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In 1990, Comfort asked: is there, for every cardinal number α ≤ 2c, a topological 
group G such that Gγ is countably compact for all cardinals γ < α, but Gα is not 
countably compact? A similar question can also be asked for countably pracompact 
groups: for which cardinals α is there a topological group G such that Gγ is 
countably pracompact for all cardinals γ < α, but Gα is not countably pracompact? 
In this paper we construct such group in the case α = ω, assuming the existence 
of c incomparable selective ultrafilters, and in the case α = κ+, with ω ≤ κ ≤ 2c, 
assuming the existence of 2c incomparable selective ultrafilters. In particular, under 
the second assumption, there exists a topological group G so that G2c is countably 
pracompact, but G(2c)+ is not countably pracompact, unlike the countably compact 
case.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, every topological space will be Tychonoff (Hausdorff and completely regular) and 
every topological group will be Hausdorff (thus, also Tychonoff). For an infinite set X, [X]<ω will denote 
the family of all finite subsets of X, and [X]ω will denote the family of all countable subsets of X. Recall 
that an infinite topological space X is said to be

• pseudocompact if each continuous real-valued function on X is bounded;
• countably compact if every infinite subset of X has an accumulation point in X;
• countably pracompact if there exists a dense subset D in X such that every infinite subset of D has an 

accumulation point in X.
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We denote the set of non-principal (free) ultrafilters on ω by ω∗. The following notion was introduced by 
Bernstein [3]:

Definition 1.1 ([3]). Let p ∈ ω∗ and {xn : n ∈ ω} be a sequence in a topological space X. We say that x ∈ X

is a p-limit point of {xn : n ∈ ω} if {n ∈ ω : xn ∈ U} ∈ p for every neighborhood U of x.

Notice that if X is a Hausdorff space, for each p ∈ ω∗ a sequence {xn : n ∈ ω} ⊂ X has at most one 
p-limit point x and we write x = p − limn∈ω xn in this case.

One may write the compact-like definitions above using the notion of p-limits. In fact, it is not hard to 
show that x ∈ X is an accumulation point of a sequence {xn : n ∈ ω} ⊂ X if and only if there exists p ∈ ω∗

such that x = p − limn∈ω xn. Thus, we have that

• X is countably compact if and only if every sequence {xn : n ∈ ω} ⊂ X has a p-limit, for some p ∈ ω∗.
• X is countably pracompact if and only if there exists a dense subset D in X such that every sequence 

{xn : n ∈ ω} ⊂ D has a p-limit in X, for some p ∈ ω∗.

For pseudocompact spaces, a similar equivalence holds: X is pseudocompact if and only if for every countable 
family {Un : n ∈ ω} of nonempty open sets of X, there exists x ∈ X and p ∈ ω∗ such that, for each 
neighborhood V of x, {n ∈ ω : V ∩ Un �= ∅} ∈ p.

There are many concepts related to compactness and pseudocompactness which have emerged in the last 
years. In this paper, we highlight the following, which was introduced in [8].

Definition 1.2 ([8]). A topological space X is called selectively pseudocompact3 if for each sequence {Un :
n ∈ ω} of nonempty open subsets of X there is a sequence {xn : n ∈ ω} ⊂ X, x ∈ X and p ∈ ω∗ such that 
x = p − limn∈ω xn and, for each n ∈ ω, xn ∈ Un.

It is clear that every selectively pseudocompact space is pseudocompact and every countably pracompact 
space is selectively pseudocompact. Also, it was proved in [9] that there exists a pseudocompact topological 
group which is not selectively pseudocompact, and in [17] that there exists a selectively pseudocompact 
group which is not countably pracompact.

We shall now briefly recall the definitions and some facts about selective ultrafilters and the Rudin-Keisler 
order.

Definition 1.3. A selective ultrafilter on ω is a free ultrafilter p on ω such that for every partition {An : n ∈ ω}
of ω, either there exists n ∈ ω such that An ∈ p or there exists B ∈ p such that |B ∩ An| = 1 for every 
n ∈ ω.

Given an ultrafilter p on ω and a function f : ω → ω, note that

f∗(p)
.= {A ⊂ ω : f−1(A) ∈ p}

is also an ultrafilter on ω. Consider then the following definition.

Definition 1.4. Given p, q ∈ ω∗, we say that p ≤RK q if there exists a function f : ω → ω so that f∗(q) = p. 
Such relation on ω∗ is a preorder called the Rudin-Keisler order.

3 This concept was originally defined under the name strong pseudocompactness, but later the name was changed, since there 
were already two different properties named in the previous way (in [1] and [7]).
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We say that p, q ∈ ω∗ are:

• incomparable if neither p ≤RK q or q ≤RK p;
• equivalent if p ≤RK q and q ≤RK p.

The existence of selective ultrafilters is independent of ZFC. In fact, there exists a model of ZFC in which 
there are no P -points4 in ω∗ [19], while Martin’s axiom (MA) implies the existence of 2c incomparable 
selective ultrafilters [4].

Pseudocompactness is not preserved under products for arbitrary topological spaces [15], but interest-
ingly Comfort and Ross proved that the product of any family of pseudocompact topological groups is 
pseudocompact [6]. This result motivated Comfort to question whether the product of countably compact 
groups is also countably compact. More generally, he asked the following question [5]:

Question 1.5 ([5], Question 477). Is there, for every (not necessarily infinite) cardinal number α ≤ 2c, a 
topological group G such that Gγ is countably compact for all cardinals γ < α, but Gα is not countably 
compact?

The restriction α ≤ 2c in the question above is due to the following result:

Theorem 1.6 ([12], Theorem 2.6). Let X be a Hausdorff topological space. The following statements are 
equivalent:

(i) every power of X is countably compact;
(ii) X2c is countably compact;
(iii) X |X|ω is countably compact;
(iv) there exists p ∈ ω∗ such that X is p-compact.5

Van Douwen was the first to prove consistently (under MA) that there are two countably compact groups 
whose product is not countably compact [18]. Also, Question 1.5 was answered positively in [16], assuming 
the existence of 2c selective ultrafilters and that 2c = 2<2c . Finally, in 2021, it was proved in ZFC that there 
are two countably compact groups whose product is not countably compact [13].

It is natural also to ask productivity questions for countably pracompact and selectively pseudocompact 
groups. In this regard, Garcia-Ferreira and Tomita proved that if p and q are non-equivalent (according 
to the Rudin-Keisler order in ω∗) selective ultrafilters on ω, then there are a p-compact group and a q-
compact group whose product is not selectively pseudocompact [11]. Also, Bardyla, Ravsky and Zdomskyy 
constructed, under MA, a Boolean countably compact topological group whose square is not countably 
pracompact [2]. However, the following questions remain unsolved in ZFC.

Question 1.7 (ZFC). Is it true that selective pseudocompactness is non-productive in the class of topological 
groups?

Question 1.8 (ZFC). Is it true that countable pracompactness is non-productive in the class of topological 
groups?

4 A free ultrafilter p ∈ ω∗ is a P -point if, for every sequence (An)n∈ω of elements of p, there exists A ∈ p so that A \An is finite 
for each n ∈ ω. Every selective ultrafilter is a P -point.
5 Given p ∈ ω∗, a topological space X is p-compact if every sequence of points in X has a p-limit. The product of p-compact 

spaces is p-compact, for every p ∈ ω∗.
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More generally, one can ask Comfort-like questions, such as Question 1.5, for selectively pseudocompact 
and countably pracompact groups. In the case of selectively pseudocompact groups, the question is restricted 
to cardinals α ≤ ω, due to the next result.

Lemma 1.9. If G is a topological group such that Gω is selectively pseudocompact, then Gκ is selectively 
pseudocompact for every cardinal κ ≥ ω.

Proof. Indeed, let κ ≥ ω and (Un)n∈ω be a family of open subsets of Gκ. For every n ∈ ω, there are open 
subsets U j

n ⊂ G, for each j < κ, so that 
∏

j∈κ U
j
n ⊂ Un and U j

n �= G if and only if j ∈ Fn, for a finite subset 
Fn ⊂ κ. Let F .=

⋃
n∈ω Fn. For each n ∈ ω, consider the open subsets Vn

.=
∏

j∈Fn
U j
n ×

∏
j∈F\Fn

G ⊂ GF . 
By assumption, GF is selectively pseudocompact, thus there is a sequence {yn : n ∈ ω} ⊂ GF so that 
yn ∈ Vn, for every n ∈ ω, which has an accumulation point y in GF . Then, given g ∈ G arbitrarily, the 
sequence {xn : n ∈ ω} ⊂ Gκ defined coordinatewise, for each n ∈ ω, by

xj
n

.=
{
yjn, if j ∈ F

g, if j ∈ κ \ F

is such that xn ∈ Un for every n ∈ ω, and has x ∈ Gκ given by

xj .=
{
yj , if j ∈ F

g, if j ∈ κ \ F

as accumulation point. �
Question 1.10. For which cardinals α ≤ ω is there a topological group G such that Gγ is selectively pseudo-
compact for all cardinals γ < α, but Gα is not selectively pseudocompact?

In the case of countably pracompact groups, it is still not known whether there exists a cardinal κ
satisfying that: if a topological group G is such that Gκ countably pracompact, then Gα is countably 
pracompact, for each α > κ. Thus, there is no restriction to the cardinals α yet:

Question 1.11. For which cardinals α is there a topological group G such that Gγ is countably pracompact 
for all cardinals γ < α, but Gα is not countably pracompact?

It is worth observing that if Gω is countably compact and κ ≥ ω, then

Σ .= {g ∈ Gκ : |{α ∈ κ : gα �= 0}| ≤ ω}

is a dense subset of Gκ for which every infinite subset has an accumulation point. Thus, in this case Gκ is 
countably pracompact.

In [10], under the assumption of CH, the authors showed that for every positive integer k > 0, there 
exists a topological group G for which Gk is countably compact but Gk+1 is not selectively pseudocompact. 
Thus, Question 1.10 and Question 1.11 are already solved for finite cardinals under CH. The cardinal α = ω

is the only one for which there are still no consistent answers to the Question 1.10.
In this paper:

• assuming the existence of c incomparable selective ultrafilters, we answer Question 1.11 for α = ω;
• assuming the existence of 2c incomparable selective ultrafilters, we answer Question 1.11 for each suc-

cessor cardinal α = κ+, with ω ≤ κ ≤ 2c.
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We will be dealing with Boolean groups, which are also vector spaces over the field 2 = {0, 1}, and thus 
we can talk about general linear algebra concepts concerning these groups, such as linearly independent 
subsets. More specifically, if D ⊂ 2c is an infinite set, we will consider [D]<ω as a Boolean group, with the 
symmetric difference 
 as the group operation and ∅ as the neutral element.

Given p ∈ ω∗, one may define an equivalence relation on ([D]<ω)ω by letting f ≡p g iff {n ∈ ω : f(n) =
g(n)} ∈ p. We let [f ]p be the equivalence class determined by f and ([D]<ω)ω/p be ([D]<ω)ω/ ≡p. Notice 
that this set has a natural vector space structure (over the field 2). For each D0 ∈ [D]<ω, the constant 
function in ([D]<ω)ω which takes only the value D0 will be denoted by �D0.

2. Auxiliary results

In this section we present the auxiliary results that we will use in the constructions. We start with a 
simple linear algebra lemma, stated and proved in [17].

Lemma 2.1 ([17]). Let A, B and C be subsets in a Boolean group. Suppose that A is a finite set and that 
A ∪C, B ∪C are linearly independent. Then there exists B′ ⊂ B such that |B′| ≤ |A| and A ∪C ∪ (B \B′)
is linearly independent.

The next two technical lemmas will also be useful.

Lemma 2.2. Let X be an infinite set and {X0, ..., Xn} be a partition of X. Let also (xk)k∈ω and (yk)k∈ω be 
sequences in the Boolean group [X]<ω so that:

• {xk : k ∈ ω} ∪ {yk : k ∈ ω} is linearly independent;
• for every p ∈ {0, ..., n}, both {xk ∩Xp : k ∈ ω} and {yk ∩Xp : k ∈ ω} are linearly independent.

Then, there exist a subsequence {km : m ∈ ω} and n0 ∈ {0, ..., n} so that

{xkm
∩Xn0 : m ∈ ω} ∪ {ykm

∩Xn0 : m ∈ ω}

is linearly independent.

Proof. We shall construct inductively a sequence (Ai
0)i∈ω of subsets of ω as follows. Firstly, if does not 

exist k ∈ ω so that {xk ∩ X0} ∪ {yk ∩ X0} is linearly independent, we put A0
0 = ∅. Otherwise, we choose 

the minimum k0 ∈ ω with this property and put A0
0

.= {k0}. Suppose that for l ∈ ω we have constructed 
A0

0, ..., A
l
0 ⊂ ω such that:

i) |Ai
0| ≤ i + 1, for each i = 0, ..., l;

ii) Ai
0 ⊂ Aj

0 if 0 ≤ i ≤ j ≤ l;
iii) {xk ∩X0 : k ∈ Al

0} ∪ {yk ∩X0 : k ∈ Al
0} is linearly independent.

iv) for each 0 ≤ i < l, Ai+1
0 \Ai

0 = ∅ if, and only if,

{xk ∩X0 : k ∈ Ai
0} ∪ {yk ∩X0 : k ∈ Ai

0} ∪ {xk̃ ∩X0} ∪ {yk̃ ∩X0}

is linearly dependent for every k̃ > max(Ai
0).

In what follows, we will construct Al+1
0 . If does not exist k̃ ∈ ω, k̃ > max(Al

0), so that

{xk ∩X0 : k ∈ Al
0} ∪ {yk ∩X0 : k ∈ Al

0} ∪ {xk̃ ∩X0} ∪ {yk̃ ∩X0}



6 A.H. Tomita, J. Trianon-Fraga / Topology and its Applications 327 (2023) 108434
is linearly independent, we put Al+1
0 = Al

0. Otherwise, we choose the minimum kl+1 ∈ ω with this property, 
and put Al+1

0 = Al
0 ∪ {kl+1}. In any case, A0

0, ..., A
l+1
0 satisfy items i)–iv), and then, by induction, there 

exists a sequence (Ai
0)i∈ω satisfying them. Now, let A0

.=
⋃

i∈ω Ai
0. If A0 is infinite, then {xk ∩ X0 : k ∈

A0} ∪ {xk ∩X0 : k ∈ A0} is linearly independent, and we are done.
On the other hand, suppose that A0 is finite. We may repeat the process above for X1, ..., Xn, constructing 

analogous subsets A1, ..., An ⊂ ω. If either of them is infinite, we are done.
Suppose then that A0, ..., An are finite sets. By construction, for each k̃ > max(A0 ∪ ... ∪ An) and 

j = 0, ..., n,

{xk ∩Xj : k ∈ Aj} ∪ {yk ∩Xj : k ∈ Aj} ∪ {xk̃ ∩Xj} ∪ {yk̃ ∩Xj}

is linearly dependent. Also, since, for every j = 0, ..., n,

Cj .= span({xk ∩Xj : k ∈ Aj} ∪ {yk ∩Xj : k ∈ Aj})

is finite and both {xk ∩Xj : k ∈ ω} and {yk ∩Xj : k ∈ ω} are linearly independent, we can fix:

• an infinite subset A ⊂ ω;
• cj ∈ Cj , for each j = 0, ..., n,

so that

xk̃ ∩Xj = (yk̃ ∩Xj)
cj ,

for every k̃ ∈ A and j = 0, ..., n. Thus,

xk̃ = (xk̃ ∩X0)
...
(xk̃ ∩Xn) = (yk̃ ∩X0)
...
(yk̃ ∩Xn)
(c0
...
cn) = yk̃
(c0
...
cn),

for every k̃ ∈ A, which is a contradiction, as {xk : k ∈ ω} ∪ {yk : k ∈ ω} is linearly independent. Hence, 
A0, ..., An cannot all be finite. �
Lemma 2.3. Let X be an infinite set, k > 0 and {(x0

n, ..., x
k−1
n ) : n ∈ ω} ⊂ ([X]<ω)k be a sequence. Then, 

there are:

• elements d0, ..., dk−1 ∈ [X]<ω;
• a subsequence {(x0

nl
, ..., xk−1

nl
) : l ∈ ω};

• for some6 0 ≤ t ≤ k, a sequence {(y0
nl
, ..., yt−1

nl
) : l ∈ ω} ⊂ ([X]<ω)t;

• for each 0 ≤ s < k, a function Ps : t → 2,

satisfying that

i) xs
nl

=
( t−1∑

i=0
Ps(i)yinl

)

ds, for every l ∈ ω and 0 ≤ s < k;

ii) {yinl
: l ∈ ω, 0 ≤ i < t} is linearly independent.

Proof. Fix q ∈ ω∗, and let

M .=
{
c ∈ [X]<ω : [�c]q ∈ span({[x0]q, ..., [xk−1]q})

}
.

6 If t = 0, we understand that there is no such sequence and item i) becomes: xs = d , for every l ∈ ω and 0 ≤ s < k.
nl
s
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It is clear that M is a finite set, thus let j ≥ 0 and {c0, ..., cj−1} ⊂ M be so that {c0, ..., cj−1}
is a basis for span(M) ⊂ [X]<ω. Then, let also t ≥ 0 and y0, ..., yt−1 ∈ ([X]<ω)ω be so that B .=
{[�c0]q, ..., [ �cj−1]q, [y0]q, ..., [yt−1]q} is a basis for span({[x0]q, ..., [xk−1]q}). Hence, there are A ∈ q, Ps : t → 2
and Cs : j → 2, for each 0 ≤ s < k, so that

xs
n =

t−1∑
i=0

Ps(i)yin

j−1∑
i=0

Cs(i)ci,

for every n ∈ A and 0 ≤ s < k. For each 0 ≤ s < k, let ds
.=
∑j−1

i=0 Cs(i)ci.
We shall prove that there exists an infinite subset I ⊂ A so that {yin : n ∈ I, 0 ≤ i < t} is linearly 

independent. First, note that for each c ∈ [X]<ω and nontrivial function P : t → 2 we have that

t−1∑
i=0

P (i)[yi]q �= [�c]q.

Therefore, there exists a subset AP,c ⊂ A, AP,c ∈ q, so that

t−1∑
i=0

P (i)yin �= c

for each n ∈ AP,c. In particular, we conclude that {yin : 0 ≤ i < t − 1} is linearly independent for every 
n ∈

⋂
P :t→2
P �=0

AP,∅
.= A0. We may choose n0 ∈ A0.

Now, suppose that, given p ≥ 1, for each l = 0, ..., p − 1 we have constructed Al ∈ q and nl ∈ Al so 
that {yinl

: 0 ≤ l < p, 0 ≤ i < t} is linearly independent, (nl)0≤l<p is strictly increasing and Al ⊂ A. Let 
Cp .= span({yinl

: 0 ≤ l < p, 0 ≤ i < t}),

Ap
.=

⋂
c∈Cp

P :t→2
P �=0

AP,c (⊂ A),

and fix np ∈ Ap, np > np−1. It is clear that Ap ∈ q and also {yinl
: 0 ≤ l ≤ p, 0 ≤ i < t} is linearly 

independent, by construction. Then, by induction, there are a sequence (Al)l∈ω of elements of q and a 
strictly increasing sequence (nl)l∈ω of naturals so that nl ∈ Al and {yinl

: l ∈ ω, 0 ≤ i < t} is linearly 
independent. Furthermore,

xs
nl

=
( t−1∑

i=0
Ps(i)yinl

)

ds,

for every l ∈ ω and 0 ≤ s < k. �
Next, we enunciate Lemma 3.5 and Lemma 3.6 of [16], and an immediate consequence of Lemma 2.1 of 

[9].

Lemma 2.4 ([16], Lemma 3.5). Let p0 and p1 be incomparable selective ultrafilters. Let {ajk : k ∈ ω} ∈ pj be 
a strictly increasing sequence such that ajk > k for every k ∈ ω and j ∈ 2. Then there exist subsets I0 and 
I1 of ω such that:

(i) {aj : k ∈ Ij} ∈ pj for each j ∈ 2;
k
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(ii) {[k, ajk] : j ∈ 2, k ∈ Ij} are pairwise disjoint intervals of ω.

As a corollary of the previous lemma, we obtain:

Lemma 2.5. Let n > 0 and {pj : j ≤ n} be incomparable selective ultrafilters. Let {ajk : k ∈ ω} ∈ pj be 
a strictly increasing sequence such that ajk > k for every k ∈ ω and j ≤ n. Then there exists a family 
{Ij : j ≤ n} of subsets of ω such that:

(i) {ajk : k ∈ Ij} ∈ pj for each j ≤ n;
(ii) {[k, ajk] : j ≤ n, k ∈ Ij} are pairwise disjoint intervals of ω.

Proof. We will show that the lemma is true for each n > 0 by induction. The case n = 1 is just Lemma 2.4.
Suppose that the result is true for a given n0 > 0. We claim that it is also true for n0 + 1. Indeed, let 

{pj : j ≤ n0 + 1} be incomparable selective ultrafilters and {ajk : k ∈ ω} ∈ pj be a strictly increasing 
sequence such that ajk > k for every k ∈ ω and j ≤ n0 +1. By hypothesis, there exists a family {Ĩj : j ≤ n0}
of subsets of ω so that:

• {ajk : k ∈ Ĩj} ∈ pj for each j ≤ n0;
• {[k, ajk] : j ≤ n0, k ∈ Ĩj} are pairwise disjoint intervals of ω.

Also, by Lemma 2.4, for each j ≤ n0 there exist Ij ⊂ Ĩj and Kj ⊂ ω so that:

• {ajk : k ∈ Ij} ∈ pj and {an0+1
k : k ∈ Kj} ∈ pn0+1;

• {[k, ajk] : k ∈ Ij} ∪ {[k, an0+1
k ] : k ∈ Kj} are pairwise disjoint intervals of ω.

Then, defining In0+1
.=
⋂n0

j=0 Kj , we have that {Ij : j ≤ n0 +1} satisfies the hypothesis we want. Therefore, 
the lemma is true for every n > 0. �

The countable version of the previous result is Lemma 3.6 of [16]:

Lemma 2.6 ([16], Lemma 3.6). Let {pj : j ∈ ω} be incomparable selective ultrafilters. Let {ajk : k ∈ ω} ∈ pj
be a strictly increasing sequence such that ajk > k for each k, j ∈ ω. Then there exists a family {Ij : j ∈ ω}
of subsets of ω such that:

(i) {ajk : k ∈ Ij} ∈ pj for each j ∈ ω;
(ii) {[k, ajk] : j ∈ ω, k ∈ Ij} are pairwise disjoint intervals of ω.

Lemma 2.7 ([9]). Let G be a non-discrete Boolean topological group. Then there exist nonempty open sets 
{U j

k : k ∈ ω, j ∈ ω} such that if uj
k ∈ U j

k for each k, j ∈ ω, then {uj
k : k, j ∈ ω} is linearly independent.

The following results ensure the existence of certain homomorphisms, necessary to construct the topo-
logical groups we want. Their proofs are based on Lemma 3.7 and Lemma 4.1 of [16], and also Lemma 4.1
of [11].

Lemma 2.8. Let:

• E be a countable subset of 2c and I ⊂ E;
• F ⊂ E be a finite subset;
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• for each ξ ∈ I, kξ ∈ ω;
• {pξ : ξ ∈ I} be a family of incomparable selective ultrafilters.
• for each ξ ∈ I, gξ : ω → ([E]<ω)kξ be a function so that {gjξ(m) : j < kξ, m ∈ ω} is linearly independent;
• for each ξ ∈ I, dξ ∈ ([E]<ω)kξ .

Then there exist an increasing sequence {bi : i ∈ ω} ⊂ ω, a surjective function r : ω → I and a sequence 
{Ei : i ∈ ω} of finite subsets of E such that:

a) F ⊂ E0;
b) E =

⋃
i∈ω Ei;

c) r(m) ∈ Em for each m ∈ ω;
d)

⋃
{djr(m) : j < kr(m)} ⊂ Em, for each m ∈ ω;

e) Em+1 ⊃
⋃

({gjξ(bm) : ξ ∈ Em ∩ I, j < kξ}) ∪Em, for each m ∈ ω;
f) {gjr(m)(bm) : j < kr(m)} ∪ {{μ} : μ ∈ Em} is linearly independent, for each m ∈ ω;
g) {bi : i ∈ r−1(ξ)} ∈ pξ, for every ξ ∈ I.

Furthermore, if {yn : n ∈ ω} ⊂ E is faithfully indexed, then Ei can be arranged for each i ∈ ω so that
h) {n ∈ ω : yn ∈ Ei} = 2Ni, for some Ni ∈ ω, and (Ni)i∈ω is a strictly increasing sequence.7

Proof. Suppose first that I is infinite. Let E .= {ξn : n ∈ ω} be an enumeration and s : ω → ω be a strictly 
increasing function such that {ξs(j) : j ∈ ω} = I. We will first define a family {Fn : n ∈ ω} of finite subsets 
of E. This family will be used to construct the family {En : n ∈ ω}.

Choose N0 ∈ ω so that 
{
n ∈ ω : yn ∈ F ∪ {ξ0} ∪ (

⋃
{djξs(0) : j < kξs(0)})

}
⊂ 2N0, and define

F0
.= {yn : n ≤ 2N0} ∪ F ∪ {ξ0} ∪ (

⋃
{djξs(0) : j < kξs(0)}).

Suppose that we have defined finite subsets F0, ..., Fl ⊂ E so that

1) ξp ∈ Fp for each 0 ≤ p ≤ l;
2) Fp+1 ⊃

⋃
({gjβ(m) : m ≤ p, β ∈ Fp ∩ I, j < kβ}) ∪ Fp for each 0 ≤ p < l.

3)
⋃
{djξs(p)

: j < kξs(p)} ⊂ Fp, for each 0 ≤ p ≤ l.
4) {n ∈ ω : yn ∈ Fp} = 2Np, for some Np ∈ ω, for each 0 ≤ p ≤ l.

Now choose Nl+1 > Nl so that{
n ∈ ω : yn ∈

⋃(
{gjβ(m) : m ≤ l, β ∈ Fl ∩ I, j < kβ} ∪ {djξs(l+1)

: j < kξs(l+1)}
)
∪ Fl ∪ {ξl+1}

}
⊂ 2Nl+1,

and then define

Fl+1
.= {yn : n ≤ 2Nl+1} ∪

⋃(
{gjβ(m) : m ≤ l, β ∈ Fl ∩ I, j < kβ} ∪ {djξs(l+1) : j < kξs(l+1)}

)
∪Fl ∪ {ξl+1}.

It is clear that 1), 2), 3) and 4) are also satisfied for F0, ..., Fl+1. Then, we may construct recursively a 
family {Fn : n ∈ ω} of finite subsets of E satisfying 1)-4) for every p ∈ ω. We also have that E =

⋃
i∈ω Fi.

For each ξ ∈ I and n ∈ ω, let

Aξ
n

.= {m ∈ ω : {gjξ(m) : j < kξ} ∪ {{μ} : μ ∈ Fn} is linearly independent}.

7 For every K ∈ ω, K ≥ 2, we could also arrange Ei for each i ∈ ω so that {n ∈ ω : yn ∈ Ei} ⊂ KNi, for some Ni ∈ ω, and 
(Ni)i∈ω is strictly increasing. The proof would be analogous.
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Since {gjξ(m) : j < kξ, m ∈ ω} is linearly independent and Fn is finite, we have that Aξ
n is cofinite, and 

then Aξ
n ∈ pξ, for every n ∈ ω and ξ ∈ I. Since selective ultrafilters are P -points, for each ξ ∈ I there exists 

Aξ ∈ pξ so that Aξ \Aξ
n is finite for every n ∈ ω.

Now, for each ξ ∈ I, let vξ : ω → ω be a strictly increasing function so that Aξ \Aξ
n ⊂ vξ(n), for each n ∈

ω. As every pξ is a selective ultrafilter, for each ξ ∈ I there exists Bξ ∈ pξ such that

Bξ ∩ vξ(1) = ∅, Bξ ⊂ Aξ and |[vξ(n) + 1, vξ(n + 1)] ∩Bξ| ≤ 1, for each n ∈ ω.

Let {aξn : n ∈ ω} be the strictly increasing enumeration of Bξ, for each ξ ∈ I. Notice that aξn > vξ(n) ≥ n

for each n ∈ ω and ξ ∈ I. Thus,

aξn ∈ Aξ
n, for each ξ ∈ I and n ∈ ω,

and, by Lemma 2.6, there exists a family {Iξ : ξ ∈ I} of subsets of ω such that:

i) {aξi : i ∈ Iξ} ∈ pξ for each ξ ∈ I;
ii) {[i, aξi ] : ξ ∈ I and i ∈ Iξ} are pairwise disjoint intervals of ω.

By ii), the sets {Iξ : ξ ∈ I} are pairwise disjoint. We may also assume without loss of generality that 
Iξs(k) ⊂ ω \ s(k) for every k ∈ ω. Let {im : m ∈ ω} be the strictly increasing enumeration of 

⋃
n∈ω Iξs(n) and 

r : ω → I be such that r(m) = ξs(i) if and only if im ∈ Iξs(i) . Define also bm
.= a

r(m)
im

and Em
.= Fim , for 

each m ∈ ω.
Conditions a) and b) are trivially satisfied. Moreover, given m ∈ ω, if im ∈ Iξs(i) , then im ≥ s(i), 

and hence r(m) ∈ Em. Therefore, conditions c) and d) are satisfied. To check condition e), note that 
bm = a

r(m)
im

≤ im+1 − 1 and Em = Fim ⊂ Fim+1−1 for each m ∈ ω, thus

Em ∪
⋃

({gjξ(bm) : ξ ∈ Em ∩ I, j < kξ})

⊂ Fim+1−1 ∪
⋃

({gjξ(p) : p ≤ im+1 − 1, ξ ∈ Fim+1−1 ∩ I, j < kξ})

⊂ Fim+1 = Em+1.

Condition f) is also satisfied, since bm = a
r(m)
im

∈ A
r(m)
im

for each m ∈ ω, and hence,

{gjr(m)(bm) : j < kr(m)} ∪ {{μ} : μ ∈ Fim} is linearly independent.

To check condition g), simply note that, given ξ ∈ I,

{bm : m ∈ r−1(ξ)} = {aξi : i ∈ Iξ} ∈ pξ.

Condition h) follows by construction.
If I is finite, the proof is basically the same, replacing the use of Lemma 2.6 by Lemma 2.5. �

Lemma 2.9. Let:

• Z0 and Z1 be disjoint countable subsets of 2c, and E = Z0 ∪· Z1;
• I0 ⊂ Z0, I1 ⊂ Z1, and I

.= I0 ∪· I1;
• F ⊂ [E]<ω be a finite linearly independent subset and, for each f ∈ F , let nf ∈ 2;
• for each ξ ∈ I, kξ ∈ ω;
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• {pξ : ξ ∈ I} be a family of incomparable selective ultrafilters;
• for each ξ ∈ I, δξ = 0 if ξ ∈ I0 and δξ = 1 if ξ ∈ I1;
• for every ξ ∈ I, gξ : ω → ([Zδξ ]<ω)kξ be a function so that {gjξ(m) : j < kξ, m ∈ ω} is linearly 

independent;
• for each ξ ∈ I, dξ ∈ ([Zδξ ]<ω)kξ ;
• {z0

n : n ∈ ω} ⊂ Z0 and {z1
n : n ∈ ω} ⊂ Z1 be sequences of pairwise distinct elements.

Then, given (α0, α1) ∈ 2 × 2, there exists a homomorphism Φ : [E]<ω → 2 such that:

(i) Φ(f) = nf , for every f ∈ F ;
(ii) for every ξ ∈ I,

{
n ∈ ω :

(
Φ(g0

ξ (n)), ...,Φ(gkξ−1
ξ (n))

)
=

(
Φ(d0

ξ), ...Φ(dkξ−1
ξ )

)}
∈ pξ;

(iii) {n ∈ ω :
(
Φ({z0

n}), Φ({z1
n})

)
= (α0, α1)} is finite.

Proof. Firstly we apply Lemma 2.8 using the elements given in the hypothesis, F =
⋃

F , and the following 
sequence y : ω → E for item h): for each n ∈ ω, write n = 2q + j for the unique q ∈ ω and j ∈ 2, and put

y2q+j =
{
z0
q , if j = 0
z1
q , if j = 1.

Thus we obtain {bi : i ∈ ω} ⊂ ω, r : ω → I and {Em : m ∈ ω} ⊂ [E]<ω satisfying a)–h).
We shall define auxiliary homomorphisms Φm : [Em]<ω → 2 inductively. First, we define Φ0 : [E0]<ω → 2

so that Φ0(f) = nf for each f ∈ F . Now, suppose that, for l ∈ ω, we have defined homomorphisms 
Φm : [Em]<ω → 2 for each m = 0, ..., l, so that

(1) Φm+1 extends Φm for each 0 ≤ m < l;
(2) for every 0 ≤ m < l,

(
Φm+1(g0

r(m)(bm)), ...,Φm+1(g
kr(m)−1
r(m) (bm))

)
=

(
Φm(d0

r(m)), ...,Φm(dkr(m)−1
r(m) )

)
;

(3)
(
Φm({z0

n}), Φm({z1
n})

)
�= (α0, α1) for each 0 < m ≤ l and n ∈ ω so that z0

n ∈ Em \ Em−1.

We shall prove that we may define Φl+1 : [El+1]<ω → 2 so that Φ0, ..., Φl+1 also satisfy (1), (2) and 
(3). For this, suppose without loss of generality that r(l) ∈ I0. By item f) of Lemma 2.8, {gjr(l)(bl) : j <

kr(l)} ∪ {{μ} : μ ∈ El} is linearly independent, and, by item h), for every n, m ∈ ω, z0
n ∈ Em if, and only if, 

z1
n ∈ Em. Since gjr(l)(bl) ∈ [Z0]<ω for every j < kr(l), and z1

n ∈ Z1 for every n ∈ ω, we conclude that

{{z1
n} : z0

n ∈ El+1 \ El} ∪ {gjr(l)(bl) : j < kr(l)} ∪ {{μ} : μ ∈ El} (†)

is linearly independent. Therefore, using items d) and e) of Lemma 2.8, we may define Φl+1 : [El+1]<ω → 2
extending Φl so that

(Φl+1(g0
r(l)(bl)), ...,Φl+1(g

kr(l)−1
r(l) (bl))) = (Φl(d0

r(l)), ...,Φl(d
kr(l)−1
r(l) ))

and
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Φl+1({z1
n}) �= α1 (‡)

for each n ∈ ω such that z0
n ∈ El+1 \ El. Thus, we have that Φ0, ..., Φl+1 also satisfy (1), (2) and (3), and 

therefore there exists a sequence (Φm)m∈ω of homomorphisms Φm : [Em]<ω → 2 satisfying these properties.
We claim that the homomorphism Φ 

.=
⋃

n∈ω Φn : [E]<ω → 2 satisfies the hypothesis we want. In fact, 
items (i) and (iii) are clear from the construction and item (ii) follows from the fact that for every ξ ∈ I,

(Φ(g0
ξ (bi)), ...,Φ(gkξ−1

ξ (bi))) = (Φ(d0
ξ), ...,Φ(dkξ−1

ξ )),

for each i ∈ r−1(ξ), and that {bi : i ∈ r−1(ξ)} ∈ pξ, by item g) of Lemma 2.8. �
The next result is a stronger version of the previous lemma, and uses it in its proof.

Lemma 2.10. Let:

• Z0 and Z1 be disjoint countable subsets of 2c, and E = Z0 ∪· Z1;
• I0 ⊂ Z0, I1 ⊂ Z1, and I

.= I0 ∪· I1;
• F ⊂ [E]<ω be a linearly independent finite subset and, for each f ∈ F , let nf ∈ 2;
• for each ξ ∈ I, kξ ∈ ω;
• {pξ : ξ ∈ I} be a family of incomparable selective ultrafilters;
• for each ξ ∈ I, δξ = 0 if ξ ∈ I0 and δξ = 1 if ξ ∈ I1;
• for every ξ ∈ I, gξ : ω → ([Zδξ ]<ω)kξ be a function so that {gjξ(m) : j < kξ, m ∈ ω} is linearly 

independent;
• for each ξ ∈ I, dξ ∈ ([Zδξ ]<ω)kξ ;
• {y0

n : n ∈ ω} ⊂ [Z0]<ω and {y1
n : n ∈ ω} ⊂ [Z1]<ω be linearly independent subsets.

Suppose that |Zi \
⋃
{yin : n ∈ ω}| = ω, for each i ∈ 2. Then, given (α0, α1) ∈ 2 × 2, there exists a 

homomorphism Φ : [E]<ω → 2 such that:

(i) Φ(f) = nf , for every f ∈ F ;
(ii) for every ξ ∈ I,

{
n ∈ ω :

(
Φ(g0

ξ (n)), ...,Φ(gkξ−1
ξ (n))

)
=

(
Φ(d0

ξ), ...,Φ(dkξ−1
ξ )

)}
∈ pξ;

(iii) {n ∈ ω : (Φ(y0
n), Φ(y1

n)) = (α0, α1)} is finite.

Proof. For each i ∈ 2, let {zin : n ∈ ω} be an enumeration of 
⋃
{yin : n ∈ ω}. Next, we extend {yin : n ∈ ω}

to a basis Bi of [Zi]<ω and also {{zin} : n ∈ ω} to a basis Ci of [Zi]<ω, for each i ∈ 2. By assumption, 
|Ci \ {{zin} : n ∈ ω}| = |Bi \ {yin : n ∈ ω}| = ω, thus we may consider enumerations {eik : k ∈ ω} of 
Ci \ {{zin} : n ∈ ω}} and {f i

k : k ∈ ω} of Bi \ {yin : n ∈ ω}. It is clear that both B0 ∪ B1 and C0 ∪ C1 are 
basis of [E]<ω.

Let θ : [E]<ω → [E]<ω be the isomorphism defined by

θ(yin) = {zin},

and

θ(f i
k) = eik,
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for each i ∈ 2 and n, k ∈ ω. Note that θ|[Zi]<ω : [Zi]<ω → [Zi]<ω is also an isomorphism, for each i ∈ 2.
Let, for every ξ ∈ I, hξ : ω → ([Zδξ ]<ω)kξ be given by hj

ξ(n) = θ(gjξ(n)) for each n ∈ ω and j < kξ, and 

dξ ∈ ([Zδξ ]<ω)kξ be given by d
j

ξ = θ(djξ), for each j < kξ.
By Lemma 2.9, there exists a homomorphism Φ : [E]<ω → 2 so that:

(i) Φ(θ(f)) = nf , for every f ∈ F ;
(ii) For every ξ ∈ I, 

{
n ∈ ω :

(
Φ(h0

ξ(n)), ...,Φ(hkξ−1
ξ (n))

)
=

(
Φ(d0

ξ), ...Φ(dkξ−1
ξ )

)}
∈ pξ;

(iii) {n ∈ ω : (Φ({z0
n}), Φ({z1

n})) = (α0, α1)} is finite.

Thus, the homomorphism Φ 
.= Φ ◦ θ : [E]<ω → 2 satisfies the hypothesis we want. �

Remark 1. Note that in the statement of the previous lemma, item (iii) can be replaced by the following 
(stronger) condition, for a given α ∈ 2:

(iii) {n ∈ ω : Φ(y0
n
y1

n) = α} is finite.

Indeed, we could replace condition (†) in the proof of Lemma 2.9 by the fact that

{{z0
n, z

1
n} : z0

n ∈ El+1 \ El} ∪ {gjr(l)(bl) : j < kr(l)} ∪ {{μ} : μ ∈ El}

is linearly independent, thus in equation (‡) we could choose

Φl+1({z0
n, z

1
n}) �= α

for each n ∈ ω such that z0
n ∈ El+1 \ El. Then, the proof of Lemma 2.10 would remain the same, just 

replacing the old condition with the new one when required.

The next result is an easy corollary of the previous lemma.

Corollary 2.11. Let:

• E be a countable subset of 2c;
• I ⊂ E;
• F ⊂ [E]<ω be a linearly independent finite subset and, for each f ∈ F , let nf ∈ 2;
• for each ξ ∈ I, kξ ∈ ω.
• {pξ : ξ ∈ I} be a family of incomparable selective ultrafilters;
• for every ξ ∈ I, gξ : ω → ([E]<ω)kξ be a function so that {gjξ(m) : j < kξ, m ∈ ω} is linearly 

independent;
• for every ξ ∈ I, dξ ∈ ([E]<ω)kξ .

Then there exists a homomorphism Φ : [E]<ω → 2 such that:

(i) Φ(f) = nf , for every f ∈ F ;
(ii) For every ξ ∈ I, 

{
n ∈ ω :

(
Φ(g0

ξ (n)), ...,Φ(gkξ−1
ξ (n))

)
=

(
Φ(d0

ξ), ...Φ(dkξ−1
ξ )

)}
∈ pξ.

Although the proof of the following result is similar to the proof of Lemma 2.9 and Lemma 2.10, we 
present it here for the sake of completeness.
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Lemma 2.12. Let:

• E be a countable subset of 2c;
• I ⊂ E;
• F ⊂ [E]<ω be a linearly independent finite subset and, for each f ∈ F , let nf ∈ 2;
• n ∈ ω;
• {pξ : ξ ∈ I} be a family of incomparable selective ultrafilters;
• for every ξ ∈ I, gξ : ω → ([E]<ω)n be a function so that {gjξ(m) : j < n, m ∈ ω} is linearly independent;
• for every ξ ∈ I, dξ ∈ ([E]<ω)n;
• {yjk : k ∈ ω, j ≤ n} ⊂ [E]<ω be a linearly independent subset.

Suppose that |E \
⋃
{yjk : k ∈ ω, j ≤ n}| = ω. Then, given (α0, ..., αn) ∈ 2n+1, there exists a homomorphism 

Φ : [E]<ω → 2 such that:

(i) Φ(f) = nf , for every f ∈ F ;
(ii) for every ξ ∈ I, 

{
k ∈ ω :

(
Φ(g0

ξ (k)), ...,Φ(gn−1
ξ (k))

)
=

(
Φ(d0

ξ), ...Φ(dn−1
ξ )

)}
∈ pξ;

(iii) {k ∈ ω : (Φ(y0
k), ..., Φ(ynk )) = (α0, ...., αn)} is finite.

Proof. We split the proof in two cases.
Case 1: Suppose that each yjk is a singleton, that is, yjk = {zjk}, for some zjk ∈ E, for every j ≤ n and 

k ∈ ω.

In this case, we apply Lemma 2.8 using the elements of the statement, F .=
⋃
F , kξ = n for each ξ ∈ I, 

and the following sequence w : ω → E in item h): for each m ∈ ω, write m = (n + 1)q + j for the unique 
q ∈ ω and j ∈ (n +1), and put wm = zjq . Thus, we obtain {bi : i ∈ ω}, r : ω → I and {Em : m ∈ ω} ⊂ [E]<ω

satisfying a)-h) of this lemma.
We shall again define auxiliary homomorphisms Φm : [Em]<ω → 2, for each m ∈ ω, inductively. First, 

define Φ0 : [E0]<ω → 2 so that Φ0(f) = nf , for each f ∈ F . Suppose that, for l ∈ ω, we have defined 
Φm : [Em]<ω → 2, for each m = 0, ..., l, satisfying that:

(1) Φm+1 extends Φm, for each 0 ≤ m < l;
(2) for every 0 ≤ m < l,

(
Φm+1(g0

r(m)(bm)), ...,Φm+1(gn−1
r(m)(bm))

)
=

(
Φm(d0

r(m)), ...,Φm(dn−1
r(m))

)
;

(3)
(
Φm({z0

k}), ...Φm({znk })
)
�=

(
α0, ..., αn

)
for each 0 < m ≤ l and k ∈ ω so that z0

k ∈ Em \ Em−1.8

Now, since by construction {gjr(l)(bl) : j < n} ∪ {{μ} : μ ∈ El} is linearly independent, we may apply 

Lemma 2.1 with A 
.= {gjr(l)(bl) : j < n}, B .= {{zjk} : z0

k ∈ El+1, \El, j ≤ n} and C
.= {{μ} : μ ∈ El} to 

obtain a subset B′ ⊂ B such that |B′| ≤ |A| = n and

{gjr(l)(bl) : j < n} ∪ {{μ} : μ ∈ El} ∪ ({{zjk} : z0
k ∈ El+1 \ El, j ≤ n} \B′)

is linearly independent. Then, for each k ∈ ω so that z0
k ∈ El+1 \ El, there exists 0 ≤ jk ≤ n such that 

zj
k

k ∈ ({{zjk} : z0
k ∈ El+1 \El, j ≤ n} \B′). Thus, we may define Φl+1 : [El+1]<ω → 2 extending Φl so that

8 Recall that, by construction, given k, m ∈ ω, zj
k ∈ Em for some 0 ≤ j ≤ n if, and only if, zj

k ∈ Em for every 0 ≤ j ≤ n.
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(
Φl+1(g0

r(l)(bl)), ...,Φl+1(gn−1
r(l) (bl))

)
=

(
Φl(d0

r(l)), ...,Φl(dn−1
r(l) )

)
and

Φl+1({zj
k

k }) �= αjk ,

for every k ∈ ω so that z0
k ∈ El+1 \ El. Similarly to the proof of Lemma 2.9, we have that Φ0, ..., Φl+1

also satisfy (1)-(3), and therefore there exists a sequence (Φm)m∈ω of homomorphisms Φm : [Em]<ω → 2
satisfying such properties. Again, the homomorphism defined by Φ 

.=
⋃

n∈ω Φn : [E]<ω → 2 satisfies the 
hypothesis we want.

Case 2: The general case. There is no restriction on elements yjk.
Let {zk : k ∈ ω} be an enumeration of 

⋃
{yjk : k ∈ ω, j ≤ n} and {z0

k : k ∈ ω}, ..., {znk : k ∈ ω} be a 
partition of {zk : k ∈ ω}. We extend {yjk : k ∈ ω, j ≤ n} to a basis B of [E]<ω and also {{zjk} : k ∈ ω, j ≤ n}
to a basis C of [E]<ω. By assumption, |B \ {{zjk} : k ∈ ω, j ≤ n}| = |C \ {yjk : k ∈ ω, j ≤ n}| = ω, thus 
consider enumerations {el : l ∈ ω} of B \ {{zjk} : k ∈ ω, j ≤ n} and {fl : l ∈ ω} of C \ {yjk : k ∈ ω, j ≤ n}.

Let θ : [E]<ω → [E]<ω be the isomorphism defined by:

θ(yjk) = {zjk},

for every k ∈ ω and j ≤ n, and

θ(fl) = el,

for every l ∈ ω.
Let also, for each ξ ∈ I, hξ : ω → ([E]<ω)n given by hi

ξ(m) = θ(giξ(m)), for every m ∈ ω and i < n, and 

dξ ∈ ([E]<ω)n given by dξ
i = θ(diξ), for every i < n. By the previous case, there exists a homomorphism 

Φ̃ : [E]<ω → 2 so that:

(i) Φ̃(θ(f)) = nf , for each f ∈ F ;
(ii) For every ξ ∈ I, 

{
m ∈ ω :

(
Φ(h0

ξ(m)), ...,Φ(hn−1
ξ (m))

)
=

(
Φ(d0

ξ), ...Φ(dn−1
ξ )

)}
∈ pξ;

(iii) {k ∈ ω : (Φ({z0
k}), ..., Φ({znk })) = (α0, ..., αn)} is finite.

Thus, the homomorphism Φ 
.= Φ ◦ θ : [E]<ω → 2 satisfies the hypothesis we want. �

3. A consistent solution to the case α = ω of the Comfort-like question for countably pracompact groups

Theorem 3.1. Suppose that there are c incomparable selective ultrafilters. Then there exists a (Hausdorff) 
group G which has all finite powers countably pracompact and such that Gω is not countably pracompact.

Proof. The required group will be constructed giving a suitable topology to the Boolean group [c]<ω, as 
follows.

Let (Xn)n>0 be a partition of c so that |Xn| = c for every n > 0. For each n > 0, let (Xj
n)j<2 be a 

partition of Xn so that

• |X0
n| = |X1

n| = c;
• X0

n contains only limit ordinals and their next ω elements;
• the initial ω elements of Xn are in X1

n.
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For every n > 0, let also

Y 0
n

.= {ξ ∈ X0
n : ξ is a limit ordinal},

and define the sets X0
.=
⋃
· n∈ωX

0
n, X1

.=
⋃
· n∈ωX

1
n and Y0

.=
⋃
· n∈ωY

0
n . Now, consider a family of functions 

{fξ : ξ ∈ Y0} so that:

1) for each n > 0, {fξ : ξ ∈ Y 0
n } is an enumeration of all the sequences (xk)k∈ω of elements in ([Xn]<ω)n so 

that {xj
k : k ∈ ω, j < n} is linearly independent;

2) given n > 0 and ξ ∈ Y 0
n , fξ is a function from ω to ([Xn]<ω)n such that 

⋃
j<n

⋃
k∈ω f j

ξ (k) ⊂ ξ.

Finally, let {pξ : ξ ∈ Y0} be a family of incomparable selective ultrafilters, which exists by hypothesis.
Countable subsets of c which have a suitable property of closure related to this construction will be called 

suitably closed9:

Definition 3.2. A set A ∈ [c]ω is suitably closed if, for each n > 0 and ξ ∈ Y 0
n so that {ξ+ j : j < n} ∩A �= ∅, 

we have that

{ξ + j : j < n} ∪
⋃
j<n

⋃
k∈ω

f j
ξ (k) ⊂ A.

Let A be the set of all homomorphisms σ : [A]<ω → 2, with A ∈ [c]ω suitably closed, satisfying that, for 
every n > 0 and ξ ∈ A ∩ Y 0

n ,

σ({ξ + j}) = pξ − lim
k∈ω

σ(f j
ξ (k)),

for each j < n.
Enumerate A by {σμ : ω ≤ μ < c} and, without loss of generality, we may assume that 

⋃
dom(σμ) ⊂ μ, 

for each μ ∈ [ω, c). In what follows, we will construct suitable homomorphisms σμ : [c]<ω → 2, for every 
μ ∈ [ω, c). Note that it is enough to define σμ in the subset {{ξ} : ξ ∈ c}, since this is a basis for [c]<ω.

Firstly, for each n > 0, we enumerate all functions g : S → 2 with S ∈ [c]<ω by {gξ : ξ ∈ X1
n}. Without 

loss of generality, we may assume that dom(gξ) ⊂ ξ, for every ξ ∈ X1
n, and that for each g : S → 2 as above, 

|{ξ ∈ X1
n : gξ = g}| = c.

Let μ ∈ [ω, c). If ξ < c is such that {ξ} ∈ dom(σμ), we put σμ({ξ}) = σμ({ξ}). Otherwise, we have a few 
cases to consider:

1) if ξ ∈ X1 and μ ∈ dom(gξ), we put σμ({ξ}) = gξ(μ);
2) if ξ ∈ X1 and μ /∈ dom(gξ), we put σμ({ξ}) = 0;
3) for the remaining elements of X0, σμ is defined recursively, by putting

{
σμ({ξ + j}) = pξ − limk∈ω σμ(f j

ξ (k)) if ξ ∈ Y 0
n and j < n;

σμ({ξ}) = 0, if ξ /∈ {α + j : α ∈ Y 0
n , j < n}.

The definition above uniquely extends each σμ to a homomorphism σμ : [c]<ω → 2, which satisfies that, 
for each n > 0, ξ ∈ Y 0

n and j < n,

9 The idea of suitably closed sets already appeared in [14], without using a name. Many subsequent works that used Martin’s 
Axiom for countable posets and selective ultrafilters also used this idea. The name suitably closed appeared firstly in [13].
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σμ({ξ + j}) = pξ − lim
k∈ω

σμ(f j
ξ (k)). (*)

Let now A .= {σμ : ω ≤ μ < c} and τ be the weakest (group) topology on [c]<ω making every homomor-
phism in A continuous. We call this group G. We claim that G is Hausdorff. Indeed, given x ∈ [c]<ω \ {∅}, 
let A be a suitably closed set containing x. We may use Corollary 2.11 with E = A, I = A ∩ Y0, F = {x}
and, for each n > 0 and ξ ∈ Y 0

n ∩ A, dξ = ({ξ}, ..., {ξ + n − 1}), to fix a homomorphism σ : [A]<ω → 2 so 
that σ ∈ A and σ(x) = 1. By construction, there exists μ ∈ [ω, c) so that σμ = σ, and hence σμ(x) = 1.

Claim 1. For every n > 0, Gn is countably pracompact.

Proof of the claim. Fix n > 0. We claim that ([Xn]<ω)n ⊂ Gn is a witness to the countable pracompactness 
property in Gn. Indeed, if U is a nonempty open subset of G, we may fix a function g : S → 2, with S ∈ [c]<ω, 
so that

U ⊃
⋂
μ∈S

σμ
−1

(g(μ)).

Then, by construction, we may choose ξ ∈ X1
n ∩ (μ, c) so that gξ = g, and thus {ξ} ∈ U , which shows that 

[Xn]<ω is dense in G, and therefore ([Xn]<ω)n is dense in Gn.
We shall now prove that every infinite sequence {xk : k ∈ ω} of elements in ([Xn]<ω)n has an accumulation 

point in Gn. In fact, by Lemma 2.3, there are:

• elements d0, ..., dn−1 ∈ [Xn]<ω;
• a subsequence (xkl

)l∈ω;
• for some 0 ≤ t ≤ n, a sequence (yl)l∈ω in ([Xn]<ω)t
• for each 0 ≤ s < n, a function Ps : t → 2,

satisfying that

i) xs
kl

=
( t−1∑

j=0
Ps(j)yjl

)

ds, for every l ∈ ω and 0 ≤ s < n.

ii) {yjl : l ∈ ω, 0 ≤ j < t} is linearly independent.

By construction, there exists ξ ∈ Y 0
n so that f j

ξ (l) = yjl , for every l ∈ ω and 0 ≤ j < t. Since

σμ({ξ + j}) = pξ − lim
l∈ω

σμ(f j
ξ (l)),

for each μ ∈ [ω, c) and 0 ≤ j < n, we conclude that, for each 0 ≤ s < n,

( t−1∑
j=0

Ps(j){ξ + j}
)

ds = pξ − lim

l∈ω
xs
kl
,

and therefore {xk : k ∈ ω} has an accumulation point in Gn.10 �
Claim 2. Gω is not countably pracompact.

10 In fact, the accumulation point obtained even belongs to ([Xn]<ω)n itself. This shows that the subgroup [Xn]<ω has its 
nth-power countably compact, for each n > 0.
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Proof of the claim. Let Y ⊂ Gω be a dense subset. Consider the set {U j
k : k ∈ ω, j ∈ ω} of nonempty open 

subsets of G given by Lemma 2.7. For each k ∈ ω, we may choose an element xk ∈ Y ∩
∏

j≤k U
j
k ×Gω\k+1, 

and hence

{xj
k : j ∈ ω, k ≥ j}

is linearly independent. In what follows, we will show that there exists a subsequence of {xk : k ∈ ω} which 
does not have an accumulation point in Gω.

For an element D ∈ [c]<ω, we define

SUPP(D) .= {n > 0 : D ∩Xn �= ∅}.

We will split the proof in two cases.

Case 1: There exists j ∈ ω so that 
⋃

k∈ω SUPP(xj
k) is infinite.

In this case, we may fix a subsequence {xj
km

: m ∈ ω} such that

SUPP(xj
km

) \
( ⋃

p<m

SUPP(xj
kp

)
)

�= ∅, (1)

for every m ∈ ω. We may also assume that k0 ≥ j, and hence {xj
km

: m ∈ ω} is linearly independent.

Now we shall show that, for each x ∈ G, x is not an accumulation point of {xj
km

: m ∈ ω}. First, note 
that, given x ∈ G, there exists N0 ∈ ω such that, for every m ≥ N0,

SUPP(xj
km

) \
( ⋃

p<m

SUPP(xj
kp

) ∪ SUPP(x)
)

�= ∅.

In fact, since SUPP(x) is finite and (1) holds, there cannot be infinitely many elements xj
km

such that 
SUPP(xj

km
) ⊂

⋃
p<m SUPP(xj

kp
) ∪ SUPP(x).

Let

F0
.=

⋃
p<N0

SUPP(xj
kp

) ∪ SUPP(x)

and, for i > 0,

Fi
.= SUPP(xj

kN0+i−1
) \

⎛
⎝ ⋃

p<N0+i−1
SUPP(xj

kp
) ∪ SUPP(x)

⎞
⎠ .

Define also, for each i ∈ ω,

Di
.=
( ⋃

m∈ω

xj
km

∪ x
)
∩
( ⋃

n∈Fi

Xn

)
,

and let Ai be a suitably closed set containing Di such that Ai ⊂
⋃

n∈Fi
Xn. Since (Fi)i∈ω is a family of 

pairwise disjoint sets, we have that (Ai)i∈ω is also a family of pairwise disjoint sets.
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Now we may use Corollary 2.11 with: E = A0; I = A0∩Y0; F = {x}; and, for every n > 0 and ξ ∈ Y 0
n ∩A0, 

dξ = ({ξ}, ..., {ξ + n − 1}), to fix a homomorphism θ0 : [A0]<ω → 2 such that θ0 ∈ A and θ0(x) = 0.11 For 
l > 0, suppose that we have constructed a set of homomorphisms {θi : i < l} ⊂ A such that

i) θ0(x) = 0.
ii) θi is a homomorphism defined in 

[⋃
p≤i Ap

]<ω taking values in 2, for each i < l.
iii) θi extends θi−1 for each 0 < i < l.
iv) θi(xj

kN0+p
) = 1 for each 0 < i < l and p = 0, ..., i − 1.

Again by Corollary 2.11, we may define a homomorphism ψl : [Al]<ω → 2 so that ψl ∈ A and

ψl

(
xj
kN0+l−1

\
⋃
p<l

Dp

)
+ θl−1

(
xj
kN0+l−1

∩
⋃
p<l

Dp

)
= 1.

Now, since Al∩
⋃

i<l Ai = ∅, we may also define a homomorphism θl :
[⋃

p≤l Ap

]<ω → 2 extending both θl−1

and ψl. By construction, we have that θl(x) = 0 and θl(xj
kN0+p

) = 1 for every p = 0, ..., l− 1. Also, it follows 
that θl ∈ A, since ψl ∈ A and θi ∈ A for every i < l. Therefore, there exists a family of homomorphisms 
{θl : l ∈ ω} ⊂ A satisfying i)-iv) for every l ∈ ω.

Letting A 
.=
⋃

i∈ω Ai and θ
.=
⋃

i∈ω θi, the homomorphism θ : [A]<ω → 2 satisfies that θ ∈ A, since 
θi ∈ A for each i ∈ ω. Also, θ(x) = 0 and θ(xj

kN0+p
) = 1 for every p ∈ ω. By construction, there exists 

μ ∈ [ω, c) so that θ = σμ, thus σμ : [c]<ω → 2 satisfies that σμ(xj
km

) = 1 for each m ≥ N0, and σμ(x) = 0. 
Hence, the element x ∈ G, which was chosen arbitrarily, is not an accumulation point of {xj

km
: m ∈ ω}. In 

particular, {xkm
: m ∈ ω} does not have an accumulation point in Gω.

Case 2: For every j ∈ ω, Mj
.=
⋃

k∈ω SUPP(xj
k) is finite.

In this case, we claim that for each j ∈ ω there exists a subsequence {kjm : m ∈ ω} so that, for every 
i ≤ j and n ∈ Mi, either the family {xi

kj
m
∩ Xn : m ∈ ω} is linearly independent or constant. Indeed, for 

j = 0 and n0 ∈ M0, if there exists an infinite subset of {x0
k ∩Xn0 : k ∈ ω} which is linearly independent, 

we may fix a subsequence {k0,0
m : m ∈ ω} so that {x0

k0,0
m

∩Xn0 : m ∈ ω} is linearly independent; otherwise 

we may fix a subsequence {k0,0
m : m ∈ ω} so that {x0

k0,0
m

∩Xn0 : m ∈ ω} is constant. Then, if it exists, we 

may consider another n1 ∈ M0 and repeat the process to obtain a subsequence {k0,1
m : m ∈ ω} which refines 

{k0,0
m : m ∈ ω} and satisfies the desired property for n0 and n1. Since M0 is finite, proceeding inductively 

we may obtain the required subsequence {k0
m : m ∈ ω} in the last step. Then, we repeat the process for the 

next coordinates, always refining the previous subsequence. Now, fix such subsequences {kjm : m ∈ ω}, for 
each j ∈ ω. We may also suppose that kj0 ≥ j for each j ∈ ω.

For each j ∈ ω, let

Mj
.= {n ∈ Mj : {xj

kj
m
∩Xn : m ∈ ω} is linearly independent}.

Note that Mj �= ∅ for every j ∈ ω, since {xj

kj
m
∩ Xn : m ∈ ω, n ∈ Mj} generates all the elements in the 

infinite linearly independent set {xj

kj
m

: m ∈ ω}.
Suppose that there exists j ∈ ω so that |Mj | > 1. Fix then n0, n1 ∈ Mj distinct. We shall prove that in 

this case {xj

kj
m

: m ∈ ω} does not have an accumulation point in G.
For that, consider:

11 If x = ∅, F is not linearly independent and thus we cannot use Corollary 2.11, but it is clear that we can still find such θ0.



20 A.H. Tomita, J. Trianon-Fraga / Topology and its Applications 327 (2023) 108434
• x ∈ G chosen arbitrarily;
• x0 .= x ∩Xn0 , x1 .= x ∩Xn1 ;
• Z0 ⊂ Xn0 a suitably closed set containing x0 and 

⋃
{xj

kj
m
∩Xn0 : m ∈ ω}, so that |Z0 \

⋃
{xj

kj
m
∩Xn0 :

m ∈ ω}| = ω;
• Z1 ⊂ Xn1 a suitably closed set containing x1 and 

⋃
{xj

kj
m
∩Xn1 : m ∈ ω}, so that |Z1 \

⋃
{xj

kj
m
∩Xn1 :

m ∈ ω}| = ω;
• Ẽ

.= Z0 ∪· Z1;
• I0

.= Z0 ∩ Y0(= Z0 ∩ Y 0
n0

), I1
.= Z1 ∩ Y0(= Z1 ∩ Y 0

n1
) and I

.= I0 ∪· I1;
• for ξ ∈ I,

dξ =
{

({ξ}, ..., {ξ + n0 − 1}), if ξ ∈ I0

({ξ}, ..., {ξ + n1 − 1}), if ξ ∈ I1.

By Lemma 2.10 and Remark 1, there exists a homomorphism Φ̃ : [Ẽ]<ω → 2 such that:

(i) for every s ∈ x0 ∪ x1, Φ̃({s}) = 0;
(ii) for every ξ ∈ I,

Φ̃({ξ + j}) =
{
pξ − limk∈ω Φ̃(f j

ξ (k)), for every j < n0, if ξ ∈ I0

pξ − limk∈ω Φ̃(f j
ξ (k)), for every j < n1, if ξ ∈ I1;

(iii)
{
m ∈ ω : Φ̃

(
xj

kj
m
∩ (Xn0 ∪Xn1)

)
= 0

}
is finite.

Now, fix a suitably closed set E containing Ẽ, x and xj

kj
m

, for each m ∈ ω, so that E ∩ Xn0 = Z0 and 
E ∩Xn1 = Z1. Consider the homomorphism Φ : [E]<ω → 2 so that, for each ξ ∈ E,

Φ({ξ}) =
{

Φ̃({ξ}), if ξ ∈ Ẽ

0, if ξ /∈ Ẽ.

In particular, for every z ∈ [E]<ω so that z ∩ (Xn0 ∪ Xn1) = ∅, we have that Φ(z) = 0, and for every 
z ∈ [Ẽ]<ω, Φ(z) = Φ̃(z).

It follows by construction that Φ ∈ A. Furthermore,

Φ(x) = Φ
((

x ∩ (Xn0 ∪Xn1)
)


(
x \ (Xn0 ∪Xn1)

))
= Φ

(
(x ∩Xn0)
(x ∩Xn1)

)
+ Φ

(
x \ (Xn0 ∪Xn1)

)
= Φ̃(x0) + Φ̃(x1) = 0,

and, for every m ∈ ω,

Φ(xj

kj
m

) = Φ
((

xj

kj
m
∩ (Xn0 ∪Xn1)

)


(
xj

kj
m
\ (Xn0 ∪Xn1)

))
= Φ

(
xj

kj
m
∩ (Xn0 ∪Xn1)

)
+ Φ

(
xj

kj
m
\ (Xn0 ∪Xn1)

)
= Φ̃

(
xj

kj
m
∩ (Xn0 ∪Xn1)

)
.

Thus,
{
m ∈ ω : Φ(xj

j ) = Φ(x)
}

km
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is finite. Since, by construction, there exists μ ∈ [ω, c) so that Φ = σμ, we conclude that x cannot be 
an accumulation point of {xj

kj
m

: m ∈ ω}. As the element x ∈ G was chosen arbitrarily, the sequence 

{xj

kj
m

: m ∈ ω} does not have an accumulation point in G. In particular, {xkj
m

: m ∈ ω} does not have an 
accumulation point in Gω.

Therefore, henceforth we may suppose that |Mj | = 1 for every j ∈ ω. We have two subcases to consider.

Case 2.1: There are j0, j1 ∈ ω distinct so that Mj0 ∩Mj1 = ∅.
Suppose that j1 > j0, and let n0 ∈ Mj0 , n1 ∈ Mj1 . We shall show that the sequence {(xj0

k
j1
m
, xj1

k
j1
m

) : m ∈ ω}
does not have an accumulation point in G2. For this, consider:

• (x0, x1) ∈ G2 chosen arbitrarily;
• y0 .= xj1

k
j1
0

∩Xn0 and y1 .= xj0

k
j1
0

∩Xn1
12;

• Z0 ⊂ Xn0 a suitably closed set containing (x0 ∪ x1) ∩ Xn0 , y0 and 
⋃
{xj0

k
j1
m

∩ Xn0 : m ∈ ω}, so that 
|Z0 \

⋃
{xj0

k
j1
m

∩Xn0 : m ∈ ω}| = ω;
• Z1 ⊂ Xn1 a suitably closed set containing (x0 ∪ x1) ∩ Xn1 , y1 and 

⋃
{xj1

k
j1
m

∩ Xn1 : m ∈ ω}, so that 
|Z1 \

⋃
{xj1

k
j1
m

∩Xn1 : m ∈ ω}| = ω;
• Ẽ

.= Z0 ∪· Z1;
• I0

.= Z0 ∩ Y0(= Z0 ∩ Y 0
n0

), I1
.= Z1 ∩ Y0(= Z1 ∩ Y 0

n1
) and I

.= I0 ∪· I1;
• for ξ ∈ I,

dξ =
{

({ξ}, ..., {ξ + n0 − 1}), if ξ ∈ I0

({ξ}, ..., {ξ + n1 − 1}), if ξ ∈ I1.

By Lemma 2.10, there exists a homomorphism Φ̃ : [Ẽ]<ω → 2 such that:

(i) for every s ∈ (x0 ∪ x1 ∪ y0 ∪ y1) ∩ (Xn0 ∪Xn1), Φ̃({s}) = 0;
(ii) for every ξ ∈ I,

Φ̃({ξ + j}) =
{
pξ − limk∈ω Φ̃(f j

ξ (k)), for every j < n0, if ξ ∈ I0

pξ − limk∈ω Φ̃(f j
ξ (k)), for every j < n1, if ξ ∈ I1;

(iii)
{
m ∈ ω :

(
Φ̃(xj0

k
j1
m

∩Xn0), Φ̃(xj1

k
j1
m

∩Xn1)
)

= (0, 0)
}

is finite.

Again, fix a suitably closed set E containing Ẽ, x0 ∪ x1 and xj0

k
j1
m

∪ xj1

k
j1
m

, for each m ∈ ω, so that 
E ∩Xn0 = Z0 and E ∩Xn1 = Z1. Consider the homomorphism Φ : [E]<ω → 2 such that, for each ξ ∈ E,

Φ({ξ}) =
{

Φ̃({ξ}), if ξ ∈ Ẽ

0, if ξ /∈ Ẽ.

It follows by construction that Φ ∈ A and that, for each i < 2,

Φ(xi) = Φ
((

xi ∩ (Xn0 ∪Xn1)
)


(
xi \ (Xn0 ∪Xn1)

))
= Φ

(
(xi ∩Xn0)
(xi ∩Xn1)

)
+ Φ

(
xi \ (Xn0 ∪Xn1)

)
= Φ̃(xi ∩Xn0) + Φ̃(xi ∩Xn1) = 0.

12 Recall that, by construction, the families {xj1
kj1 ∩ Xn0 : m ∈ ω} and {xj0

kj1 ∩ Xn1 : m ∈ ω} are constant.

m m
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Furthermore, for every m ∈ ω and i < 2,

Φ(xji

k
j1
m

) = Φ
((

xji

k
j1
m

∩ (Xn0 ∪Xn1)
)


(
xji

k
j1
m

\ (Xn0 ∪Xn1)
))

= Φ
(
xji

k
j1
m

∩ (Xn0 ∪Xn1)
)

+ Φ
(
xji

k
j1
m

\ (Xn0 ∪Xn1)
)

= Φ̃
(
xji

k
j1
m

∩Xn0

)
+ Φ̃

(
xji

k
j1
m

∩Xn1

)
= Φ̃

(
xji

k
j1
m

∩Xni

)
.

Thus, {
m ∈ ω :

(
Φ(xj0

k
j1
m

),Φ(xj1

k
j1
m

)) = (Φ(x0),Φ(x1)
)}

is finite, and therefore {(xj0

k
j1
m
, xj1

k
j1
m

) : m ∈ ω} does not have an accumulation point in G2. In particular, 
{x

k
j1
m

: m ∈ ω} does not have an accumulation point in Gω.

Case 2.2: For every j0, j1 ∈ ω, Mj0 ∩Mj1 �= ∅.
In this case, there exists n0 > 0 so that Mj = {n0} for every j ∈ ω. To make the notation simpler, from 

now on we call {km : m ∈ ω} the sequence {kn0
m : m ∈ ω}. By construction, {xi

km
: m ∈ ω, i ≤ n0} is linearly 

independent and, for each i ≤ n0, there exists ci ∈ [c]<ω so that ci ∩Xn0 = ∅ and xi
km

= (xi
km

∩Xn0)
ci, 
for every m ∈ ω. Thus, there exists m0 ∈ ω such that

{xi
km

∩Xn0 : m ≥ m0, i ≤ n0}

is linearly independent.
We shall prove that {(x0

km
, ..., xn0

km
) : m ∈ ω} does not have an accumulation point in Gn0+1. For that, 

consider:

• x = (x0, ..., xn0) ∈ Gn0+1 chosen arbitrarily;
• for each i = 0, ..., n0, yim = xi

km
∩Xn0 for every m ≥ m0.

• Ẽ ⊂ Xn0 a suitably closed set containing (x0 ∪ ... ∪ xn0) ∩Xn0 and yim, for every i ≤ n0 and m ≥ m0, 
so that |Ẽ \

⋃
{yim : m ≥ m0, i ≤ n0}| = ω;

• I = Ẽ ∩ Y0 (=Ẽ ∩ Y 0
n0

);
• for each ξ ∈ I, dξ = ({ξ}, ..., {ξ + n0 − 1}).

By Lemma 2.12, there exists a homomorphism Φ̃ : [Ẽ]<ω → 2 such that

(i) For every s ∈ (x0 ∪ ... ∪ xn0) ∩Xn0 , Φ̃({s}) = 0.
(ii) For every ξ ∈ I and j < n0,

Φ̃({ξ + j}) = pξ − lim
k∈ω

Φ̃(f j
ξ (k)).

(iii) {m ≥ m0 : (Φ̃(y0
m)..., Φ̃(yn0

m )) = (0, ..., 0)} is finite. Note that by construction Φ̃(xi ∩ Xn0) = 0 for 
every i = 0, ..., n0.

Consider E a suitably closed set containing Ẽ, x0 ∪ ... ∪ xn0 and x0
km

∪ ... ∪ xn0
km

, for each m ≥ m0, so 
that E ∩Xn0 = Ẽ. Hence, we may define a homomorphism Φ : [E]<ω → 2 such that, for each ξ ∈ E,

Φ({ξ}) =
{

Φ̃({ξ}), if ξ ∈ Ẽ

0, if ξ /∈ Ẽ.
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In particular, for every z ∈ [E]<ω so that z∩Xn0 = ∅, we have that Φ(z) = 0. Moreover, for every z ∈ [Ẽ]<ω, 
Φ(z) = Φ̃(z). Similarly to Case 2.1, it follows by construction that Φ ∈ A and that

{m ≥ m0 : (Φ(x0
km

), ...,Φ(xn0
km

)) = (Φ(x0), ...,Φ(xn0))} is finite.

Again, we conclude that x cannot be an accumulation point of {(x0
km

, ..., xn0
km

) : m ∈ ω}.

Therefore, in any case, we showed that there exists a subsequence of {xk : k ∈ ω} which does not have 
an accumulation point in Gω, and thus the group is not countably pracompact. �

As a corollary of the proof above, we obtain:

Corollary 3.3. Suppose that there are c incomparable selective ultrafilters. Then, for each n ∈ ω, n > 0, there 
exists a (Hausdorff) topological group whose nth power is countably compact and the (n+1)th power is not 
selectively pseudocompact.

Proof. With the same notation of the previous proof, for each n > 0, we choose the topological subgroup 
H

.= [Xn]<ω ⊂ G. As already mentioned in a footnote, Hn is countably compact. Also, using Lemma 2.12
similarly to what was done in Case 2.2, one can show that every sequence (x0

k, ..., x
n
k )k∈ω in Hn+1 so that 

{xj
k : k ∈ ω, j ≤ n} is linearly independent does not have an accumulation point in Hn+1. Then, it is enough 

to choose a sequence of nonempty open sets {(U0
k × ... × Un

k ) : k ∈ ω} ⊂ Hn+1, with {U j
k : k ∈ ω, j ≤ n} as 

in Lemma 2.7, to prove that Hn+1 is not selectively pseudocompact. �
Recall that in [10] the authors proved the same result using CH.

4. Consistent solutions to the Comfort-like question for countably pracompact groups in the case of 
infinite successor cardinals

Theorem 4.1. Suppose that there are 2c incomparable selective ultrafilters. Let κ ≤ 2c be an infinite cardinal. 
Then there exists a (Hausdorff) group G such that Gκ is countably pracompact and Gκ+ is not countably 
pracompact.

Proof. The required group will be constructed giving a suitable topology to the Boolean group [2c]<ω.
Let {Xγ : γ < κ} be a partition of 2c so that |Xγ | = 2c for every γ < κ. For each γ < κ, we enumerate 

Xγ in strictly increasing order as {xγ
β : β < 2c} (in this case, it is clear that, for every γ < κ and β < 2c, 

β ≤ xγ
β). Let also:

• {J0, J1} be a partition of 2c so that |J0| = |J1| = 2c and that ω ⊂ J1;
• X0

γ
.= {xγ

β : β ∈ J0} and X1
γ

.= {xγ
β : β ∈ J1}, for each γ < κ;

• X0
.=
⋃

γ<κ X
0
γ and X1

.=
⋃

γ<κ X
1
γ ;

• P .= {pξ : ξ ∈ J0} be a family of incomparable selective ultrafilters, which exists by hypothesis.

Now enumerate the set of all injective sequences of 2c as {Iα : α ∈ J0}, assuming that for every α ∈ J0, 
rng(Iα) ⊂ α. Finally, for each α ∈ J0 and γ < κ, we define the function fγ

α : ω → [Xγ ]<ω as

fγ
α(l) = {xγ

Iα(l)},

for every l ∈ ω. Note that, for each α ∈ J0 and γ < κ, rng(fγ
α) ⊂ [xγ

α]<ω.
Next we define which are the suitably closed sets of this construction.
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Definition 4.2. A set A ∈ [2c]ω is suitably closed if, for every γ < κ and β ∈ J0, if xγ
β ∈ A, then 

⋃
l∈ω fγ

β (l) ⊂
A.

Let A = {σμ : μ ∈ [ω, 2c)} be an enumeration of all homomorphisms σ : [A]<ω → 2, with A suitably 
closed, such that

σ({xγ
β}) = pβ − lim

l∈ω
σ(fγ

β (l)),

for every γ < κ and β ∈ J0 satisfying that xγ
β ∈ A. We may assume without loss of generality that ⋃

dom(σμ) ⊂ μ, for every μ ∈ [ω, 2c).
Next, we will properly extend each homomorphism σμ in A to a homomorphism σμ defined in [2c]<ω. 

For this purpose, we enumerate the set

B .= {{(γ0, g0), ..., (γk, gk)} : k ∈ ω, |{γ0, ..., γk}| = k + 1, and,

for each i = 0, ..., k, γi < κ, and gi : Si → 2, for some Si ∈ [2c]<ω}

as {bβ : β ∈ J1}. We may also assume that for every β ∈ J1, bβ = {(γ0, g0), ..., (γk, gk)} is such that ⋃k
i=0 dom(gi) ⊂ β.
Given μ ∈ [ω, 2c), if ξ < 2c is such that {ξ} ∈ dom(σμ), we put σμ({ξ}) = σμ({ξ}). Otherwise, we have 

a few cases to consider. Firstly, we define the homomorphism in the remaining elements of X1
γ, for each 

γ < κ, as described in the next paragraph.
Let γ < κ and ξ ∈ X1

γ be so that {ξ} /∈ dom(σμ). Let also β ∈ J1 be the element such that ξ = xγ
β . Now,

• if there exists a function g : S → 2, S ∈ [2c]<ω, so that (γ, g) ∈ bβ and μ ∈ dom(g), we put σμ({ξ}) =
g(μ);

• otherwise, we put σμ({ξ}) = 0.

Finally, in the remaining elements of X0
γ , for each γ < κ, we define σμ recursively, by putting

σμ({xγ
β}) = pβ − lim

l∈ω
σμ(fγ

β (l)),

for each β ∈ J0.
Now we define A .= {σμ : μ ∈ [ω, 2c)}. It is clear by the construction that, for each μ ∈ [ω, 2c),

σμ({xγ
β}) = pβ − lim

l∈ω
σμ(fγ

β (l)),

for every γ < κ and β ∈ J0. Let G be the group [2c]<ω endowed with the topology generated by the 
homomorphisms in A.

Given x ∈ G, we define, similarly as before,

SUPP(x) = {γ < κ : x ∩Xγ �= ∅}.

We claim that G is Hausdorff. Indeed, let x ∈ [2c]<ω \ {∅} and, given γ ∈ SUPP(x), z = x ∩Xγ . Let also 
A0 ⊂ Xγ be a suitably closed set containing z. In order to use Corollary 2.11, consider:

• E = A0;
• I = A0 ∩X0

γ ;
• F = {z};
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• {qξ : ξ ∈ I} ⊂ P so that, for each ξ
.= xγ

β ∈ I, qξ
.= pβ ;

and, for each ξ
.= xγ

β ∈ I,

• kξ = 1;
• gξ = fγ

β ;
• dξ = {xγ

β}.

By Corollary 2.11, we may fix a homomorphism σ0 : [A0]<ω → 2 so that σ0 ∈ A and σ0(z) = 1. Now, let A
be a suitably closed set containing x so that A ∩Xγ = A0 and σ : [A]<ω → 2 be a homomorphism so that

σ({ξ}) =
{
σ0({ξ}), if ξ ∈ A0

0, if ξ /∈ A0.

Then, σ ∈ A and σ(x) = σ
(
(x ∩Xγ)
(x \Xγ)

)
= 1. By construction, there exists μ ∈ [ω, 2c) so that σμ = σ, 

and hence σμ(x) = 1.

Claim 3. Gκ is countably pracompact.

Proof of the claim. We claim that {({xγ
β})γ<κ : β < 2c} ⊂ Gκ is a dense subset for which every infinite 

subset has an accumulation point in Gκ.
For k ∈ ω, let {γ0, ..., γk} ⊂ κ be a finite set of size k + 1 and, for each i ∈ {0, ..., k}, let

• μi
0, ..., μ

i
ji
∈ [ω, 2c), for some ji ∈ ω;

• gi : {μi
0, ..., μ

i
ji
} → 2 be a function.

We shall prove that, if

ji⋂
p=0

(σμi
p
)
−1

(gi(μi
p)) �= ∅,

for every i = 0, ..., k, then there exists β0 ∈ J1 so that {xγi

β0
} ∈

⋂ji
p=0(σμi

p
)−1(gi(μi

p)) for each i = 0, ..., k. 
For that, let β0 ∈ J1 be so that

{(γ0, g0), ..., (γk, gk)} = bβ0 .

Since, by construction, 
⋃

dom(σμ) ⊂ μ for every μ ∈ [ω, 2c), 
⋃k

i=0 dom(gi) ⊂ β0 and β0 ≤ xγ
β0

for every 
γ < κ, it follows that σμi

p
({xγi

β0
}) = gi(μi

p) for each i = 0, ..., k and p = 0, ..., ji, as we wanted.
Furthermore, given an injective sequence Iα : ω → 2c, for some α ∈ J0, we claim that {({xγ

Iα(l)})γ<κ :
l ∈ ω} has ({xγ

α})γ<κ as accumulation point. Indeed, for every μ ∈ [ω, 2c), by construction,

σμ({xγ
α}) = pα − lim

l∈ω
σμ({xγ

Iα(l)}),

for each γ < κ. �
Claim 4. Gκ+ is not countably pracompact.

Proof of the claim. Since the proof of this claim is similar to the proof of Claim 2 of Theorem 3.1, we omit 
the details of some arguments.
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Let Z ⊂ Gκ+ be a dense subset. We shall show that there exists a sequence in Z that does not have an 
accumulation point in Gκ+ . We will again split the proof of this claim in two cases.

Case 1: There exists j ∈ κ+ so that 
⋃

z∈Z SUPP(zj) is infinite.

In this case, we may fix a sequence {zm : m ∈ ω} ⊂ Z so that

SUPP(zjm) \
⋃
p<m

SUPP(zjp) �= ∅,

for every m ∈ ω. We shall show that, for a given y ∈ G, y is not an accumulation point of {zjm : m ∈ ω}. In 
particular, this shows that {zm : m ∈ ω} does not have an accumulation point in Gκ+ .

Remark 2. Although the arguments are analogous to those in Case 1 of Claim 2, as we are about to see, 
there is another technical complication in this case. We can only guarantee the validity of Corollary 2.11
for suitably closed sets A so that A ⊂ Xγ , for some γ < κ. In fact, while the mapping ξ ∈ X0 ∩A → qξ ∈ P
has to be injective,13 we wish to map xγ

β , for β ∈ J0 and γ < κ, to pβ .

Let:

1) M0 ∈ ω be such that, for every m ≥ M0,

SUPP(zjm) \
( ⋃

p<m

SUPP(zjp) ∪ SUPP(y)
)

�= ∅;

2) F0
.=

⋃
p<M0

SUPP(zjp) ∪ SUPP(y);

3) for each i > 0,

Fi
.= SUPP(zjM0+i−1) \

⎛
⎝ ⋃

p<M0+i−1
SUPP(zjp) ∪ SUPP(y)

⎞
⎠ ;

4) for each i ∈ ω,

Di
.=
( ⋃

m∈ω

zjm ∪ y
)
∩
( ⋃

γ∈Fi

Xγ

)
;

5) Ai be a suitably closed set containing Di such that Ai ⊂
⋃

γ∈Fi
Xγ ;

6) for each i ∈ ω, γi ∈ Fi be arbitrarily chosen;
7) for each i ∈ ω, A0

i ⊂ Xγi
be a suitably closed set containing Ai ∩Xγi

.

In order to use Corollary 2.11, consider

• E = A0
0;

• I = A0
0 ∩X0

γ0
;

• {qξ : ξ ∈ I} ⊂ P so that, for each ξ
.= xγ0

β ∈ I, qξ
.= pβ ;

13 Indeed, X0 ∩A will be the set I, in the notation of Corollary 2.11, and then (qξ)ξ∈I has to be a family of incomparable selective 
ultrafilters.
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and, for each ξ
.= xγ0

β ∈ I,

• kξ = 1;
• gξ = fγ0

β ;
• dξ = {xγ0

β }.

By Corollary 2.11, we may ensure the existence of a homomorphism θ̃0 : [A0
0]<ω → 2 such that θ̃0 ∈ A and 

θ̃0(y ∩Xγ0) = 0. Then, we define θ0 : [A0]<ω → 2 so that, for every ξ ∈ A0,

θ0({ξ}) =
{
θ̃0({ξ}), if ξ ∈ A0

0

0, if ξ /∈ A0
0.

Note that, in this case, we still have θ0 ∈ A, and also

θ0(y) = θ0(y ∩Xγ0) + θ0(y \Xγ0) = θ̃0(y ∩Xγ0) = 0.

Suppose that we have constructed a set of homomorphisms {θi : i < l} ⊂ A, for l > 0, such that:

i) θi is a homomorphism defined in 
[⋃

p≤i Ap

]<ω taking values in 2, for each i < l;
ii) θ0(y) = 0;
iii) θi extends θi−1 for each 0 < i < l;
iv) θi(zjM0+p) = 1 for each 0 < i < l and p = 0, ..., i − 1.

Again, in order to use Corollary 2.11, consider:

• E = A0
l ;

• I = A0
l ∩X0

γl
;

• {qξ : ξ ∈ I} ⊂ P so that, for each ξ
.= xγl

β ∈ I, qξ
.= pβ ;

and, for each ξ
.= xγl

β ∈ I,

• kξ = 1;
• gξ = fγl

β ;
• dξ = {xγl

β }.

By Corollary 2.11, we may ensure the existence of a homomorphism ψ̃ : [A0
l ]<ω → 2 so that ψ̃ ∈ A and

ψ̃
(
zjM0+l−1 ∩Xγl

)
+ θl−1

(
zjM0+l−1 \

⋃
γ∈Fl

Xγ

)
= 1.

Then, we define ψ : [Al]<ω → 2 so that, for every ξ ∈ Al,

ψ({ξ}) =
{
ψ̃({ξ}), if ξ ∈ A0

l

0, if ξ /∈ A0
l .

Let θl :
[⋃

p≤l Ap

]<ω → 2 be a homomorphism extending both θl−1 and ψ. By construction, we have 
that θl(y) = 0, θl ∈ A, and also that
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θl(zjM0+l−1) = θl

(
zjM0+l−1 ∩

⋃
γ∈Fl

Xγ

)
+ θl

(
zjM0+l−1 \

⋃
γ∈Fl

Xγ

)

= ψ̃
(
zjM0+l−1 ∩Xγl

)
+ ψ

(
zjM0+l−1 ∩

⋃
γ∈Fl\{γl}

Xγ

)
+ θl−1

(
zjM0+l−1 \

⋃
γ∈Fl

Xγ

)

= ψ̃
(
zjM0+l−1 ∩Xγl

)
+ θl−1

(
zjM0+l−1 \

⋃
γ∈Fl

Xγ

)
= 1.

Moreover, it follows by construction that θl(zjM0+p) = θl−1(zjM0+p) = 1 for each 0 ≤ p < l− 1. Therefore, 
there exists a family of homomorphisms {θi : i ∈ ω} ⊂ A satisfying i)-iv) for every l ∈ ω.

Letting A 
.=
⋃

i∈ω Ai, the homomorphism θ
.=
⋃

i∈ω θi : [A]<ω → 2, satisfies that:

• θ ∈ A;
• θ(y) = 0;
• θ(zjM0+p) = 1 for every p ∈ ω.

By construction, there exists μ ∈ [ω, 2c) so that θ = σμ, thus σμ : [2c]<ω → 2 satisfies that σμ(zjm) = 1
for each m ≥ M0, and σμ(y) = 0. Hence, y ∈ G is not an accumulation point of {zjm : m ∈ ω}.

Case 2: For every j ∈ κ+, Mj
.=
⋃

z∈Z SUPP(zj) is finite.

Since, in this case,
⋃

F∈[κ]<ω

{
j ∈ κ+ : Mj = F

}
= κ+,

there exists F0 ∈ [κ]<ω so that N .=
{
j ∈ κ+ : Mj = F0

}
is infinite. Choose N0 ⊂ N so that |N0| = ω, and 

let {ji : i ∈ ω} be an enumeration of N0.
Now, consider the set {U i

k : k ∈ ω, i ∈ ω} of nonempty open subsets of G given by Lemma 2.7. For each 
k ∈ ω, we may choose an element zk ∈ Z ∩

∏
i≤k U

i
k ×Gκ+\{j0,...,jk}. Similarly to what was done in Case 2

of Claim 2, we can fix a subsequence {kim : m ∈ ω}, for each i ∈ ω, so that:

• {ki+1
m : m ∈ ω} refines {kim : m ∈ ω}, for each i ∈ ω;

• for every i ∈ ω, p ≤ i and γ ∈ F0, either the family {zjpki
m
∩ Xγ : m ∈ ω} is linearly independent or 

constant;
• ki0 ≥ i, for each i ∈ ω.

Notice at this point that {
zjiki

m
: i ∈ ω,m ∈ ω

}
is linearly independent. For each i ∈ ω, let

Mji
.=
{
γ ∈ F0 : {zjiki

m
∩Xγ : m ∈ ω} is linearly independent

}
.

Again, we have that Mji �= ∅ for every i ∈ ω. Then, choose a, b ∈ ω, b > a, so that M .= Mja = Mjb . In this 
case, there exist ca, cb ∈ [2c]<ω so that

zjl
kb
m

=
(
zjl
kb
m
∩

⋃
Xγ

)

cl,
γ∈M
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for each l ∈ {a, b} and m ∈ ω. Thus, there exists m0 ∈ ω so that
{
zjl
kb
m
∩

⋃
γ∈M

Xγ : m ≥ m0, l ∈ {a, b}
}

is linearly independent. By Lemma 2.2, we may fix a subsequence {km : m ∈ ω} of {kbm : m ∈ ω} and 
γ0 ∈ M so that {

zjlkm
∩Xγ0 : m ∈ ω, l ∈ {a, b}

}
is linearly independent.

We shall show that {(zjakm
, zjbkm

) : m ∈ ω} does not have an accumulation point in G2. For this purpose, 
consider:

• x = (x0, x1) ∈ G2 chosen arbitrarily;
• for each l ∈ {a, b} and m ∈ ω, ylm

.= zjlkm
∩Xγ0 ;

• Ẽ ⊂ Xγ0 a suitably closed set containing (x0 ∪ x1) ∩Xγ0 and ylm, for each l ∈ {a, b} and m ∈ ω, so that 
|Ẽ \

⋃
{ylm : l ∈ {a, b}, m ∈ ω}| = ω;

• I = Ẽ ∩X0
γ0

;
• {qξ : ξ ∈ I} ⊂ P so that, for each ξ

.= xγ0
β ∈ I, qξ = pβ ;

• for each ξ
.= xγ0

β ∈ I, dξ = {xγ0
β };

• for each ξ
.= xγ0

β ∈ I, gξ = fγ0
β .

By Lemma 2.12, there exists a homomorphism Φ̃ : [Ẽ]<ω → 2 so that:

i) for every s ∈ (x0 ∪ x1) ∩Xγ0 , Φ̃({s}) = 0;
ii) for every ξ = xγ0

β ∈ I,

Φ̃({xγ0
β }) = pβ − lim

l∈ω
Φ̃(fγ0

β (l));

iii) {m ∈ ω : (Φ̃(yam), Φ̃(ybm)) = (0, 0)} is finite.

Now, we may consider E a suitably closed set containing Ẽ, x0 ∪ x1, and zjlkm
, for each l ∈ {a, b} and 

m ∈ ω, so that E ∩Xγ0 = Ẽ. Let Φ : [E]<ω → 2 be the homomorphism such that, for each ξ ∈ E,

Φ({ξ}) =
{

Φ̃({ξ}), if ξ ∈ Ẽ

0, if ξ /∈ Ẽ.

Then, Φ ∈ A,

Φ(x0) = Φ(x1) = 0,

and, for each l ∈ {a, b} and m ∈ ω,

Φ(zjlkm
) = Φ̃(ylm) + Φ(zjlkm

\Xγ0) = Φ̃(ylm).

Thus, we conclude that {
m ∈ ω : (Φ(zja ),Φ(zjb )) = (Φ(x0),Φ(x1))

}

km km
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is finite. Since, by construction, there exists μ ∈ [ω, 2c) so that σμ = Φ, we conclude that x cannot be an 
accumulation point of {(zjakm

, zjbkm
) : m ∈ ω}. Since x ∈ G2 is arbitrary, {zkm

: m ∈ ω} ⊂ Z does not have 

an accumulation point in Gκ+ .
Therefore, Gκ+ is not countably pracompact. �

5. Some remarks and questions

As we already mentioned in the first section, in the case of selectively pseudocompact groups, the Comfort-
like Question 1.10 is still not solved consistently only for the case α = ω:

Question 5.1. Is there a topological group G so that Gk is selectively pseudocompact for every k ∈ ω, but 
Gω is not selectively pseudocompact?

In the case there is a positive consistent answer to the above question, one can also ask:

Question 5.2. Is there a topological group G so that Gk is countably compact for every k ∈ ω, but Gω is 
not selectively pseudocompact?

Regarding countably pracompact topological groups, Theorem 4.1 for κ = 2c shows that there exists a 
group G so that G2c is countably pracompact but G(2c)+ is not countably pracompact. Interestingly, for 
countably compact spaces we know that this is not the case: given a Hausdorff topological space X, if X2c

is countably compact, then Xα is countably compact for every α > 2c. Thus, it may be interesting to study 
the following questions further. The first one is a stronger version of Question 1.11 for α = ω, which we 
solved in this paper.

Question 5.3. Is there a topological group G so that Gk is countably compact for every k ∈ ω and Gω is not 
countably pracompact?

Question 5.4. For which limit cardinals ω < α ≤ 2c is there a topological group G such that Gγ is countably 
pracompact for every cardinal γ < α, but Gα is not countably pracompact?

Question 5.5. For which cardinals α > (2c)+ is there a topological group G such that Gγ is countably 
pracompact for all cardinals γ < α, but Gα is not countably pracompact?

Also, it is natural to ask which the stopping point is, if any:

Question 5.6. Is there a cardinal κ such that, for each topological group G, Gκ countably pracompact implies 
that Gγ is countably pracompact for every γ > κ?

In ZFC, as mentioned, we do not even know answers to the following questions.

Question 5.7 (ZFC).

a) Is there a selectively pseudocompact group whose square is not selectively pseudocompact?
b) (stronger version) Is there a countably compact group whose square is not selectively pseudocompact?

Question 5.8 (ZFC).

a) Is there a countably pracompact group whose square is not countably pracompact?
b) (stronger version) Is there a countably compact group whose square is not countably pracompact?
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