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ABSTRACT

The deployment of fifth-generation mobile network (5G), beyond 5G and sixth-generation mobile network platforms encounters challenges
of blockage, interference, and path loss in radio mobile environments. Metasurfaces provide a promising solution to address these limita-
tions. In this paper, we present a methodology for developing ultrathin flexible metasurface-based frequency selective surfaces (FSSs). Our
approach combines thermal evaporation for metallic thin films with a macroscopic metasurface mask (something analogous to screen-print-
ing but using thermal evaporation instead of inks). As a proof of concept, we fabricate a sub-6 GHz metasurface-based FSS using gold depo-
sition on a flexible polyethylene terephthalate substrate. Experimental results are validated through numerical full-wave simulations using
COMSOL Multiphysics and equivalent-circuit model simulations. The metasurface operates within the primary frequency band utilized in
5G networks (3–5 GHz), indicating its potential applicability across a wide range of flexible, conformal, and wearable devices. The fabricated
FSS can be installed on surfaces of any shape, such as flat or curved windows, as well as on walls or other external surfaces. This methodol-
ogy offers practical solutions for wireless communications and enhancing signal transmission in diverse environments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167167

I. INTRODUCTION

The fifth-generation mobile network (5G) has been designed
with a flexible architecture to cater to various service requirements.
It should manage resources efficiently to support contrasting
demands in offering high throughput, massive number of connec-
tions, low latency, robustness, and long reach. This flexibility is
achieved by mapping services and applications into four primary
scenarios:1–6 extreme mobile broadband (eMBB), massive machine-
type communications (mMTC), ultra-reliable low latency commu-
nications (URLLC), and enhanced remote area communications
(eRAC). The eMBB services may allow for new mobile applications
by boosting the data rate experienced by the user.1,2 Developing
mMTC applications will require a large number of devices con-
nected to the mobile network, whose management will be

challenging, especially with regard to energy efficiency.3,4

Latency-sensitive applications require fast response and robustness
from the network since retransmission protocols cannot be
applied.5 The URLLC provides the necessary robustness and
reduces the overall latency of the radio access network (RAN) to
support latency-sensitive applications. Finally, eRAC provides cov-
erage and robustness for applications in rural and remote areas,
e.g., in agribusiness, mining industries, border surveillance, and
environmental and disaster monitoring.6 In order to meet so many
requirements, two frequency bands are considered for 5G net-
works.7 The first one, defined as Frequency Range 1 (FR1), covers
the sub-6 GHz bands from 450MHz up to 6 GHz. The second one,
named Frequency Range 2 (FR2), covers the millimeter waves
(mm-Waves) from 24.25 up to 52.60 GHz.
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FR1 is generally divided into a sub-3 GHz band used for
mobile network legacy, providing good coverage but with limited
spectrum, and the C-band with channels possessing bandwidth up
to 100MHz. The C-band allows for higher data rates,8 but it
suffers from uplink–downlink imbalance due to the reduced cover-
age for uplink transmission.9,10 Sub-3 GHz frequencies are used in
the eRAC scenario, urban environments, and as supplementary
uplink channels for the C-band solution to the uplink–downlink
imbalance. C-band channels are reserved for urban applications to
provide basic capacity and coverage. FR2 provides channels with
bandwidth up to 400MHz, allowing a throughput above 1 Gbps.
However, at these higher frequencies, the wireless propagation is
limited by the severe path loss and blockage.11,12 With shorter
wavelengths, FR2 channels have coverage reduced by attenuation
from objects, persons, rain, and atmosphere absorption. The FR2
band is expected to be used in 5G mm-wave self-backhaul in dense
urban environments or for small cells in an ultra dense network
(UDN) architecture,13 but the problems associated with limited
coverage and path loss need to be tackled.

The challenges of improving wireless signal propagation
across various frequencies ranging from microwave to terahertz
(THz) have been addressed with novel materials, devices, and strat-
egies. One such strategy involves the use of metasurfaces, which are
artificial two-dimensional subwavelength structures, also known as
2D metamaterials.14,15 Metasurfaces may be used to customize
transmission, reflection, and absorption properties of electromag-
netic waves.16–21 The operating frequency of a metasurface is deter-
mined by the design of its unit cells, which mimic the behavior of
atoms or molecules in a crystal, governing local electromagnetic
interactions. These metasurfaces can be used to create devices with
diverse electromagnetic functionalities, including absorption
control, analog processing, anomalous reflection/refraction, asym-
metric reflection, beamforming, beam splitting, collimation, focus-
ing, frequency harmonic conversion, polarization conversion,
vortex waves, and spatial filtering. Hence, metasurfaces constitute a
core technology for implementing reconfigurable intelligent sur-
faces (RISs) in 5G applications,22–24 6G development,25,26 and
visible light communication (VLC) systems.27,28 Spatial filtering
devices made with metasurfaces are referred to as frequency selec-
tive surfaces (FSSs). FSSs consist of thin planar layers of sub-
wavelength structures that interact with electromagnetic waves,
enabling selective transmission, reflection, or absorption based on
their frequency.29,30 FSSs meet line-of-sight (LOS) requirements,
ensuring uninterrupted wireless signal propagation by mitigating
disruptions caused by nearby wireless devices. They provide elec-
tromagnetic compatibility and act as shields, while also offering the
capability to reflect impinging waves in desired directions to bypass
obstacles and enable the implementation of high-gain radiators.
Traditionally, FSSs have been manufactured using rigid dielectric
slabs, often utilizing printed-circuit-board methods for sub-6 GHz
applications.31 However, these substrates are unsuitable for non-
planar surfaces, which are required in many practical scenarios.32

Metasurfaces fabricated using nanomaterials and nanofabrica-
tion tools33 offer the desired characteristics of flexibility, stretchabil-
ity, and conformability to various surfaces.34,35 Several methods
have been used to produce these metasurfaces, including chemical
vapor deposition for graphene and copper etching,35 inkjet

printing,36 and screen-printing techniques.37,38 However, conven-
tional inkjet and screen-printing methods have limitations, particu-
larly, in terms of the frequency range and the irregular distribution
of metal ink on the surface, which can adversely affect the electro-
magnetic response of the devices. In this work, we employed
screen-printed nanometric films to produce high-quality flexible
metasurfaces. Our approach combines a straightforward method
for fabricating sample masks with thermal evaporation of thin
metal films. This methodology offers several advantages, including
high deposition rates, simplicity, and low equipment costs. It elimi-
nates the need for expensive clean rooms, harmful reagents, and
printers that require costly additive-rich inks.39 It also ensures
higher reproducibility of the metal film and improved control of
parameters compared to conventional inkjet and screen-printing
techniques. To demonstrate the feasibility of our methodology, we
have developed a sub-6 GHz metasurface functioning as a fre-
quency selective surface (FSS) on a flexible polyethylene terephthal-
ate (PET) substrate.

The paper is organized into four sections. Section II presents
the materials and methodology to prototype high-quality metasur-
face using screen-printed nanometric films. It also discusses the
measurement setup used to characterize the fabricated sub-6 GHz
metasurface-based FSS. Section III presents the metasurface-based
FSS numerical full-wave results and the equivalent circuit model
(ECM) simulations. Indeed, the prototype and experimental results
are outlined to demonstrate the feasibility of our methodology in
applying thermal evaporation for metallic thin films with screen-
printing. Finally, conclusions and final comments are included in
Sec. IV.

II. MATERIALS AND METHODS

Electromagnetic full-wave simulations were carried out,
using the RF module of the commercial software COMSOL
Multiphysics, to obtain the corresponding S-parameters. The
metasurface was considered a periodic 2D infinite array of unit
cells (using Floquet periodic boundary conditions) surrounded by
air. Numerical reflections were avoided using absorbing perfectly
matched layers (PMLs) at the top and bottom of the unit cell. The
excitation of the structure was made using electromagnetic plane
waves. Then, to demonstrate our fabrication mechanism, we
search in the available literature a simple geometry that enables
robust polarization stability, i.e., a unit cell design that works in
the same way independently of the incident polarization. The
most simple example we found was the cross-like design used in
this work, which has a perfect mirror symmetry for rotations of
90� on the metasurface’s plane.

In the fabrication process, the metasurface mask was built
using low-cost materials and an inexpensive cutter printer, with the
unit cells designed with AutoCAD software. Silhouette Studio
version V3 software was used to make the pattern for the cutter
printer. The vinyl adhesive sheet was cut using the cutter printer,
and undesired portions were peeled off using tweezers, leaving the
designed layout as a negative mask forming a stencil. This stencil
was transferred onto a 100 μm thick PET sheet (transparency film
for laser printers). Then, 60 nm chromium and 150 nm gold films
were deposited by thermal evaporation (using an evaporator
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BALZERS BAK 600) on top of the template with the PET sheet.
The vacuum chamber, evacuated by rotary and diffusion pumps,
reached a pressure of �6� 10�6 mbar. The tungsten boat to evapo-
rate gold and chromium had 10mm in diameter and 0.2 cm3

volume. The temperature reached for evaporation was 1900 and
1063�C for chromium and gold, respectively. Since the vaporized

particles travel from the heating source to collide with the substrate
surface (PET polymer), where they condense and adhere to the
substrate, forming a thin film, the temperature at the PET polymer
was not sufficient to cause any deformation. Hence, the desired
pattern was obtained on the substrate, as shown in Figs. 1(a)–1(d),
after removing the mask.

FIG. 1. Design and fabrication of the metasurface. (a) Silhouette Studio version V3 software and cutter printer to prepare the patterns. (b) Undesired portions were peeled
off using tweezers and (c) put on a PET sheet. (d) After depositing the nanometric film onto a PET substrate, the mask is removed. The metasurface was prepared for
measurements and characterization, as shown in the inset on the right panel.

FIG. 2. (a) A cross-section FEG-SEM micrograph of the sample consisting of an adhesive layer of chromium (60 nm) and gold (150 nm), grown on PET by thermal evapo-
ration. (b) AFM image of the thin film surface of gold.
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Figure 2(a) shows a FEG-SEM image of the metallic nano-
structure, comprising a chromium layer (60 nm) followed by a
150 nm thick gold layer on top of the PET substrate. The film
smoothness was confirmed with AFM as indicated in Fig. 2(b), fea-
turing a roughness of some tens of nanometers. This level of
roughness is negligible compared with the working wavelength of
the metasurface and does not affect the electromagnetic properties
of the nanostructure.

The metasurface was characterized using two pieces of equip-
ment as depicted in Fig. 3(a): a vector signal generator from
Keysight, model PSG E8267D, and a spectrum analyzer model
MXA N9020A from the same manufacturer. Two commercial
Aaronia Hyperlog 60100 antennas were used for transmitting and
receiving the signal from 3 to 5 GHz. The antennas have approxi-
mately 5-dBi gain each and bandwidth from 680 MHz to 10 GHz.
The distance between the antennas was set as 1.25 m to ensure
far-field measurements up to 5 GHz. Figure 3(b) contains a pho-
tograph of the setup with the metasurface structure placed above

a turn table, with 1°-precision, for enabling characterization with
different incident angles. Characterization was performed in two
steps

† without the metasurface between the antennas, so the received
power would be used as a reference and

† with the metasurface between transmitting and receiving anten-
nas to evaluate the losses caused by the metasurface.

We conducted the measurements by setting a frequency sweep
in the PSG vector signal generator, with 2001 points from 3 to
5 GHz. The MXA spectrum analyzer was set in the maxhold func-
tion with 1001 points so that a continuous line could be observed.
The metasurface transmission coefficient (S21) was estimated by
computing the difference between the curves from the previous
steps.

III. RESULTS AND DISCUSSION

G(p, x, λ, θ) ¼ 1
2

(1� β2)
2

1� β4

4

� �
(C1þ þ C1�)þ 4β2C1þC1�

h i

1� β4

4

� �
þ β2 1þ β2

2 � β4

8

� �
(C1þ þ C1�)þ 2β6C1þC1�

, (1)

FIG. 3. Experimental setup for charac-
terizing the metasurface. (a) The
device under test was placed between
two hyperlog antennas. The signal
generated by PSG E8267D is analyzed
with MXA N9020A. (b) Photograph
from the characterization experiment.
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β ¼ sin
πx
2p

� �
: (2)

The feasibility of our concept to fabricate metasurfaces on
flexible substrates was proven with a band-stop unit cell following
the well-known Jerusalem cross,40 in an arrangement of 8� 8
Jerusalem crosses. This geometry has been chosen due to its inher-
ent angular stability and well-known ECM. Flexible metasurfaces
are planned to be implemented upon irregular, non-flat, and con-
formal surfaces that are inevitably subjected to an array of incident
angles as the propagating wave interfaces with the surface.
Additionally, the efficiency of the manufacturing method is proven
by comparing numerical and simulated results with those obtained
from experiments, including for oblique incidence.

The corresponding geometrical parameters shown in Fig. 4
are described in Table I, which also presents the final cell dimen-
sions. Each unit cell can be represented by an ECM comprising a
parallel combination of two series LC circuits, as seen in Fig. 4.41

The inductive reactance (XL1) and the capacitive susceptance (BL1)
define the Jerusalem cross cell first resonance, which is related to
the cross-strip lines. The second series LC circuit is represented by
an inductive reactance (XL2) and a capacitive susceptance (BL2),
which is related to the dipole strip lines at the end of each cross
arm and resonates at a second frequency higher than the first.
Since we are interested in the first resonance to prove the feasibility
of the concept of fabricating metasurfaces on flexible substrates, the
ECM analysis is restricted to the first arm with transverse electric
wave (TE) and transverse magnetic wave (TM)-incidence.

The cell dimensions define the inductive reactance and capaci-
tive susceptance and are normalized to the free space characteristic
impedance. For TE-incidence, XL1 and BC1 are, respectively, given
by40–42

XL1TE ¼
p
λ
cos θð Þ[G(p, t, λ, θ)� ln (sin(β))], (3)

BC1TE ¼
4w

λcos(θ)
[G(p, a, λ, θ)� ln (sin(β1)]

þ 4(2t þ a)
λcos(θ)

[G(p, (p� w), λ, θ)� ln (sin(β2)]: (4)

Equation (3) represents the inductance generated by the unit
cell strip lines. The first term in (4) is related to the capacitance
between the horizontal end dipoles spaced by a and reduced by a
factor of w=p since the strips are not continuous.41 The second
term is due to the capacitance between the vertical dipole ends,
which are spaced by a distance equal to (p� w). For TM-incidence,
XL1 and BC1 are given by40–42

XL1TM ¼ p
λcos(θ)

[G(p, t, λ, θ)� ln (sin(β)], (5)

BC1TM ¼ 4w
λ
cos(θ)[G(p, a, λ, θ)� ln (sin(β1)]

þ 4(2t þ a)
λ

cos(θ)[G(p, (p� w), λ, θ)

� ln (sin(β2)]: (6)

The function G(p, x, λ, θ) and β are defined by (1), where
x represents the second argument in this function as defined in
(3)– (6) and C1+ is the correction factor for the TE and TM

FIG. 4. (a) Schematic representation
of a 2� 2 arrangement of unit cells in
the metasurface, (b) the ECM for one
cell.

TABLE I. Geometrical parameters and final dimensions of the Jerusalem cross cell
unit of the metasurface-based FSS.

Parameter description Parameter Value (mm)

Separation between adjacent unit cells a 0.9403
Width of metallic lines t 1.253 73
Length of external metallic line w 16.9254
Array cell period p 21
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modes, respectively, given by42

C1+TE ¼
1

1+ 2psin(θ)
λ � pcos(θ)

λ

� �2
� �1

2

� 1 (7)

and by

C1+TM ¼ 1

1� p
λ

� 	2
cos(θ)

h i1
2

� 1: (8)

The transmission coefficient for the TE- and TM-incidence is
given by

S21 ¼ 1

1þ 0:25
XL1� 1

BC1

� �1
2

: (9)

Figures 5(a) and 5(b) display the transmission coefficients for
TE- and TM-incidence at different angles for the first resonance
for the crosses defined with the parameters indicated. The results
from the ECM have shown operation at 3 GHz and angular stability
for θ ¼ {0�, 10�, 20�, 30�} as well as polarization stability. These
conclusions are supported by the numerical results in Figs. 5(c)
and 5(d) using a full-wave analysis through the COMSOL
Multiphysics software. Note that a second resonance appeared at
around 4 GHz in the full-wave analysis for TE-incidence and
θ � 10�, which depends on the incident angle. Due to the model’s
simplicity, this resonance does not appear in the ECM. However, it
has been observed from the literature’s full numerical wave and
experimental analysis.40,41

The lower frequency peak in Fig. 5 arises from the resonant
behavior of individual unit cells in the metasurface. This can be
confirmed from the electric near-field profile (with E pointing
along the horizontal direction) in Fig. 6(a), where a near-field
coupling between neighboring unit cells is seen. Furthermore,
Figs. 5(a)–5(d) indicate that this resonance occurs under both TE
and TM incident waves. In contrast, the higher frequency peak

FIG. 5. Numerical results for S21 with the ECM for (a) TE- and (b) TM-incidence. Full-wave numerical results for the S21 parameter of the metasurface for (c) TE and (d)
TM polarized incident waves. Experimental results for the S21 parameter of the metasurface for (e) TE polarized incident waves. The minimum peaks labeled Exp1 and
Exp2 in (e) are used for comparative purposes in (c), where these values are represented by vertical dashed lines. The corresponding angle of incidence for each mea-
surement is shown in (e).
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only occurs for obliquely incident TE polarization. This latter
observation is explained using Faraday’s law: the component of the
magnetic field perpendicular to the surface (under oblique TE inci-
dence) induces a circulating current in the split square loops that
lie between the corners of the adjacent unit cells, as noticed from
the near-field profile in Fig. 6(b).

Since we are interested in filtering a narrow frequency range,
we measured the S21 parameter. Experimental data are shown in
Fig. 5(e) for θ ¼ {0�, 10�, 20�, 30�}. In contrast with the single
peak behavior (S21 , �10 dB) for θ ¼ 0�, two peaks occur for
θ � 10�, consistent with the results in Fig. 5(c). For comparative
purposes, we labeled Exp1 = 3.32 GHz and Exp2 = 4.44 GHz the
minimum of S21 associated with the frequencies for the first and
second experimental peaks with θ ¼ 10�, as indicated by arrows in
Fig. 5(e). These latter values are compared with their simulated
counterparts in Fig. 5(c). Several factors explain the differences
between the experimental and numerical results, as follows: (i)
numerical results are for pure TE and TM polarized fields, whereas
experimental measurements (conducted in an open-field) are asso-
ciated with unpolarized transverse electromagnetic (TEM) waves
(see Figs. 1 and 3); (ii) simulations are for an infinite periodic 2D
array of unit cells, whereas the finite size metasurface consists of an
8� 8 unit cell arrangement; (iii) although the simulations for Au
are the same as those for a perfect electric conductor (PEC), the
parameters of the PET were used from the literature,40 i.e., not spe-
cifically measured for the type of PET we used.

The proposed manufacturing method for telecommunications
in the C-band is validated by the excellent qualitative agreement
between the experimental and numerical results, despite minor dis-
crepancies. Such small differences between calculated and measured
results come from the sum of various contributions: (i) the dielec-
tric properties of the substrate were assumed from the available lit-
erature, not directly measured for the specific PET we used (which
can slightly vary according to the preparation method); (ii) though
the fabricated structure is relatively large, it is not infinite, as con-
sidered in the simulation setup. Notably, the lower-frequency peak,
both simulated and measured, exhibits remarkable angular and
polarization robustness [see Figs. 5(a)–5(d)]. Such characteristics
are suitable for band-stop electromagnetic interference shielding.
For instance, non-flat surfaces can be strategically covered to redi-
rect the wavefront toward a desired direction or serve as a confor-
mal reflector for high-gain radiators.33,43 The use of PET as the
material of choice offers several advantages. PET possesses a

melting temperature (Tm) around 250�C and demonstrates excep-
tional hydrolytic stability, providing flexibility and high resistance
to breakage. Moreover, PET can be recycled through chemical
depolymerization into its monomers or other valuable chemicals,
making it an environmentally friendly option. Various ecological
methods also exist for PET recycling.44,45 In fact, PET-based anten-
nas can be manufactured using recycled bottles.46 Leveraging these
features, the application of PET-based antennas in smart clothing
becomes feasible. Such flexible materials offer user comfort while
maintaining high antenna gain, thereby enabling high-performance
wearable devices.47,48

IV. CONCLUSION

We have introduced a novel concept for manufacturing flexi-
ble screen-printed metasurfaces by combining two cost-effective
and widely available techniques. The process involves utilizing a
cutter printer to create screen-printed masks and employing
thermal evaporation for the nanofabrication of metal thin films
using the well-established thermal evaporation method. We
designed the unit cell of the metasurface using electromagnetic
simulation software, ensuring its optimal performance. This unit
cell was printed onto a suitable substrate covered with a mask (in
this case, PET was used). The resulting metasurfaces exhibit excel-
lent qualitative agreement between numerical simulations and
experimental measurements. The main resonance of the FSS is
accurately explained using the equivalent-circuit model, demon-
strating strong correlation with full-wave numerical simulations
conducted through COMSOL Multiphysics. Our method enables
the fabrication of metasurfaces from nanometric to centimeter
scales, as demonstrated in this study. As a proof of concept, we
have constructed an FSS consisting of an array of 8� 8 unit cells
operating within the frequency range of 3–5 GHz. This frequency
range is essential for sub-6 GHz telecommunications bands, partic-
ularly, in the context of 5G applications. By further developing
mechanisms for creating screen-printed masks, we anticipate the
extension of this methodology to the manufacturing of flexible
metasurfaces operating in the THz and infrared frequency ranges,
which may be necessary to deploy future 6G networks.
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