





1. INTRODUCTION

Consider a geneti¢ system with m codominant alleles,

Al""'Am and one recessive allele, 0, in a single locus and let q;:
m

esesQpy and 9 I qJ = 1 denote the corresponding probabilities of
J=0

occurrence in a given population. Also let the probabilities of ocur-

rence of the f = (m2+m+2)72 possible phenotypes be given by:

Phenotype Genotype Probability of ocurrence
(o] 00 .po
A1 A1A1'A1° . P
Am AmAm.AmO Pn
AyAz ) P12
An-1%m An-1m Pn-1,m

m
where L py+ I piJ = 1. Genetic systems of this type, of which

i=0 i,j=1

§>1
the well known ABO blood group classification system constitutes a
special case (m=2), are important in many practical situations and
have been studied by a host of workers, among which we mention

Cavalli-Sforza and Bodmer (1971), Elandt-Johnson (1971) and Nam and
Gart (1976).

The system is said to follow the Hardy-Weinberg (HW) model
(equilibrium) if there exist q 10,...,m ? qy = 1 such that the

i=0
- following relations hold:



.a)ponqg

: .
b) py = q] + 2q,9q, , 1 =1,,..,m
i i 1i~o ‘ (1)

c) Pyy = 29,9y , {=1,.,.,m, 3> 1

A similar model may be considered for situations where there are no
recessive alleles; an important special case is the MN blood. clas-
sification system (m=2), discussed in Elandt-Johnson (1971, ch 14)
among other authors. In such cases the relations (1) reduce to:
2 L
a) piuqi. 1-1,....m
(2)

b) Pyy = 2q1qJ. 1,3=21,.0.,m, 3> 1. .

A problem of general concern to geneticists is to test
whether a given population satisfies the HW equilibrium relations

[(1) or (2)) based on the evidence provided by a sample of n

observational units for which the phenotype frequencies are n,,
i 20,000,m and nij' {1,3=1,.04,m, J> 1, respectively,
m m , . . .
I ng + L n1J = n. In this paper we address this problem via an

i=0 i,)=1
J>1
alternative formulation of the HW model, based on the restrictions
that (1) or (2) impose on the space of the phenotype population
proportions PgiPye=esPp 1 m* In Section 2 we show the equivalence
1]
between the two formulations; in Section 3 we indicate how the

constraint formulation may be employed to produce Wald tests for the
HW equilibrium hypotheses and consider related computational
aspects; finally in Section 4 we discuss statistical properties as-

sociated with the proposed tests.

S,



2. A CONSTRAINT FORMULATION FOR THE HARDY-WEINBERG MODEL

Here we show that the ABO-like genetic system described in

the previous section 1s in HW equilibrium if and only if the phenotype

parameters, Pys 1 =0,...,m, Pyye 1.g=1,...,m, joi,
m m
I py + T pi‘1 = 1, Batisfy the m(m-1)/2 relations:
i=0 i1,]j=1
>4

Pyy = 2(/pytp, - /B;)(/pd+p° - /) 1.4=1,..,m, §>1 (3)

m
First suppose that there exist qy» i=0,.000,m, I qy = 1

i=0
. . m
such that (1) holds. This clearly implies that I py+ rpy =1,
i=0 J>4
Then, using (la) and (1b) we may write:
q°=/l3;- qi'tpiﬂ)d ‘/p_o ’ i=1,...,m (4)

and substituting (4) in (1c) it follows that (3) holds.

.

Now suppose that the phenotype parameteis satisfy (3). Let
ting q . q; & = 1,...,m be defined by (4) it follows that (1a) - (lc)

m
. hold. It remains to show that ¢ qQ = 1. In this direction, let:

i=0
m m
x= I q = I /b1+p° - (m-1). /p (5)
i=0 i=]} B

which implies:

H m m e
{x + (m-1) /5;)2 =mp,+ IPpg+2 ¢ /(p1+p°\(p3+p°) (6)
i=1 i=1
J>4

Now, adding the m(m-1)/2 relations (3) memberwise we get:



m . m
I Pyy = 2 1t1((pi+p°)(pd+p°) - 2(m-1) /5; z ./p1+pQ + m(m--l)po

i=] i=1
J>i J>1 . - (7)
m m
From (7) and the fact that ¢ p, + I Pyg = 1, it follows that:
1s0 1,)=1 :
J>i
m m : i I m
t py+2 1 /Py ) (pyrpy) = 142(m=1)/B5 {5 /Byp,-(m-1)/p )+
i=1 i,)=1 1=1 .
$>1 +(m?-3mel)p,  (8)

+

Substituting (5) into (8) and using (6) we obtain the second degree

equation:
{x + (m-l)/B; 2)- 14+ 2(m—1)/5;x + (m2-2m+1)p°

which has x = 1 as the only positive root and the result follows.
‘Note that when there are no recessive alleles, the

relations (3) reduce to:

PiJ =2 PipJ 2 1, = ln;--Wm! 3 > 1 (8)

73 .
which have been considered in the literature (see Pereira and Rogatko

(1984), for example). Also note that the set of parameters
eiJ T le/(z(Vpl"‘po = /—P—o)(rpd-fpo - /5;))' lvd -'ll"llml J > 1 (or

alternatively a set of monotone functions of the‘eia. like logeid)
may be employed as a measure of depérture from the HW equilibrium; in
view of (3), 044 #1 (or log 8y # 0) for some (1,J) corresponds to
a lack of equilibrium. In the next section we indicate how such ideas

may be employed to construct a test of the HW hypothesis.



3. WALD TESTS FOR THE HARDY-WEINBERG EQUILIBRIUM

Let p = (po....,pm.plz.....p )' denote the (m24m+2)/2

m-1,m
vector of phenotype population proportions and note that the HW

equilibrium corresponds to:

F(p) = 0 (10)

~

where F(-) is a vector-valved function with elements -1

Fig = %1y
(or F1J = 1°g°13)' 1,9=1,...,m3 > 1. Assume that the vector of
observed phenotype frequencies n= ("o""'nm'nlz""'nm-l,m)' has a
multinomial diatribution with parameters n and pi thén. if n is suf-
ficlently large,it follows by Central Limit theory that é = n/n has
an asymptotic multinormal distribution with mean vector p and
covariance matrix !(E) = n'](gp-eg') where QE denotes a diagonal

matrix with the elements of p along the main diagonal. As indicated
in Bhapkar (1966), a Wald statistic to test (10) is given by:

F(p) (11)
® = BEV@E @) witn V@) = 0 (D5-58) end
?

« Under the hypothesis (10), the statistic
er .

Q follows an asymptotic chi-squared distribution with m(m-1Y2 degrees
of freedom. Bhapkar (1966) demonstrated that Q is algebraically
identical to Neyman's minimum chi-squared statistic and thus shares
the same asymptotic optimality properties of Pearson's chi-squared

or Wilks' likelihood ratio criteria.



Letting FiJ = eiJ—l. the elements of the matrix of partial

derivatives E(é) are given by:

aF 8 3 | a a ;
__:11_ = -iiq[ﬁo(§1+ﬁo)]'1/2 + [5°(Pdfpo)] /2,

P,
e
- -;-1«/ BysboV/Byrby -/ BN ™lh kel
oF . :
—u . (12)
ipk
Y : ] k*iod
] |
A O (ke)=(19)
aFy " Pyy
3Dy, o : . (ke)é(1,3)

where 813 = 51J/26/51+§° -/’50)9/§;:§° -/’52). In the case Fij'logeij
the derivatives are obtained by dividing the above expressions by
313' In general, computation of the Wald statistic (11) must be car-
ried out by appropriate statistical software since 1t involves the
inversion of the matrix Yp(ﬁ). In this di%ection. . a convenient
computer program is GENCA; {Landis et al. (1976)). Among other
capabilities related to the énalysis of categorical data, it.computes
Wald statistics for testing that certain classes of functions of the
parameters of multinomial distributions are zero. They include func-
tions obtained from compositions of linear, iogarithmic and
exponential operations along the lines indicated in Forthofer. ard Koch
(1?73) or Koch et al. (1977). In particulaf. For Fij = 013-1. the



compound function expression for F(p) in (10) may be given by

E(p) = exp A 1ogAexpA,logA,p-c where log(+) and exp(*) are the

elementwise vector logarithmic and exponential operators, respec-
tively (i.e. the 1*M element of logx 1s logx, and that of expx  is
expx,),
m+l m{m=-1)/2
- T .
1 0...0 0 O0...0
l11...0 0 0...0
51 = 1 0,..1 0 0...0
(£xf£) 0 0...01/2 0...0
o 0...0 011/2... 0
0 0...0 0 O ...,1/2
m+1l m{m-1)/2

— r______4___‘_

/2 0...0 0 0 ..., 0
I 0 1/2... 0 0 O ... O
A, = 0 0...1720 0...0
“(fxf) 0 0...01 0...0
O 0...0 0 1...0
00 ...0 0 0...1




m+1 m({m-1)/2

L —
-1 1,..0 0 O ...0
Ay = -1 0...1 0 0 .:.0 !
(f-1xf) o 0...0 1 0 ...0
0 0...0 01 ...0-
At A :
0 O ON 10508 35 1)
m . mi{m=1)/2 o
p— | | —
-1 -1 0.,...0 01 O0...0 O .¢e00 4,.0D0
-1 0 =1l L0 O OF L ses OF 1OF oo O oie O
Ay = -1 0 0.,..0-1 0 0..c1 0...0...0
m{m-1) . (f—i) o ~1 -1 .f. o O ? QO 400 O 1 o0 ? see O
o -1 0,..0-1 0 0...0 O...1...60
0 0 0,..-1-1 0 0 ...0 0 ...0...1
and ¢ = lm(m—l)/?’ a vectorwithm(m-1)/2 elements equal to 1. For

. FiJ = log ®y4 we have F(p) = A, log Ay exp A, log A;p.

=4
-

We present the details for the two speciaf cases discussed
above, First consider the MN blood group classification system. From
(9), it follows that the HW equilibrium corresponds to a-pMNIZ pMpN-L

where Py Py and Pun denote the population proportions of the M, N and

MN phenotypes, respectively. Taking F(g) -9 -1 we obtain
H(R) = —5- (-By's -Byl, 2B;3) and  the wald statistic (11)

“reduces to:



@ =n@ - 1L, L 1! (13)

where ﬁn, ﬁN and BMN correspond to the observed proportions of the M,

N and MN phenotypes,- respectively and & = ﬁMN/Z/ ﬁMﬁn' Alternatively,

1

taking F(p) = log e, we obtain H(p) = h%— (76;1. -Bﬁ . Zﬁﬁ;) and the

wald statistic (11) reduces to:

Q =n log?s (—%— PR S S

——+ & (14)
by 9PN Puy

If the system is in HW equilibrium, both (13) and (14) follow

asymptotic chi-squared distributions with 1 degree of freedom.
Consider now, the ABO blood group classification system.

From (3), it follows that the HW equilibrium corresponds to

o= pABIE(/EX?E;'--/3;)(/3373; - /pg) = 1, where p_, Py .-

Pp and

PaB denote the population proportions of the 0, A, B and AB pheno-
' types, respectively. Taking F(p) = e - 1, relations (11) and (12)

yield, after some algebraic manipulation:

2 “—1)-1

1 .2 (o2~ ~ 2 - |
Q@ =n(1 - —=)° (06, + A p, + BS pg + P, (15)

1/2;°

where 0 = {[5°(§A+5°)]—1/2 + [Py (Pg*hy) 17 51 /2,

y1/2 1/2_g 1/24-1

A= - 020D +B ) TL(By+D,) =B
and B -.-{2(BB+§°)1/2[(§B+ﬁ°)l/2-(ﬁo)1/2])-1. For F(p) = log © the

corresponding wald statistic is given by:
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: 22 ~ 2~ 2~ A =1,-1
Q, = n log e(O?p0 + Ap, + B pg + Ppp” ) (16)
If the HW equilibrium hypothesis holds, both statistics

follow asymptotic chi-squared distributions with 1 degree of freedom.

To 1llustrate the above procedures numerically, ‘we first
consider a set of data from the MN blood classification system
presented in Crow and Kimura (197b, p.36); the observed phenotype
frequencies are ny = 362, ny = 282 and Nun = 634 and the Wald
statistics obtained from (13) and (14) are Q = 0,02 and Q = 0.02
(6 = 0.99); the corresponding Pearson chi-squared statistic 1is QP =
= 0.03. In a second example (Rao (1973), p.402), the observed
phenotype frequencies for the O, A, B and AB blood groups are n°-121.
n, = 120, ng = 79 and nAB=33, respectively. The corresponding Waid
statistics; obtained via (15) and gls) are Q = 0,38 and QL = 0,44,
respectively (6 = 1.16), while the Pearson chi-squared statistic is
QP = 0.44, Finally we consider the data for Esterase -variants of
Drosophila virilis cited by Yasuda and Kimura (1968, p.415); in this
case m = 3 and the phenotype observed frequencies are given by n°-20.
n; = 1149, n, = 36, ny = 17, n, = 336, O 25 and Ny, = 17. Here
we obtain &,, = 0.88, 8,5 = 1.12 and §,, = 1.58; also from (11) and
(12) we get Q@ = 11.79 using FIJ =84 - 1 anda Q = 21.18 uﬁing
FU = log °1J while the corresponding Pearson chi-squared statistic

is Qp = 26,98,
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4. ON THE BEHAVIOUR OF THE PROPOSED WALD STATISTICS FOR FIXED SAMPLE

SIZES.
Although the Wald statistics considered in Section 3 have
optimal asymptotic properties, it is of interest to study their

statistical behaviour for fixed sample sizes since this is the case
in practical applications. Considering one-parameter exponential
families, Hauckand Donner (1977) and Vath (1985) have shown that
Wald statistics may decrease to zero as the paramter estimate moves
away from the null value, indicating an aberrant behaviour. In this
section we demonstrate that this is also true for the wald stafistics
proposed above, at least in the special case m = 2, Py = 0.

Consider, for example, the MN blood group classification

system discussed above. Write & = (l-ﬁm-ﬁN)/Zl 5M5N and note that
the domain of & as a function of 6" and ﬁN corresponds to the region

delimited by the triangle in Figure 1.

7 Elgure 1: Domain of the function & = 8(py.By).

Py

aéo(§H=1-§N)
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Let us first study the behaviour of 8 in this domain. Observe that,
given eo > 0, the set of points for which @ = e corresponds to the
curve with equation BM = (/ 1+(8§-1)BN - eox/E;)Z; in particular for
the null value,e = 1, we have BM = (1-/’5;)2; also, for o, = o, we
gét Py = 1.- py @nd as e — = we must have either BM—o 0 or py— Q.
Therefore we need to be concermed with poiqﬁs on the boundary of the
triangular region presented in Figure 1, .

For simplicity, let By, = x, Py = ¥ and let us examine the

behaviour of the statistic (13) which may be written as:

2 -1
2/x 1 1 1
Q=nil - RV Hm I Ty C
2 2 2 -1
= ml-x-—! 1} ((1-)(-}') A (l-x-}é) A (1-x'y)) (17)
2/xy 16:_:%' 16xy 4xy

Using the first expression for Q in (17) it is easy to see that Q-—- 0
as (x,y) — (0,p) or (x,y) — (p,0) or (x,y) - (p,0) or (x,y)-+(0,0)
for any 0 < p < 1; furthermore, from the second expression for Q 1in
(17) it is clear that Q — =as (x,y) — (p,1-p) for any O <p < 1,
Finally, we must consider the behaviour of Q in §he neighbourhood of
éhe points (1,0) and (0,1). In thlg direction, let y = f(x) where
f£: [0,1] 1s a nonnegative function with derivatives f(x) = df(x) / dx
and f(x)=d’f(x)/&x2 and such that £(1) = O; -1 < £(1) < O and let us
examine the behaviour of & = {1-x-f(x))/2/xf(x) and @ as x —~ 1. As a

direct consequence of L'Hospital's rule we get{
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0 if £(1) 40
1-x-T(x) = -1/2 P %
lim —=— 1 = (2f(1)] if £(1) = 0 and (1) # © (18)
x+1 2/xf(x) : =
- if £(1) = 0 and f(1) = O

In particuler, note that if £(x) =t/ 1+(e2-1)x - 8 /X1 2, £ 20 fixed,
so that as x —1, (x,y) — (1,0) along the curves corresponding to
8 = LI constant, we have 1im 6 = LI Next write A(x) = 1-x-f(x) and

x+1
B(x) = A(x){x+f(x)} + 4xf(x) so that:

) .
Q = 16n x2 {2A=X¥_ . 12 (L= (19)
2/xy A(x)B(x) '

Applying L'Hospital's rule to the last term in (19) we obtain:

2 . .
ym L) (1) (20)
x+1 A(x)B(x) [3r(1)-1](£(1)+1]
Then, from (17)-(20) we may conclude that:
o . Af f(l) = 0 and fkl) #0
22 . (21)
1im Q = 16n £~ (1) if £(1) 40
x+1 [ar(1)-1][f(1)+1] .
- if £(1) = £(1) = O

Next, consider the statistic {14) which may be expressed

-1
Q= n {1og(l-x-y)-log2- % logx -~ % logy12 (-%; + -%; + I:%:;l —_—
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An expansion of the squared term in (22) is sufficient to indicate
that the limiting behaviour of QL is essentially determined by 'tti
behaviour of functions of the form h(x,y) = g(x,y) (-%; + —%§+T1E§’

where g(x,y) = log x, g(x,y) = logzx or g(x,y) = logx log y as
(x,y) - (0,p), 0 < p <1or(x,y) - (p,1-p), 0 < p < 1. Clearly
h(x,y) - 0 as (x,y) - (pll-p). 0 <p <1, Using the|fact that for
a> 0, x(logx)2 - 0 as x — 0, it is easy to see that h(x,y) — O as
(x,y) - (0,p), 0 <p <1, Now, - using the inequality

1

0 < glx,y) {—%; + _%§ + T:%:Yl- < 4xglx,y), 1t  follows that

h(x,y) = 0 as (x,y) = (0,0) or (x,y) —~ (0,1) for g({x.,y) = logx or

gix,y) = logzx. Finally, note that the case

o Y - l
logx logy{-%; W Sl T:%:i’ PR 0 as (x,y) = (0,0) or (x,y)—(0,1)
is somewhat more ellaborate, but the result may be obtained by

writing x = rcos¢, y = rsine, 0 < ¢ < v/2 and letting r — 0O,

From the above discussion we may conclude that both Q and
QL may converge to zero in situations which clearly viclate the
equilibrium hypothesié, indicating that suéh statistics should be
used with caution; more specifically, they are not recommended in
cases where the observed pehnotype proportions are close to 0O or 1.
Although a similar analysis for the géneral casr. is mathematically
intractable, we believe that the corresponding Wald statistics have

the same type of aberrant behaviour.
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