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ture can entail time delay. Another alternative to solve this problem is to use only
linear combinations of measured signals for feedback, a technique known as optimal
static output feedback (OSOF) or partial state feedback. In this paper, this method is
studied considering additionally sensors locations as optimization variables. Neces-
sary conditions of optimality are presented in order to highlight the dependence of
the optimal solution on system initial conditions. A new approach to deal with this
dependence, which is based on approaching the performances of OSOF and LQR
for any initial condition, is developed and compared to the existing one. The method
developed is tested on a simply supported plate modeled using the finite element
method. The analyses of the results show that with a significantly reduced number of
sensors, the OSOF controller has a performance equivalent to LQR. The developed
methodology also provided the controlled system a relevant behavior to major prob-
lems of non-collocated control, such that it maintained stability and performance

considering parameters variations and a large increase in frequency bandwidth.
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1 | INTRODUCTION

Vibrations are present in virtually all engineering problems involving flexible structures subject to dynamic loads, and in many
cases it represents a phenomenon that must be mitigated or suppressed 2. Due to several factors, such as adaptation to different
types of excitation, suppression of vibration over a wide range of frequencies or even availability of multi-purpose piezoelectric
patches, the engineer can choose to apply an active control technique. When dealing with active control®# and health moni-
toring™ of flexible structures, or systems whose model is given by partial differential equations, sensors locations are usually
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variables of the design process, and can affect substantially the performance of the controlled system. Both the control law vari-
7710/ and locations of sensors and actuators'!' are generally designed in order to achieve or optimize a performance criterion.
Among these criteria, there is a functional quadratic in state and control variables, which is used to determine the optimal gain
in the linear quadratic regulator (LQR) problem.

The LQR control has been applied in many researches of vibration contro , which may be due to some advantageous
properties. Besides minimizing a cost function that represents a trade-off between control effort and performance, the control
law obtained by the solution of the LQR problem still provides infinite gain margin and phase margin of at least 60°, for each
plant input channel, and reduces closed loop system sensitivity to controller and plant variations'”. However, the practical
implementation of the LQR is limited, since it requires that all state variables must be measured. A common approach to solve
this problem is to use LQG control, which consists of using an observer to estimate unmeasured states. However, it still has
drawbacks. An observer uses output, input and model information to reconstruct the actual state, producing a dynamic controller
with complex hardware, causing time delay. Besides that, LQG control does not have guaranteed stability margins, and the loop
transfer recovery procedures are limited to minimum phase plants and tend to produce high gains’®. Finally, LQG control is
sensitive to the spillover phenomenon'™®. Given these considerations, the technique presented in this paper is different from the
ones that considered dynamic output feedback, e.g., Oliveira and Geromel?? and Feng et al’2l,

These problems motivated the study of a control technique that still consists on minimizing the quadratic cost function, but
with the constraint of using only linear combinations of measured signals for feedback?%2%, which is known as optimal static
output feedback (OSOF) or partial state feedback. Despite simplification of hardware, this technique posed some theoretical
challenges: the optimization problem is non-convex, the optimal gain is dependent on system initial conditions and the existence
of a stabilizing static output gain is an open problem in control theory?®, This control technique was applied in vibration control
problems, considering some approaches to the mentioned challenges. Lim et al®> considered the application of OSOF control
with collocated sensors and actuators to reduce vibration and noise of a clamped plate. Moon® and Gharib et al“Z obtained an
acceptable performance using OSOF controller, but below that obtained for the LQR. Although this result was expected, since
full state feedback controller is optimal for any initial condition, the performance and properties of both controllers tend to be
equivalent as the expected values of both cost functions are closer?. As the performance index is also a function of sensors loca-
tions, it is expected that the performance may be even closer to the LQR considering also the locations of sensors as optimization
variables. Abdullah8 considered simultaneous determination of control gain and placement of collocated sensor/actuator pairs
to control a beam subject to wind excitation, but without making comparisons with LQR. Cai and Lim? proposed a formulation
to determine which states have significant effect on control performance, in order to use only these states for feedback. However,
this formulation has limitations for structural models in modal coordinates, because the measurement of each state may involve
the use of several sensors.

The OSOF control formulation was also used in other areas involving flexible structures, such as energy harvesting=?, design
of PPF controllers3! and semi-active control3Z, This technique also has a hardware structure similar to discrete modal filters33-32
and other control techniques with static output feedback=°>” (feedback of linear combinations of measured signals), showing
that developments in this technique can benefit a large area of interest.

Most of the above mentioned articles considered the suggestion given by Levine and Athans** to handle the dependence of the
optimal solution with respect to system initial conditions and none compared the use of different conditions. This comparison
was performed by Morris and Yang38, but for determination of actuators locations with full state feedback. Different strategies
to solve the non-convex optimization were proposed, from a descent direction method® with different initial guesses to a genetic
algorithmZ. None of the considered articles indicated a problem for finding combinations of design variables that makes the
closed loop system stable.

In this paper, all the problems mentioned above are addressed. Necessary conditions of optimality are presented considering
also sensors locations as optimization variables, evidencing the dependence on system initial condition. A new approach to
deal with this dependence, which is based on approaching the performances of OSOF and LQR for any initial condition, is
proposed and compared to that given by Levine and Athans22, It is also suggested a possible set of initial guesses that can be
used with a line search or trust region optimization algorithm=?. The methodology developed is applied to control a simply
supported plate, and the results are compared with LQR. The cases studied, in which the number of sensors is different from the
number of actuators, may present common problems of non-collocated control. From this perspective, a final analysis considering
performance and stability due to variations around the optimal gains and sensors’ locations and the effects of the spillover
phenomenon is performed.

ables

112716



Cruz Neto and Trindade 3

2 | NECESSARY CONDITIONS FOR OPTIMALITY

To determine the necessary conditions of optimality, it is considered that the dynamic behavior of the flexible structure can be
described by the standard equations of linear time invariant systems:

x = Ax + Bu M
y = C(&x )
u= Ky 3)

in which x(¢) € R?" is the state vector, u(f) € R is the control vector, y(t) € R* is the output vector, ¢ is the time variable
and the dot represents time derivative, A € R?™?" is the state matrix, B € R?>™¢ is the input matrix, C € R*?" is the output
matrix, K € R is the control gain and & € Q represents sensors locations, in which Q C R**™ is the structure domain, m is
the structure dimension, # is the number of degrees of freedom considered in the structure’s model and a and s are the number
of available actuators and sensors, respectively. Equation (3)) characterizes the output feedback constraint. The control gain and
sensors locations are variables to be determined in order to minimize the following cost function:

J = / x'Qx + u'Rudt 4)
0

that represents the traditional LQR cost. Considering that the system is stabilizable with output feedback and using a procedure
like the one given by Lewis et al“’, this optimization problem can be rewritten as

minimize tr {Px x| 5
K.2) { 020 } ( )
subjectto AJP +PA_+Q + (KC)'RKC =0 (6)

in which x; is the vector of system initial conditions, tr is the trace operator and A, is the closed loop state matrix
(A, = A — BKC). The constraint given in Equation (6] is a Lyapunov equation and has a unique solution P for every A, that is
Hurwitz. Therefore, for every pair (K, &) that makes the closed loop system stable, Equation (6)) can be solved to determine a
matrix P that will be used to evaluate the cost function () for a given initial condition. As the purpose of this section is only to
demonstrate the dependence on the initial condition, extrema values of the cost function corresponding to the boundary of the
structure were not considered, in order to simplify the analysis and use only the equality constraint given in Equation (6). Using
this assumption, the Lagrange function is defined

L =tr {Pxox]} +tr {S(A]P+PA_+ Q + (KC)'RKC)} (7
in which S is a symmetric matrix of Lagrange multipliers. The first order necessary conditions for optimality can be determined
from the partial derivatives of L with respect to the independent variables:

%:AIP+PAC+Q+CTKTRKC=O 8)

oL

a—P=ACS+SAI+X0X;)r=O (9)

1oL T pTpeeT

19k _ RKCSCT-BTPSCT = 1

352 = RKCSC SCT =0 (10)
la—thr{(SCTKTRK—SPBK)£}=O i=l.s  j=l..,m (11)
zafij aij
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In the case of full state feedback, the matrix C can be replaced by the identity matrix and K can be determined as a function
of P, such that

K=R'B"P (12)
Substituting this value of K in Equation (8) gives the algebraic Riccati equation:

A'P+PA+Q—-PBR'B'P=0 (13)

In this case, Equation (9), which is the only equation that has a dependence on system initial condition, is not necessary to
determine the optimal gain, showing that it is optimal for any initial condition. When there is limited state information, matrix
C is not square and the same procedure to decouple equations (8-11) cannot be applied. Since Equation (9) is dependent on
system initial condition, so do the optimal gain and locations of sensors.

3 | DEALING WITH THE DEPENDENCE ON SYSTEM INITIAL CONDITIONS

A common way to deal with the dependency on system initial conditions is to adopt the suggestion given by Levine and Athans?2,
which consists on optimizing the expected value of the cost function (5) assuming that the initial condition is a random variable
uniformly distributed on the surface of a unit hyper-sphere. This proposition implies replacing the matrix xoxg by the identity
matrix, which is the covariance matrix of x,, for this distribution, in equations (5) and (9). Despite simplifying the evaluation
of the cost function, this approach involves an assumption on the distribution of the system initial conditions, which are usually
unknown, and also gives the same importance for each state. Since any output controller has a performance criterion below that
of the full state feedback controller, it would be desirable that the values of the cost functions for both controllers would be
as closer as possible for any initial condition. This idea is the basis of the approach proposed in this paper, which consists in
minimizing the ratio between the cost functions of the OSOF and LQR for the initial condition that maximizes this ratio, such
that

x'P (K, &)x
min max 0 o> (14)
Ko % x[Px,

in which P, and P, are the matrices associated with the OSOF and LQR cost functions, respectively. Given the weighting
matrices (Q, R), the matrix P, is a constant, and can be calculated by solving Equation (I3)). Since the cost function of the LQR
is minimal for any initial condition, this ratio is always greater than or equal to one, and it also gives a measure of the maximum
difference between LQR and OSOF considering performance and control effort. This ratio can also be interpreted as a controller
performance metric, which has the benefit of being independent of measurement and excitation points of the structure.

The problem of determining the initial conditions that are stationary points of the ratio given in Equation is similar to
that of determining modes and natural frequencies using the Rayleigh’s quotient*!. Both quotients involves the ratio of two
quadratic forms, and in the present case the matrices P, and P, play the roles of the stiffness and mass matrices, respectively.
A minimization of the Rayleigh’s quotient leads to the generalized eigenvalue problem involving the mass and stiffness matrix,
such that the lowest eigenvalue represents the minimum value of Rayleigh’s quotient*. In a similar fashion, it can be shown
that the initial condition that maximizes the ratio given in Equation is given by the eigenvector associated with the largest
eigenvalue of the following generalized eigenvalue problem:

P,v=APyv (15)
Substituting the eigenvector (¢,,) associated with the largest eigenvalue (4,,) in the Equation (15), left multiplying by q')l; and
isolating 4,,, it is shown that the largest value of the ratio of cost functions is equal to 4,,:
¢,P.b,
=22 (16)
¢, P19,

Thus, the optimization proposed in Equation (I4) can be rewritten as:

m

min 4,,(P,,P 17
min 1, (P,. P) a7
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4 | DESCRIPTION OF OPTIMIZATION PROCEDURE

The proposal presented in the previous section to deal with the dependence on the initial condition involves the calculation of
variables associated with the LQR cost function. Therefore, the first step in the design process is to choose weighting matrices
(Q, R) and actuators locations that provide a full state feedback controller with desirable performance. These variables are used
to calculate the matrix related to the LQR cost function (P,) and the full state feedback optimal gain (G). With the LQR controller
designed, it is possible to perform the optimization given in Equation (17), in order to obtain an OSOF controller that attempts
to reproduce the performance of the full state feedback controller. This process can be applied to different models for flexible
structures, whether continuous or discrete and including distributed or discrete sensors.

In this paper, the optimization considers a continuous model with discrete sensors, whose stiffness and inertia properties do
not affect the structure dynamics. Different strategies can be used to solve the non-convex optimization given in Equation (17));
we choose to apply the numerical method SQP with random initial guesses (K, &;). The random values (K, £,) were generated
until the matrix A, was Hurwitz, so that it was possible to solve Equation (6)) for P, and then Equation to evaluate the cost
function 4,,. The values (K, &) that meet this requirement were used as an initial guess for the SQP algorithm to determine
local optima. Throughout the optimization process, it was observed that the best local optima were given by products KC whose
terms had the same order of magnitude as the terms of G. This fact was used to improve the choice of the set of possible
initial guesses for the output feedback gain. Lastly, no problems were found to determine combinations of the variables (K, &;)
that stabilized the closed loop system. A schematic representation of the optimization procedure using a generic optimization
algorithm is depicted in Figure[I]

Choose (QR) to design a
LQR controller. Solve eq. Generate (Ko, &)
(13) for P;.
Solve eq. (15) for A, Solve eq. (6) for P, Yes No

Find the next
pair (K;, ;) using the
optimization algorithm

Optimization
stopping criterion
satisfied?

Process end

FIGURE 1 Schematic representation of the optimization procedure.

S | NUMERICAL EXAMPLE

The methods outlined in this paper were tested on a common bi-dimensional structural element. The main challenges associated
with non-collocated control, such as sensitivity and spillover, were taken into account in the analysis of the controller designed.

5.1 | Model and LQR design

A simply supported plate, whose properties are given in Table[I} was chosen to test the proposed methodology. This system was
modelled using the finite element method (FEM) considering Kirchhoff-Love hypotheses. The Hermite cubics for nonconform-
ing elements given by Reddy“* were used as interpolation functions to construct a regular 20 x 20 mesh. A frequency bandwidth
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of 1 kHz was considered, which entailed a reduced-order model with 18 modes. Given the hypothesis that the sensors and actua-
tors do not change the mass and stifness of the system, a continuous model was constructed using the approximate eigenfunctions
in order to simplify the implementation of the SQP algorithm. These functions were calculated as in the Rayleigh-Ritz method
since, except for convergence and embedding properties of mass and stiffness matrices, the FEM can be treated as a Rayleigh-
Ritz method“!, It was considered only one actuator that acts as a concentrated transversal force at position a = [211.6 162.9] mm
(Figure [2) and sensors whose signals are processed in order to give the velocity of measured points. The actuator location was
chosen so that it was close to the plate center and did not coincide with any mode shape nodes. Finally, it was adopted a damping
factor of 0.5% for every mode, obtaining the state space matrices given in Equation (L8},

TABLE 1 Plate properties.

Density (kg/m?) 2700

Elastic Modulus (GPa) 69

Poisson Ratio 0.33 -
Length, x-direction (mm) 545

Width, y-direction (mm) 400

Thickness, z-direction (mm) 3 Ty

FIGURE 2 Plate mesh with actuator location.

)
0 0O ... 0
- B= [¢<a>] . €= [qb(é]) ¢<¢=s>] (18

0 I
X = '_1 . A =
n —A -D
in which 7 € R” is the modal coordinate vector, I € R™" is the identity matrix, A € R™" is a diagonal matrix of system
eigenvalues or natural frequencies squared, D € R"™" is a diagonal matrix of damping and ¢ € R" is the vector of approximated
eigenfunctions.

The weighting matrix Q was adopted as suggested by Meirovitch®:

A 0] (19)

Q= [0 I
which leads to a minimization of system energy in modal coordinates. The value of the matrix R was chosen in order to obtain
a LQR control with good compromise between control effort and performance. After some simulations, it was found that the
value 0.001 satisfied this requirement.

5.2 | OSOF design and analysis

To determine the optimal locations and output gain, the optimization process described in section ] was applied considering
different numbers of sensors. When only one sensor was considered, its location was fixed as that of the actuator, producing a
convex optimization for the determination of the output gain. Although this procedure was not necessary, it was carried out in
order to observe the improvement in the cost function of the multi-sensor non-collocated case compared to that of the single-
sensor collocated case. For the other cases, many iterations using different initial guesses were performed and some relevant
local optima were determined, which are identified in Table [2] The largest difference between the cost functions of the OSOF
and LQR controllers is expressed in percentage by 4 = (4,, — 1) X 100. It is also shown the expected value of the cost function
(J*) assuming a spherical distribution for the initial condition, in order to make later comparisons with another way of dealing
with the dependence on initial conditions.

As expected, the performance of the OSOF controller improved as the number of sensors increased — i.e., more information
of the system configuration was available for feedback. The results given in Table [2]also show that with a significantly reduced
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TABLE 2 Optimal gain and locations of sensors from the optimization of 4,,,.

N° Sensors  Gain (Ns/m) Location (mm) A J*

1 k =24.87 E=[211.6 1629] 731% 5.232x10°
ky=2135 & =[2242 170.2]
k, =846 & =[166.1 118.2]
k,=1087 & =[2619 123.7]
3 k,=13.00 & =[160.0 137.0] 191% 5.176 x 10°
ky=13.68 &, =[223.8 197.0]
k,=—-449 & =[4349 164.3]
k, = 6.89 &, =[2279 54.8]
ky=2441 &, =[201.4 170.0]
k, =5.81 &, =1[3104 164.3]

2 4.05% 5.216 x 10°

1.69% 5.159 x 10°
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FIGURE 3 Frequency response of the transversal displacement of the plate in position a, in open- and closed-loop.
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FIGURE 4 Frequency response of the control effort for LQR and OSOF.

number of sensors, the OSOF controller had a performance equivalent to LQR in terms of magnitude of the cost function. Since
the cost function is given by a combination of factors, the proximity between the values does not guarantee equal performance
or control effort. However, it was observed that both frequency and time responses had an almost negligible difference. The
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frequency response functions for the open- and closed-loop systems, using LQR and OSOF with 3 sensors, positioned according
to Table 2, are shown in Figure [3] The vibration amplitude reductions for the first three modes, as shown in Figure 3] are 22.7,
13.5 and 9.1 dB for LQR and 23.7, 12.1 and 8.8 dB for OSOF. It is also worthwhile noticing that the control effort required for
such performance, show in Figure[] is also very similar for both controllers, LQR and OSOF.

-3

3 x10 T T T T T
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3 -1 A U ST U UL E
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FIGURE 5 Time response of the transversal displacement of the plate in position e, in open- and closed-loop.
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FIGURE 6 Time response of the control effort for LQR and OSOF.

The open- and closed-loop time responses of the transversal displacement of the plate at position a are shown in Figure 5]
The time response of the required control effort is shown in Figure [6] These responses were obtained considering the initial
condition for which the largest difference between OSOF and LQR was observed (4] = 1.91%). Notice that this initial condition
is such that the displacement is within reasonable values, that is, smaller than the plate thickness in the present case.

To analyze how the optimal solution can be affected by the way of dealing with the dependence on the initial condition, it
was also considered the approach presented by Levine and Athans“%, which consists in optimizing the expected value of the
cost function (J*) assuming that the initial condition is a random variable uniformly distributed on the surface of a unit hyper-
sphere. This optimization was performed varying the number of sensors and the results obtained are indicated in Table 3] An
interesting result in this scenario is that, despite having a lower expected value of the cost function, the case with two sensors
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TABLE 3 Optimal gain and locations of sensors from the optimization of J*.

N° Sensors  Gain (Ns/m) Location (mm) A J*
1 k =19.03 E=[211.6 1629] 17.29% 5.189 x 10°
k,=1992 & =[211.1 153.1] 6
2 ky=—522 £ =[2242 365.5] 18.78% 5.170 x 10
k,=11.75 & =1[2582 169.1]
3 k,=1893 &, =[188.0 170.2] 3.60% 5.148 x 100
ky =15.31 & =1[2164 179]
k,=18.56 & =[189.6 172.6]
ky,=10.10 &, =1[258.3 171.3]
4 2 2 2. 143 x 10°
ky =6.52 &3 =1[220.6 60.8] 3% 5.143%10
k,=-218 &, =[4413 178.6]
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FIGURE 7 Frequency response of the transversal displacement of the plate in position a, in open- and closed-loop.
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FIGURE 8 Frequency response of the control effort for the controllers obtained from the optimization of 4,, and J*.

had a larger difference for the LQR than the case with one sensor when considering the initial condition that maximizes the ratio
between the cost functions.
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FIGURE 10 Time response of the control effort for the controllers obtained from the optimization of 4,, and J*.

In Figures [7] and [] there is a comparison between frequency responses for the controller obtained from the optimization
of 4, (O4,,) and the one obtained from the optimization of J* (OJ*), both with two sensors. Although the response curves
were slightly different, the case involving the optimization of 4,, stood out. This behavior was also observed for the other cases
considering different numbers of sensors. Combining this result with the fact that the time necessary for the optimization of both
cases is similar also contributes for the preference of the optimization of 4,, in the OSOF controller design. Figures[9]and[10]also
compare the time response and control effort for both controllers with two sensors considering the initial condition associated
with ¥ = 18.78%.

5.3 | Effect of sensors locations, control gains variations and frequency range increase on the
control performance

Major concerns of the application of non-collocated sensors and actuators for structural control are instability and spillover. To
evaluate performance and stability when the design variables of the OSOF controller (gain and sensors locations) are varied, it
was considered the case with two sensors obtained from the optimization of 4,,. Although this case has been chosen in order to
obtain a graphical visualization of the results, similar conclusions can also be obtained for the cases with more sensors. First,
the optimal gains given in Table 2 were fixed, the locations of both sensors were varied in both directions and the corresponding
values of 4,, were calculated. The effects of both sensors locations on the relative performance of the controlled system in relation
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to LQR are indicated in Figure [T} It can be noticed in this figure that the variation of the position of the first sensor had greater
impact on the cost function 4,,, which may be related to the fact that its gain is larger. To obtain a cost function of 4,, = 1.15,
such that the controlled system still would perform better than the one with two sensors obtained from the optimization of J*
(4,, = 1.19 from Table , it was necessary to change radially the location of first sensor in at least 18.4 mm, while for the second
sensor this distance reached 36.7 mm.

A similar analysis was done for sensors gains, in which the sensors locations were fixed and the output gains were varied
arbitrarily. The results for this case are indicated in Figure To get a cost function of 4,, = 1.15, it was necessary to vary
individually the first sensor gain in at least 26,7% and the second sensor gain in at least 79.3%. It is noticed in both Figures
and[I2]that for small variations around the optimal point, the performance of the control system is practically unaffected, which
may be relevant in the case of lack of accuracy in the application for a real system. Other important result that can be drawn
from the sensitivity analyses for both sensors and gains variations is that the closed system remained stable (finite 4,,) even for
large variations around the optimal values.
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FIGURE 11 Effect of sensor 1 (left) and sensor 2 (right) displacements from the optimal locations on the cost function 4,,.
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FIGURE 12 Effect of sensors gains variations from the optimal values on the cost function 4,,.

Another source of instability is given by the presence of higher frequency modes not considered in the reduced model. To
deal with this problem, one can increase the range of frequencies considered, in order to cover the entire range of possible
excitation of the structure, or represent the effects of the neglected modes through modifications in the original model, such as
static correction!?. In order to evaluate how the OSOF controller would respond to the spillover effect, it was considered an
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extension of the frequency bandwidth to 2 kHz, which implied the use of a reduced model with 40 modes. The optimal gains
and locations obtained for the system with 18 modes (Table[2)) were applied to the extended system and, for all sensor numbers
indicated in Table 2] it was found that the closed loop system remained stable. The response of the OSOF controller was also
compared with a new LQR designed for the augmented system, using the same weighting matrices. Comparing with this LQR,
the values of A” , considering the cases of 1 to 4 sensors, increased to 23.78%, 30.30%, 31.69% and 45.30%, respectively. These
results show that the systems with a larger number of sensors are more sensitive to insertion of residual modes, and suggest that
they may also be more sensitive to spillover.

The case with three sensors was taken as an example to illustrate the frequency response, which was also compared with LQR
in Figures [I3] and [T4 The behavior of both controllers in the frequency bandwidth of 1 kHz remained practically unchanged
when compared to Figure[3] presenting a larger difference in control effort out of the frequency range for which the OSOF was
designed. Despite of that, even after the insertion of 22 residual modes, the OSOF controller with 3 sensors did not destabilize
the system and still had a performance similar to LQR, which in this case would require at least 80 sensors. Similar results were
observed when considering different numbers of sensors.
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FIGURE 13 Frequency response of the transversal displacement of the plate in position &, in open- and closed-loop, considering
an extended frequency range including vibration modes not considered in the OSOF control design.
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FIGURE 14 Frequency response of the control effort for the controllers LQR and OSOF, considering an extended frequency
range including vibration modes not considered in the OSOF control design.
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6 | CONCLUSIONS

In this paper, the problem of active vibration control of flexible structures using optimal static output feedback was studied.
Necessary conditions for optimality, considering additionally sensors locations as optimization variables, were presented in
order to highlight the dependence on system initial conditions. A new approach to deal with this dependence, which consists
on approaching the performances of OSOF and LQR for any initial condition, was developed. The proposed methodology was
applied to control a simply supported plate, and the results obtained were compared with LQR and an OSOF technique that
uses another approach to deal with the dependence on system initial conditions. The numerical example studied considered a
different number of sensors and actuators, giving rise to the non-collocated control. From this perspective, an additional analysis
was done to evaluate how the designed controller would perform considering the major problems of non-collocated control,
such as sensitivity and spillover. The main contributions that can be drawn from the results are:

— The methodology developed demonstrated that it is a powerful technique to find control gains and sensors locations, since
it reproduces the response of the full state feedback controller with a significantly reduced number of sensors. In terms of
the cost function, the difference between OSOF and LQR was less than 2% for a ratio of number of sensors by number of
states of approximately 0.08;

— A comparison between the way of dealing with the initial conditions dependence proposed in the article and the one
commonly used showed that the former reproduced better the behavior of the full state feedback controller when using
few sensors;

— The controlled system presented low sensitivity to variations of control gains and sensors locations. After large variations
around the optimal control gains and positions of sensors, the closed loop system maintained a difference for the LQR
cost function of less than 15%;

— The analysis of the effects of the spillover showed that even after doubling the frequency bandwidth, the closed loop
system remained stable and well-performing. The results also indicated that the cases with more sensors may be more
sensitive to sensitive to the insertion of residual modes.

Further investigation of the proposed methodology will be directed to applications with piezoelectric sensors and actuators
and a detailed analysis of robustness properties considering plant uncertainties.
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