w}. We extend {y} : k € w,j < n} to a basis B of [E]< and also {{z]} : k € w,j < n}
to a basis C of [E]<¥. By assumption, |B \ {{zi} tk€w,j <n}=]|C\ {y,]C ik € w,j < n}| = w, thus
consider enumerations {e; : I € w} of B\ {{zi} ck€w,j<n}and {fi:l€w}of C\ {yi ck€ew,j<n}.

Let 6 : [E]<¥ — [E]<“ be the isomorphism defined by:

0(y) = {1},

for every k € w and j < n, and

0(fi) = e,

for every | € w.
Let also, for each § € I, he : w — ([E]<“)" given by hz(m) = Q(gé(m)), for every m € w and i < n, and

d¢ € ([E]<¥)" given by d_gl = G(dé), for every i < m. By the previous case, there exists a homomorphism
® : [E]<¥ — 2 so that:

(1) (6(f)) = ny, for each f € F;
(i) For every £ € 1, {m € w: (B(hY(m), ... B(h " (m)) = (B(de), .8 "))} € pe;
(iil) {k € w: (P({z0}), ..., 2({27})) = (a0, ..., ) } s finite.

Thus, the homomorphism ® = ® o § : [E]<¥ — 2 satisfies the hypothesis we want. O
3. A consistent solution to the case &« = w of the Comfort-like question for countably pracompact groups

Theorem 3.1. Suppose that there are ¢ incomparable selective ultrafilters. Then there exists a (Hausdorff)
group G which has all finite powers countably pracompact and such that G* is not countably pracompact.

Proof. The required group will be constructed giving a suitable topology to the Boolean group [c]<¥, as
follows.

Let (X,)n>0 be a partition of ¢ so that |X,| = ¢ for every n > 0. For each n > 0, let (X});<2 be a
partition of X, so that

o X=X =g
o X? contains only limit ordinals and their next w elements;
o the initial w elements of X,, are in X!.
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For every n > 0, let also
YO = {¢ € X0 : ¢ is alimit ordinall,

and define the sets Xo = (JnewX?, X1 = Unew X} and Yy = (JnewY,). Now, consider a family of functions
{fe : £ € Yu} so that:

1) for each n > 0, {fe : £ € Y,'} is an enumeration of all the sequences (zx)rew of elements in ([X,]<%)" so
that {27 : k € w,j < n} is linearly independent;
2) given n > 0 and £ € Y,?, fe is a function from w to ([X,,]<*)" such that Ujen Ureo f2(R) C &

Finally, let {p¢ : £ € Yy} be a family of incomparable selective ultrafilters, which exists by hypothesis.
Countable subsets of ¢ which have a suitable property of closure related to this construction will be called
suitably closed”:

Definition 3.2. A set A € [c]¥ is suitably closed if, for each n > 0 and £ € Y;? so that {£+7:j <n}NA#0,
we have that

{e+izj<npulJ U HKca

j<nkEw

Let A be the set of all homomorphisms o : [A]<¥ — 2, with A € [¢] suitably closed, satisfying that, for
every n >0 and £ € ANY,7?,

o({€+7}) = pe — lim o(fL()),

for each j < n.

Enumerate A by {0, : w < o < ¢} and, without loss of generality, we may assume that (Jdom(o,) C p,
for each p € [w,¢). In what follows, we will construct suitable homomorphisms @, : [¢]<“ — 2, for every
@ € [w, ¢). Note that it is enough to define 7, in the subset {{¢} : £ € ¢}, since this is a basis for [¢]<%.

Firstly, for each n > 0, we enumerate all functions g : S — 2 with S € [¢]<¥ by {g¢ : £ € X} }. Without
loss of generality, we may assume that dom(ge) C &, for every £ € X}, and that for each g : S — 2 as above,
HéeXnige=gtl=c

Let p € [w,¢). If £ < ¢ is such that {{} € dom(o,), we put 7, ({¢}) = 0,({{}). Otherwise, we have a few
cases to consider:

1) if £ € Xy and p € dom(ge), we put 7, ({£}) = ge(n);
2) if £ € Xy and p ¢ dom(ge), we put 7,({£}) = 0;
3) for the remaining elements of X, 7, is defined recursively, by putting

{07({5 + 1) = pe — limpe, Ta(FL(K) i€ € Y0 and j < n;
7, (1€}) =0, i€ ¢ {otjaey?j<n)

The definition above uniquely extends each o, to a homomorphism &, : [¢|<* — 2, which satisfies that,
for each n >0, £ € YV and j < n,

9 The idea of suitably closed sets already appeared in [14], without using a name. Many subsequent works that used Martin’s
Axiom for countable posets and selective ultrafilters also used this idea. The name suitably closed appeared firstly in [13].
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o ({&+7}) = pe — Egjafu(fg(k))- )

Let now A = {7, : w < p < ¢} and 7 be the weakest (group) topology on [¢]<“ making every homomor-

phism in A continuous. We call this group G. We claim that G is Hausdorff. Indeed, given = € [¢]<¢ \ {0},
let A be a suitably closed set containing . We may use Corollary 2.11 with E = A, I = ANY,, F = {«}
and, for each n > 0 and £ € Y0 N A, de = ({¢},...,{¢ + n — 1}), to fix a homomorphism o : [A]<% — 2 so
that ¢ € A and o(x) = 1. By construction, there exists p € [w, ¢) so that o, = o, and hence 7,(z) = 1.

Claim 1. For every n > 0, G™ is countably pracompact.
Proof of the claim. Fix n > 0. We claim that ([X,]<“)™ C G™ is a witness to the countable pracompactness

property in G™. Indeed, if U is a nonempty open subset of G, we may fix a function g : S — 2, with S € [¢]<¥,
so that

Uo7 (9(w).

Then, by construction, we may choose £ € X! N (p, ¢) so that g¢ = g, and thus {¢} € U, which shows that
[X,]<% is dense in G, and therefore ([X,]<“)™ is dense in G™.

We shall now prove that every infinite sequence {zj, : k € w} of elements in ([X,,]<“)™ has an accumulation
point in G™. In fact, by Lemma 2.3, there are:

e elements dg, ..., d,—1 € [X,]<Y;
o a subsequence (T, )icw;
o for some 0 <t <n, a sequence (y)iew in ([Xn]<¥)*

e for each 0 < s < n, a function P, : t — 2,

satisfying that

i) xf, = (tz_iPS(j)ylj)Ads, for every l e wand 0 < s < n.
ii) {yl] 21 6];(,)0 < j <t} is linearly independent.
By construction, there exists £ € Y,? so that fg ()= ylj, for every | € w and 0 < j < t. Since
Tu({& +7}) = pe — lm 7 (f (1),

for each p € [w,¢) and 0 < j < n, we conclude that, for each 0 < s < n,

t—1

(- P&+ 1) ady = pe — lim .,
i=o cw
and therefore {z : k € w} has an accumulation point in G™.'° O

Claim 2. G¥ is not countably pracompact.

10 In fact, the accumulation point obtained even belongs to ([X,]<*)™ itself. This shows that the subgroup [X,]<“ has its
nth-power countably compact, for each n > 0.
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Proof of the claim. Let Y C G* be a dense subset. Consider the set {U,g ik € w,j € w} of nonempty open
subsets of G given by Lemma 2.7. For each k € w, we may choose an element zj € Y N Hj<k Ul x G@\F+1
and hence

{xi:onJ,ij}

is linearly independent. In what follows, we will show that there exists a subsequence of {zj : k € w} which
does not have an accumulation point in G¥.
For an element D € [¢]<¥, we define

SUPP(D)={n>0:DNX, #0}.
We will split the proof in two cases.

Case 1: There exists j € w so that | J, ., SUPP(x]) is infinite.
In this case, we may fix a subsequence {xfcm :m € w} such that

SUPP(z], )\ (U SUPP(xip)> 0, (1)

p<m

for every m € w. We may also assume that kg > j, and hence {J:fcm :m € w} is linearly independent.

Now we shall show that, for each x € G, z is not an accumulation point of {z{cm :m € w}. First, note
that, given x € G, there exists Ny € w such that, for every m > Ny,

SUPP(z, )\ < |J SUPP(z] ) U SUPP(x)) # 0.

p<m

In fact, since SUPP(z) is finite and (1) holds, there cannot be infinitely many elements xi
SUPP(x}, ) C U<, SUPP(z7, ) USUPP(x).

Let

such that

Fy = [ SUPP(z] ) USUPP(x)
p<No

and, for ¢ > 0,

F,=SUPP(zj . )\| |J SUPP(z] )USUPP(x)
p<Np+i—1

Define also, for each ¢ € w,

D= (s, uz)n (U Xa),

mew nekr;

and let A; be a suitably closed set containing D; such that A; C UnEFi X, Since (F})ie, is a family of
pairwise disjoint sets, we have that (4;);c, is also a family of pairwise disjoint sets.
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Now we may use Corollary 2.11 with: E = Ag; I = AgNYy; F = {x}; and, for every n > 0 and £ € Y,)N Ay,
de = ({¢},...,{¢ + n — 1}), to fix a homomorphism 6 : [Ag]<“ — 2 such that 6y € A and 6y(x) = 0."' For
[ > 0, suppose that we have constructed a set of homomorphisms {6; : i <1} C A such that

i) fo(z) =
ii) 0; is a homomorphlsm defined in [Up<z A ] taking values in 2, for each ¢ < [.
i) 0; extends ;1 for each 0 < i <.

) o

(:z:,cNJr J=1foreachO<i<land p=0,..,7— 1.

iii
iv

Again by Corollary 2.11, we may define a homomorphism 1), : [4;]<“ — 2 so that 1, € A and
wl (JT]Z?N0+Z—1 \ U Dp) + 611 (xi?NOH—l N U Dp) =L
p<l p<l

Now, since 4;NJ,,
and ;. By construction, we have that 6;(z) = 0 and Hl(sciN +p) =1 for every p =0, ..., — 1. Also, it follows
0

A; = (), we may also define a homomorphism 6 : [Upgl Ap} 49 extending both ;4

that 6; € A, since ¢; € A and 0; € A for every ¢ < [. Therefore, there exists a family of homomorphisms
{0, : 1 € w} C A satisfying i)-iv) for every | € w.

Letting A = (J;c,, Ai and 0 = |J,, i, the homomorphism 6 : [A]<“ — 2 satisfies that § € A, since
0; € A for each i € w. Also, 6(z) = 0 and H(xfwoﬂ) = 1 for every p € w. By construction, there exists
@ € [w,c) so that @ = oy, thus 7, : [¢]<“ — 2 satisfies that O‘_H<$im> =1 for each m > Ny, and 7,(z) = 0.
Hence, the element x € G, which was chosen arbitrarily, is not an accumulation point of {xfw :m € w}h. In
particular, {xy, :m € w} does not have an accumulation point in G¥. ’

Case 2: For every j € w, M; = [, SUPP(x]) is finite.

In this case, we claim that for each j € w there exists a subsequence {k!, : m € w} so that, for every
1 < j and n € M;, either the family {x N X, : m € w} is linearly independent or constant. Indeed, for
j = 0 and ng € My, if there exists an mﬁnlte subset of {z? N X,,, : k € w} which is linearly independent,
we may fix a subsequence {k%:° : m € w} so that {xko’o N Xy, 1 m € w} is linearly independent; otherwise
we may fix a subsequence {k%:° : m € w} so that {xg;,o N Xy, : m € w} is constant. Then, if it exists, we
may consider another n; € My and repeat the processnzo obtain a subsequence {k%! : m € w} which refines
{k%0 : m € w} and satisfies the desired property for ng and n;. Since My is finite, proceeding inductively
we may obtain the required subsequence {k?, : m € w} in the last step. Then, we repeat the process for the
next coordinates, always refining the previous subsequence. Now, fix such subsequences {k7, : m € w}, for
each 57 € w. We may also suppose that ké > j for each j € w.

For each j € w, let

M; ={ne M;: {mij N X, : m € w} is linearly independent}.

Note that M; # () for every j € w, since {J; NX, :m € w,n € M;} generates all the elements in the
infinite linearly independent set {xk{n tm € w}.

Suppose that there exists j € w so that \Mﬂ > 1. Fix then ng,n; € Wj distinct. We shall prove that in
this case {xij :m € w} does not have an accumulation point in G.
For that, consider:

M If £ = 0, F is not linearly independent and thus we cannot use Corollary 2.11, but it is clear that we can still find such 6.
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e x € GG chosen arbitrarily;

e 2 =2NX,, 2t =2NX,;

e Zy C X, a suitably closed set containing z° and U{xi, NX,, : m € w}, so that |Z \ U{xij NX,, :
me€ w} =w;

e Zy C X, a suitably closed set containing z' and U{x?dn NX,, : m € w}, so that |Z; \U{x;% NXnp, :
mE w} = w;

. EZZ()UZ1,
o« In=ZoNYo(=2ZoNYY), h =Z1NYy (=21 NY,Y)and I = I UIy;
e foréel,

(i:{aewﬂ&+mo—u% ife el
U et — 1)), ifEeT

By Lemma 2.10 and Remark 1, there exists a homomorphism @ : [E]<“ — 2 such that:

(i) for every s € 2° U z1, ‘5({8}) =05
(ii) for every ¢ € I,

B({E+ 7)) = {pg — limge,, é(fg(k)), for every j < ng, if &€ Iy

pe — limpe,, é(fg(k)), for every j < ni, if & € Iy;

(iii) {m cw: i)(xij N (X U Xm)) = 0} is finite.

m

Now, fix a suitably closed set E containing E, xz and xij , for each m € w, so that EN X,,, = Zp and
ENX,, = Z;. Consider the homomorphism @ : [E]<* — 2o that, for each ¢ € E,

({¢}), ifEE€E

@qa>{Q feab

In particular, for every z € [E]<“ so that z N (X,, U X,,) = 0, we have that ®(z) = 0, and for every
2 € [E]<¥, ®(2) = ®(2).
It follows by construction that ® € A. Furthermore,

B(z) = <I>((x N (Xny U X)) A (2 \ (X U Xm)))
- <I>((ac A Xy ) Az N Xm)) n <I>(sc \ (X U an)) — &) + d(z) = 0,

and, for every m € w,

o(a, ) = @((;cj. 1 (Xng U X)) O (7, \ (Xny U an)))

- @(g;j, A (X, U Xm)) + <I><a:j,- \ (X U Xm)) - @(x; A (X, U Xn1)>.

J
k'vn

Thus,

{m Ew: CID(xij )= @(x)}

m
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is finite. Since, by construction, there exists u € [w,¢) so that ® = ¢, we conclude that x cannot be
an accumulation point of {x;gn :m € w}. As the element © € G was chosen arbitrarily, the sequence
{mi% :m € w} does not have an accumulation point in G. In particular, {z;; : m € w} does not have an
accumulation point in G*.

Therefore, henceforth we may suppose that |E\ =1 for every j € w. We have two subcases to consider.

Case 2.1: There are jg, j; € w distinct so that Mj0 NM;, =0.

Suppose that j; > jo, and let ng € Mj,,n1 € Mj,. We shall show that the sequence {(a7 Ty 21“) tm € w}

does not have an accumulation point in G2. For thls7 consider:

. (1: T ) € G? chosen arbltrarlly,

o 30 =gt 11 N Xn, and y! —x ﬂan ;

o Zy C Xn0 a suitably closed set containing (20 U z!) N X,,, 3° and J{27%, N X,, : m € w}, so that
[Zo\ U{gcle NXpy i M Ew}l = w;

e Z; C X, a suitably closed set containing (z° U z') N X,,,, ¥* and J{z”*

2\ Uy, N X, i€} = o

k‘Jl

e Xpn, : m € w}, so that

o« BE=2Z0UZ;
. IQ = Zom}/b(: ZoﬂYnOO), Il = Z1 ﬂYo(: Zl ﬁY;?l) and I = IQUIN
o for€el,

:¥KMMK+M—ULi%eh
(&}, {€+m — 1)), if&e .

By Lemma 2.10, there exists a homomorphism ® : [E]<% — 2 such that:

(i) for every s € (z°Uz' Uy Uyh) N (X, U Xy, ), ®({s}) = 0;
(ii) for every & € I,

B({E+ 7)) = {? — limge,, @(fg(k)), for every j <mng, if &€

e — limye, é(fg(k)), for every j < mnq, if& € Iy;
(iii) {m cw: (ci>( w90 Xy), Bl me)) - (0,0)} is finite.

Again, fix a suitably closed set E containing E, 2° U z' and xk U xfjl, for each m € w, so that

EnX,, =2%Zyand EN X,, = Z;. Consider the homomorphism & : [E]<w — 2 such that, for each £ € F,

o({¢}), f¢ek
o({¢h) = . .
0, if¢é¢E.
It follows by construction that ® € A and that, for each ¢ < 2,

(') = @( (2 N (Xng U Xny)) A"\ (X U X))

- @((ﬂ N X, ) A2 N Xm)) + c1>(xf \ (X U Xn1)> = B(2' N Xny) + (27 N Xy, ) = 0.

12 Recall that, by construction, the families {rfcl]1 NXp, :m € w} and {ri"“ N X,, : m € w} are constant.
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Furthermore, for every m € w and i < 2,
B(zdi ) = CID((:cZ% N (X U X)) B (5, \ (X U Xm))>
_ @(mﬁ. A (X U an)) + @(:cg% \ (X U Xm))
= @(wi“ N Xno) + @(xi% N Xm) = @(xi% N Xn)
Thus,
{m Ew: (@(wi‘%),@(wﬁ%)) = (@(mo),@(ﬂcl))}
is finite, and therefore {(x;f;&,x&%) :m € w} does not have an accumulation point in G2. In particular,
{z, 1 : m € w} does not have an accumulation point in G*.
Case 2.2: For every jo, j1 € w, M;, N M;, # 0.
In this case, there exists ny > 0 so that Mj = {ng} for every j € w. To make the notation simpler, from
now on we call {k, : m € w} the sequence {0 : m € w}. By construction, {z}, :m € w,i <ng} is linearly

independent and, for each i < ny, there exists ¢; € [¢]<“ so that ¢; N Xp,, = 0 and zj, = (2}, N Xp,)Aci,
for every m € w. Thus, there exists mgy € w such that

{2}, NXpny:m>mg, i <ng}

is linearly independent.

We shall prove that {(z} ,..,2°):m € w} does not have an accumulation point in G™**. For that,
consider:

o = (2% .. 2") € G"*! chosen arbitrarily;

o for eachi=0,...,ng, ¥’ = x}g N X,, for every m > my.

« EC X, a suitably closed set containing (z° U ... Uz") N X,,, and y’,, for every i < ng and m > mo,
so that |E\ U{yi, : m >mg, i <ng}| = w;

e I=ENYy (=ENYY);

o foreach { € I, de = ({&}, ..., {€ +no — 1}).

By Lemma 2.12, there exists a homomorphism & : [E]<% — 2 such that

(i) For every s € (z°U...Uz™) N X,,, ®({s}) = 0.
(ii) For every & € I and j < no,

B({¢ + 1) = pe — lim B(FL(K)).

(iit) {m > mg : (®(¥)..., 2(y7°)) = (0,...,0)} is finite. Note that by construction ®(z* N X,,,) = 0 for
every 1 = 0,...,ng.

Consider E a suitably closed set containing E, 2°U...Uz™ and xgm U...u fon, for each m > myg, so
that £ N X, = E. Hence, we may define a homomorphism ® : [E]<“ — 2 such that, for each ¢ € E,

O({¢}), ifEeE

ieh) = {0, if € ¢ E.
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[ <w

In particular, for every z € [E]<“ so that zNX,,, = 0, we have that ®(z) = 0. Moreover, for every z € [E]<%,
®(z) = ®(z). Similarly to Case 2.1, it follows by construction that ® € A and that

{m >mg: (®(z}, ), @) = (®(20), ..., ®(z"°))} is finite.
Again, we conclude that 2 cannot be an accumulation point of {(z} ,...,z.°):m € w}.

Therefore, in any case, we showed that there exists a subsequence of {z}, : k € w} which does not have
an accumulation point in G*, and thus the group is not countably pracompact. O

As a corollary of the proof above, we obtain:

Corollary 3.3. Suppose that there are ¢ incomparable selective ultrafilters. Then, for eachn € w, n > 0, there
exists a (Hausdorff) topological group whose nth power is countably compact and the (n+1)th power is not
selectively pseudocompact.

Proof. With the same notation of the previous proof, for each n > 0, we choose the topological subgroup
H = [X,]<¥ C G. As already mentioned in a footnote, H" is countably compact. Also, using Lemma 2.12
similarly to what was done in Case 2.2, one can show that every sequence (wg, o ) kew In H"™*1! 5o that
{x] : k € w,j < n} is linearly independent does not have an accumulation point in H "+l Then, it is enough
to choose a sequence of nonempty open sets {(Uf X ... x UP) : k € w} C H""!, with {U,g ck€w,j<n}as
in Lemma 2.7, to prove that H™*! is not selectively pseudocompact. O

Recall that in [10] the authors proved the same result using CH.

4. Consistent solutions to the Comfort-like question for countably pracompact groups in the case of
infinite successor cardinals

Theorem 4.1. Suppose that there are 2° incomparable selective ultrafilters. Let k < 2¢ be an infinite cardinal.
Then there exists a (Hausdorff) group G such that G* is countably pracompact and G*" is not countably
pracompact.

Proof. The required group will be constructed giving a suitable topology to the Boolean group [2¢]<%.

Let {X, : v < k} be a partition of 2¢ so that |X,| = 2 for every v < k. For each v < k, we enumerate
X, in strictly increasing order as {xg : B < 2°} (in this case, it is clear that, for every v < k and § < 2°,
B < xg) Let also:

{Jo, J1} be a partition of 2¢ so that |Jy| = |J1| = 2° and that w C Jy;

X9 : {zy: 8 g Jo} and X% = {xglz B € Ji}, for each v < k;

. Xo = U’Y<KX’Y and X1 = U’Y<HX’Y;

o P={pe: &€ Jy} be afamily of incomparable selective ultrafilters, which exists by hypothesis.

Now enumerate the set of all injective sequences of 2¢ as {I, : a € Jy}, assuming that for every o € Jp,
rng(l,) C a. Finally, for each a € Jy and v < &, we define the function f7 : w — [X,]<¥ as

fall) = {x;a(Z)},

for every | € w. Note that, for each o € Jy and v < &, rng(fY) C [22]<¥.
Next we define which are the suitably closed sets of this construction.
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Definition 4.2. A set A € [2]“ is suitably closed if, for every v < x and 8 € Jy, if 2} € A, then U,,, £ (1) C
A.

Let A= {0, : p € [w,2°)} be an enumeration of all homomorphisms o : [A]<¥ — 2, with A suitably
closed, such that

o({z}}) = ps — limo (£ (1),

for every v < k and f € Jy satisfying that xg € A. We may assume without loss of generality that

Udom(o,) C pu, for every p € [w,2°).
Next, we will properly extend each homomorphism o, in A to a homomorphism &, defined in [2]<%.
For this purpose, we enumerate the set

B= {{(70790)) (X3 (’Ykagk)} k€ w, |{’70» 77]6}‘ =k + ]-7 and,
for each i = 0, ..., k,v; < K, and g; : S; — 2, for some S; € [2°]<“}

as {bg : B € J1}. We may also assume that for every 8 € J1, bg = {(70,90),---» (V&> gk)} is such that
Ui dom(g;) C 3.

Given p € [w,2°), if £ < 2¢ is such that {¢} € dom(o,), we put 7,({{}) = 0,({{}). Otherwise, we have
a few cases to consider. Firstly, we define the homomorphism in the remaining elements of Xi, for each
v < K, as described in the next paragraph.

Let v < x and £ € X} be so that {¢} ¢ dom(o,,). Let also § € J; be the element such that & = ;. Now,

o if there exists a function g : S — 2, S € [2°]<“, so that (v,g) € bg and p € dom(g), we put 7,({{}) =

9(w);
« otherwise, we put o,({{}) = 0.

Finally, in the remaining elements of XS, for each v < k, we define &, recursively, by putting
Fa({e}}) = ps — Imaa(£30),

for each 8 € Jy.
Now we define A = {7, : p € [w,2°)}. It is clear by the construction that, for each u € [w,2°),

7 ({2})) = ps ~ Ima(F3 ),

for every v < k and 8 € Jy. Let G be the group [2°]<“ endowed with the topology generated by the
homomorphisms in A.
Given = € G, we define, similarly as before,

SUPP(z) ={y < k:xznNX, #0}.

We claim that G is Hausdorff. Indeed, let = € [2€]<“\ {0} and, given v € SUPP(xz), z = N X,. Let also
Ao C X, be a suitably closed set containing z. In order to use Corollary 2.11, consider:

o E=Ag;
L I:AoﬂX,(Y),
o F={z}h
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o {ge: £ €I} CP sothat, for each § =z} € I, g¢ = pg;

and, for each { =z € I,

. 9¢=[3;
o de ={x}}.

By Corollary 2.11, we may fix a homomorphism o : [Ag]<¥ — 2 so that op € A and o((z) = 1. Now, let A
be a suitably closed set containing x so that AN X, = A and o : [A]<“ — 2 be a homomorphism so that

o0({¢}), if &€ Ag

olieh) = {O, if £ ¢ Ap.

Then, 0 € Aand o(z) = o((zNX,)A(z\ X,)) = 1. By construction, there exists 1 € [w,2°) so that o, = o,
and hence 7, (z) = 1.

Claim 3. G* is countably pracompact.

Proof of the claim. We claim that {({z}}),<x : B < 2°} C G" is a dense subset for which every infinite
subset has an accumulation point in G*.
For k € w, let {0, ..., } C K be a finite set of size k + 1 and, for each i € {0, ..., k}, let

oty e i, € [w,26), for some j; € w;
o gi:{pb, ,u;} — 2 be a function.

We shall prove that, if

N @) (i) £ 0.

p=0

for every i = 0, ...k, then there exists 8y € Ji so that {z} } € ﬂ;”zo(m)fl(gi(ug)) for each i = 0, ..., k.
For that, let 5y € J1 be so that

{(70’90)7 R (r)/k)gk)} = bﬁo'

Since, by construction, | Jdom(o,) C u for every pu € [w,2°), Uf:o dom(g;) C Bo and By < xgo for every

v < K, it follows that a#;({xgo}) = gi(u;) for each i =0, ...,k and p =0, ..., j;, as we wanted.
Furthermore, given an injective sequence I, : w — 2¢, for some o € Jy, we claim that {({z] (l)}),y<,.€ :

l € w} has ({2)})y<x as accumulation point. Indeed, for every p € [w,2°), by construction,
_ . . J— "Y
7({21)) = po — m7s({a], ).

for each vy < k. O

Claim 4. G*' is not countably pracompact.

Proof of the claim. Since the proof of this claim is similar to the proof of Claim 2 of Theorem 3.1, we omit
the details of some arguments.
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Let Z C G*" be a dense subset. We shall show that there exists a sequence in Z that does not have an
accumulation point in GF'. We will again split the proof of this claim in two cases.

Case 1: There exists j € kT so that | J,_, SUPP(27) is infinite.

z2€Z

In this case, we may fix a sequence {z,, : m € w} C Z so that

SUPP(z),)\ | SUPP(z)) # 9,

p<m

for every m € w. We shall show that, for a given y € G, y is not an accumulation point of {z/ :m € w}. In
particular, this shows that {z,, : m € w} does not have an accumulation point in el

Remark 2. Although the arguments are analogous to those in Case 1 of Claim 2, as we are about to see,
there is another technical complication in this case. We can only guarantee the validity of Corollary 2.11
for suitably closed sets A so that A C X, for some v < k. In fact, while the mapping { € XoNA — ¢ € P
has to be injective,'? we wish to map 27, for § € Jp and v < &, to pg.

Let:

1) My € w be such that, for every m > My,

SUPP(z],) \ (U SUPP(z]) USUPP(y)) # 0;

p<m

2) Fy = |J SUPP(z)) USUPP(y);
p<My
3) for each i > 0,

F; = SUPP (2}, ;1)\ |J SUPP(z}) USUPP(y) | ;
p<Mo+i—1

4) for each i € w,
S (U Aon(U )
mew yeF;

5) A; be a suitably closed set containing D; such that A; C |J
6) for each i € w, ; € F; be arbitrarily chosen;
7) for each i € w, AY C X, be a suitably closed set containing A; N X,,.

vGF

In order to use Corollary 2.11, consider

« E=Aj;
- I=ARN X
{(Jg & €I} C P so that, foreach&—xﬁ €1, q¢ =pg;

13 Indeed, XN A will be the set I, in the notation of Corollary 2.11, and then (g¢)¢er has to be a family of incomparable selective
ultrafilters.
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and, for eachg—xﬂ el,

o ge=[f3%
L] dé:{xgg

By Corollary 2.11, we may ensure the existence of a homomorphism 6y : [A9]<“ — 2 such that 6, € A and
0o(y N X,,) = 0. Then, we define fy : [Ag]<“ — 2 so that, for every £ € Ay,

o
o)) = {20“5})’ oo
, i 0-

Note that, in this case, we still have 6y € A, and also

eO(y) = HO(y mX’YO) + Ho(y\X’Yo) = HO(y N Xvo) =0.

Suppose that we have constructed a set of homomorphisms {6; : i <1} C A, for [ > 0, such that:

i) 0; is a homomorphlsm defined in [Up<z A ] taking values in 2, for each i < [;
ii) Oo(y) =
iii) 6; extends 0;_1 for each 0 < 7 < [;
iv) 92(2M0+p)—1f0r each 0 <i<land p=0,...,7— 1.

Again, in order to use Corollary 2.11, consider:

« E=AY;
o [—AOQXSL,
o {ge¢: & €I} CP so that, foreachf—xﬁ €1, q¢ = pg;

and, for eachf—wﬁ el,

o 9e = f3
L] dg = {lel

By Corollary 2.11, we may ensure the existence of a homomorphism v : [A9]<% — 2 so that Y € Aand

QZJ(Z%/IO-&-l—l n X’n) +01 (Zi/lo—i-l—l \ U Xv) =1
YEF
Then, we define ¢ : [4;]<“ — 2 so that, for every £ € 4,

_fiten. ween
v({€}) = {0’ it gAY

Let 6, : [Upgl Ap]<w — 2 be a homomorphism extending both 6;_; and 1. By construction, we have
that 6;(y) = 0, 6; € A, and also that



28 A.H. Tomita, J. Trianon-Fraga / Topology and its Applications 327 (2023) 108434

el(ZngHq) =0, (Z?%Jrlq N U Xv) + 0, (Zg\/[oJrl—l \ U Xv)

YEF YEF

- @E(Z?L10+l—1 N Xw) + ¢(Zg\40+l—1 N U X"’) +0i (Zgwﬁl_l \ U XW)

YEF\{} YEF,

= /‘/;(Z?\/Io-&-l—l N X’n) + 011 (25\40“—1 \ U X'y) =1L
YEF,

Moreover, it follows by construction that Hl(zf%w) = 01_1(z%40+p) =1 for each 0 < p < I— 1. Therefore,
there exists a family of homomorphisms {6; : i € w} C A satisfying i)-iv) for every [ € w.
Letting A = J, ., A4;, the homomorphism 6 = J,__ 0; : [A]<% — 2, satisfies that:

1€w €W

e O € A
« 0(y)=0;
o 0(23g,4,) = 1 for every p € w.

By construction, there exists u € [w,2°) so that § = o, thus 7, : [2°]<¥ — 2 satisfies that 7,(z,) = 1
for each m > My, and 7,,(y) = 0. Hence, y € G is not an accumulation point of {27, : m € w}.

Case 2: For every j € kT, M; = J,., SUPP(27) is finite.

Since, in this case,

U {je/ﬁ:Mj:F}:/ﬁ,
Felr|<w

there exists Fy € [k]< so that N = {j erxt:M;= Fo} is infinite. Choose Ny C N so that |Ng| = w, and
let {j; : ¢ € w} be an enumeration of Ny.

Now, consider the set {U} : k € w,i € w} of nonempty open subsets of G given by Lemma 2.7. For each
k € w, we may choose an element z, € Z N ][], ., Ui x G+ \or-dt} | Similarly to what was done in Case 2
of Claim 2, we can fix a subsequence {k! :m = w}, for each i € w, so that:

o {kitl:m € w} refines {k%, : m € w}, for each i € w;

e for every i € w, p < i and vy € Fy, either the family {zi’; N X, : m € w} is linearly independent or
constant;
. kf) > i, for each i € w.

Notice at this point that
{Ziin :iEw,mEUJ}
is linearly independent. For each i € w, let
M—m = {fy € Fy: {zim NX, :m € w} is linearly independent}.

Again, we have that M;, # () for every i € w. Then, choose a,b € w, b > a, so that M = M, = M,,. In this
case, there exist cq,cp € [2°]<“ so that

zy = (zi’b n U X7>Acl7
yeM
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for each [ € {a,b} and m € w. Thus, there exists mg € w so that

{zilb N U Xyim>my, L€ {a,b}}

yeM

is linearly independent. By Lemma 2.2, we may fix a subsequence {k,, : m € w} of {k’, : m € w} and
Yo € M so that

m

{zil NX, :mecw,le {a,b}}

is linearly independent.
We shall show that {(zi‘;,zﬁn) :m € w} does not have an accumulation point in G2. For this purpose,
consider:

o = (2" 2') € G? chosen arbltrarlly,
« for each I € {a,b} and m € w, yl, = zil NXy0s
o E C X, asuitably closed set containing (z° Uz!') N X, and ¢/, for each I € {a,b} and m € w, so that

[E\U{y 1€ {a,b}, m € w}| = w;
« I=ENX%;

Yo’
o {ge: & €I} C P so that, foreachf—xﬁ €1, q¢ = pg;

o foreach { =z} €1, df—{x
. foreachgfzﬁ €l,ge= f

By Lemma 2.12, there exists a homomorphism ® : [E]<“ — 2 so that:

i) for every s € (xo Uz )N X, ®({s}) =0
ii) for every £ = :cﬂ el,

S({}'}) = ps — lim &3 ());
iit) {m € w: (®(ys), @(yL,)) = (0,0)} is finite.

Now, we may consider E a suitably closed set containing £, z° U z!, and Z',?m , for each [ € {a,b} and
m € w, so that EN X, = E. Let ® : [E]<“ — 2 be the homomorphism such that, for each ¢ € E,

w({c)) = {g’({f})’ o

Then, ® € A,

Thus, we conclude that
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is finite. Since, by construction, there exists 1 € [w,2%) so that o, = ®, we conclude that x cannot be an
accumulation point of {(2{" , 2" ) : m € w}. Since x € G* is arbitrary, {z,, : m € w} C Z does not have
an accumulation point in Gr'.

Therefore, G*" is not countably pracompact. 0O
5. Some remarks and questions

As we already mentioned in the first section, in the case of selectively pseudocompact groups, the Comfort-
like Question 1.10 is still not solved consistently only for the case o = w:

Question 5.1. Is there a topological group G so that G is selectively pseudocompact for every k € w, but
G“ is not selectively pseudocompact?

In the case there is a positive consistent answer to the above question, one can also ask:

Question 5.2. Is there a topological group G so that G* is countably compact for every k € w, but G¥ is
not selectively pseudocompact?

Regarding countably pracompact topological groups, Theorem 4.1 for x = 2° shows that there exists a
group G so that G2° is countably pracompact but G297 is not countably pracompact. Interestingly, for
countably compact spaces we know that this is not the case: given a Hausdorff topological space X, if X?'
is countably compact, then X is countably compact for every o > 2¢. Thus, it may be interesting to study
the following questions further. The first one is a stronger version of Question 1.11 for a = w, which we
solved in this paper.

Question 5.3. Is there a topological group G so that G* is countably compact for every k € w and G¥ is not
countably pracompact?

Question 5.4. For which limit cardinals w < o < 2€ is there a topological group G such that G” is countably
pracompact for every cardinal v < «, but G¢ is not countably pracompact?

Question 5.5. For which cardinals a > (2°)%" is there a topological group G such that G7 is countably
pracompact for all cardinals v < «, but G* is not countably pracompact?

Also, it is natural to ask which the stopping point is, if any:

Question 5.6. Is there a cardinal s such that, for each topological group G, G* countably pracompact implies
that G7 is countably pracompact for every v > k7

In ZFC, as mentioned, we do not even know answers to the following questions.

Question 5.7 (ZFC).

a) Is there a selectively pseudocompact group whose square is not selectively pseudocompact?
b) (stronger version) Is there a countably compact group whose square is not selectively pseudocompact?

Question 5.8 (ZFC).

a) Is there a countably pracompact group whose square is not countably pracompact?
b) (stronger version) Is there a countably compact group whose square is not countably pracompact?
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