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We study the variety of complex n-dimensional Jordan algebras using techniques from
Geometric Invariant Theory. More specifically, we use the Kirwan—Ness theorem to con-
struct a Morse-type stratification of the variety of Jordan algebras into finitely many
invariant locally closed subsets, with respect to the energy functional associated to the
canonical moment map. In particular we obtain a new, cohomology-free proof of the
well-known rigidity of semisimple Jordan algebras in the context of the variety of Jor-
dan algebras.
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1. Introduction

The main goal of this paper is to introduce techniques from Geometric Invari-
ant Theory (GIT) in the study of finite-dimensional complex Jordan algebras. In
particular, we consider a naturally defined moment map for the affine variety of
n-dimensional Jordan algebras and the associated energy functional, and use it to
define a notion of soliton Jordan algebra. Somehow in a dual sense, the search for
a soliton Jordan algebra in an isomorphism class of Jordan algebras can also be
thought of as the search for a ‘best’ (Hermitian) metric in a Jordan algebra. Herein
we also make an effort to relate the new geometric invariants to the ‘old’ algebraic
invariants of Jordan algebras (with partial success).
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1.1. Bastic setup

In this work we only consider finite-dimensional algebras over C. A Jordan algebra
is a commutative algebra 2l satisfying the following Jordan identity:

(Lo, Le2] = 0

for all @ € 2, where L, : 2 — 2l denotes the left-multiplication by a, and [,]
denotes the commutator. Here we only note that Jordan algebras are, in general,
non-associative, and refer the reader to [I4] for more about Jordan algebras and
their importance.

We can view a commutative algebra of dimension n as a commutative multi-
plication in C", namely, as a tensor u € S?(C")* ® C" = S?(C™) @ C" =V,
(symmetric in the first two arguments). Further, the Jordan identity is equivalent
to its linearized form

(ab, c,d) + (bd, ¢,a) + (da,c,b) =0

for all a, b, ¢, d € A, where (a,b,c¢) = (ab)c — a(bc) is the associator of a, b, c.
These are polynomial equations in V,,, therefore the space 7, of Jordan algebras of
a dimension n can be naturally identified with an affine variety in V,,. It is useful
to note that these polynomials are homogeneous, so we could also view the space
of Jordan algebras modulo complex scaling as a projective variety in PV,,; however,
we prefer to do calculations in the vector space V,.

There is a natural action of the group G := GL(n,C) on the space V,,, which
corresponds to ‘change of basis’. Namely, for g € G and p € V,,, one puts

g-ma,b) =g(u(g~'a,g7'b)) (1)

for all a, b € C". It is clear that the orbit G - i yields the isomorphism class of pu.
In particular, 7, is an invariant subvariety.

In order to use methods from GIT, we need to fix a background Hermitian
product @ on C" (whereas in the case of Lie algebras () would correspond to a
left-invariant Hermitian metric on the corresponding simply-connected complex Lie
group, in our case there is no obvious global object attached to Q). However, we will
see that the results that we shall obtain for isomorphism classes of Jordan algebra
will not depend on @ in an essential way. The group of unitary transformations
of (C",Q) is a maximal compact subgroup K = U(n) of G, which also acts by
unitary transformations on V,,, if this space is equipped with the induced Hermitian
product (which we denote with the same symbol). Note that fixing @ is equivalent
to fixing K. Now, it is standard that the action of the compact group K on the
projective variety PV;, yields a moment map PV,, — €*, where £ is the Lie algebra of
K and the star refers to the dual space (see [9], Sec. 2] or [I8] 6.14]); we prefer to do
calculations in the vector space V,, and we use a different normalization, so we shall
equivalently consider a scale invariant moment map m : V;,\{0} — it (see Sec.
for precise definitions); note that i€ is the space of Hermitian transformations of
(C™, Q). The square norm E,, = ||m||?, which we call energy, has the very interesting
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property that its gradient flow lines are contained in the orbits of G, so the limits
of those lines define degenerations of the initial algebra. This brings us to the study
of critical points of E,,, which we call solitons (for reasons that shall become clear
later).

The Kempf-Ness theorem [§] provides a beautiful characterization of closed
orbits of a rational representation V' of a complex reductive linear algebraic group
G, namely, these are precisely the orbits that contain a minimal vector, i.e. a vector
realizing the distance of the orbit to the origin (with respect to @). The minimal
vectors in any closed G-orbit form a unique K-orbit. Since the moment map associ-
ated to @@ controls the infinitesimal change of the norm of vectors, it turns out that
minimal vectors precisely correspond to zeros of the moment map (or the energy
functional). The Kempf—Ness theorem also implies that a non-closed orbit with pos-
itive distance to the origin contains a unique non-trivial closed orbit in its closure.
In particular, this gives a description of the categorical quotient V//G (which is by
definition the affine variety defined by the G-invariant polynomials in V).

On the other hand, the union of the orbits containing zero in its closure is called
the null cone N of the representation, and its elements are called unstable vectors
(in our case of GL(n,C) acting on V,,, every vector is unstable since we can always
rescale the multiplication that defines the algebra, which is to say that N = V},).
Kirwan [9] and Ness [I6] showed how to use the moment map to study the orbit
space of N, for a general representation V' of a complex reductive linear algebraic
group G; herein we are not so much interested in this orbit space, but in the related
stratification of N. Consider a Hermitian product on V', the associated maximal
compact subgroup K of G, the associated moment map, energy and solitons. Kirwan
and Ness proved that all non-minimal solitons, i.e. those solitons with positive
energy, do occur in N. Further, there is only a finite set of distinguished G-orbits
in N which contain solitons; moreover, for each such orbit G - v, the set of solitons
comprise a single K-orbit (up to scaling) and they are minima of the energy on G -
v. Finally, although the energy is not a Morse(—Bott) function, the Kirwan—Ness
theorem yields a Morse-type stratification of IV into finitely many invariant smooth
subvarieties, each of which being the stable manifold of the set of solitons of a
certain type.

In this paper, we adapt such GIT methods to the setting of Jordan algebras,
in parallel with some of the work of Lauret for Lie algebras [10], and use them to
prove a number of results which we explain in the sequel. We also formulate some
conjectures and open problems.

In the following, in case there is no danger of confusion, we denote @) simply by
(+,+) and the associated norm by || - ||.

1.2. Main results

Recall that a (geometric) deformation of a Jordan algebra p € J, is a Jordan
algebra v € J,, whose G-orbit contains p in its Zariski closure (which is the same
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as closure in the Hausdorff topology), that is 4 € G - v. In this case, we also say
that p is a degeneration of v and we write v — u. The degeneration v — p is called
trivial if p is isomorphic to v. A Jordan algebra pu € 7, is called (geometrically)
rigid if its G-orbit is Zariski-open; in our context (finite-dimension, base field C),
this is equivalent to the non-existence of non-trivial deformations of u or, yet, to
having the closure of the orbit of u in 7, coincide with an irreducible component
of 7,.

A commutative algebra p € V,, will be called a soliton if u is a critical point
of E,. A G-orbit in V,, (or isomorphism class of commutative algebras) is called
distinguished if it contains a soliton. For u € V;, \ {0}, we write M,, = ||p||*m(u)
and call it the moment matriz of u. We have a structure result for Jordan solitons.

Proposition 1.1. Let pu € V,, and write 2 = (C", ) for the corresponding com-
mutative algebra. Then

(a) p is a soliton if and only if its moment matrix M,, = ¢, I + D,,, where ¢, <0,
I denotes the identity matriz, and D, is a derivation of pn and a Hermitian
matriz with respect to Q; further, in this case there is a positive multiple of D,
which has rational eigenvalues.

(b) If p is a Jordan soliton then there is a maximal semisimple subalgebra & of A
such that A = & + N is a D, -invariant decomposition, where I denotes the
radical of A. Further, D,|& = 0.

Using this structure result and the classic theory of semisimple Jordan algebras
(see [2]), we prove the following theorem.

Theorem 1.2. Every isomorphism class of complex semisimple Jordan algebras is
distinguished. Further, in each dimension the semisimple Jordan solitons are char-
acterized among Jordan algebras as having the lowest possible value of the energy
for that dimension.

The relation p — v defines a partial order on 7, and it follows from properties
of the stratification that the functional F, behaves well with regard to this partial
order:

Proposition 1.3. Let u, v € J,,. If G- p is a distinguished orbit and the energy of
a soliton in G - u is larger than the energy of v, then pu cannot degenerate to v.

As is well known and traditionally proved via cohomological methods, every
n-dimensional semisimple Jordan algebra is rigid in the scheme of n-dimensional
Jordan algebras [, B]. We apply Theorem to give a simple, cohomology-free
proof of this result in the context of the variety 7, of Jordan algebras.

Theorem 1.4 ([4},[5]). Every finite-dimensional complex semisimple Jordan alge-
bra is rigid.

The class of nilpotent Jordan algebras of dimension n forms a G-invariant closed
subset N,, of J,. It is known that there is no non-trivial n-dimensional complex
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Table 1. Complex one-dimensional Jordan algebras
and their solitons.

Isomorphism class ~ Multiplication table  Properties

A q e% =e1 A.S

Table 2. The stratification of J7.

G-orbits  Soliton type B Ey
A1 (0;1) diag(—1) 1

Table 3. Complex two-dimensional Jordan algebras
and their solitons.

Isomorphism class Multiplication table  Properties

Az 1 e% =e1, e1n; =ni AU
As 2 e% =e1,e1n = %nl —
Az 3 n% = no A, N
Ao g = (Ayp,1)? e% =e1, e% =e9 A,SS, D
91275:Q[171><T e%:el,nle) A,D

Jordan algebra lying in all irreducible components of 7, (see [I3, Theorem 4.65]).
On the other hand, by studying some specific degenerations, we prove the following
theorem.

Theorem 1.5. For all n > 2 there exists a non-trivial n-dimensional complex
nilpotent Jordan algebra lying in all irreducible components of Ny; further, the
orbit of this algebra is characterized as realizing the highest possible value of the
energy E,. It follows that the projectivization PN,, is connected for n > 2.

Finally, we give a complete explicit description of the case n < 4, see Tables [T
@ The type of a soliton p is (dy < --- < dp; my,...,m,), where dy,...,d,
is the sequence of coprime integers which is proportional to the eigenvalues of
m(p) + E,(pn)l = WD“’ and myq,...,m, are the respective multiplicities. The
stratification is finite and the strata are parametrized by 5 = m(u) or, equivalently,
by the soliton type. We deduce the following theorem.

Theorem 1.6. FEvery isomorphism class of complex Jordan algebras of dimension
at most 4 is distinguished, except in the case of the nilpotent Jordan algebra A4 63
(see TableRl) which is not.

In Tables [ Bl B [ and § we list the complex Jordan solitons of dimension at
most 4. The coefficients in the multiplication table are chosen so that the algebra
in each isomorphism type is a soliton, except 24 3 for which there is no soliton. In
the column of properties we indicate whether the algebra is associative (A), simple
(S), semisimple (SS), nilpotent (N), unitary (U), or decomposable (D); the absence
of such a qualification means its negation, except that a simple Jordan algebra is
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Table 4. The stratification of Js.

G-orbits Soliton type 16] FEo
Ao 4 (0;2) diag(—3,—3) 1/2
Az.1, A5, A2 2 (0<1;1,1) diag(—1,0) 1
A 3 (1<2;1,1) diag(—2,1) 5
Table 5. Complex three-dimensional Jordan algebras and their solitons.
Isom class Multiplication table Properties
Az 1 = (Ar1)3 e =e1, el =ez, el =e3 SS, A, D
A3 2 e% =eq, eg = eg = %el, elex = eg, e1€3 = €3 S
RAzz3 =21 x Ap 1 e? =e1, €3 =V3ez, e1ny =ny A, U, D
A3 4 el =e1, e3 = 561, ejez = ez, €1n1 = N1 U
RAzs = A2 X Ap 1 e? =e1, el = \/762, einy = 5n1 D
Q[3,6:(Q[1’1)2><‘3 %161, 2—62, 1—0 A, D
Az, 7 e? = ey, ein1 =n1, eng =n2, n? =ny A, U
A3 8 €2 =e1, e1n1 =n1, e1ng = N2 A, U
Q[3,9=Ql2,1 x T e%:el,elnlznl,ngzo A,D
23,10 e =e1, e1n1 = 31, e1ng =na, n =/ 5n2 —
A3 11 e? =ey, einy = %nl, eing = ng —
A3,12 e} =e1, ein1 = $n1, e1na = Eno —
A3,13 e? =ey, einy = %m, ni = 13—0712 —
Az 14 = A2 20 X T e =e1, ein; = %nl, ni=0 D
Az 15 = A3 X A1 e? =bey, n? =ny A, D
Az,16 = Ap,1 x (T)? e2=e;,n?=n2=0 A, D
A3 17 n? =ng, ning = ng A, N
A3,18 ning = n3 A, N
Az 19 =A23 X T n%:nz,n%:O A, N, D
Table 6. The stratification of J3.
G-orbits Soliton type B Es
Az 1, Az 2 (0;3) diag(—%,-%,-%) 1/3
RA3,3, Az,4, Az 5, Az 6 (0<1;2,1) dlag(*? *%70) 1/2
RA3,7, A3, 10, A3,13, A3, 15 (0<1<21,1,1)  diag(—3,—3, %) 5/6
Az 8, Az,9, Az, 11, As,12, As,14, A3 16 (0<1;1,2) diag(—1,0,0) 1
4
As 17 (1<2<3;1,1,1)  diag(— 5 -5.2) 73
Az, 18 (1<2;2,1) diag(—1,—1,1) 3
A3,19 (3<5<6;1,1,1) diag(—Q, 1,0) 5

semisimple, and a semisimple Jordan algebra is unitary. In the decomposable case
we exhibit the minimal decomposition; the notation ¥ refers to the trivial (one-
dimensional) algebra. In Tables 2] F Bl and [@ we describe the strata of 7, for n < 4:
the orbits they contain, the soliton type, the parameter (3), and the value of the
energy (B = 0][2).

The property of a G-orbit to be distinguished is independent of the choice of
Hermitian product @. Indeed there is an action of G on the space of Hermitian
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Table 9. The stratification of J4.

G-orbits R4 1, Soliton type B FEy
1<k<3 (0;4) diag(—%,-%,-%,-1) 1/4
4<kE<9 (0<1;3,1) diag(—%,—%,—%,0) 1/3
23 < k<27 (0<1<2;21,1) diag(— &, -2, -2, 4) 5/11
10< k<22 (0<1;2,2) diag(—3,—%,0,0) 1/2
38 < k<39 (0<1<2<3;1,1,1,1) diag(—15, 15— 15> ) 7/10
k € {41,43, 45,49, 50,57, 59, 60} (0<1<2;1,2,1) diag(—3,-4,- 4, 1) 3/4
k=53 0<1<21,1,2) diag(— 2, -4, L, &) 9/11
k € {40,42, 44, 46, (0<3<5<6;1,1,1,1) diag(—2,-%,0,1) 5/6
47,48, 51,52, 54, 55, 56, 58}

28 < k < 37 (0<1;1,3) diag(—1,0,0,0) 1

k=62 (1<2<3;2,1,1) diag(— &, - &, - L, &) 15/11
k=65 (3<4<6<10;1,1,1,1) diag(—%,-2,-1%,2) 7/5
k =61, 63, 64 (1<2<3<41,1,1,1) diag(—1,—1/2,0,1/2) 3/2
k=66 (2<3<4<6;1,1,1,1) diag(—1,-1,-2,2) 13/7
k=170 (1<2;3,1) diag(—2,-2,-2,1) 7/3
k=67 (3<6<7<91,1,1,1) diag(—3,-1,0,2) 7/3
k=68 (1<2;2,2) diag(—1,-1,%, 1) 5/2
k=69 (3<4<6<T7;1,1,1,1) diag(—2,-2,1,3) 11/4
k=11 (2<3<4;2,1,1) diag(—1,—1,0,1) 3

k=172 (3<5<6;1,2,1) diag(—2,0,0,1) 5

products on C™ given by
9-Q(a,0) = Qg "a,g7'b)

for g € G and a, b € C". This action is transitive, so, if we fix @, any other
Hermitian product on C” is of the form g-Q for some g € G. Using a superscript to
denote the moment matrices associated to different Hermitian products, it is easy
to see that

M@ =gM2, g7 (2)

Hence the claim follows from the structure result for solitons (Proposition [[1](a)).

Thinking in a dual way, fix @) and suppose the isomorphism class of a Jordan
algebra 2 = (C", ) is distinguished. Then g -y is a soliton for some g € G, and the
relation () can be used to see that u is a soliton with respect to g=! - @, that is
g~ '-Q is a ‘best’ metric on 2. It follows from Kirwan—Ness theory that the critical
set of E,, on a G-orbit, if non-empty, is a single K-orbit, so the best metric on %,
if existing, is unique.

We point out that several formulae and results herein are similar to those for Lie
algebras [I0]. An important difference of Jordan algebras from Lie algebras is that,
in general, left multiplications are not derivations. So arguments for Lie algebras
that depend on this property will not work in the setting of Jordan algebras. Of
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course this should not be seen as a problem, but as a central feature of Jordan
algebras; and the real problem is knowing how to use this feature to our advantage.®

2. Preliminaries
2.1. Semisimplicity and the radical of Jordan algebras

Most of the results in this subsection are due to Albert. A good reference is [19]
Chap. IV].

A complex Jordan algebra 2 is called simple if A2 # 0 and 2l has no non-trivial
ideals, and it is called semisimple if it is a direct product of simple Jordan algebras.
A semisimple Jordan algebra has an identity element.

Let A be a complex Jordan algebra. An element = € 2 is called nilpotent if
x® = 0 for some integer k > 2; this is equivalent to the left-multiplication operator
L, being a nilpotent operator. There is an ideal Rad(2l), called the radical of 2,
which is the unique maximal nilideal of 2 (that is the maximal ideal consisting
entirely of nilpotent elements). Furthermore, Rad(2() is nilpotent in the sense that
there is an integer ¢ with the property that any product x; - - - x; of ¢ elements from
Rad(2) is zero; hence Rad(2l) is also the unique maximal nilpotent ideal of 2. With
this definition of radical, the quotient algebra 2/Rad(2l) is always semisimple, and
2 is semisimple if and only if Rad(2() = 0.

A result of Albert characterizes the radical Rad(2() as the kernel of the sym-
metric bilinear form 7 : A x A — C defined by 7(x,y) = Tr(Ly,) for z, y € 2.

The Wedderburn Principal Theorem for Jordan algebras, proved by Albert and
Penico [I7], states that any complex Jordan algebra 2 can be written as a vector
space direct sum A = & + 91 for some maximal semisimple subalgebra & of A
isomorphic to A/M, where M = Rad ().

2.2. A review of GIT

Let m: G — GL(V) be a rational representation of a connected complex reductive
group G on a finite-dimensional complex vector space V. Fix a maximal compact
subgroup K of G (necessarily connected and unique up to inner automorphism of
G), and a K-invariant Hermitian inner product (,) on V. Then the Lie algebra ¢
of K is a real form of the Lie algebra g of G, namely, g = £ 4 7¢. We also fix an
Adg-invariant Hermitian inner product on g, denoted (, ), which is positive definite
(respectively, negative definite) on it (respectively, £).
The moment map is the map m : V' \ {0} — g defined by

1 d tX'UH2 <X'U7U>

= s | el = S 3)
20l |,

(m(v), X) s

2 After finishing this paper, we became aware of the recent preprint [20] concerning a moment map
for the variety of associative algebras.
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where we write g-v := 7(g)v and X -v :=dn(X)v, forallg € G, X € g, v € V\ {0}.
We have that m(v) controls the norm of vectors in a neighborhood of v in the orbit
G - v orthogonal to v, and —m(v) - v is the direction of fastest decrease in the norm.
Note that m(v) € it and m is K-invariant by K-invariance of (,). A minimal vector
is vector of minimal length in its orbit. The Kempf-Ness theorem says that minimal
vectors correspond to the zeros of the moment map, and an orbit is closed if and
only it contains a minimal vector; further the closure of any G-orbit in V' contains
exactly one K-orbit of minimal vectors [8]. The square norm of m yields the energy
functional

E:V\{0} =R, E(v)=[m@)|>

Of course F is K-invariant and scale-invariant. It follows from the above that a
G-orbit in V is closed if and only if it meets E~1(0).

On the other hand, the union of all the orbits containing the origin in its closure
comprise the so-called null cone N of V. The Kirwan—Ness theorem says that the
non-minimal critical points of E, i.e. those critical points v of E with E(v) > 0, all
occur in the null cone N and determine a stratification of N\{0} [9} [I6]. So there
is a set of distinguished orbits in N, namely those containing a critical point of F,
which play a role similar to the closed orbits in V' \ N.

Since (dm,(€),X) = 2R(X - v,&)/||v||? for X € it, £ € T,V =V, £ L v, we
easily obtain for the differential of E at a point v € V' \ {0},

AR(m(v) - v, §)

o]

Now FE is constant in the complex radial direction, and the component of m(v) - v

dE,(§) = 2R(dm.(§), m(v)) =

in the direction of v is %v = [|m(v)|[?v, so the gradient of E at v is given
by
4 2
VE(v) = W(m(v) -0 = [m(v)][*). (4)

Therefore v € V'\ {0} is a critical point of E if and only if
m(v) - v € Ro. (5)

Because of this self-similarity characteristic, a critical point of F is called a soliton
(following [I1]). We will also say a G-orbit containing a soliton is distinguished. Of
course every minimal vector is a soliton. For the convenience of the reader, we next
collect the results of Kirwan—Ness theory related to solitons that we shall need.

Theorem 2.1 (Kirwan—Ness). With the above notation, we have

(a) The subset of solitons in a given G-orbit is either empty or consists of precisely
one K-orbit, up to scaling.

(b) Ewvery soliton v is a minimum of E on G-v. Thus solitons are the vectors closest
to being minimal in their G-orbits.

(¢) The solitons which are not minimal vectors all occur in the null cone N of V.
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(d) The flow of —VE starting at v stays in G-v and converges to a solitonw € G - v
as t — do0. There is precisely one K-orbit up to scaling of solitons z € G -v
such that m(z) € Adgm(w), which consists of the limit-set of G - v.

(e) The critical set of E is a finite disjoint union of closed subsets {Cg}gep indexed
by a finite set B of adjoint K -orbits in € (or points in a positive Weyl chamber).
The corresponding stable manifolds {Sg}gen form a finite G-invariant stratifi-
cation of N\{0} by locally closed irreducible non-singular subvarieties.

3. The Moment Map for Commutative Algebras

In this section we specialize to the case of n-dimensional commutative algebras and,
in particular, Jordan algebras. Let V;, = S%(C™") ® C" be the space of symmetric
bilinear maps C" x C" — C", which we identify with (non-necessarily associative)
commutative algebras of dimension n. There is a natural action of G = GL(n,C)
on V,, given by (). The action of the Lie algebra g = gl(n,C) of G on V,,, obtained
from differentiation of (), is given by

Az, y) = A(p(z,y) — p(Ar,y) — p(z, Ay) (6)

forall Aeg, p €V, and x, y € C". Note that the isotropy algebra of y, namely,
the subalgebra of g consisting of elements A € g satisfying A - u = 0, is isomorphic
to the Lie algebra Der(u) of derivations of pu.

Consider the canonical Hermitian product (,) of C". The unitary group K =
U(n) is a maximal compact subgroup of G' and its Lie algebra ¢ is a real form of g.
The Hermitian product canonically extends to a Hermitian product on V,,, denoted
by the same symbol, namely,

(ov) =Y (i, xj), 20) (0w, 25), 2),

ijk

where x1,...,x, is any fixed orthonormal basis of C". The elements of K act on
V., by unitary transformations, and those of £ (respectively, it) act on V,, by skew-
Hermitian (respectively, Hermitian) endomorphisms. We also consider the Adg-
invariant Hermitian product on g given by (4, B) = Tr(AB*), where A, B € g.

The moment map m : V,, \ {0} — it is defined as in (@) and has the form
m(p) = WM 1, where M), is the moment matrix of p. We will obtain an explicit
formula for M, in terms of the algebra structure of u and the Hermitian product in
a moment. It turns out to be the same formula as that in [I0] for skew-symmetric
algebras.

Recall that (M, A) = (A - p, ) for all A € it

Lemma 3.1. For all p € V,, and D € Der(u), we have

(a) Tr(M,) = —||ul*;
(b) (My, D) = 0.
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Proof. (a) Note that Tr(M,) = (M, I) = (I - p,pu) = —||u|*, as [ - p= —p.

(b) We have (M,,,D) = (D - p,u) = 0, since D - = 0 by () and the derivation
property. |

For p € V,,, let L¥ : C" — C" denote the left multiplication by 2z € C™ in the
algebra pu, that is Lty = u(x,y) for all y € C". We also use a superscript ()* to
denote the adjoint of a map C" — C" with respect to the fixed Hermitian product.

Proposition 3.2. For all u € V,, \ {0} and z, y € C" we have

<M T y __QZ zx’mxj L xlvxj +Z Lz,xgv Lz,xj7y>

where (x1,...,%,) 18 an orthonormal basis of C". It follows that
n n
M, = =2 LALE + Y LE Lk
i=1 i=1

Proof. Let u € V,, and consider A € it such that Axy = x; and Az; = 0 for
i =2,...,n. We have
(M, A) = (A~ p, 1)

= (A (e, z), 2;) (u(za, 21), 25)

= Z xvaz N(Ax&xi) - N(xstxi)7xj><:u(xsvxi)7xj>
= Z((M(Is’xi)’A%’) — (W(Azs, i), 75) — (s, Azi), 25)) (W(@s, T3), T5)

= Z xsvxz </~L(x87xi)7xl> - Z<:u(x17xi)’xj></~"(x17xi)7xj>

ij

= S (e ), ) (s a0), a)
= oo, Liran)|* =2 [(Lh @, 25))
st ij

and, on the other hand,

(M, A) = > (M, Az;) = (M2, 21).
i
Since x; € C" is arbitrary, a simple polarization argument proves the first identity

in the statement, and the second one is a reformulation. O
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3.1. The structure of solitons

Next, we prove Proposition [Tl Let 2 = (C", u) be a commutative algebra, where
p € Vi,. We have seen in ([5)) that p is a soliton if and only if D, := M, — ¢, I kills p,
for ¢, = —||M,||?/]|ul|* € R (vecall that I-p = —pu); owing to (@), this is equivalent
to D, being a derivation of u. Since M = M, and ¢, € R, also D}, = D,,. For
part (a), it remains only to show that if x is a soliton then some positive multiple
of D, has rational eigenvalues.

Without loss of generality, we may assume D, # 0. Let z,...,z, be an
orthonormal basis of eigenvectors of D,; then it is also a basis of eigenvectors
of M,,. Consider the ‘structure constants’ uf’j given by pu(z;, x;) = >, ,ufjxk for all
1, j. Let b be the subspace of g consisting of endomorphisms of C™ that are diagonal
on that basis, let ozfj € b have matrix —F;; — Fj; + Ey, in that basis, where E;, has
a 1 in the (a,b)-entry and 0 elsewhere, and consider the subspace F' of h spanned
by all ozfj with ,ufj #0.

Note that A € b is a derivation of p if and only if p(z;, z;) lies in the (a; + a;)-
eigenspace of A, for all 4, j; this is equivalent to ar = a; + a; whenever ,ufj # 0.
Therefore Der(p) Nh = FLX Nh. Owing to M, € h and Lemma BI(b), we have
M, € F. Now let P : h — F be orthogonal projection. Applying P throughout the
equation M, = c,I + D, yields

Therefore

—iD,L =1- LM/L =1-—P(I).
Cu Cu
Since F' is spanned by matrices with integer coefficients, P(I) has rational coeffi-
cients, and this finishes the proof of part (a).

We next address part (b) of Proposition [Tl Due to [6, p. 869], the radical 91
of 2 is a characteristic ideal of &, thus D-invariant. Next, using results of Mostow
and Auslander—Brezin, we show there is a maximal semisimple subalgebra & of 21
which is D,-invariant. First we note that D, is semisimple, since it is Hermitian.
Therefore the one-dimensional Lie algebra 9 of derivations of 2 generated by D,
is completely reducible. Its algebraic hull 9% consists of derivations [I (1.2)], and
it is also completely reducible [I, (1.5)]. Now the associated connected algebraic
subgroup of GL(2l) is a completely reducible group of automorphisms of 21 [T}, (1.6)].
But a completely reducible group of automorphisms of a Jordan algebra preserves
some maximal semisimple subalgebra & [I5 p. 215], and hence the same is true
of Dy,.

Finally, we prove that D,|& = 0. Since D,, is a Hermitian endomorphism of
C", it is semisimple and has real eigenvalues. Let z € C" be an eigenvector of
D,, with associated eigenvalue d € R. The derivation property implies that x
is an eigenvector of D, with eigenvalue kd for every integer £ > 2. By finite-
dimensionality, if d # 0 then z is nilpotent; it thus follows that x € 91. This shows
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that the only eigenvalues of D), that can occur for eigenvectors in & are zero, and
finishes the proof of the proposition.

4. Semisimple Jordan Algebras

In this section we show that the semisimple Jordan algebras realize the minimal
value of the energy F, for all n, up to a change of basis (Proposition [£H]); Theo-
rem [[2is a consequence. A good reference for Jordan-related results in this section
is [2| Kap. VIII].

4.1. Peirce decomposition

Let 2 be a complex semisimple Jordan algebra. Then there exists a complete orthog-
onal system of idempotents, or Jordan frame, that is a maximal set {e1,...,e,} of
primitive idempotents of 2 such that e; + - - - 4 e, is the identity element of 2, and
eiej = 01if ¢ # j. A Jordan frame is unique up to an automorphism of 2. In the
case of a simple Jordan algebra 2, the number r > 2 of elements in a Jordan frame
is called the degree of 2.

A Jordan frame as above gives rise to a canonical decomposition of 2 into
a vector space direct sum, as follows. The eigenvalues of an idempotent ej act-
ing by multiplication on the algebra can only be 0, % and 1, and we denote the
corresponding eigenspaces by o(ex), 2y (ex) and s (ex), respectively. The Peirce
decomposition of 2 is

A = D<Ay,
where
Wi = Ay (e;)
for all ¢ and
Ay = Ql%(e,;) ﬂ%%(ej)

for i # j.

4.2. Killing form

Next, assume in addition to the above that 2 is simple algebra of dimension n. Fix

a Jordan frame and the associated Peirce decomposition. It is known that if r» > 3,

then dim®2;; = d € {1,2,4,8} for all 4, j. Also, in case r = 2 we put d = n — 2.

Now we have

r(r—1)
2

An element a € 2 is called regular if Cla] := spanc{l,a,...,a" 1} is

n=r+ d. (7)

r-dimensional (equivalently, dim C[a] is maximal among dim C[b] for all b € 2A).
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The reduced trace of a regular element a € 2 is
tr(z) = Tr(Llc),

and the function ‘reduced trace’ can be uniquely extended to a linear map tr : A —
C (compare [3, Chap. 2, Sec. 2]). Since 2 is simple, we have

tr(ab) = %T(a, b). (8)
The Killing form of 2l is the symmetric bilinear form K : 2 x 2 — C defined by
K(a,b) = Tr(LyLy)

for a, b € A. It follows from the trace formula that [2 Satz 9.4, Kap. VIII]

K(a,b) = (1 + (r— 2)%) tr(ab) + letr(a)tr(b). (9)

4.3. Moment map

Suppose 2 is a complex semisimple Jordan algebra given by u € 7,. Then the
trace form 7 is a non-degenerate symmetric bilinear form. Also, there exists an
Fuclidean real form 20y of 2, that is %y is a formally real Jordan algebra such
that 2y ®@r C = 2A (2, Satz 5.6, Kap. IX] or [3, Theorem 8.5.2]). The restriction
of 7 to g is a positive-definite Euclidean inner product ([2, Satz 3.4, Kap. IX]
or [3 Proposition 3.1.5]); we extend it to a Hermitian inner product on 2, denoted

by (,)-

Lemma 4.1. Let a € A. Then the adjoint L of L, : A — A with respect to (,)
is Lg, where a € A is the complex conjugate of a over AUy. In particular, L, is a
Hermitian operator for a € 2.

Proof. We compute for b, ¢ € 2 that
(Lgb, c) = 7(ab,¢) = 7(b,a€) = 7(b, Lac) = (b, Lac),

since L, is self-adjoint for 7, which proves the statement. |

The next result shows that the moment matrix of a complex semisimple Jordan
algebra 2 is essentially given by its Killing form.

Proposition 4.2. Let M, be the Hermitian matriz which is the moment matriz of
A= (C",pn), and let K,, be the Killing form of A. Then

(M,a,b) = —K,(a,b)
for all a, b e A.
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Proof. Let {x1,...,2,} be an orthonormal basis of C" with respect to (,) which
is contained in 2ly. Using Proposition 3.2 and LemmalII], we can write

(M,a,b) = Z L")

=D _{Lg.a, Lib)
—Z@Z%Lfm
- Z<L§Lgx,;, ;)

= —Te(LELE)

= —K,(a,b),

as desired. O

Lemma 4.3. Let A be a complex simple Jordan algebra represented by p € Jp.
Denote by r and d, respectively, the degree of A and the dimension of the off-
diagonal Peirce components U;; (i # j), where we fix a Jordan frame (e1,...,e;)
contained in an Buclidean real form. Fix also a Hermitian product on C" by putting

(see )
(2,9) = STe(Lky) = ¥ (a7)

for x,y € C". Then the Jordan frame is an orthonormal set and can be completed

to an orthonormal basis of C" by adding elements e ey, k=1,...,d, for all
i # j. In this basis, the moment matriz of A = (C", u) is given by
d
M, = —al = N,

where a =1+ (r —2)4 and

0 |0

T n—r

Proof. Consider the Peirce decomposition 2 = @;<;2;; with respect to a Jordan
frame (eq,...,e.). Then

Qo(er) = Dijzeij, Arler) = Gz and  As(ex) = Ak,
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where dim®;; = d for all i # j, and Uy, = C - ¢ for all k. Using e% = e, (@
and (R), we see immediately that

(e, en) = tri(ey) = %Tr(Lﬁjk) - % <%(r —1)d+ 1) =1

for all k. Moreover, using
Qlij . (91“ + Qljj) C Qlij, Qlij 'Qlij C Ui + Qljj
Agj - Wjpe C A, Uiy - Aige C A,
for mutually different 4, j, k, we see that, for ef’j e Wj (i #7),
(k) = ZTr(LY, ) = 0.
r (ezj) n I'( ef])

Finally, formula (@) and Proposition E2] yield

(M, ) = —of,) — T () (5)

Therefore
d
(Myei,ej) = —adij — -,
<M,uefv e”jj> =0
and
<M/L€i‘€jv eis> = _aair(gjsakt’
as wished. O

Remark 4.4. Using the calculation in the proof of Lemma [£3] it is easy to see
that

2 32 2 32
B () = TYMEL _ na? + Tlg + Igd _ na? + T(;d + Tlg . l § l
272 b
(TrM,,)? (na+ £2)2 no?+rgd 4o on

where n > 2. In Proposition L5, we will see that the Peirce basis can be slightly
changed to lower the value of E,.

Theorem is derived from the following result.

Proposition 4.5. For all n, the minimum value of E,, : J,, — R is 1/n, and this
value is attained only at semisimple Jordan algebras. Conversely, if j is semisimple
then E,(g-p) = 1/n for some g € G.

Proof. Note that F,,(u) = % if and only if M,, = ¢, 1. Indeed if ¢y, ..., ¢, are the
(real) eigenvalues of M,,, and we want to minimize the value of ¢§+- - -+c2 subject to
the condition that ¢;+- - -+c¢, = 1, we immediately obtain that ¢; = --- = ¢, = 1/n.

We first prove that the moment matrix of a complex semisimple Jordan algebras
is scalar, up to a change of basis. It is enough to consider a complex simple Jordan

2450015-20



Commun. Contemp. Math. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 06/17/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

A moment map for the variety of Jordan algebras

algebra p. We start with the basis {e;} U {e};} of the Euclidean real form as in
Lemmald3and the associated moment matrix M,, = —al— %N. Let {f1, fo,.-., fr}
be a (positively oriented) real orthonormal basis of spang(e; ..., e,) such that its
first element is parallel to the identity element 1 =e; + -+ +e,. Then {f;} U {efj}
is an orthonormal basis of R"™. Let h € SO(n), h = ("' 9), where b’ € SO(r), b
such that h maps f; — e;, efj — ew, and put v = h - p. Slnce the moment map is
U (n)-equivariant, we have

0
M, =hM,h™ " = —al — - E . (10)

0 0

We next show that it is possible to rescale the basis (in fact, only f1) so that the
moment matrix becomes scalar.

We need to make some remarks about the 1/ . Denote by {fi,...,fn} the
orthonormal basis of R" above constructed so that f1 is parallel to 1, {f1,..., fr}
spans 211+ ...+ and {fry1, ..., fn} spans &;;2;;. Let € R" be a unit vector.
Then (22 = u(z,x))

vt =l by, oy Lo

Note that (z*,1) = |[z|[* =1 and |[1||* = LTr(I) = . It follows that

2

T =%f1+y, y L fi. (11)

We also have (u(fi, f;),1) = (fi, f;) = 0if i # j. Since v(e;,e;) = h(u(fi, fj)), it
follows that

1 n
Z elel ®e; + 7 Z ef? ® e; + terms not involving ey, €);  (12)
=2

here we denote by €/, ..., el the dual basis of ey, ..., e,.
Next we consider the following one-parameter deformation of v, and show that
the moment matrix is scalar for some value of the parameter. Set v, = g, L.v, where

e—t

gt = exp(—tFE11) =
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We can write v = >, vF ’Uk , where U,’j = cle ® er and the sum runs through

ijk zg
1 < j, and then
|l 1P =2(i #5) and |j}|* =
Also, v,’f is a weight vector of S%(C™") ® C" of weight afj = —0; — 0; + 0}, with

respect to the Cartan subalgebra of g consisting of diagonal matrices, where we
denote by 6; the projection onto the ith-diagonal entry. Now

X g
vy = E emij(E“)ijv,'j
ijk
and

Eop vy = Zem i (B )vhv
ijk

It follows that, for ¢ > 2,
(M., Ewe) = (Eu - vi, vt)

= Y e b P ol (B 2o} |

ijk
:o+1e 1+ Yl (Bl Pllof))?
r Kl k
ijk#1
=:cy
2
= —Ze? t ¢, (13)
-
where we have used the form ([IZ). Since (MUO,EN) = —2 4 ¢4 is independent of
£ > 2, owing to ([I0) we deduce that co = --- = ¢, = ¢ for some ¢ € R.

We next describe the first entry of M, , again by using ([I2):

(My,, Bux) =Y 5 Emal (B v P||v |

ijk
1 1
= ;e‘zt(—l)(l +(n—1)2) + ;e“ 1-((n—=1)-1)
2n — 1 -1
S (14)
r r

Use ([[3) and [@4) to investigate (¢ > 2)

n—+1 2n—1 _
v(t) = (My,, Ev1) — (M,,, Egp) = . et — . e _ ¢

Since lim;— oo y(t) = —o0 and lim;— 4 y(t) = +oo, there is tp € R such that
v(to) = 0. We have shown that all diagonal entries of M,, are equal. The last step
is to show that the off-diagonal entries of M,, (indeed of M,, for all t) vanish.
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Since M, is a diagonal matrix, it suffices to show that (1 < p < g < n):
d

E(Mumqu + Eqp) = 2%<(qu + Eqp) v, By - vy (15)

vanishes.
Note that

t n
€ ii

et &
E11~1/t:——g v 4 —= v
7 1>
rah o vris

so we need only to know the v}!‘- and vi’-components of (Ep, + Eyp) - vt
We compute

<((qu + Eqp) v)(er,ei), ei) = — p1<Vt(€q,€i)7€i>7
((Er1 - ve)(er,ei),eq) = —(ve(er, e:), €,

and, for i = 2,...,n,
((Epg + Eqp) - vi)(ei,ei),e1) = dp1(vi(eis €i), eq),

((Br1 - we)(es €i), e1) = (vileq €4), ea).
Plugging these formulae into ([T already yields zero, unless p = 1, for which

1d = —
§E(let’E1q +En) =R (vileg ), e)(iler, ), e)
i—2
+ (ni(eis i), eq) (veleis €4), ex). (16)

Note that, using i, ¢ > 2,

SO

Ml/tvElq + qu) = Z€7t<1/(€i,ei),€q><l/(€i,€i),€1>
=2

+el(v(e,e), eq)(v(ei,ei), er)

— 1 t “Nule;, e;), e
_;W(e +e )<(27 z)v q>

L tyet "1/6‘6‘ e
_W(e + )<Z (%7 %)7 q>'

i=2
Finally, we claim that the basis fi,..., f, can be chosen so that > ., u(fi, fi) €
R-1. This will imply 37", v(e;, ;) € R-ey L eq, and hence & (M,,, E1q+Eq1) = 0.
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The claim is proved in two steps. In the first step, recall the idempotents
er...,e, with e;e; =0fori # jand ey +---+e, =1. Set f1 = —T and

1
= ——(e1 4+ -+e-1—(i—1)e;
[ i(i—l)( 1 1—( )eq)
for i = 2,...,r. Then a quick calculation yields

S-(-)

In the second step, we invoke [2 Satz 9.1, Kap. VIII]. It says that u? = %(ei—i-ej)
for all u € ;; (i # j) with [|u|| = 1. Finally,

I B S L

i=r+1 1<i<j<r i=1

and hence

1 d
S (i)

as wished.

In the remainder of the proof, we show that, conversely, if M,, is a scalar matrix
then 2 = (C", ) is semisimple.

Write A = 91+ & (direct sum of vector spaces), where 91 is the radical of 2 and
G is a semisimple Jordan algebra. Suppose, by contradiction, that 91 # 0. Then

m[o] m m[k+1 (m[k )

for k > 0 defines a decreasing sequence of ideals of 2 (JI7, Lemma 2.2]; see also [21]
Lemma 3, Sec. 3, Chap. 4]). Nilpotency of 9 yields a minimal kg > 0 such that
glkot]l = 0. Let B = 9Mlkol £ 0. Then

By =B, By = AB? + B2,

for k > 0, is a decreasing sequence of ideals of 2 [I7, Lemma 2.2]. By [I7, The-
orem 2.5], there is a minimal k; > 1 such that By, C B2. Now there are two
cases.

If By, # 0, then € =By, is a non-zero ideal of A with

=87 C BB = B° = (Mlkol)3 = plkot1] =,
If By, =0, then € =By, 1 is a non-zero ideal of A with
=% ;=0

since 0 = By, =AB; _; + B _,.
In any case, we have found a non-zero ideal € of 2 with €2 = 0. We can now
finish the proof. Let x1, ..., x,, be an orthonormal basis of €, and let y1,...,Yn—m
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be an orthonormal basis of ¢1. For any x € €, owing to Proposition 3.2 and the
facts that L¥x; = 0 for all ¢ and that the image of L# is contained in €, we have

0> (M,z,z)
= =23 [(Lhyi, )P+ NLE 2+ Y (Ll a)* + ) [(Lh g, @)
ij ij ij N ij
=Lz yi
We make x = xj and sum over k = 1,...,m to obtain

0> Z(Mﬂxk,xw
k

= =2) WL yox)? +2) (L g on) P + Y LYy, 2)]

ijk ijk ijk
2
= > [Lhyj, )]
ijk
>0,
a contradiction. Hence 9 = 0, as desired. O

5. The Maximal Value of FE,,

Since the energy E, is constant along rays in V;, \ {0}, it attains a maximum value.
In this section we determine those points of maxima and prove Theorem

We introduce two important complex Jordan algebras. We give them names
following the analogy with Lie algebras:

(a) The Heisenberguian Jordan algebra ppeis has a basis {ni,...,n,} (n > 2)
satisfying n? = ng, and the other products equal to zero. This is a nilpotent
Jordan algebra.

(b) The hyperbolic Jordan algebra pny, has a basis {e,n1,...,n,-1} (n > 2) sat-
isfying e? = e, en; = %nz for all 4, and the other products equal to zero. This
algebra has been considered in [I3] Teorema 4.65], where it was shown that it
is rigid.

Proposition 5.1. Every Jordan algebra of dimension at least two which is not
isomorphic to nyp degenerates to [imeis. Further, the only Jordan algebras in J,
(n > 2) for which the only non-trivial degeneration is to the trivial Jordan algebra
(all products zero) are pieis and fnyp.

Proof. Let p € J,. Suppose there is 1 € C" such that z1, xo := p(x1,x1) are
linearly independent; complete this set to a basis xi,...,x,. Define g, € G by
setting g;v1 = txy, gux; = t2x; for i = 2,...,n, and put pu, = g;l - . Then
pe(x1, 1) = o for all ¢ # 0. Moreover, for (i,7) # (1,1) there is m € {3,4} such
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that
pre (s, wy) = 7 gy At (e 4 A i) — 0
as t — 0. In other words, yt — LHeis-

In case there is no x; as a above, there is a non-zero linear map ¢ : C" — C such
that pu(z,z) = {(x)z. By polarization, u(z,y) = &({(z)y + £(y)z). Let nq,...,m,_1
be a basis of ker £ and choose e such that £(e) = 1. Then p(e,e) = e, pu(e,n;) = in;
and p(ni,n;) = 0 for all 4, j, which shows that g = finyp.

Further, dim Der(jinyp) = n? —n and dim Der(pupeis) = n+(n—2)(n—1) = n?—
2n + 2; in fact, if d € Der(peis), then d(nq) is arbitrary, d(n;) € span(ng,...,n,)
for ¢ > 2, and d(n2) = 2ni1d(n1). Since dim Der(pheis) < dimDer(unyp) for
n > 2, it follows that pny, 7 fmeis [ p. 284]. Also, fiheis 7> Pnyp because
dim pinyp (C", C") = n > 1 = dim peis(C™, C™) (alternatively, peis is associative,
but fhyp is not). m|

Since pinyp is not a nilpotent Jordan algebra, it follows from Proposition[5.] that
[tHeis lies in the closure of every G-orbit in N,, which proves the first assertion of
Theorem [[LHl The second assertion is a consequence of the following result.

Corollary 5.2. The Jordan algebras pipeis and pnyp are solitons. Further, the maz-
imum value of E,, is 5, and it is attained exactly at the G-orbit of pieis-

Proof. Suppose p is a point of maximum of E,,. This implies that p is a critical
point of E, on G - u, and hence on V,,. By Kirwan—Ness theory (Theorem BP.T]),
1 is a point of minimum of F,, on G - i, which implies that FE, is constant along
G - . Now every point in G - i1 is a point of minimum of E,, on G - u, so the G- and
K-orbits through pu agree up to scaling, that is G-y = C* - K - 1, again by Kirwan—
Ness. It follows that the only possible degeneration of y is to the trivial algebra. By
Theorem [5.1] p is isomorphic to one of fipeis O fhyp. A simple calculation yields

3
6
MHHeis = =5+ 5 ) En(,U/Heis) =5
5
and
0
n+1
n+1 2
Muhyp = 9 I+ s En(lihyp) =1
n+1
2
This finishes the proof. O
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6. Stratification

In this section we review the Kirwan—Ness stratification of the null cone in the
setting of commutative algebras. We follow the formulation and notation of [10} 12]
(for which we refer the reader, regarding the missing proofs below) and note that
the results are exactly the same as for the case of skew-symmetric algebras.
Consider again the action of G = GL(n,C) on V,, = S*(C"") @ C". Since
limy o g; ' - p = limy_qtu = 0 for g; = tI, every commutative algebra degenerates
to the trivial algebra, and therefore the null cone N =V,,. Let h be the subalgebra
of diagonal matrices of i€, choose a positive Weyl chamber h* in b and denote its
closure by h*. The critical set of E is K-invariant and it decomposes into a finite
union of disjoint closed subsets {Cs} sep, where B is a finite subset of hT, such that
Cp is mapped under m onto the adjoint orbit K - 3 in i€. Let Sg be the set of all
points of V, \ {0} that flow into Cz under —V E,, (the stable manifold of Cz). Then
Sp is G-invariant, Zariski-locally closed, irreducible and non-singular, and we have

Vo \ {0} = UﬁeBSﬁ (disjoint union), (17)
where
Sﬁ \ Sﬁ C U Sﬁ/. (18)
1B"11>118]1
Write p = Zijk ,ufjege; ® ey, for an orthonormal basis eq,...,e, of C" and its

dual basis €],...,e.,. For u € V,, \ {0}, define
B, = the convex combination of smallest norm of the elements ozfj €bh
with ufj # 0.
Recall that afj = —FE; — Ejj + Eyg, so Trf3, = —1. Now another description is
Sg={p eV, \{0}| B is of maximal norm in {8,., | g € G}},
and B={f € bt | Sz # @}. Define also
Wi = {1 € Vi | (5,0k) > |8 for all 1 £ 0},
that is the sum of eigenspaces of dr(3) with eigenvalues > ||3||?, its subset

Ys={peWs| (ﬁ,afj) = ||B||? for at least one ks # 0}

and
Y5 =Ys NS
Then one proves
Y5® = SsNWps
={n€e Ss|B=0u} (19)
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and
Sg=K- Ygs. (20)
Finally,

we\{0ycSsu |J S (21)
TSI

Lemma 6.1. If M, € b, then

k k
M, = Z \Hij|2 Qg

ijk
Proof. For the canonical basis eq,...,e, of C" we have

(Mex,er) = —QZKL“ e, ej)]? —|—Z| (LE ej,er)|”,

SO
My, = " (Myex, er) Ex
k
== [Lhej en)*Ei — > [(Llej en)*Ejj + Y (L ¢, ex)|* Bin
ijk ijk ijk
- Z ‘Mzg zga
ijk
as desired. 0O

Corollary 6.2. If m(u) € b then m(p) € Conv({afj : ufj # 0}) (convex hull); in
particular,

E(p) = [[m(u)|* = {1841,
and equality holds if and only if m(n) = B, if and only if p is a soliton, and in this

case |1 € Sg for B € B the unique element of 6+ Adg-conjugate to 3. In general,
since E is K-invariant, from Eqs. (I9) and @20) we get that

E(u) > [|8]1*  for all u € Sg, (22)

and equality holds if and only if p is a soliton, in which case m(p) is Ady -conjugate
to B and to B,.

Corollary 6.3. If j is a soliton and 0 is an eigenvalue of D,,, then ||5,|| < 1.

Proof. By replacing i by a Adg-conjugate, we may assume 3, = m(u), so 5, +
18ul 2T = WD“ has 0 as an eigenvalue, that is (8., Ei;) = —||8,]|* for some

i=1,...,n. Finally, ||B.|| > [(By, Eii)| = ||8ul]?- O

Since the stratification () is G-invariant, it naturally induces a stratification
of any G-invariant subvariety of V;, \ {0}.
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Proposition 6.4. The stratum Sg N J, for § = —%I precisely consists of the
n-dimensional semisimple Jordan algebras.

Proof. It follows from Proposition 0] that if p € 7, is semisimple then there is
g € G with M., a scalar matrix. Therefore u € Sg N J,,. Conversely, assume that
w € Sg N Jy,. Then the integral curve {u(t)} of the (—VE,,)-flow with u(0) = pu is
contained in G - ;1 and converges to a soliton in Sg. In particular all the eigenvalues
of M, are negative for sufficiently large ¢. In the second half of the proof of
Proposition 28] the argument only needs this information to imply that p(¢) must
be semisimple for sufficiently large ¢ (cf. inequality for (M, x) on p. 18). Hence
is semisimple, too. O

6.1. Proofs of Proposition and Theorem [1.4]

If 4 — v then G-v C G- p. Say p € Sg for some 5 € B. Then (I8) implies that
v € 53Ul 558 Sp’- Owing to Corollary 6.2 we have

E(v) > [|8]* = B(p),

proving Proposition

We move to the proof of the theorem. Recall that SzN 7, for 3 = — %I precisely
consists of the n-dimensional semisimple Jordan algebras (Proposition [6.4)), so it is
open in J,, say thanks to Albert’s criterion for semisimplicity in terms of the trace
form (Sec.[ZT]). Suppose p is semisimple and v — p. Then v is semisimple. Moreover
p € G - v implies that dim G- u < dim G- v and therefore dim Der(x) > dim Der(v).
We will prove the reverse inequality by using a result of [6] asserting that every
derivation D of a semisimple Jordan algebra 2 (over a field of characteristic zero)
is inner, in the sense that it is given as D = Y .[Lq,, Ls,| for some a;, b; € 2. It
implies that

dim Der(p) = dimspan{[L, L |}i; < dimspan{[L;, L; |};; = dim Der(v)(23)

for a fixed basis z1,...,x, of C", by lower semicontinuity of the dimension of the
span in terms of the multiplication in V,.

Now G - p and G - v have the same dimension, which implies that G-y = G - v,
that is p and v are isomorphic. This means that G - p is closed in Sz N 7, for
6= —%I. Since there are only finitely many G-orbits in Sz N7, (Proposition [64)),
they are all open in SgNJ,, and hence in J,,. In particular G- 11 is open in J,, and
hence p is rigid. This finishes the proof of Theorem [[4l

7. Low-Dimensional Jordan Algebras and Other Examples

The proof of Theorem [0 regarding Jordan algebras of dimension at most 4 is given
in Tables[IHAl In this section we explain how to read them and explain certain cases
in more detail. We start with some remarks of a general nature.
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7.1. Decomposable algebras

A Jordan algebra is called indecomposable if it is not isomorphic to the direct
product of two Jordan algebras, and decomposable otherwise. The following lemma,
whose proof is easy, shows that we can restrict our search for solitons to the inde-
composable Jordan algebras.

Lemma 7.1. if p € V,, and v € V,, are solitons and M,, = ¢, I + D,,, M, =

Cu

el + Dy, then pu X cv € Vi, is a soliton, where ¢ =

7.2. Unaitalization of Jordan algebras

The following result is an easy check using, say, Lemma

Lemma 7.2. If a Jordan algebra A = (C", u) does not carry a unit element and
we adjoin a unit element to A to obtain A = (C" 1, i), then the moment matriz of

[ is
M,
My = .
—(2n+1)

In particular, if p € T is a soliton and M, = c,I + D,,, then \/cpu € Tpy1 is a
2n+1
, and

u J cD,
@——(2’)7,-1-1) + 0 ;

in this case En+1(\//5\u) = Ef?;ﬁl

soliton, where ¢ =

—_— —_— —_— —
Basic examples are Aao = A34, ™Az3 = AUz 7, Ao s = AUz 3, Az13 = Ay 25,
—_—
A3 17 = Ay 39 (see Tables [IHA).

7.3. The regular representation of a semisimple Jordan algebra

Let & = (C", ) be a semisimple Jordan algebra, and let 91 be the underlying vector
space of &, which we consider as a G-module under the regular representation. We
put M? = 0 so that A = G+ = (C*", i) is a Jordan algebra. Choose the Hermitian
product such that & L 91, on & it is the Hermitian product that makes p a soliton
with M,, = —%I , and on M it is isometric to &. Then a simple calculation shows
that M/]

Tables [THG]).

—%I = —%I. Basic examples are 201 = a1 and Az 4 = Ag 20 (see

7.4. Jordan algebras in dimensions 1, 2 and 3

Excluding the trivial algebras, there is one isomorphism class of complex one-
dimensional Jordan algebras, five isomorphism classes of complex two-dimensional
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Jordan algebras, and 19 isomorphism classes of complex three-dimensional Jordan
algebras [7]; those are listed in Tables [l Bl and [ in soliton form. One computes
the moment matrices using Proposition 3.2l and then uses Proposition [[.1] to find
a soliton in each isomorphism class. It is essentially enough to work with non-
semisimple and indecomposable algebras. The stratification and invariants are col-
lected in Tables 2] @l and [@l To give one example in dimension 3, consider 23 4. One
replaces the standard basis ej, e, ny given in [7] (see Table 2 therein, where the
algebra is listed as 710) by fi1, f2, n1, where f1 =e1 + e, fo = e1 — ea, in order to
diagonalize the moment matrix, and then replaces fa by f§ = kf2, where k* = 5/3,
in order to find a soliton.

7.5. Jordan algebras in dimension 4

Excluding the trivial algebra, there are 72 isomorphism classes of complex four-
dimensional Jordan algebras [7]. Those are listed in Tables[[land §in soliton form,
except for 24 3. The stratification and invariants are collected in Table @l We omit
the tedious calculations and only give a few typical examples.

7.5.1. The orbit of A4 ¢ is distinguished

We search for solitons among isomorphic algebras of the form n? = ans, n3 = Bng,

ning = yns. Using Propositions and [[LJ] we find one with a? = 82 = 4 and
2

v =3.

7.5.2. The orbits of Uy 16, A7 and Ay 05 are distinguished

We compute that the energy of 24 16 in the basis given in [7, Table 3] is 27/49.
Consider a point of minimum v of E4 in G - p. According to [I3], the first level
degenerations of ;1 are QA4 o8, As 31 and Ay 50, whose orbits contain solitons with
energy levels, respectively 1, 1 and 3/4. Since E(v) < 27/49, v cannot lie in those
orbits. Still according to [13], the only other possible degenerations of p are to Ay ;,
where i = 48, 64, 66, 67, 68, 70. However 24 43 has a soliton with energy level 5/6
and the other ones have solitons with energy level well above 1, so again v cannot
lie in those orbits. The only remaining possibility is that v € G - 1. Hence 204 16 is
distinguished. It follows from Corollary 62 that E(v) = ||8,]|*> = ||B.|]> = 1/2.

We compute that the energy of 4 17 and 24 95 are 3/5 and 5/9, respectively,
and proceed similarly in those cases.

In Table [ we have written the approximate values of the structural constants
for these solitons, which were obtained by using computer software.

7.5.3. The orbit of Ay 63 is not distinguished
Denote (C*,p) = Ay 3 and (C*,v) = Ay 4. It is known that p — v. Indeed, let

1
g = ( ¢, ) € G and put py = g[l - pt. Then limy_,o s = v. Note that v is
t
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-1

a soliton and put 8 = m(v) = o > € 6+. It is immediate to see that

=

1
1 € Ws. Since inf Ey(G - p) = ||8|* = 2, W2€ deduce from ([8), 1) and ([22) that
JUS Sﬁ.
Now suppose, to the contrary, that A\ € G - u is a soliton. Then m(\) is Ad k-
conjugate to 3 (Corollary [6.2]), and by replacing A by an element in its K-orbit we
1

may assume m(\) = 3. Since WD)\ =B+18|1*I = % ( 2, ), this implies that
4

this matrix is a derivation of A. This matrix has pairwise different eigenvalues, so
A must be given by

)\(nhﬂl) = ang, /\(”1,712) = bngs, /\(”1,713) = Chy, /\(”27712) = dny, (24)

and the other products zero, for some complex constants a, b, ¢, d.

Suppose now A is given by (24]). We finish by checking that: (i) A can only be
isomorphic to p if @ = 0 and b, ¢, d # 0; (i) if @ = 0, A can be a soliton only if
b= +c and d = 0. This will prove that there are no solitons in G - .

Write A = Ay 63 = (C*, 1) and B = (C*, \). Note that A* = span(nsz,n4) and
A3 = span(ny), so A/A> = 23 1. On the other hand, B2 = span(any, bns, cng, dng)
and B° = span(abns, beng, adng). Suppose 2 and B are isomorphic. If a # 0
then, owing to dim®B? = 2, we have b = 0 or ¢ = d = 0. In both cases we get
9B /B3 = A3 19. This shows that @ = 0. Now dim®B* = 2 and dimB® = 1 imply
that b # 0 and ¢ # 0. We also have d # 0, for otherwise 8 would be isomorphic to
204 64. This proves (i).

We turn to (ii). Suppose a = 0 and A is a soliton. We compute that

—2b% — 2¢2

—2b% — 242
My

—2¢2 + 22 (25)

2¢% + d?
Since M) is a multiple of 3, this immediately gives that b = ¢? and d = 0, which

proves (ii).

8. Closed SL(n,C)-Orbits in J,

Since there are no closed GL(n,C)-orbits in 7, (not even in V,\{0}), precisely
because of multiples of the identity, it arises the natural question of knowing whether
the subgroup SL(n,C) admits closed orbits in 7,,.

Proposition 8.1. Let p € J,, i # 0. Then

(a) The orbit SL(n,C) - is closed if and only if p is a semisimple Jordan algebra.
(b) If p is not semisimple then 0 lies in the closure of SL(n,C) - pu.
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Proof. The orbit SL(n,C) - u is closed if and only the moment map m%%» of the
SL(n,C)-action on V,, vanishes at some point v € SL(n,C) - u. Since mF» is
GLn by post-composing with the projection iu(n) = R @ isu(n) —
isu(n), the latter is equivalent to m“F»(v) = —L1, which means that v and p are
semisimple, owing to Proposition 5l

Suppose now p is not semisimple. Then SL(n, C)-u is not closed and SL(n,C) - u
contains a closed orbit, say, SL(n,C) - v. If v # 0 then v is semisimple by part (a).
Since p is a deformation of v, owing to the rigidity of semisimple Jordan algebras,
the SL(n,C)-orbits of  and v coincide, a contradiction. m|

obtained from m

9. Partial Results, Open Problems and Conjectures

Tt is interesting to note that the application of GIT to the study of (commutative)
Jordan algebras has many similarities with the case of (anti-commutative) Lie alge-
bras. However the Jordan identity (in each of its disguises) seems to be more difficult
to use than the Jacobi identity. In particular, for Jordan algebras in general the
left multiplications are not derivations of the algebra, in flagrant contrast with Lie
algebras. So proofs of results for Lie algebras which depend on this property cannot
be simply carried over to the context of Jordan algebras, and throughout this work
we have tried to find alternative lines of arguments, with some success. The partial
results that we collect in this section are somehow related to this situation.

Unless explicitly stated, throughout this section we let u € J, be a Jordan
soliton, A = (C", ). We write the moment matrix M, = ¢, I + D,,, where D, is a
Hermitian derivation, according to Proposition [l Let also 91 denote the radical
of 2.

9.1. The annihilator

The annihilator of 2 is Ann(A) = {z € A : L¥ = 0}. It is clear from L,
[D,,, L#] that D,, preserves Ann(2), and it follows from Proposition [B.2] that the
eigenvalues of D,, on Ann(2) are positive.

9.2. Basic calculation
Let x be an eigenvector of D, with eigenvalue d. Then
(M, [, LET]) = Te(M[LY, LE™))
= Tr(Dp[Ly, LE7))
= Tr([Dy, LEILE™))
= Te(Lp, , Li) = d|| L. (26)

On the other hand, due to [3) the left-hand side of (20) also equals ([L¥, LE*] -, p),
so we deduce

d||LE|[P = L™ - pll® = (L% - pl . (27)
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We use this formula and some variations below.

Lemma 9.1. Let u € J,, be a soliton, and let z, y € C" be eigenvectors of D,, with
corresponding (real) eigenvalues dy, dy. If di # dy then (L, L) = 0.

Proof. The basic calculation yields
do (L, Ly) = (M, (L L)) = (LY, L™ - o) = (L, Ly - o).
We interchange = and y in these equations to obtain that
dy (LE, LZ) = dy(Lgv Lg) = dy(Léf, LZ)»

which proves the desired result. O

9.3. The kernel of D,

Proposition [[T(b) shows that the kernel of D, contains a maximal semisimple
subalgebra of A = (C", p).

Question 9.2. For a soliton ;1 € 7, is it true that ker D, is a maximal semisimple
subalgebra? In other words, are the eigenvalues of D,, restricted to 91 different from
zero?

9.4. Positivity of D, on N
A positive answer to Question [0.3] implies a positive answer to Question [1.2

Question 9.3. For a soliton i € J,,, are the eigenvalues of D, on 91 positive?

For soliton Jordan algebras 2 satisfying 2* = 0, trivially all left-multiplications
are derivations of the algebra, and we can use a standard argument to answer yes
to Question

Proposition 9.4. If the soliton A = (C", ) satisfies A = 0, then all eigenvalues
of D, are positive.

Proof. The assumption A® = 0 implies that 2 is a nilpotent Jordan algebra and
hence L# is a nilpotent operator for all z € 2.

Let z € C" be an eigenvector of D, with corresponding eigenvalue d € R. Since
L% . = 0, the basic calculation ([21) immediately gives d > 0. If in addition d = 0,

then LX* is also a derivation of p, thus [LA*, LE] = L‘LL,Tt

by the defining condition
of a derivation.

Since D,, is Hermitian, the orthogonal decomposition 2 = A2 At s D,-
invariant, so we may assume z € A (respectively, z € A*). In any case (L z, y) =
(z,zy) = 0 for all y € A, as zy € A> = 0 (respectively, zy € A?). This shows

Ltz = 0.
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Now L# is a normal and nilpotent operator, hence x € Ann(2). The result in
Sec. contradicts our assumption that d = 0. Hence d > 0. O

For non-associative Jordan algebras, we have the following partial result.
Proposition 9.5. Let z, y € C" be eigenvectors of D,, with corresponding eigen-
values dy, dy. If [Lf;,LZ] # 0 then dy +d, > 0.

Proof. We consider D := [L4, L}] and compute
[Dyy, D} = [[Dy, L), Ly + (L5 [Dys Ly]]
= (LD, LY + (L5, Lp vl
= (d, +d,)D.
We proceed as in the basic calculation to get
(ds + dy)||D|? = Tr([Dyi, DID*) = Te(Dp[D, D)) = Te(M,[D, D*]) = ||D* - %,

since D is a (inner) derivation, and the result follows. m|

If 9 = (C", u) is a nilpotent Jordan soliton generated by a single element n,

. . . TrD?
then n and its powers must be eigenvectors of D,,. Owing to Tr(D,,) = LTI 0,

—cpu

we also get D, > 0 in this case.

9.5. Orthogonality of & and N

Since D,, is Hermitian, the orthogonal complement of 9 with respect to the Her-
mitian product is D, -invariant.

Question 9.6. For a soliton u € J,,, A = (C", p), is Mt a semisimple subalgebra
of A7

If the answer to Question is yes, then 9" will be maximal semisimple. A
positive answer to Question [0.2] implies a positive answer to Question [0.6

9.6. Reduction to nilpotent Jordan algebras

Question 9.7. If A = (C", ) is a Jordan soliton and N is the radical of 2, is it
true that p|mxm is a soliton? Conversely, given a nilpotent Jordan soliton 91 and
a semisimple Jordan algebra & such that A = & + 91 is a Jordan algebra, can we
extend the metric from 91 to A so that 2 becomes a soliton?
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