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SUMMARY 

. We propose a constraint fcfrmulation for the Hardy-Weinb~rg 

model in generalized ABO-like systems wh!ch lends . itself 

construction of Wald tests for the corresponding 

hypothesis. We illustrate the testing procedure with 

to the 

equilibrium 

practical 

examples and pro~ide indication for the use of a categorical data 

computer program (GENCAT) to perform the required calculations. We 

also demonstrate that as in many other settings, the Wald statistic 

may have an aberrant behaviour for fixed sample sizes, although it 

possesses optimal asymptotic properties. 
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1. INTRODUCTION 

Consider a genetic system with m codominant alleles, 

A1 , ••. ,Am and one recessive allele, 0, in a single locus acd let 
m 

••• ,qm and q
0

, E qj • 1 denote the corresponding probabilities of 
J=-0 

occurrence in a given population, Also let the probabilities of ocur-

rence of the f • (m2+m+2)/2 possibl~ phenotypes be given by: 

Phenotype Genotype Probability of ocurrence 

0 00 

Al A1A1 ,A10 

Am AmAm,AmO 

A1A2 A1A2 

Am-lAm Am-lAm 

m m • 

where E pi+ E pij • 1. Genetic systems of this type, 
i=O i,J•l 

of which 

J>i 
the well known ABO blood group classification system constitutes a 

·special case (m•2), are important in many priJctical situations and 

have been studied by a host of workers, mnong which we mention 

Cavalli-Sforza and Bodmer (1971), Elandt-Johnson (1971) and Nam and 

Gart (1976), 

The system is said to follow the Hardy-Weinberg (HW) model 

'" (equilibrium) if there exist qi, 1.0, ••• ,m E qi• 1 such that the 
i•0 

· following relations hold: 
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a) p -0 
q2 

0 

b) P1 • q2 + 2qiqo ' i - 1 •••• ,m 1 (1) 

c} pij • 2q1qJ i • 1, ••• ,m, j > i 

A similar model may be considered for situations where there are no 

recessive alleles; an important special case la the MN blood. claa-

sification system (m-2). discussed in Elandt-Johnson (1971, ch 14) 

among other authors. In such cases the relations ( 1) reduce to: 

a) P1 • 
2 qi, 1 • l,,,. ,m 

(2) 
b) pij • 2q1qj, 1,j • l, ••• ,m, j ) 1. 

A problem of general concern to geneticists is to test 

whether a aiven population satisfies the HW equilibrium relations 

[(ll o~ (2)) based on the evidence provided by a sample or n 

observational units for which the p~enotype frequencies 

i a O. · ••• ,m and nij' 1,j • · l,,.,,m, j ) 1, 

"' 

are 

respectively, 

E nij • n. In t_his paper we address this problem via an 
i,Jzl 

J> i 
alternative formulation of the HW model, based on the· restrictions 

that (1) or (2) impose on the space of the phel"!otype population 

proportions p
0

,p1 , ••• ,pm-l,m' In Section 2 we show the equivalence 

between the two formulations; in Section 3 we indicate how the 

constraint formulation may be employed to·produce Wald tests f9r the 

HW equilibrium hypotheses and consider related computational 

aspects; finally in Section 4 we discuss atatistical properties as­

sociated with the proposed tests. 
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2, A CONSTRAINT FORMULATION FOR THE HARDY-WEINBERG MODEL 

Here we show that the ABO-like genetic system described in 

the previous section is in HW equilibrium U' and only if the phenotype 

parameters, i ■ O, ••• ,m, i,J ■ l, ••• ,m, .. "' 
E pi+ E Pij • 1, satisfy the m(m-1)/2 relations: 

i•O i,J•l 
J> 1 

m 
First suppose that there exist qi' i • O,,,.,m, 1!0 

"' such that (l) holds. This clearly implies that E pi+ E pi 
J >i Then, using (la) and (lb) we may write: 

qi• /pi+Po - ~, i • l, ••• ,m 

and substituting (4) in (le) it follpws that (3) holds. 

j>i, 

- 1 • . 

(4) 

Now suppose that the phenotype parameters satisfy (3). Let 

ting q
0

, qi; l • l, ... ,m be defined by (4) it follows that (la) - (le) 
Ill 

hold. It remains to show that E qi• 1, In this direction, let: 
l•O 

Ill Ill 

x • E q 1 • E /pi+p
0 

- (m-1) . 'Pc; 
1•0 1•1 

which implies: 

Ill RI 

• mpo + E P1 + 2 E /(p1+po\(pJ+po) 
i•l i•l 

J>i 

Now, adding the ■(m-1)/2 relations (3) memberwise we get: 

(5) 

(6) 



m 

i: Ptj • 2 
i• 1 
J> i 

From (7) and the fact that 

m 
- 2,(m-1) ~ i: /p1 +p

0 
+ m(m-1 )p

0 
1•1 

Ill Ill 

E P1 + Z Pij 
i•O i,J•l 

• 1, it follows that: 
) 

~ m r------
1 pi+2 E ,/cpi+po)(pj+po) 

1•1 i ,J • l 
J> 1 

J>i 

• 1+2(m-l)lp
0 

m , 
( z ✓pi+p0-(m-l)/i>oJ+ 

1•1 · 
+(m2-3m+l)p

0 

4 

(7) 

(8) 

Substituting (5) into (8) and using (6) we obtain the second degree 

equation: 

which has x • 1 as the only positive root and the result follows. 

Note that when there are no 

relations (3) reduce to: 

recessive 

i,j • l,,,, ·,m, j > 1 

• 

alleles, the 

which have been considered . in the literature (see Pereira and Rogatko 

(1984), for example). Also note that the set of parameters 

eij • PiJ'l2( ✓p1+Po - ~)( / pj+Po - ~)}, 1 t j • •1 t • • • tffl I J > i (or 

al ternat1 vely a set of monotone functions or the · eiJ' like loge iJ) 

may be employed as a measure of departure from the HW equilibrium: in 

view of (3), eiJ -1- l (or log e13 -1- O) ftir some (i,J). corresponds to 

a lack of eq,_iilibrium. In the next section we indicate how such ideas 

may be employed to construct a test of the HV hypothesis • 

... 
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3. WALD TESTS FOR THE HARDY-WEINBERG EQUILIBRIUM 

Let P • (p0 ,,,.,pm,Pl2 ,,,,,Pm-l,m)' denote the (m2+m+2)/~ 

vector of phenotype population proportions and no·te that the HW 

equilibrium corresponds to; 

(10) 

where E(•) is a vector-valved function with elements 

(or r 1 j • loge 1 j), i,j • l, .•. ,m,j > 1. Assume that the vector of 

observed phenotype frequencies~• {n
0

, ••• ,nm,n12 , •• ,,nm-l,m)' has a 

mul t1nom1al distribution with parameters n and e; the·n, u· n is suf­

ficiently large,it follows by Central Limit theory that e • Qin has · 

an asymptotic multinormal distribution with mean vector 

co~ariance matrix Y<e> • n-1(Qe-~e·> where Qe denotes a 

matrix with the elements of e along the main diagonal. As 

E and 

diagonal 

indicated 

in Bhapkar (1966), a Wald statistic to test (10) is given by: 

( 11) 

~ aF(Z) I ] lj(~) = - - • • 
az z A - - _-e 

Under the hypothesis (10), the statistic 

Q follows an asymptotic chi-squared distribution with m(m-1 }/2 degrees 

of freedom. Bhapkar (1966) demonstrated that Q is algebraically 

identical to Neyman•s minimum chi-squared statistic and thus shares 

the same asymptotic optimality properties ot Pearson's 

or Wilks' likelihood ratio criteria, 

chi-squared 
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Letting Fij • eij-1, the elements of the matrix of partial 

derivatives ~(e) are given by: 

(12) 

0 k,'i,j 

(k&)•(ij) 

0 (kt.)i'(l,j) 

where eij ,. pi~/2c/pi-1-p0 -~0 ).~0 -~). In the case F ij•logeij 

the derivatives are obtained by dividing the above expressions by 

eij" ' In general, computation of the Wald statistic (11) must be car­

ried out by appropriate statistical SJ;>ftware since it involves th~ -

inversion of the matrix yF(~). In this direction, 

computer program is GENCAT (Landis et al. (1976)), 

a convenient 

Among other 

capabilities related to the analysis of categorical data, it computes 

Wald statistics for testing that certain classes of functions of the 

parameters of ~ultinomial distributions are zero. They include rune-

tions obtained from compositions or linear, logarithmic and 

exponential operations along the lines indicated in Fol'thofer r.d Koch 

(1973) or Koch et al. (1977). In particular, For r1 .1 • e 1.1-l' the 
"· 



compound function expression for E(e) in (10) may be 

f(e) = e~p ~412g~3e~p~2log~1e-~ where l2g(•) and e~p(•) 

elementwise vector logarithmic and exponential operators. 

given 

are 

7 

by 

the 

respec-

tlvely (i.e. the 1th element of I2g~ ls logx1 and that of e~p~ is 

expx1), 

~2 -
· (fxf) 

m(m-1)/2 

l 0 

1 1 

0 0 0 0 

1 

0 

0 0 0 

0 ••• 1 0 0 

0 0 1/2 0 

0 

0 

0 

0 0 0 0 1/2 ••• 0 · 

0 0 0 0 0 •• ,1/2 

.111+1 '"lm-11/2 

1/2 0 0 0 0 0 

0 1/2 ••• 0 0 0 0 . . . . 
0 0 ••• 1/2 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 

IJ 0 0 0 0 0 
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rn+l rn(rn-1)/2 

-1 l 0 0 0 0 

~3 • -1 0 l 0 0 . .. 0 

(r-1.r> 0 0 0 1 0 0 . 
0 0 0 0 1 ... O· 

. . 
• 

0 0 0 0 0 1 

"' 111(rn-l )/2 

-1 -1 0 0 0 1 0 . . . 0 0 ... 0 0-

-1 - 0 -1 0 0 0 1 0 0 0 0 

~4. -1 0 0 0 -1 0 0 ... 1 ' o 0 . .. 0 

m(m-1) (f-1) 0 -1 -1· 0 0 0 0 0 l 0 0 
2 .. . . . 

0 -1 0 0 -1 0 0 0 0 1 0 .. . . 
0 0 0 ••• -1 -1 0 0 0 0 0 l 

and c • 1 a vectorwithm(m-1)/2 elements equal to 1. -m(m-1)/2' For 

We present the details for the two special cases discussed 

above. First consider the MN blood group classification system, From 

(9), it follows that the HW equilibrium corresponds to B•pMN/2/pMpN•~ 

where pM,PN and pMN denote the population proportions of the M, N and 

MN phenotypes, respectively. Taking 

~(
n) • e ( ,._l ,._1 .2 .. -1) d 
w;; -r" -PM ' -pN ' PMN an 

'·reduces to: 

F(e) • e - 1 we 

the Wald statistic 

obtain 

(11) 
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(13) 

where pM' pN and pMN correspond to the observed proportions of the M, 

N and MN phenotypes,· respectively and 8 - PMN/2/pMpN. Alternatively, 

( A 1 A-1 A-1 A-1 
taking F(e) •loge, we obtain~ e) • ·-r (~pM, -pN, 2pMN) and the 

Wald statistic ( 11) reduces to: 

(14) 

If the system is in HW equilibrium, both (13) and (14) follow 

asymptotic chi-squared distributions with 1 degree of freedom, 

Consider now, the -ABO blood group classification system, 

From (3), it follows that the HW equilibrium corresponds to 

9 • pAB/2{/pA+p
0 

- .Ii>;;) ( ✓p8+p0 - ~) • l, where p0 , PA , · Pe and 

pAB denote the population proportions of the 0, A, Band AB pheno-

1 types, respectively, Taking F(p) • e - l, relations (11) and (12) 

yield, after some algebraic manipulation: 

( 1,5) 

where O .. ((p
0

(p~+p
0

))-l/Z +' (p
0

(p
8

+p
0

)J-1121'12, 

( 2( A A " )l/2((A A )l/2 A 1/2)-1 
A • - PA+Po pA+Po -Po J 

corresponding wald statistic le given by: 

• 



(16) 

If the HW equilibrium hypothesis holds , both statistics 

follow asymptotic chi-squared distributions with 1 degree of freedom. 

To illustrate the above procedures numerically, 

consider a set of data from the MN blood classification 

presented in Crow and Kimura (1970, p,36); the observed 

we first 

system 

phenotype 

frequencies are nM • 36~, "N • 282 and "MN• 634 and the Wald 

statistics obtained from (13) and (14) are Q • 0,02 and QL • 0,02 

. (i • 0,99); the corresponding Pearson chi-squared statistic is Op• 

• 0 : 03, In a second example (Rao (1973), p,402), the observed 

phenotype frequencies for the o, A, Band AB blood groups are n0-121, 

nA ~ 120, n8 • 79 and nAB-33, respectively. The corresponding Wald 

etatistics, obtained via (15) and (16) are Q - 0,38 and QL • 0,44, 

respectively (e • 1,16), while the Pearson chi-squared statistic is 

QP • 0,44, Finally we consider the data for Esterase variants of 

Drosophila virilia cited by Yasuda and Kimura (1968; p.415); in this 

case m • 3 and the .phenotype observed frequencies are given by n
0
•20, 

"1 • 1149, n2 • 36, n3 • 17, nl2 • 336, n13 • 25 and n23 • 17, Here 

we obtain 812 • 0,88, 813 • 1.12 and e23 • 1.58; also from 

(12) we get Q • 11. 79 using Fij • eij - 1 and QL • 21,18 

Fij • log eij while the corresponding Pearson chi-squared 

is QP • 26,98, 

• 
• • 

• 

(11) and 

using 

statistic 
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• 

• • 

• 
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4. ON THE BEHAVIOUR Or THE PROPOSED WALD STATISTICS FOR FIXED SAMPLE 

SIZES. 

Although the Wald statistics considered in Section 3 have 

optimal asymptotic properties, it is of interest to study their 

statistical behaviour for fixed sample sizes since thia is the case 

in practical applications. Considering one-parameter exponential 

families, Hauckand Donner (1977) and Va!-th (1985) have shown that 

Wald statistics may decrease to zero as the paramter estimate moves 

away from the null value, indicating an aberrant behaviour. In this 

jection we demonstrate that this is also true for the Wald statistics 

proposed above, at least in the special case m • 2, p
0 

• O. 

Consider, for example, the MN blood group classification 

system discussed above. Write i _. (l-pM-pN)/2✓ pMpN and note that 

the domain of i as a function of pM and pN corresponds to the region 

delimited by the triangle in Figure 1. 

, Figure 1: Domain of the fµnction i • i(pM,pN) • 

• 

• 
• 
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,. ... 
Let us first study the behaviour of 1:1 in this domain. Observe that, 

given e
0 
~ 0, the set of points for which e = 8 corresponds to the 

Ir • 0 

curve with equation pM a c/ l+(e~-l)pN - e
0
~)

2
; in particular for 

the null value, e
0 

• 1, we have PM• (1 ~~)2 ; also, for 8
0 

• 0, we 

get pM • 1,- pN and as 8
0

-+ • we must have either PM- 0 or pN- Q. 

Therefore ~e need to be concerned with points on the bounda!'Y of the 
•• 

triangular region presented in Figure 1. 

For simplicity, let pM • x, pN • y and let us examine the 

behaviour of the statistic (13) which may be written as: 
~-

Q•n(l-
2/xy 2 1 l 1 -l 
1-x-y > t7rx + 4y + 1-x-y> • 

• 
(17) 

Using the first · expression for Q in (17) it is easy to see that Q-• 0 

as (x,y) - ( 0,p) or (x·,y) - (p,O) or (x;y) - (p,O) or (x,y) -• (O~O) 

for any O < p < l; furthermore, from the second expression for Q in 

q1) it is clear that Q - • as (x,y) - (p,1-p) for any O < p < l, 

Finally, we must consider the behaviour of Qin the neighbourhood of 
l 

., the points (l ,O) and (0, l). · In this. direction, let _ y • f(x) where 

~ . f: "(0,1] is a nonnegative function with derivatives f'(x) • df(x) i dx 

· and f"
0

(X)•d2f(x)/dx2 and such that f(l) • O; -1 ! f(l) ~ O and let us 

·examine the .behaviour of e • tl-x-f(x)J/2/xf(x) and Q as x - 1, As a 

direct consequence of L'Hospital's rule we get: • 

• 

.. 
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. , 

{ 
0 if f(l) 1' ' o 

I-x-f(x ) [2f(l))-l/2 
.. 

lim - if f(l) .. 0 and f(l J ; 0 (18) 

x+l 2/xf(x} .. - if f(l) .. 0 and r( 1 > .. 0 .. 
In particular, note that if f(x) .. (/

0

1+(e2-l)x - e /xJ 2 , e0~o fixed, 
0 0 t 

so that as x -1, (x,y) - (l ,0) along the curves corresponding to 

e • e
0

, constant, we have 11m e • e
0

• Next write A(x) • 1-x-f(x) and 
x+l 

B(x) • A(x)(x+f(x)J + 4xf(x) so that: 

Q • 16n x2 ( l-x-y 
2/iy 

2 
_ 1} 2 { f (x) ) 

A(x)B(x) 

Applying L'Hospital's rule to th~ last term in (19) we obtain: 

Then, from 

Um 
x+l A(x)B(x) 

(17)-(20) we may 

! 0 
16n r2p} 

Um Q -
x•l (3f(l):l][f(l)+l) 

[3f(l)-l)[f(l)+l) 

conclude that: 

. .. 
if f(l) .. 0 and f(l) ; 0 

. 
if f(l) ; 0 

if f( l) • f( 1) - 0 

(19) 

(20) 

(21) 

Next, consider the statistic (14) which may be expressed 

as: 

1 1 2 (_l_ + l + 1 J -l 
QL • n flogU-.x-y)-lo&2- ~ log.x - ~ logy) 4 x Ty 1-x-y 

(22) 
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An expansion of the squared term in (22) is sufficient to 

that the limiting behaviour of QL is essentially determined by ' the 

{-1_ + 1 1 -l behaviour of functions of the form. h(x,y) • g(x,y) -=-+~} 4x qy :,,-x-y 
where g(x ,y) • log 2 x, g(x,y) • log x or g(x,y) • logx logy 

..,. 
as 

( X ,Y) - (O,p) • 0 < p ~ 1 or (x ,y) - (p,1-p), 0 < p < l. Clearly 
h(x,y) - o as (x,y) - (p,1-p), 0 < p < 1, Using the fact that for 
a> o, x{logx.)a - 0 as X - o, it is easy to see that h(x,y) - o as 

(x,y} - (O,p), 0 < p < l. Now, using the inequality 
0 ~ g{x,y) 1 1 1 -1 

~ 4xg(x,y), it follows that •-.rx + 4y + 1-x-y 1 

h(x,y) - 0 as (x,y) - (O,O} or (x,y) - (0, 1) for g(x,y} • logx or 
g(x,y) • 10&2x. Finally, note that the case 

· 1 1 logx logy{4x + 4Y + 
1 -1 

1-x-y1 - 0 as (x,y) - (0,0) or ( x , y) - ( O , 1') 

is somewhat more ellaborate, but the result may be obtained · by 
writing x • rcos♦, y • rein♦, 0 !, ♦ ~ •/2 and letting r - 0, 

From the above discussion we may conclude that both Q and 
QL may converge to zero in situations which clearly violate the 
equilibrium hypothesis, indicating that such statistics should be· 
used with caution; more· specifically, they are not recommended in 
cases where the observed pehnotype proportions are close to O or 1. 
Although a similar analysis for the general casrl is mathematically 
intractable, we believe that the correspondina Wald statistic■ have 
the same type of aberrant behaviour. 
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