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We study the variety of complex n-dimensional Jordan algebras using techniques from
Geometric Invariant Theory. More specifically, we use the Kirwan–Ness theorem to con-
struct a Morse-type stratification of the variety of Jordan algebras into finitely many
invariant locally closed subsets, with respect to the energy functional associated to the
canonical moment map. In particular we obtain a new, cohomology-free proof of the
well-known rigidity of semisimple Jordan algebras in the context of the variety of Jor-
dan algebras.
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1. Introduction

The main goal of this paper is to introduce techniques from Geometric Invari-
ant Theory (GIT) in the study of finite-dimensional complex Jordan algebras. In
particular, we consider a naturally defined moment map for the affine variety of
n-dimensional Jordan algebras and the associated energy functional, and use it to
define a notion of soliton Jordan algebra. Somehow in a dual sense, the search for
a soliton Jordan algebra in an isomorphism class of Jordan algebras can also be
thought of as the search for a ‘best’ (Hermitian) metric in a Jordan algebra. Herein
we also make an effort to relate the new geometric invariants to the ‘old’ algebraic
invariants of Jordan algebras (with partial success).

§Corresponding author.
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1.1. Basic setup

In this work we only consider finite-dimensional algebras over C. A Jordan algebra
is a commutative algebra A satisfying the following Jordan identity:

[La, La2 ] = 0

for all a ∈ A, where La : A → A denotes the left-multiplication by a, and [, ]
denotes the commutator. Here we only note that Jordan algebras are, in general,
non-associative, and refer the reader to [14] for more about Jordan algebras and
their importance.

We can view a commutative algebra of dimension n as a commutative multi-
plication in C

n, namely, as a tensor μ ∈ S2(Cn)∗ ⊗ C
n ∼= S2(Cn∗) ⊗ C

n =: Vn

(symmetric in the first two arguments). Further, the Jordan identity is equivalent
to its linearized form

(ab, c, d) + (bd, c, a) + (da, c, b) = 0

for all a, b, c, d ∈ A, where (a, b, c) = (ab)c − a(bc) is the associator of a, b, c.
These are polynomial equations in Vn, therefore the space Jn of Jordan algebras of
a dimension n can be naturally identified with an affine variety in Vn. It is useful
to note that these polynomials are homogeneous, so we could also view the space
of Jordan algebras modulo complex scaling as a projective variety in PVn; however,
we prefer to do calculations in the vector space Vn.

There is a natural action of the group G := GL(n, C) on the space Vn, which
corresponds to ‘change of basis’. Namely, for g ∈ G and μ ∈ Vn, one puts

g · μ(a, b) = g(μ(g−1a, g−1b)) (1)

for all a, b ∈ C
n. It is clear that the orbit G · μ yields the isomorphism class of μ.

In particular, Jn is an invariant subvariety.
In order to use methods from GIT, we need to fix a background Hermitian

product Q on C
n (whereas in the case of Lie algebras Q would correspond to a

left-invariant Hermitian metric on the corresponding simply-connected complex Lie
group, in our case there is no obvious global object attached to Q). However, we will
see that the results that we shall obtain for isomorphism classes of Jordan algebra
will not depend on Q in an essential way. The group of unitary transformations
of (Cn, Q) is a maximal compact subgroup K ∼= U(n) of G, which also acts by
unitary transformations on Vn, if this space is equipped with the induced Hermitian
product (which we denote with the same symbol). Note that fixing Q is equivalent
to fixing K. Now, it is standard that the action of the compact group K on the
projective variety PVn yields a moment map PVn → k

∗, where k is the Lie algebra of
K and the star refers to the dual space (see [9, Sec. 2] or [18, 6.14]); we prefer to do
calculations in the vector space Vn and we use a different normalization, so we shall
equivalently consider a scale invariant moment map m : Vn\{0} → ik (see Sec. 2.2
for precise definitions); note that ik is the space of Hermitian transformations of
(Cn, Q). The square norm En = ||m||2, which we call energy, has the very interesting
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property that its gradient flow lines are contained in the orbits of G, so the limits
of those lines define degenerations of the initial algebra. This brings us to the study
of critical points of En, which we call solitons (for reasons that shall become clear
later).

The Kempf–Ness theorem [8] provides a beautiful characterization of closed
orbits of a rational representation V of a complex reductive linear algebraic group
G, namely, these are precisely the orbits that contain a minimal vector, i.e. a vector
realizing the distance of the orbit to the origin (with respect to Q). The minimal
vectors in any closed G-orbit form a unique K-orbit. Since the moment map associ-
ated to Q controls the infinitesimal change of the norm of vectors, it turns out that
minimal vectors precisely correspond to zeros of the moment map (or the energy
functional). The Kempf–Ness theorem also implies that a non-closed orbit with pos-
itive distance to the origin contains a unique non-trivial closed orbit in its closure.
In particular, this gives a description of the categorical quotient V//G (which is by
definition the affine variety defined by the G-invariant polynomials in V ).

On the other hand, the union of the orbits containing zero in its closure is called
the null cone N of the representation, and its elements are called unstable vectors
(in our case of GL(n, C) acting on Vn, every vector is unstable since we can always
rescale the multiplication that defines the algebra, which is to say that N = Vn).
Kirwan [9] and Ness [16] showed how to use the moment map to study the orbit
space of N , for a general representation V of a complex reductive linear algebraic
group G; herein we are not so much interested in this orbit space, but in the related
stratification of N . Consider a Hermitian product on V , the associated maximal
compact subgroup K of G, the associated moment map, energy and solitons. Kirwan
and Ness proved that all non-minimal solitons, i.e. those solitons with positive
energy, do occur in N . Further, there is only a finite set of distinguished G-orbits
in N which contain solitons; moreover, for each such orbit G · v, the set of solitons
comprise a single K-orbit (up to scaling) and they are minima of the energy on G ·
v. Finally, although the energy is not a Morse(–Bott) function, the Kirwan–Ness
theorem yields a Morse-type stratification of N into finitely many invariant smooth
subvarieties, each of which being the stable manifold of the set of solitons of a
certain type.

In this paper, we adapt such GIT methods to the setting of Jordan algebras,
in parallel with some of the work of Lauret for Lie algebras [10], and use them to
prove a number of results which we explain in the sequel. We also formulate some
conjectures and open problems.

In the following, in case there is no danger of confusion, we denote Q simply by
〈·, ·〉 and the associated norm by || · ||.

1.2. Main results

Recall that a (geometric) deformation of a Jordan algebra μ ∈ Jn is a Jordan
algebra ν ∈ Jn whose G-orbit contains μ in its Zariski closure (which is the same
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as closure in the Hausdorff topology), that is μ ∈ G · ν. In this case, we also say
that μ is a degeneration of ν and we write ν → μ. The degeneration ν → μ is called
trivial if μ is isomorphic to ν. A Jordan algebra μ ∈ Jn is called (geometrically)
rigid if its G-orbit is Zariski-open; in our context (finite-dimension, base field C),
this is equivalent to the non-existence of non-trivial deformations of μ or, yet, to
having the closure of the orbit of μ in Jn coincide with an irreducible component
of Jn.

A commutative algebra μ ∈ Vn will be called a soliton if μ is a critical point
of En. A G-orbit in Vn (or isomorphism class of commutative algebras) is called
distinguished if it contains a soliton. For μ ∈ Vn \ {0}, we write Mμ = ||μ||2m(μ)
and call it the moment matrix of μ. We have a structure result for Jordan solitons.

Proposition 1.1. Let μ ∈ Vn and write A = (Cn, μ) for the corresponding com-
mutative algebra. Then

(a) μ is a soliton if and only if its moment matrix Mμ = cμI + Dμ, where cμ < 0,

I denotes the identity matrix, and Dμ is a derivation of μ and a Hermitian
matrix with respect to Q; further, in this case there is a positive multiple of Dμ

which has rational eigenvalues.
(b) If μ is a Jordan soliton then there is a maximal semisimple subalgebra S of A

such that A = S + N is a Dμ-invariant decomposition, where N denotes the
radical of A. Further, Dμ|S = 0.

Using this structure result and the classic theory of semisimple Jordan algebras
(see [2]), we prove the following theorem.

Theorem 1.2. Every isomorphism class of complex semisimple Jordan algebras is
distinguished. Further, in each dimension the semisimple Jordan solitons are char-
acterized among Jordan algebras as having the lowest possible value of the energy
for that dimension.

The relation μ → ν defines a partial order on Jn, and it follows from properties
of the stratification that the functional En behaves well with regard to this partial
order:

Proposition 1.3. Let μ, ν ∈ Jn. If G ·μ is a distinguished orbit and the energy of
a soliton in G · μ is larger than the energy of ν, then μ cannot degenerate to ν.

As is well known and traditionally proved via cohomological methods, every
n-dimensional semisimple Jordan algebra is rigid in the scheme of n-dimensional
Jordan algebras [4, 5]. We apply Theorem 1.2 to give a simple, cohomology-free
proof of this result in the context of the variety Jn of Jordan algebras.

Theorem 1.4 ([4, 5]). Every finite-dimensional complex semisimple Jordan alge-
bra is rigid.

The class of nilpotent Jordan algebras of dimension n forms a G-invariant closed
subset Nn of Jn. It is known that there is no non-trivial n-dimensional complex
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Table 1. Complex one-dimensional Jordan algebras
and their solitons.

Isomorphism class Multiplication table Properties

A1,1 e2
1 = e1 A, S

Table 2. The stratification of J1.

G-orbits Soliton type β E1

A1,1 (0; 1) diag(−1) 1

Table 3. Complex two-dimensional Jordan algebras
and their solitons.

Isomorphism class Multiplication table Properties

A2,1 e2
1 = e1, e1n1 = n1 A, U

A2,2 e2
1 = e1, e1n1 = 1

2
n1 —

A2,3 n2
1 = n2 A, N

A2,4 = (A1,1)2 e2
1 = e1, e2

2 = e2 A, SS, D
A2,5 = A1,1 × T e2

1 = e1, n2
1 = 0 A, D

Jordan algebra lying in all irreducible components of Jn (see [13, Theorem 4.65]).
On the other hand, by studying some specific degenerations, we prove the following
theorem.

Theorem 1.5. For all n ≥ 2 there exists a non-trivial n-dimensional complex
nilpotent Jordan algebra lying in all irreducible components of Nn; further, the
orbit of this algebra is characterized as realizing the highest possible value of the
energy En. It follows that the projectivization PNn is connected for n ≥ 2.

Finally, we give a complete explicit description of the case n ≤ 4, see Tables 1–
4. The type of a soliton μ is (d1 < · · · < dr; m1, . . . , mr), where d1, . . . , dr

is the sequence of coprime integers which is proportional to the eigenvalues of
m(μ) + En(μ)I = 1

||μ||2 Dμ, and m1, . . . , mr are the respective multiplicities. The
stratification is finite and the strata are parametrized by β = m(μ) or, equivalently,
by the soliton type. We deduce the following theorem.

Theorem 1.6. Every isomorphism class of complex Jordan algebras of dimension
at most 4 is distinguished, except in the case of the nilpotent Jordan algebra A4,63

(see Table 8) which is not.

In Tables 1, 3, 5, 7 and 8 we list the complex Jordan solitons of dimension at
most 4. The coefficients in the multiplication table are chosen so that the algebra
in each isomorphism type is a soliton, except A4,63 for which there is no soliton. In
the column of properties we indicate whether the algebra is associative (A), simple
(S), semisimple (SS), nilpotent (N), unitary (U), or decomposable (D); the absence
of such a qualification means its negation, except that a simple Jordan algebra is
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Table 4. The stratification of J2.

G-orbits Soliton type β E2

A2,4 (0; 2) diag(− 1
2
,− 1

2
) 1/2

A2,1, A2,5, A2,2 (0 < 1; 1, 1) diag(−1, 0) 1
A2,3 (1 < 2; 1, 1) diag(−2, 1) 5

Table 5. Complex three-dimensional Jordan algebras and their solitons.

Isom class Multiplication table Properties

A3,1 = (A1,1)3 e2
1 = e1, e2

2 = e2, e2
3 = e3 SS, A, D

A3,2 e2
1 = e1, e2

2 = e2
3 =

√
5

2
e1, e1e2 = e2, e1e3 = e3 S

A3,3 = A2,1 × A1,1 e2
1 = e1, e2

2 =
√

3e2, e1n1 = n1 A, U, D

A3,4 e2
1 = e1, e2

2 =
√

5
3
e1, e1e2 = e2, e1n1 = n1 U

A3,5 = A2,2 × A1,1 e2
1 = e1, e2

2 =
√

3
2
e2, e1n1 = 1

2
n1 D

A3,6 = (A1,1)2 × T e2
1 = e1, e2

2 = e2, n2
1 = 0 A, D

A3,7 e2
1 = e1, e1n1 = n1, e1n2 = n2, n2

1 = n2 A, U
A3,8 e2

1 = e1, e1n1 = n1, e1n2 = n2 A, U
A3,9 = A2,1 × T e2

1 = e1, e1n1 = n1, n2
2 = 0 A, D

A3,10 e2
1 = e1, e1n1 = 1

2
n1, e1n2 = n2, n2

1 =
√

7
10

n2 —

A3,11 e2
1 = e1, e1n1 = 1

2
n1, e1n2 = n2 —

A3,12 e2
1 = e1, e1n1 = 1

2
n1, e1n2 = 1

2
n2 —

A3,13 e2
1 = e1, e1n1 = 1

2
n1, n2

1 =
√

3
10

n2 —

A3,14 = A2,2 × T e2
1 = e1, e1n1 = 1

2
n1, n2

2 = 0 D

A3,15 = A2,3 × A1,1 e2
1 =

√
5e1, n2

1 = n2 A, D
A3,16 = A1,1 × (T)2 e2

1 = e1, n2
1 = n2

2 = 0 A, D
A3,17 n2

1 = n2, n1n2 = n3 A, N
A3,18 n1n2 = n3 A, N
A3,19 = A2,3 × T n2

1 = n2, n2
3 = 0 A, N, D

Table 6. The stratification of J3.

G-orbits Soliton type β E3

A3,1, A3,2 (0; 3) diag(− 1
3
,− 1

3
,− 1

3
) 1/3

A3,3, A3,4, A3,5, A3,6 (0 < 1; 2, 1) diag(− 1
2
,− 1

2
, 0) 1/2

A3,7, A3,10, A3,13, A3,15 (0 < 1 < 2; 1, 1, 1) diag(− 5
6
,− 1

3
, 1
6
) 5/6

A3,8, A3,9, A3,11, A3,12, A3,14, A3,16 (0 < 1; 1, 2) diag(−1, 0, 0) 1

A3,17 (1 < 2 < 3; 1, 1, 1) diag(− 4
3
,− 1

3
, 2
3
) 7/3

A3,18 (1 < 2; 2, 1) diag(−1,−1, 1) 3
A3,19 (3 < 5 < 6; 1, 1, 1) diag(−2, 1, 0) 5

semisimple, and a semisimple Jordan algebra is unitary. In the decomposable case
we exhibit the minimal decomposition; the notation T refers to the trivial (one-
dimensional) algebra. In Tables 2, 4, 6 and 9 we describe the strata of Jn for n ≤ 4:
the orbits they contain, the soliton type, the parameter (β), and the value of the
energy (En = ||β||2).

The property of a G-orbit to be distinguished is independent of the choice of
Hermitian product Q. Indeed there is an action of G on the space of Hermitian
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Table 9. The stratification of J4.

G-orbits A4,k Soliton type β E4

1 ≤ k ≤ 3 (0; 4) diag(− 1
4
,− 1

4
,− 1

4
,− 1

4
) 1/4

4 ≤ k ≤ 9 (0 < 1; 3, 1) diag(− 1
3
,− 1

3
,− 1

3
, 0) 1/3

23 ≤ k ≤ 27 (0 < 1 < 2; 2, 1, 1) diag(− 5
11

,− 5
11

,− 2
11

, 1
11

) 5/11

10 ≤ k ≤ 22 (0 < 1; 2, 2) diag(− 1
2
,− 1

2
, 0, 0) 1/2

38 ≤ k ≤ 39 (0 < 1 < 2 < 3; 1, 1, 1, 1) diag(− 7
10

,− 4
10

,− 1
10

, 2
10

) 7/10

k ∈ {41, 43, 45, 49, 50, 57, 59, 60} (0 < 1 < 2; 1, 2, 1) diag(− 3
4
,− 1

4
,− 1

4
, 1
4
) 3/4

k = 53 (0 < 1 < 2; 1, 1, 2) diag(− 9
11

,− 4
11

, 1
11

, 1
11

) 9/11

k ∈ {40, 42, 44, 46, (0 < 3 < 5 < 6; 1, 1, 1, 1) diag(− 5
6
,− 1

3
, 0, 1

6
) 5/6

47, 48, 51, 52, 54, 55, 56, 58}
28 ≤ k ≤ 37 (0 < 1; 1, 3) diag(−1, 0, 0, 0) 1

k = 62 (1 < 2 < 3; 2, 1, 1) diag(− 8
11

,− 8
11

,− 1
11

, 6
11

) 15/11

k = 65 (3 < 4 < 6 < 10; 1, 1, 1, 1) diag(− 4
5
,− 3

5
,− 1

5
, 3
5
) 7/5

k = 61, 63, 64 (1 < 2 < 3 < 4; 1, 1, 1, 1) diag(−1,−1/2, 0, 1/2) 3/2

k = 66 (2 < 3 < 4 < 6; 1, 1, 1, 1) diag(−1,− 1
7
,− 4

7
, 5

7
) 13/7

k = 70 (1 < 2; 3, 1) diag(− 2
3
,− 2

3
,− 2

3
, 1) 7/3

k = 67 (3 < 6 < 7 < 9; 1, 1, 1, 1) diag(− 4
3
,− 1

3
, 0, 2

3
) 7/3

k = 68 (1 < 2; 2, 2) diag(−1,−1, 1
2
, 1

2
) 5/2

k = 69 (3 < 4 < 6 < 7; 1, 1, 1, 1) diag(− 5
4
,− 3

4
, 1
4
, 3
4
) 11/4

k = 71 (2 < 3 < 4; 2, 1, 1) diag(−1,−1, 0, 1) 3

k = 72 (3 < 5 < 6; 1, 2, 1) diag(−2, 0, 0, 1) 5

products on C
n given by

g · Q(a, b) = Q(g−1a, g−1b)

for g ∈ G and a, b ∈ C
n. This action is transitive, so, if we fix Q, any other

Hermitian product on C
n is of the form g ·Q for some g ∈ G. Using a superscript to

denote the moment matrices associated to different Hermitian products, it is easy
to see that

Mg·Q
μ = gMQ

g−1·μg−1. (2)

Hence the claim follows from the structure result for solitons (Proposition 1.1(a)).
Thinking in a dual way, fix Q and suppose the isomorphism class of a Jordan

algebra A = (Cn, μ) is distinguished. Then g ·μ is a soliton for some g ∈ G, and the
relation (2) can be used to see that μ is a soliton with respect to g−1 · Q, that is
g−1 ·Q is a ‘best’ metric on A. It follows from Kirwan–Ness theory that the critical
set of En on a G-orbit, if non-empty, is a single K-orbit, so the best metric on A,
if existing, is unique.

We point out that several formulae and results herein are similar to those for Lie
algebras [10]. An important difference of Jordan algebras from Lie algebras is that,
in general, left multiplications are not derivations. So arguments for Lie algebras
that depend on this property will not work in the setting of Jordan algebras. Of
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course this should not be seen as a problem, but as a central feature of Jordan
algebras; and the real problem is knowing how to use this feature to our advantage.a

2. Preliminaries

2.1. Semisimplicity and the radical of Jordan algebras

Most of the results in this subsection are due to Albert. A good reference is [19,
Chap. IV].

A complex Jordan algebra A is called simple if A2 
= 0 and A has no non-trivial
ideals, and it is called semisimple if it is a direct product of simple Jordan algebras.
A semisimple Jordan algebra has an identity element.

Let A be a complex Jordan algebra. An element x ∈ A is called nilpotent if
xk = 0 for some integer k ≥ 2; this is equivalent to the left-multiplication operator
Lx being a nilpotent operator. There is an ideal Rad(A), called the radical of A,
which is the unique maximal nilideal of A (that is the maximal ideal consisting
entirely of nilpotent elements). Furthermore, Rad(A) is nilpotent in the sense that
there is an integer t with the property that any product x1 · · ·xt of t elements from
Rad(A) is zero; hence Rad(A) is also the unique maximal nilpotent ideal of A. With
this definition of radical, the quotient algebra A/Rad(A) is always semisimple, and
A is semisimple if and only if Rad(A) = 0.

A result of Albert characterizes the radical Rad(A) as the kernel of the sym-
metric bilinear form τ : A × A → C defined by τ(x, y) = Tr(Lxy) for x, y ∈ A.

The Wedderburn Principal Theorem for Jordan algebras, proved by Albert and
Penico [17], states that any complex Jordan algebra A can be written as a vector
space direct sum A = S + N for some maximal semisimple subalgebra S of A

isomorphic to A/N, where N = Rad(A).

2.2. A review of GIT

Let π : G → GL(V ) be a rational representation of a connected complex reductive
group G on a finite-dimensional complex vector space V . Fix a maximal compact
subgroup K of G (necessarily connected and unique up to inner automorphism of
G), and a K-invariant Hermitian inner product 〈, 〉 on V . Then the Lie algebra k

of K is a real form of the Lie algebra g of G, namely, g = k + ik. We also fix an
AdK-invariant Hermitian inner product on g, denoted (, ), which is positive definite
(respectively, negative definite) on ik (respectively, k).

The moment map is the map m : V \ {0} → g defined by

(m(v), X) =
1

2||v||2
d

dt

∣∣∣∣
t=0

||etX · v||2 =
〈X · v, v〉
〈v, v〉 , (3)

aAfter finishing this paper, we became aware of the recent preprint [20] concerning a moment map
for the variety of associative algebras.

2450015-12

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

06
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

May 3, 2024 15:54 WSPC/S0219-1997 152-CCM 2450015

A moment map for the variety of Jordan algebras

where we write g ·v := π(g)v and X ·v := dπ(X)v, for all g ∈ G, X ∈ g, v ∈ V \{0}.
We have that m(v) controls the norm of vectors in a neighborhood of v in the orbit
G · v orthogonal to v, and −m(v) · v is the direction of fastest decrease in the norm.
Note that m(v) ∈ ik and m is K-invariant by K-invariance of 〈, 〉. A minimal vector
is vector of minimal length in its orbit. The Kempf–Ness theorem says that minimal
vectors correspond to the zeros of the moment map, and an orbit is closed if and
only it contains a minimal vector; further the closure of any G-orbit in V contains
exactly one K-orbit of minimal vectors [8]. The square norm of m yields the energy
functional

E : V \ {0} → R, E(v) = ||m(v)||2.

Of course E is K-invariant and scale-invariant. It follows from the above that a
G-orbit in V is closed if and only if it meets E−1(0).

On the other hand, the union of all the orbits containing the origin in its closure
comprise the so-called null cone N of V . The Kirwan–Ness theorem says that the
non-minimal critical points of E, i.e. those critical points v of E with E(v) > 0, all
occur in the null cone N and determine a stratification of N\{0} [9, 16]. So there
is a set of distinguished orbits in N , namely those containing a critical point of E,
which play a role similar to the closed orbits in V \ N .

Since (dmv(ξ), X) = 2�〈X · v, ξ〉/||v||2 for X ∈ ik, ξ ∈ TvV = V , ξ ⊥ v, we
easily obtain for the differential of E at a point v ∈ V \ {0},

dEv(ξ) = 2�(dmv(ξ), m(v)) =
4�〈m(v) · v, ξ〉

||v||2 .

Now E is constant in the complex radial direction, and the component of m(v) · v
in the direction of v is 〈m(v)·v,v〉

||v||2 v = ||m(v)||2v, so the gradient of E at v is given
by

∇E(v) =
4

||v||2 (m(v) · v − ||m(v)||2v). (4)

Therefore v ∈ V \ {0} is a critical point of E if and only if

m(v) · v ∈ Rv. (5)

Because of this self-similarity characteristic, a critical point of E is called a soliton
(following [11]). We will also say a G-orbit containing a soliton is distinguished. Of
course every minimal vector is a soliton. For the convenience of the reader, we next
collect the results of Kirwan–Ness theory related to solitons that we shall need.

Theorem 2.1 (Kirwan–Ness). With the above notation, we have

(a) The subset of solitons in a given G-orbit is either empty or consists of precisely
one K-orbit, up to scaling.

(b) Every soliton v is a minimum of E on G·v. Thus solitons are the vectors closest
to being minimal in their G-orbits.

(c) The solitons which are not minimal vectors all occur in the null cone N of V .
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(d) The flow of −∇E starting at v stays in G·v and converges to a soliton w ∈ G · v
as t → ±∞. There is precisely one K-orbit up to scaling of solitons z ∈ G · v
such that m(z) ∈ AdKm(w), which consists of the limit-set of G · v.

(e) The critical set of E is a finite disjoint union of closed subsets {Cβ}β∈B indexed
by a finite set B of adjoint K-orbits in k (or points in a positive Weyl chamber).
The corresponding stable manifolds {Sβ}β∈B form a finite G-invariant stratifi-
cation of N\{0} by locally closed irreducible non-singular subvarieties.

3. The Moment Map for Commutative Algebras

In this section we specialize to the case of n-dimensional commutative algebras and,
in particular, Jordan algebras. Let Vn = S2(Cn∗) ⊗ C

n be the space of symmetric
bilinear maps C

n × C
n → C

n, which we identify with (non-necessarily associative)
commutative algebras of dimension n. There is a natural action of G = GL(n, C)
on Vn given by (1). The action of the Lie algebra g = gl(n, C) of G on Vn, obtained
from differentiation of (1), is given by

A · μ(x, y) = A(μ(x, y)) − μ(Ax, y) − μ(x, Ay) (6)

for all A ∈ g, μ ∈ Vn and x, y ∈ C
n. Note that the isotropy algebra of μ, namely,

the subalgebra of g consisting of elements A ∈ g satisfying A · μ = 0, is isomorphic
to the Lie algebra Der(μ) of derivations of μ.

Consider the canonical Hermitian product 〈, 〉 of C
n. The unitary group K =

U(n) is a maximal compact subgroup of G and its Lie algebra k is a real form of g.
The Hermitian product canonically extends to a Hermitian product on Vn, denoted
by the same symbol, namely,

〈μ, ν〉 =
∑
ijk

〈μ(xi, xj), xk〉〈ν(xi, xj), xk〉,

where x1, . . . , xn is any fixed orthonormal basis of C
n. The elements of K act on

Vn by unitary transformations, and those of k (respectively, ik) act on Vn by skew-
Hermitian (respectively, Hermitian) endomorphisms. We also consider the AdK-
invariant Hermitian product on g given by (A, B) = Tr(AB∗), where A, B ∈ g.

The moment map m : Vn \ {0} → ik is defined as in (3) and has the form
m(μ) = 1

||μ||2 Mμ, where Mμ is the moment matrix of μ. We will obtain an explicit
formula for Mμ in terms of the algebra structure of μ and the Hermitian product in
a moment. It turns out to be the same formula as that in [10] for skew-symmetric
algebras.

Recall that (Mμ, A) = 〈A · μ, μ〉 for all A ∈ ik.

Lemma 3.1. For all μ ∈ Vn and D ∈ Der(μ), we have

(a) Tr(Mμ) = −||μ||2;
(b) (Mμ, D) = 0.
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Proof. (a) Note that Tr(Mμ) = (Mμ, I) = 〈I · μ, μ〉 = −||μ||2, as I · μ = −μ.

(b) We have (Mμ, D) = 〈D · μ, μ〉 = 0, since D · μ = 0 by (6) and the derivation
property.

For μ ∈ Vn, let Lμ
x : C

n → C
n denote the left multiplication by x ∈ C

n in the
algebra μ, that is Lμ

xy = μ(x, y) for all y ∈ C
n. We also use a superscript ()∗ to

denote the adjoint of a map C
n → C

n with respect to the fixed Hermitian product.

Proposition 3.2. For all μ ∈ Vn \ {0} and x, y ∈ C
n we have

〈Mμx, y〉 = −2
∑
ij

〈Lxxi, xj〉〈Lyxi, xj〉 +
∑
ij

〈Lxixj , x〉〈Lxixj , y〉,

where (x1, . . . , xn) is an orthonormal basis of C
n. It follows that

Mμ = −2
n∑

i=1

Lμ∗
xi

Lμ
xi

+
n∑

i=1

Lμ
xi

Lμ∗
xi

.

Proof. Let μ ∈ Vn and consider A ∈ ik such that Ax1 = x1 and Axi = 0 for
i = 2, . . . , n. We have

(Mμ, A) = 〈A · μ, μ〉

=
∑
ijs

〈(Aμ)(xs, xi), xj〉〈μ(xs, xi), xj〉

=
∑
ijs

〈A(μ(xs, xi)) − μ(Axs, xi) − μ(xs, Axi), xj〉〈μ(xs, xi), xj〉

=
∑
ijs

(〈μ(xs, xi), Axj〉 − 〈μ(Axs, xi), xj〉 − 〈μ(xs, Axi), xj〉)〈μ(xs, xi), xj〉

=
∑
si

〈μ(xs, xi), x1〉〈μ(xs, xi), x1〉 −
∑
ij

〈μ(x1, xi), xj〉〈μ(x1, xi), xj〉

−
∑
sj

〈μ(xs, x1), xj〉〈μ(xs, x1), xj〉

=
∑
si

|〈xs, L
μ∗
xi

x1〉|2 − 2
∑
ij

|〈Lμ
xi

x1, xj〉|2

and, on the other hand,

(Mμ, A) =
∑

i

〈Mμxi, Axi〉 = 〈Mμx1, x1〉.

Since x1 ∈ C
n is arbitrary, a simple polarization argument proves the first identity

in the statement, and the second one is a reformulation.
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3.1. The structure of solitons

Next, we prove Proposition 1.1. Let A = (Cn, μ) be a commutative algebra, where
μ ∈ Vn. We have seen in (5) that μ is a soliton if and only if Dμ := Mμ−cμI kills μ,
for cμ = −||Mμ||2/||μ||2 ∈ R (recall that I ·μ = −μ); owing to (6), this is equivalent
to Dμ being a derivation of μ. Since M∗

μ = Mμ and cμ ∈ R, also D∗
μ = Dμ. For

part (a), it remains only to show that if μ is a soliton then some positive multiple
of Dμ has rational eigenvalues.

Without loss of generality, we may assume Dμ 
= 0. Let x1, . . . , xn be an
orthonormal basis of eigenvectors of Dμ; then it is also a basis of eigenvectors
of Mμ. Consider the ‘structure constants’ μk

ij given by μ(xi, xj) =
∑

k μk
ijxk for all

i, j. Let h be the subspace of g consisting of endomorphisms of C
n that are diagonal

on that basis, let αk
ij ∈ h have matrix −Eii−Ejj +Ekk in that basis, where Eab has

a 1 in the (a, b)-entry and 0 elsewhere, and consider the subspace F of h spanned
by all αk

ij with μk
ij 
= 0.

Note that A ∈ h is a derivation of μ if and only if μ(xi, xj) lies in the (ai + aj)-
eigenspace of A, for all i, j; this is equivalent to ak = ai + aj whenever μk

ij 
= 0.
Therefore Der(μ) ∩ h = F⊥ ∩ h. Owing to Mμ ∈ h and Lemma 3.1(b), we have
Mμ ∈ F . Now let P : h → F be orthogonal projection. Applying P throughout the
equation Mμ = cμI + Dμ yields

Mμ = cμP (I).

Therefore

− 1
cμ

Dμ = I − 1
cμ

Mμ = I − P (I).

Since F is spanned by matrices with integer coefficients, P (I) has rational coeffi-
cients, and this finishes the proof of part (a).

We next address part (b) of Proposition 1.1. Due to [6, p. 869], the radical N

of A is a characteristic ideal of A, thus Dμ-invariant. Next, using results of Mostow
and Auslander–Brezin, we show there is a maximal semisimple subalgebra S of A

which is Dμ-invariant. First we note that Dμ is semisimple, since it is Hermitian.
Therefore the one-dimensional Lie algebra d of derivations of A generated by Dμ

is completely reducible. Its algebraic hull d# consists of derivations [1, (1.2)], and
it is also completely reducible [1, (1.5)]. Now the associated connected algebraic
subgroup of GL(A) is a completely reducible group of automorphisms of A [1, (1.6)].
But a completely reducible group of automorphisms of a Jordan algebra preserves
some maximal semisimple subalgebra S [15, p. 215], and hence the same is true
of Dμ.

Finally, we prove that Dμ|S = 0. Since Dμ is a Hermitian endomorphism of
C

n, it is semisimple and has real eigenvalues. Let x ∈ C
n be an eigenvector of

Dμ with associated eigenvalue d ∈ R. The derivation property implies that xk

is an eigenvector of Dμ with eigenvalue kd for every integer k ≥ 2. By finite-
dimensionality, if d 
= 0 then x is nilpotent; it thus follows that x ∈ N. This shows
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that the only eigenvalues of Dμ that can occur for eigenvectors in S are zero, and
finishes the proof of the proposition.

4. Semisimple Jordan Algebras

In this section we show that the semisimple Jordan algebras realize the minimal
value of the energy En for all n, up to a change of basis (Proposition 4.5); Theo-
rem 1.2 is a consequence. A good reference for Jordan-related results in this section
is [2, Kap. VIII].

4.1. Peirce decomposition

Let A be a complex semisimple Jordan algebra. Then there exists a complete orthog-
onal system of idempotents, or Jordan frame, that is a maximal set {e1, . . . , er} of
primitive idempotents of A such that e1 + · · ·+ er is the identity element of A, and
eiej = 0 if i 
= j. A Jordan frame is unique up to an automorphism of A. In the
case of a simple Jordan algebra A, the number r ≥ 2 of elements in a Jordan frame
is called the degree of A.

A Jordan frame as above gives rise to a canonical decomposition of A into
a vector space direct sum, as follows. The eigenvalues of an idempotent ek act-
ing by multiplication on the algebra can only be 0, 1

2 and 1, and we denote the
corresponding eigenspaces by A0(ek), A 1

2
(ek) and A1(ek), respectively. The Peirce

decomposition of A is

A = ⊕i≤jAij ,

where

Aii = A1(ei)

for all i and

Aij = A 1
2
(ei) ∩ A 1

2
(ej)

for i 
= j.

4.2. Killing form

Next, assume in addition to the above that A is simple algebra of dimension n. Fix
a Jordan frame and the associated Peirce decomposition. It is known that if r ≥ 3,
then dimAij = d ∈ {1, 2, 4, 8} for all i, j. Also, in case r = 2 we put d = n − 2.
Now we have

n = r +
r(r − 1)

2
d. (7)

An element a ∈ A is called regular if C[a] := spanC{1, a, . . . , ar−1} is
r-dimensional (equivalently, dim C[a] is maximal among dim C[b] for all b ∈ A).
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The reduced trace of a regular element a ∈ A is

tr(x) = Tr(L|C[x]),

and the function ‘reduced trace’ can be uniquely extended to a linear map tr : A →
C (compare [3, Chap. 2, Sec. 2]). Since A is simple, we have

tr(ab) =
r

n
τ(a, b). (8)

The Killing form of A is the symmetric bilinear form K : A×A → C defined by

K(a, b) = Tr(LaLb)

for a, b ∈ A. It follows from the trace formula that [2, Satz 9.4, Kap. VIII]

K(a, b) =
(

1 + (r − 2)
d

4

)
tr(ab) +

d

4
tr(a)tr(b). (9)

4.3. Moment map

Suppose A is a complex semisimple Jordan algebra given by μ ∈ Jn. Then the
trace form τ is a non-degenerate symmetric bilinear form. Also, there exists an
Euclidean real form A0 of A, that is A0 is a formally real Jordan algebra such
that A0 ⊗R C = A ([2, Satz 5.6, Kap. IX] or [3, Theorem 8.5.2]). The restriction
of τ to A0 is a positive-definite Euclidean inner product ([2, Satz 3.4, Kap. IX]
or [3, Proposition 3.1.5]); we extend it to a Hermitian inner product on A, denoted
by 〈, 〉.

Lemma 4.1. Let a ∈ A. Then the adjoint L∗
a of La : A → A with respect to 〈, 〉

is Lā, where ā ∈ A is the complex conjugate of a over A0. In particular, La is a
Hermitian operator for a ∈ A0.

Proof. We compute for b, c ∈ A that

〈Lab, c〉 = τ(ab, c̄) = τ(b, ac̄) = τ(b, Lāc) = 〈b, Lāc〉,

since La is self-adjoint for τ , which proves the statement.

The next result shows that the moment matrix of a complex semisimple Jordan
algebra A is essentially given by its Killing form.

Proposition 4.2. Let Mμ be the Hermitian matrix which is the moment matrix of
A = (Cn, μ), and let Kμ be the Killing form of A. Then

〈Mμa, b〉 = −Kμ(a, b̄)

for all a, b ∈ A.
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Proof. Let {x1, . . . , xn} be an orthonormal basis of C
n with respect to 〈, 〉 which

is contained in A0. Using Proposition 3.2 and Lemma 4.1, we can write

〈Mμa, b〉 = −
∑

i

〈(Lμ
xi

)2a, b〉

= −
∑

i

〈Lμ
xi

a, Lμ
xi

b〉

= −
∑

i

〈Lμ
axi, L

μ
b xi〉

= −
∑

i

〈Lμ

b̄
Lμ

axi, xi〉

= −Tr(Lμ

b̄
Lμ

a)

= −Kμ(a, b̄),

as desired.

Lemma 4.3. Let A be a complex simple Jordan algebra represented by μ ∈ Jn.
Denote by r and d, respectively, the degree of A and the dimension of the off-
diagonal Peirce components Aij (i 
= j), where we fix a Jordan frame (e1, . . . , er)
contained in an Euclidean real form. Fix also a Hermitian product on C

n by putting
(see (8))

〈x, y〉 :=
r

n
Tr(Lμ

xȳ) = trμ(xȳ)

for x, y ∈ C
n. Then the Jordan frame is an orthonormal set and can be completed

to an orthonormal basis of C
n by adding elements ek

ij ∈ Aij , k = 1, . . . , d, for all
i 
= j. In this basis, the moment matrix of A = (Cn, μ) is given by

Mμ = −αI − d

4
N,

where α = 1 + (r − 2)d
4 and

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
...

...

1 · · · 1

0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

r n−r

Proof. Consider the Peirce decomposition A = ⊕i≤jAij with respect to a Jordan
frame (e1, . . . , er). Then

A0(ek) = ⊕i,j �=kAij , A 1
2
(ek) = ⊕i�=kAik and A1(ek) = Akk,

2450015-19

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

06
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

May 3, 2024 15:54 WSPC/S0219-1997 152-CCM 2450015

C. Gorodski, I. Kashuba & M. E. Martin

where dimAij = d for all i 
= j, and Akk = C · ek for all k. Using e2
k = ek, (7)

and (8), we see immediately that

〈ek, ek〉 = trμ(ek) =
r

n
Tr(Lμ

ek
) =

r

n

(
1
2
(r − 1)d + 1

)
= 1

for all k. Moreover, using

Aij · (Aii + Ajj) ⊂ Aij , Aij · Aij ⊂ Aii + Ajj

Aij · Ajk ⊂ Aik, Aij · Aik ⊂ Ajk,

for mutually different i, j, k, we see that, for ek
ij ∈ Aij (i 
= j),

trμ(ek
ij) =

r

n
Tr(Lμ

ek
ij

) = 0.

Finally, formula (9) and Proposition 4.2 yield

〈Mμx, y〉 = −α〈x, y〉 − d

4
trμ(x)trμ(ȳ).

Therefore

〈Mμei, ej〉 = −αδij −
d

4
,

〈Mμe�, e
k
ij〉 = 0

and

〈Mμek
ij , e

t
rs〉 = −αδirδjsδkt,

as wished.

Remark 4.4. Using the calculation in the proof of Lemma 4.3, it is easy to see
that

En(μ) =
TrM2

μ

(TrMμ)2
=

nα2 + r2d2

16 + rαd
2

(nα + rd
4 )2

=
nα2 + rαd

2 + r2d2

16

nα2 + rαd
2 + r2d2

16n

· 1
n

>
1
n

,

where n ≥ 2. In Proposition 4.5, we will see that the Peirce basis can be slightly
changed to lower the value of En.

Theorem 1.2 is derived from the following result.

Proposition 4.5. For all n, the minimum value of En : Jn → R is 1/n, and this
value is attained only at semisimple Jordan algebras. Conversely, if μ is semisimple
then En(g · μ) = 1/n for some g ∈ G.

Proof. Note that En(μ) = 1
n if and only if Mμ = cμI. Indeed if c1, . . . , cn are the

(real) eigenvalues of Mμ, and we want to minimize the value of c2
1+· · ·+c2

n subject to
the condition that c1+· · ·+cn = 1, we immediately obtain that c1 = · · · = cn = 1/n.

We first prove that the moment matrix of a complex semisimple Jordan algebras
is scalar, up to a change of basis. It is enough to consider a complex simple Jordan
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algebra μ. We start with the basis {ei} ∪ {ek
ij} of the Euclidean real form as in

Lemma 4.3 and the associated moment matrix Mμ = −αI− d
4N . Let {f1, f2, . . . , fr}

be a (positively oriented) real orthonormal basis of spanR(e1 . . . , er) such that its
first element is parallel to the identity element 1 = e1 + · · ·+ er. Then {fi} ∪ {ek

ij}
is an orthonormal basis of R

n. Let h ∈ SO(n), h =
(

h′ 0
0 I

)
, where h′ ∈ SO(r), be

such that h maps fi �→ ei, ek
ij �→ ek

ij , and put ν = h · μ. Since the moment map is
U(n)-equivariant, we have

Mν = hMμh−1 = −αI − d

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

0
. . .

0

0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

We next show that it is possible to rescale the basis (in fact, only f1) so that the
moment matrix becomes scalar.

We need to make some remarks about the νk
ij . Denote by {f1, . . . , fn} the

orthonormal basis of R
n above constructed so that f1 is parallel to 1, {f1, . . . , fr}

spans A11 + . . .+Arr and {fr+1, . . . , fn} spans ⊕ijAij . Let x ∈ R
n be a unit vector.

Then (x2 = μ(x, x))

x2 =
〈x2, 1〉
||1||2 1 + y, y ⊥ x.

Note that 〈x2, 1〉 = ||x||2 = 1 and ||1||2 = r
nTr(I) = r. It follows that

x2 =
1√
r
f1 + y, y ⊥ f1. (11)

We also have 〈μ(fi, fj), 1〉 = 〈fi, fj〉 = 0 if i 
= j. Since ν(ei, ej) = h(μ(fi, fj)), it
follows that

ν =
1√
r

n∑
i=1

e′1e
′
i ⊗ ei +

1√
r

n∑
i=2

e′2i ⊗ e1 + terms not involving e1, e′1; (12)

here we denote by e′1, . . . , e
′
n the dual basis of e1, . . . , en.

Next we consider the following one-parameter deformation of ν, and show that
the moment matrix is scalar for some value of the parameter. Set νt = g−1

t ·ν, where

gt = exp(−tE11) =

⎛⎜⎜⎜⎜⎜⎝
e−t

1

. . .

1

⎞⎟⎟⎟⎟⎟⎠.

2450015-21

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

06
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

May 3, 2024 15:54 WSPC/S0219-1997 152-CCM 2450015

C. Gorodski, I. Kashuba & M. E. Martin

We can write ν =
∑

ijk νk
ijv

ij
k , where vij

k = e′ie
′
j ⊗ ek and the sum runs through

i ≤ j, and then

||vij
k ||2 = 2(i 
= j) and ||vii

k ||2 = 1.

Also, vij
k is a weight vector of S2(Cn∗) ⊗ C

n of weight αk
ij = −θi − θj + θk, with

respect to the Cartan subalgebra of g consisting of diagonal matrices, where we
denote by θi the projection onto the ith-diagonal entry. Now

νt =
∑
ijk

etαk
ij(E11)νk

ijv
ij
k

and

E�� · νt =
∑
ijk

etαk
ij(E11)αk

ij(E��)νk
ijv

ij
k .

It follows that, for 
 ≥ 2,

(Mνt , E��) = 〈E�� · νt, νt〉

=
∑
ijk

e2tαk
ij(E11)αk

ij(E��)|νk
ij |2||v

ij
k ||2

= 0 +
1
r
e2t(−2) · 1 +

∑
ijk �=1

αk
ij(E��)|νk

ij |2||v
ij
k ||2︸ ︷︷ ︸

=:c�

= −2
r
e2t + c�, (13)

where we have used the form (12). Since (Mν0 , E��) = − 2
r + c� is independent of


 ≥ 2, owing to (10) we deduce that c2 = · · · = cn = c for some c ∈ R.
We next describe the first entry of Mνt , again by using (12):

(Mνt , E11) =
∑
ijk

e2tαk
ij(E11)αk

ij(E11)|νk
ij |2||v

ij
k ||2

=
1
r
e−2t(−1)(1 + (n − 1)2) +

1
r
e2t · 1 · ((n − 1) · 1)

= −2n− 1
r

e−2t +
n − 1

r
e2t. (14)

Use (13) and (14) to investigate (
 ≥ 2)

γ(t) = (Mνt , E11) − (Mνt , E��) =
n + 1

r
e2t − 2n − 1

r
e−2t − c.

Since limt→−∞ γ(t) = −∞ and limt→+∞ γ(t) = +∞, there is t0 ∈ R such that
γ(t0) = 0. We have shown that all diagonal entries of Mνt0

are equal. The last step
is to show that the off-diagonal entries of Mνt0

(indeed of Mνt for all t) vanish.
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Since Mν is a diagonal matrix, it suffices to show that (1 ≤ p < q ≤ n):
d

dt
(Mνt , Epq + Eqp) = 2�〈(Epq + Eqp) · νt, E11 · νt〉 (15)

vanishes.
Note that

E11 · νt = −e−t

√
r

n∑
i=1

v1i
i +

et

√
r

n∑
i=2

vii
1 ,

so we need only to know the v1i
i - and vii

1 -components of (Epq + Eqp) · νt.
We compute

〈((Epq + Eqp) · νt)(e1, ei), ei〉 = −δp1〈νt(eq, ei), ei〉,

〈(E11 · νt)(e1, ei), ei〉 = −〈νt(e1, ei), ei〉,
and, for i = 2, . . . , n,

〈((Epq + Eqp) · νt)(ei, ei), e1〉 = δp1〈νt(ei, ei), eq〉,

〈(E11 · νt)(ei, ei), e1〉 = 〈νt(ei, ei), e1〉.
Plugging these formulae into (15) already yields zero, unless p = 1, for which

1
2

d

dt
(Mνt , E1q + Eq1) = �

n∑
i=2

〈νt(eq, ei), ei〉〈νt(e1, ei), ei〉

+ 〈νt(ei, ei), eq〉〈νt(ei, ei), e1〉. (16)

Note that, using i, q ≥ 2,

〈νt(ei, ei), eq〉 = 〈ν(ei, ei), eq〉,

〈νt(ei, ei), e1〉 = et〈ν(ei, ei), e1〉,

〈νt(eq, ei), ei〉 = 〈ν(ei, ei), eq〉,

〈νt(e1, ei), ei〉 = e−t〈ν(ei, ei), e1〉,
so

d

dt
(Mνt , E1q + Eq1) =

n∑
i=2

e−t〈ν(ei, ei), eq〉〈ν(ei, ei), e1〉

+ et〈ν(ei, ei), eq〉〈ν(ei, ei), e1〉

=
n∑

i=2

1√
r
(et + e−t)〈ν(ei, ei), eq〉

=
1√
r
(et + e−t)

〈
n∑

i=2

ν(ei, ei), eq

〉
.

Finally, we claim that the basis f1, . . . , fn can be chosen so that
∑n

i=2 μ(fi, fi) ∈
R ·1. This will imply

∑n
i=2 ν(ei, ei) ∈ R ·e1 ⊥ eq, and hence d

dt (Mνt , E1q +Eq1) = 0.
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The claim is proved in two steps. In the first step, recall the idempotents
e1 . . . , er with eiej = 0 for i 
= j and e1 + · · · + er = 1. Set f1 = 1√

r
and

fi =
1√

i(i − 1)
(e1 + · · · + ei−1 − (i − 1)ei)

for i = 2, . . . , r. Then a quick calculation yields
r∑

i=2

f2
i =

(
1 − 1

r

)
· 1.

In the second step, we invoke [2, Satz 9.1, Kap. VIII]. It says that u2 = 1
2 (ei+ej)

for all u ∈ Aij (i 
= j) with ||u|| = 1. Finally,
n∑

i=r+1

f2
i =

∑
1≤i<j≤r

d

2
(ei + ej) =

(r − 1)d
2

r∑
i=1

ei =
(r − 1)d

2
· 1

and hence
n∑

i=1

f2
i = (r − 1)

(
1
r

+
d

2

)
· 1,

as wished.
In the remainder of the proof, we show that, conversely, if Mμ is a scalar matrix

then A = (Cn, μ) is semisimple.
Write A = N+S (direct sum of vector spaces), where N is the radical of A and

S is a semisimple Jordan algebra. Suppose, by contradiction, that N 
= 0. Then

N
[0] = N, N

[k+1] = (N[k])3

for k ≥ 0 defines a decreasing sequence of ideals of A ([17, Lemma 2.2]; see also [21,
Lemma 3, Sec. 3, Chap. 4]). Nilpotency of N yields a minimal k0 ≥ 0 such that
N[k0+1] = 0. Let B = N[k0] 
= 0. Then

B0 = B, Bk+1 = AB
2
k + B

2
k,

for k ≥ 0, is a decreasing sequence of ideals of A [17, Lemma 2.2]. By [17, The-
orem 2.5], there is a minimal k1 ≥ 1 such that Bk1 ⊂ B2. Now there are two
cases.

If Bk1 
= 0, then C = Bk1 is a non-zero ideal of A with

C
2 = B

2
k1

⊂ B
2
B = B

3 = (N[k0])3 = N
[k0+1] = 0.

If Bk1 = 0, then C = Bk1−1 is a non-zero ideal of A with

C
2 = B

2
k1−1 = 0

since 0 = Bk1 = AB2
k1−1 + B2

k1−1.
In any case, we have found a non-zero ideal C of A with C2 = 0. We can now

finish the proof. Let x1, . . . , xm be an orthonormal basis of C, and let y1, . . . , yn−m
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be an orthonormal basis of C⊥. For any x ∈ C, owing to Proposition 3.2 and the
facts that Lμ

xxi = 0 for all i and that the image of Lμ
x is contained in C, we have

0 > 〈Mμx, x〉

= −2
∑
ij

|〈Lμ
xyi, xj〉|2 +

∑
ij

|〈Lμ
xi

yj , x〉|2 +
∑
ij

|〈Lμ
yi

xj︸ ︷︷ ︸
=Lμ

xj
yi

, x〉|2 +
∑
ij

|〈Lμ
yi

yj , x〉|2.

We make x = xk and sum over k = 1, . . . , m to obtain

0 >
∑

k

〈Mμxk, xk〉

= −2
∑
ijk

|〈Lμ
xk

yi, xj〉|2 + 2
∑
ijk

|〈Lμ
xi

yj , xk〉|2 +
∑
ijk

|〈Lμ
yi

yj, xk〉|2

=
∑
ijk

|〈Lμ
yi

yj , xk〉|2

≥ 0,

a contradiction. Hence N = 0, as desired.

5. The Maximal Value of En

Since the energy En is constant along rays in Vn \ {0}, it attains a maximum value.
In this section we determine those points of maxima and prove Theorem 1.5.

We introduce two important complex Jordan algebras. We give them names
following the analogy with Lie algebras:

(a) The Heisenberguian Jordan algebra μHeis has a basis {n1, . . . , nn} (n ≥ 2)
satisfying n2

1 = n2, and the other products equal to zero. This is a nilpotent
Jordan algebra.

(b) The hyperbolic Jordan algebra μhyp has a basis {e, n1, . . . , nn−1} (n ≥ 2) sat-
isfying e2 = e, eni = 1

2ni for all i, and the other products equal to zero. This
algebra has been considered in [13, Teorema 4.65], where it was shown that it
is rigid.

Proposition 5.1. Every Jordan algebra of dimension at least two which is not
isomorphic to μhyp degenerates to μHeis. Further, the only Jordan algebras in Jn

(n ≥ 2) for which the only non-trivial degeneration is to the trivial Jordan algebra
(all products zero) are μHeis and μhyp.

Proof. Let μ ∈ Jn. Suppose there is x1 ∈ C
n such that x1, x2 := μ(x1, x1) are

linearly independent; complete this set to a basis x1, . . . , xn. Define gt ∈ G by
setting gtx1 = tx1, gtxi = t2xi for i = 2, . . . , n, and put μt = g−1

t · μ. Then
μt(x1, x1) = x2 for all t 
= 0. Moreover, for (i, j) 
= (1, 1) there is m ∈ {3, 4} such
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that

μt(xi, xj) = tm−1μ1
ijx1 + tm−2(μ2

ijx2 + · · · + μn
ijxn) → 0

as t → 0. In other words, μ → μHeis.
In case there is no x1 as a above, there is a non-zero linear map 
 : C

n → C such
that μ(x, x) = 
(x)x. By polarization, μ(x, y) = 1

2 (
(x)y + 
(y)x). Let n1, . . . , nn−1

be a basis of ker 
 and choose e such that 
(e) = 1. Then μ(e, e) = e, μ(e, ni) = 1
2ni

and μ(ni, nj) = 0 for all i, j, which shows that μ ∼= μhyp.
Further, dim Der(μhyp) = n2−n and dim Der(μHeis) = n+(n−2)(n−1) = n2−

2n + 2; in fact, if d ∈ Der(μHeis), then d(n1) is arbitrary, d(ni) ∈ span(n2, . . . , nn)
for i ≥ 2, and d(n2) = 2n1d(n1). Since dim Der(μHeis) ≤ dim Der(μhyp) for
n ≥ 2, it follows that μhyp 
→ μHeis [7, p. 284]. Also, μHeis 
→ μhyp because
dimμhyp(Cn, Cn) = n > 1 = dimμHeis(Cn, Cn) (alternatively, μHeis is associative,
but μhyp is not).

Since μhyp is not a nilpotent Jordan algebra, it follows from Proposition 5.1 that
μHeis lies in the closure of every G-orbit in Nn, which proves the first assertion of
Theorem 1.5. The second assertion is a consequence of the following result.

Corollary 5.2. The Jordan algebras μHeis and μhyp are solitons. Further, the max-
imum value of En is 5, and it is attained exactly at the G-orbit of μHeis.

Proof. Suppose μ is a point of maximum of En. This implies that μ is a critical
point of En on G · μ, and hence on Vn. By Kirwan–Ness theory (Theorem 2.1),
μ is a point of minimum of En on G · μ, which implies that En is constant along
G ·μ. Now every point in G ·μ is a point of minimum of En on G ·μ, so the G- and
K-orbits through μ agree up to scaling, that is G ·μ = C

× ·K ·μ, again by Kirwan–
Ness. It follows that the only possible degeneration of μ is to the trivial algebra. By
Theorem 5.1, μ is isomorphic to one of μHeis or μhyp. A simple calculation yields

MμHeis = −5I +

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3
6

5
. . .

5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, En(μHeis) = 5

and

Mμhyp = −
(

n + 1
2

)
I +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
n + 1

2

. . .
n + 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, En(μhyp) = 1.

This finishes the proof.
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6. Stratification

In this section we review the Kirwan–Ness stratification of the null cone in the
setting of commutative algebras. We follow the formulation and notation of [10, 12]
(for which we refer the reader, regarding the missing proofs below) and note that
the results are exactly the same as for the case of skew-symmetric algebras.

Consider again the action of G = GL(n, C) on Vn = S2(Cn∗) ⊗ C
n. Since

limt→0 g−1
t · μ = limt→0 tμ = 0 for gt = tI, every commutative algebra degenerates

to the trivial algebra, and therefore the null cone N = Vn. Let h be the subalgebra
of diagonal matrices of ik, choose a positive Weyl chamber h

+ in h and denote its
closure by h

+. The critical set of E is K-invariant and it decomposes into a finite
union of disjoint closed subsets {Cβ}β∈B, where B is a finite subset of h

+, such that
Cβ is mapped under m onto the adjoint orbit K · β in ik. Let Sβ be the set of all
points of Vn \{0} that flow into Cβ under −∇En (the stable manifold of Cβ). Then
Sβ is G-invariant, Zariski-locally closed, irreducible and non-singular, and we have

Vn \ {0} =
⋃̇

β∈B
Sβ (disjoint union), (17)

where

S̄β \ Sβ ⊂
⋃

||β′||>||β||
Sβ′ . (18)

Write μ =
∑

ijk μk
ije

′
ie

′
j ⊗ ek, for an orthonormal basis e1, . . . , en of C

n and its
dual basis e′1, . . . , e

′
n. For μ ∈ Vn \ {0}, define

βμ = the convex combination of smallest norm of the elements αk
ij ∈ h

with μk
ij 
= 0.

Recall that αk
ij = −Eii − Ejj + Ekk, so Trβμ = −1. Now another description is

Sβ = {μ ∈ Vn \ {0} | β is of maximal norm in {βg·μ | g ∈ G}},

and B = {β ∈ h̄
+ | Sβ 
= ∅}. Define also

Wβ = {μ ∈ Vn | (β, αk
ij) ≥ ||β||2 for all μk

ij 
= 0},

that is the sum of eigenspaces of dπ(β) with eigenvalues ≥ ||β||2, its subset

Yβ = {μ ∈ Wβ | (β, αk
ij) = ||β||2 for at least one μk

ij 
= 0}

and

Y ss
β = Yβ ∩ Sβ .

Then one proves

Y ss
β = Sβ ∩ Wβ

= {μ ∈ Sβ | β = βμ} (19)
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and

Sβ = K · Y ss
β . (20)

Finally,

Wβ \ {0} ⊂ Sβ ∪
⋃

||β′||>||β||
Sβ′ . (21)

Lemma 6.1. If Mμ ∈ h, then

Mμ =
∑
ijk

|μk
ij |2 αk

ij .

Proof. For the canonical basis e1, . . . , en of C
n we have

〈Mμek, ek〉 = −2
∑
ij

|〈Lμ
ek

ei, ej〉|2 +
∑
ij

|〈Lμ
ei

ej , ek〉|2,

so

Mμ =
∑

k

〈Mμek, ek〉Ekk

= −
∑
ijk

|〈Lμ
ei

ej, ek〉|2Eii −
∑
ijk

|〈Lμ
ei

ej, ek〉|2Ejj +
∑
ijk

|〈Lμ
ei

ej, ek〉|2Ekk

=
∑
ijk

|μk
ij |2 αk

ij ,

as desired.

Corollary 6.2. If m(μ) ∈ h then m(μ) ∈ Conv({αk
ij : μk

ij 
= 0}) (convex hull); in
particular,

E(μ) = ||m(μ)||2 ≥ ||βμ||2,

and equality holds if and only if m(μ) = βμ if and only if μ is a soliton, and in this
case μ ∈ Sβ for β ∈ B the unique element of h̄

+ AdK-conjugate to βμ. In general,
since E is K-invariant, from Eqs. (19) and (20) we get that

E(μ) ≥ ||β||2 for all μ ∈ Sβ, (22)

and equality holds if and only if μ is a soliton, in which case m(μ) is AdK-conjugate
to β and to βμ.

Corollary 6.3. If μ is a soliton and 0 is an eigenvalue of Dμ, then ||βμ|| ≤ 1.

Proof. By replacing μ by a AdK-conjugate, we may assume βμ = m(μ), so βμ +
||βμ||2I = 1

||Mμ||2 Dμ has 0 as an eigenvalue, that is (βμ, Eii) = −||βμ||2 for some
i = 1, . . . , n. Finally, ||βμ|| ≥ |(βμ, Eii)| = ||βμ||2.

Since the stratification (17) is G-invariant, it naturally induces a stratification
of any G-invariant subvariety of Vn \ {0}.
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Proposition 6.4. The stratum Sβ ∩ Jn for β = − 1
nI precisely consists of the

n-dimensional semisimple Jordan algebras.

Proof. It follows from Proposition 4.5 that if μ ∈ Jn is semisimple then there is
g ∈ G with Mg·μ a scalar matrix. Therefore μ ∈ Sβ ∩ Jn. Conversely, assume that
μ ∈ Sβ ∩ Jn. Then the integral curve {μ(t)} of the (−∇En)-flow with μ(0) = μ is
contained in G ·μ and converges to a soliton in Sβ. In particular all the eigenvalues
of Mμ(t) are negative for sufficiently large t. In the second half of the proof of
Proposition 4.5, the argument only needs this information to imply that μ(t) must
be semisimple for sufficiently large t (cf. inequality for 〈Mμx, x〉 on p. 18). Hence μ

is semisimple, too.

6.1. Proofs of Proposition 1.3 and Theorem 1.4

If μ → ν then G · ν ⊂ G · μ. Say μ ∈ Sβ for some β ∈ B. Then (18) implies that
ν ∈ Sβ ∪

⋃
||β′||>||β| Sβ′ . Owing to Corollary 6.2, we have

E(ν) ≥ ||β||2 = E(μ),

proving Proposition 1.3.
We move to the proof of the theorem. Recall that Sβ ∩Jn for β = − 1

nI precisely
consists of the n-dimensional semisimple Jordan algebras (Proposition 6.4), so it is
open in Jn, say thanks to Albert’s criterion for semisimplicity in terms of the trace
form (Sec. 2.1). Suppose μ is semisimple and ν → μ. Then ν is semisimple. Moreover
μ ∈ G · ν implies that dimG ·μ ≤ dimG ·ν and therefore dim Der(μ) ≥ dim Der(ν).
We will prove the reverse inequality by using a result of [6] asserting that every
derivation D of a semisimple Jordan algebra A (over a field of characteristic zero)
is inner, in the sense that it is given as D =

∑
i[Lai , Lbi ] for some ai, bi ∈ A. It

implies that

dim Der(μ) = dim span{[Lμ
xi

, Lμ
xj

]}ij ≤ dim span{[Lν
xi

, Lν
xj

]}ij = dim Der(ν)(23)

for a fixed basis x1, . . . , xn of C
n, by lower semicontinuity of the dimension of the

span in terms of the multiplication in Vn.
Now G · μ and G · ν have the same dimension, which implies that G · μ = G · ν,

that is μ and ν are isomorphic. This means that G · μ is closed in Sβ ∩ Jn for
β = − 1

nI. Since there are only finitely many G-orbits in Sβ ∩Jn (Proposition 6.4),
they are all open in Sβ ∩Jn, and hence in Jn. In particular G ·μ is open in Jn and
hence μ is rigid. This finishes the proof of Theorem 1.4.

7. Low-Dimensional Jordan Algebras and Other Examples

The proof of Theorem 1.6 regarding Jordan algebras of dimension at most 4 is given
in Tables 1–9. In this section we explain how to read them and explain certain cases
in more detail. We start with some remarks of a general nature.
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7.1. Decomposable algebras

A Jordan algebra is called indecomposable if it is not isomorphic to the direct
product of two Jordan algebras, and decomposable otherwise. The following lemma,
whose proof is easy, shows that we can restrict our search for solitons to the inde-
composable Jordan algebras.

Lemma 7.1. if μ ∈ Vn and ν ∈ Vm are solitons and Mμ = cμI + Dμ, Mν =

cνI + Dν , then μ × cν ∈ Vn+m is a soliton, where c =
√

cμ

cν
.

7.2. Unitalization of Jordan algebras

The following result is an easy check using, say, Lemma 6.1.

Lemma 7.2. If a Jordan algebra A = (Cn, μ) does not carry a unit element and
we adjoin a unit element to A to obtain Â = (Cn+1, μ̂), then the moment matrix of
μ̂ is

Mμ̂ =

(
Mμ

−(2n + 1)

)
.

In particular, if μ ∈ Jn is a soliton and Mμ = cμI + Dμ, then
√̂

cμ ∈ Jn+1 is a
soliton, where c = 2n+1

−cμ
, and

M√̂
cμ

= −(2n + 1)I +

(
cDμ

0

)
;

in this case En+1(
√̂

cμ) = En(μ)
En(μ)+1 .

Basic examples are Â2,2 = A3,4, Â2,3 = A3,7, Â2,5 = A3,3, Â3,13 = A4,25,
Â3,17 = A4,39 (see Tables 1–6).

7.3. The regular representation of a semisimple Jordan algebra

Let S = (Cn, μ) be a semisimple Jordan algebra, and let N be the underlying vector
space of S, which we consider as a S-module under the regular representation. We
put N

2 = 0 so that A = S+N = (C2n, μ̃) is a Jordan algebra. Choose the Hermitian
product such that S ⊥ N, on S it is the Hermitian product that makes μ a soliton
with Mμ = − 1

nI, and on N it is isometric to S. Then a simple calculation shows
that Mμ̃ = − 1

nI = − 2
2nI. Basic examples are Ã1,1 = A2,1 and Ã2,4 = A4,22 (see

Tables 1–6).

7.4. Jordan algebras in dimensions 1, 2 and 3

Excluding the trivial algebras, there is one isomorphism class of complex one-
dimensional Jordan algebras, five isomorphism classes of complex two-dimensional

2450015-30

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

06
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

May 3, 2024 15:54 WSPC/S0219-1997 152-CCM 2450015

A moment map for the variety of Jordan algebras

Jordan algebras, and 19 isomorphism classes of complex three-dimensional Jordan
algebras [7]; those are listed in Tables 1, 3 and 5 in soliton form. One computes
the moment matrices using Proposition 3.2, and then uses Proposition 1.1 to find
a soliton in each isomorphism class. It is essentially enough to work with non-
semisimple and indecomposable algebras. The stratification and invariants are col-
lected in Tables 2, 4 and 6. To give one example in dimension 3, consider A3,4. One
replaces the standard basis e1, e2, n1 given in [7] (see Table 2 therein, where the
algebra is listed as T10) by f1, f2, n1, where f1 = e1 + e2, f2 = e1 − e2, in order to
diagonalize the moment matrix, and then replaces f2 by f ′

2 = kf2, where k4 = 5/3,
in order to find a soliton.

7.5. Jordan algebras in dimension 4

Excluding the trivial algebra, there are 72 isomorphism classes of complex four-
dimensional Jordan algebras [7]. Those are listed in Tables 7 and 8 in soliton form,
except for A4,63. The stratification and invariants are collected in Table 9. We omit
the tedious calculations and only give a few typical examples.

7.5.1. The orbit of A4,66 is distinguished

We search for solitons among isomorphic algebras of the form n2
1 = αn2, n2

4 = βn3,
n1n2 = γn3. Using Propositions 3.2 and 1.1 we find one with α2 = β2 = 4 and
γ2 = 3.

7.5.2. The orbits of A4,16, A4,17 and A4,25 are distinguished

We compute that the energy of A4,16 in the basis given in [7, Table 3] is 27/49.
Consider a point of minimum ν of E4 in G · μ. According to [13], the first level
degenerations of μ are A4,28, A4,31 and A4,50, whose orbits contain solitons with
energy levels, respectively 1, 1 and 3/4. Since E(ν) < 27/49, ν cannot lie in those
orbits. Still according to [13], the only other possible degenerations of μ are to A4,i,
where i = 48, 64, 66, 67, 68, 70. However A4,48 has a soliton with energy level 5/6
and the other ones have solitons with energy level well above 1, so again ν cannot
lie in those orbits. The only remaining possibility is that ν ∈ G · μ. Hence A4,16 is
distinguished. It follows from Corollary 6.2 that E(ν) = ||βν ||2 = ||βμ||2 = 1/2.

We compute that the energy of A4,17 and A4,25 are 3/5 and 5/9, respectively,
and proceed similarly in those cases.

In Table 7 we have written the approximate values of the structural constants
for these solitons, which were obtained by using computer software.

7.5.3. The orbit of A4,63 is not distinguished

Denote (C4, μ) = A4,63 and (C4, ν) = A4,64. It is known that μ → ν. Indeed, let

gt =
(

1
t

t
t

)
∈ G and put μt = g−1

t · μ. Then limt→0 μt = ν. Note that ν is
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a soliton and put β = m(ν) =

( −1
− 1

2
0

1
2

)
∈ h̄

+. It is immediate to see that

μ ∈ Wβ . Since inf E4(G · μ) = ||β||2 = 3
2 , we deduce from (18), (21) and (22) that

μ ∈ Sβ .
Now suppose, to the contrary, that λ ∈ G · μ is a soliton. Then m(λ) is AdK-

conjugate to β (Corollary 6.2), and by replacing λ by an element in its K-orbit we

may assume m(λ) = β. Since 1
||λ||2 Dλ = β + ||β||2I = 1

2

(
1

2
3

4

)
, this implies that

this matrix is a derivation of λ. This matrix has pairwise different eigenvalues, so
λ must be given by

λ(n1, n1) = an2, λ(n1, n2) = bn3, λ(n1, n3) = cn4, λ(n2, n2) = dn4, (24)

and the other products zero, for some complex constants a, b, c, d.
Suppose now λ is given by (24). We finish by checking that: (i) λ can only be

isomorphic to μ if a = 0 and b, c, d 
= 0; (ii) if a = 0, λ can be a soliton only if
b = ±c and d = 0. This will prove that there are no solitons in G · μ.

Write A = A4,63 = (C4, μ) and B = (C4, λ). Note that A
2 = span(n3, n4) and

A
3 = span(n4), so A/A

3 = A3,18. On the other hand, B
2 = span(an2, bn3, cn4, dn4)

and B
3 = span(abn3, bcn4, adn4). Suppose A and B are isomorphic. If a 
= 0

then, owing to dim B
2 = 2, we have b = 0 or c = d = 0. In both cases we get

B/B
3 = A3,19. This shows that a = 0. Now dimB

2 = 2 and dimB
3 = 1 imply

that b 
= 0 and c 
= 0. We also have d 
= 0, for otherwise B would be isomorphic to
A4,64. This proves (i).

We turn to (ii). Suppose a = 0 and λ is a soliton. We compute that

Mλ =

⎛⎜⎜⎜⎜⎝
−2b2 − 2c2

−2b2 − 2d2

−2c2 + 2b2

2c2 + d2

⎞⎟⎟⎟⎟⎠. (25)

Since Mλ is a multiple of β, this immediately gives that b2 = c2 and d = 0, which
proves (ii).

8. Closed SL(n, C)-Orbits in Jn

Since there are no closed GL(n, C)-orbits in Jn (not even in Vn\{0}), precisely
because of multiples of the identity, it arises the natural question of knowing whether
the subgroup SL(n, C) admits closed orbits in Jn.

Proposition 8.1. Let μ ∈ Jn, μ 
= 0. Then

(a) The orbit SL(n, C) ·μ is closed if and only if μ is a semisimple Jordan algebra.
(b) If μ is not semisimple then 0 lies in the closure of SL(n, C) · μ.
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Proof. The orbit SL(n, C) · μ is closed if and only the moment map mSLn of the
SL(n, C)-action on Vn vanishes at some point ν ∈ SL(n, C) · μ. Since mSLn is
obtained from mGLn by post-composing with the projection iu(n) = R ⊕ isu(n) →
isu(n), the latter is equivalent to mGLn(ν) = − 1

nI, which means that ν and μ are
semisimple, owing to Proposition 4.5.

Suppose now μ is not semisimple. Then SL(n, C)·μ is not closed and SL(n, C) · μ
contains a closed orbit, say, SL(n, C) · ν. If ν 
= 0 then ν is semisimple by part (a).
Since μ is a deformation of ν, owing to the rigidity of semisimple Jordan algebras,
the SL(n, C)-orbits of μ and ν coincide, a contradiction.

9. Partial Results, Open Problems and Conjectures

It is interesting to note that the application of GIT to the study of (commutative)
Jordan algebras has many similarities with the case of (anti-commutative) Lie alge-
bras. However the Jordan identity (in each of its disguises) seems to be more difficult
to use than the Jacobi identity. In particular, for Jordan algebras in general the
left multiplications are not derivations of the algebra, in flagrant contrast with Lie
algebras. So proofs of results for Lie algebras which depend on this property cannot
be simply carried over to the context of Jordan algebras, and throughout this work
we have tried to find alternative lines of arguments, with some success. The partial
results that we collect in this section are somehow related to this situation.

Unless explicitly stated, throughout this section we let μ ∈ Jn be a Jordan
soliton, A = (Cn, μ). We write the moment matrix Mμ = cμI + Dμ, where Dμ is a
Hermitian derivation, according to Proposition 1.1. Let also N denote the radical
of A.

9.1. The annihilator

The annihilator of A is Ann(A) = {x ∈ A : Lμ
x = 0}. It is clear from Lμ

Dμx =
[Dμ, Lμ

x] that Dμ preserves Ann(A), and it follows from Proposition 3.2 that the
eigenvalues of Dμ on Ann(A) are positive.

9.2. Basic calculation

Let x be an eigenvector of Dμ with eigenvalue d. Then

(Mμ, [Lμ
x, Lμ∗

x ]) = Tr(Mμ[Lμ
x, Lμ∗

x ])

= Tr(Dμ[Lμ
x, Lμ∗

x ])

= Tr([Dμ, Lμ
x]Lμ∗

x ])

= Tr(Lμ
DμxLμ∗

x ) = d||Lμ
x||2. (26)

On the other hand, due to (3) the left-hand side of (26) also equals 〈[Lμ
x, Lμ∗

x ] ·μ, μ〉,
so we deduce

d||Lμ
x ||2 = ||Lμ∗

x · μ||2 − ||Lμ
x · μ||2. (27)
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We use this formula and some variations below.

Lemma 9.1. Let μ ∈ Jn be a soliton, and let x, y ∈ C
n be eigenvectors of Dμ with

corresponding (real) eigenvalues dx, dy. If dx 
= dy then (Lμ
x, Lμ

y ) = 0.

Proof. The basic calculation yields

dx(Lμ
x, Lμ

y ) = (Mμ, [Lμ
x, Lμ∗

y ]) = 〈Lμ∗
y · μ, Lμ∗

x · μ〉 − 〈Lμ
x · μ, Lμ

y · μ〉.

We interchange x and y in these equations to obtain that

dx(Lμ
x, Lμ

y ) = dy(Lμ
y , Lμ

x) = dy(Lμ
x, Lμ

y ),

which proves the desired result.

9.3. The kernel of Dμ

Proposition 1.1(b) shows that the kernel of Dμ contains a maximal semisimple
subalgebra of A = (Cn, μ).

Question 9.2. For a soliton μ ∈ Jn is it true that kerDμ is a maximal semisimple
subalgebra? In other words, are the eigenvalues of Dμ restricted to N different from
zero?

9.4. Positivity of Dμ on N

A positive answer to Question 9.3 implies a positive answer to Question 9.2.

Question 9.3. For a soliton μ ∈ Jn, are the eigenvalues of Dμ on N positive?

For soliton Jordan algebras A satisfying A
3 = 0, trivially all left-multiplications

are derivations of the algebra, and we can use a standard argument to answer yes
to Question 9.3.

Proposition 9.4. If the soliton A = (Cn, μ) satisfies A
3 = 0, then all eigenvalues

of Dμ are positive.

Proof. The assumption A
3 = 0 implies that A is a nilpotent Jordan algebra and

hence Lμ
x is a nilpotent operator for all x ∈ A.

Let x ∈ C
n be an eigenvector of Dμ with corresponding eigenvalue d ∈ R. Since

Lμ
x · μ = 0, the basic calculation (27) immediately gives d ≥ 0. If in addition d = 0,

then Lμ∗
x is also a derivation of μ, thus [Lμ∗

x , Lμ
x] = Lμ

Lμ∗
x x

by the defining condition
of a derivation.

Since Dμ is Hermitian, the orthogonal decomposition A = A
2 ⊕ A

2⊥ is Dμ-
invariant, so we may assume x ∈ A

2 (respectively, x ∈ A
2⊥). In any case 〈Lμ∗

x x, y〉 =
〈x, xy〉 = 0 for all y ∈ A, as xy ∈ A

3 = 0 (respectively, xy ∈ A
2). This shows

Lμ∗
x x = 0.
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Now Lμ
x is a normal and nilpotent operator, hence x ∈ Ann(A). The result in

Sec. 9.1 contradicts our assumption that d = 0. Hence d > 0.

For non-associative Jordan algebras, we have the following partial result.

Proposition 9.5. Let x, y ∈ C
n be eigenvectors of Dμ with corresponding eigen-

values dx, dy. If [Lμ
x, Lμ

y ] 
= 0 then dx + dy ≥ 0.

Proof. We consider D := [Lμ
x, Lμ

y ] and compute

[Dμ, D] = [[Dμ, Lμ
x], Lμ

y ] + [Lμ
x, [Dμ, Lμ

y ]]

= [Lμ
Dμx, Lμ

y ] + [Lμ
x, Lμ

Dμ
y]

= (dx + dy)D.

We proceed as in the basic calculation to get

(dx + dy)||D||2 = Tr([Dμ, D]D∗) = Tr(Dμ[D, D∗]) = Tr(Mμ[D, D∗]) = ||D∗ · μ||2,
since D is a (inner) derivation, and the result follows.

If N = (Cn, μ) is a nilpotent Jordan soliton generated by a single element n,

then n and its powers must be eigenvectors of Dμ. Owing to Tr(Dμ) =
TrD2

μ

−cμ
> 0,

we also get Dμ > 0 in this case.

9.5. Orthogonality of S and N

Since Dμ is Hermitian, the orthogonal complement of N with respect to the Her-
mitian product is Dμ-invariant.

Question 9.6. For a soliton μ ∈ Jn, A = (Cn, μ), is N
⊥ a semisimple subalgebra

of A?

If the answer to Question 9.6 is yes, then N
⊥ will be maximal semisimple. A

positive answer to Question 9.2 implies a positive answer to Question 9.6.

9.6. Reduction to nilpotent Jordan algebras

Question 9.7. If A = (Cn, μ) is a Jordan soliton and N is the radical of A, is it
true that μ|N×N is a soliton? Conversely, given a nilpotent Jordan soliton N and
a semisimple Jordan algebra S such that A = S + N is a Jordan algebra, can we
extend the metric from N to A so that A becomes a soliton?

Acknowledgments

The authors wish to thank I. Shestakov for stimulating discussions. The first
author acknowledges partial financial support from CNPq (grant 304252/2021-2)
and FAPESP (grant 16/23746-6). The second author acknowledges partial financial
support from NSFC (grant 12350710787).

2450015-35

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

06
/1

7/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

May 3, 2024 15:54 WSPC/S0219-1997 152-CCM 2450015

C. Gorodski, I. Kashuba & M. E. Martin

ORCID

Claudio Gorodski https://orcid.org/0000-0002-2965-0889
Iryna Kashuba https://orcid.org/0000-0001-9672-668X
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dungsgebiete, Vol. 128 (Springer-Verlag, Berlin, 1966) [in German].
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