
Irr-MAE 2001-11 

, SA YESIAN AND CLASSICAL SOLUTIONS 
FOR BIMJIIIIAL CYTOGBIEnC 

DOSIME1RY PROBLEM 

by 

Mftll D. Branco, Heleno Bolfarlne, l"flar ,,,..,.. 
and 

Reinaldo Boda Atwllvto-Vde 

Palavru-Cbve: Calibntioa, lopt aedd, probit model, muia■m liktlllaood, MCMC 
m■11latioa, ltudeat-t distriba~o. 
Oauifi~ AMS: 62F15, 62F12, 62PIO. 
(AMS Clulifacatioll) 

• Junbo de 2001 • 



Bayesian and classical solutions for binomial 
cytogenetic dosimetry problem 

Marcia D. Branco1 , Heleno Bolfarine 

Departamento de Estatistica, Universidade de Sao Paulo 

Caixa Postal 66281, CEP 05315-970, Sao Paulo, Brasil 

Pilar Iglesias and Reinaldo Boris Arellaner Valle 

Departamento de Estadistica, Pontificia Universidad Cat6lica de Chile 

Casilla 306, Santiago 22, Chile 

SUMMARY 

The ma.in interest of the cytogenetic dosimetry is the prevision of an unknown radiation 
dose based in cytogenetic analysis. In this paper the dosimetry problem is formulated as 
a linear calibration problem for binary response data. Two approaches are considered for 
inference on the quantity of interest, which is expressed as a calibration parameter in a 
discrete response variable situation. One is based on the maximum likelihood approach, 
which depends on large sample results and the second one is based on a Markov chain 
Monte Carlo (MCMC) simulation approach using BUGS. Application to a data set obtained 
from blood cultures exposed in vitro to Co at the Energetic Nuclear Research Center (IPEN 
- Brasil) is considered. 

1 Introduction 
The well known calibration problem can be briefly described as follows. There are two 
related responses x and y, where x represents the true value of the characteristic of interest 
and ya variable related to it. In the literature the general case where y and x are linearly 
related and y is normally distributed has been extensively considered. A good exposition 
of this area is presented in Brown [7]. Extensions for Student-t models and more generally, 
elliptical linear models are presented in Branco et al. [5,6]. 

In this paper, it is considered that the response variable y is discrete. The cytogenetic 
dosimetry problem consider y,; as the number of cells with j micronuclei (MN) among k; 
cells exposed to a fixed radiation dose d;, i = 1, ... , n, j = 1, ... , p. We consider here a 
dicothomous situation, cells without MN or with one or more MN. The interest centers on 

1Correspondence to: Marcia D. Branco, e-mail:mbranco@ime.usp.br 
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estimating the unknown dose, do, to which ko new cells with MN 1¥ere exposed, based in the 
number of cells with MN and a dose-response model. See Madruga et al. [22] for details on 
the data set. 

The model used for describing the dose-response relationship considered in the pa.per is 
described in Finney (11], where it is suggested the use of the logit and probit models to study 
the problem. Two components are considered: the stimuli (radiation, for example) and the 
response observed in a subject (blood cells, for example). The denomination dose is used to 
describe the intensity of the stimuli at which the subject is submitted. Tolerance, denoted 
by T, is the value used to specify the limit of the stimuli, after which a response is expected 
(cell deformation, for example) . Moreover, tolerance is a population characteristic varying 
with the population units. Given a dose d, a response is expected in subjects with T ~ d. 
Thus, the expected proportion of subjects with positive response is p = P[T ~ d) = Ii g(t)dt, 
where g(t) is the probability density function associated with T. Since Tis a positive random 
variable, the transformation X = log T may be considered, taking values in 3? and for which 
we consider p = P[X s x] = J;:00 f(t)dt, x E R. HJ is the normal density then the probit 
model follows. To establish the calibration problem, let y be the positive response among n 
subjects 11ubmitted to a value x of the independent variable. Considering yj.i: ~ Bin(k,p) in 
the probit model, x and y a.re related through the nonlinear model 

x-µ 
p = P[X < x] = 41( - ), 

- q 

where Cl(z) = P[Z ~ z), with Z ~ N(O, 1). Then, c,-1(p) = /31 + fJ2x, v<lth /31 = -µ/a and 
/32 = 1/u; /31 ER and /32 E ~- Thus, a linear transformation is obtained relating x and a 
function of p, ~-1(p). In the logistic case, the transformation obtained is 

p 
log -

1 
- = /31 + /32:i:. 
-p 

Estimates obtained by using the logist or the probit model are similar, except for small 
(close to zero) or large (close to one) values of p, as considered, for example, in Lloyd [21]. 
Estimates for /31 and /32 can be obtained by using the maximum likelihood approach, which 
are computed by using numerical techniques, since analytical expressions are not available. 
The Bayesian methodology for analyzing logist regression models abound in the literature. 
See, for example, Zellner and Rossi l29), Albert and Chib [1] and Bed.rick et al. [3). The 
above references mainly address the issue of Bayesian calculation for inference about the 
regression coefficients. In this paper, the main interest is focused on the calibration problem 
which seems not to have been considered in the literature using either classical or Bayesian 
approaches. As it happens in the case where interest centers on the regression coefficients, 
there is no analytical or closed form posteriors for the calibration problem. 
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Section 2 presents classical (based on the maximum likelihood approach) and Bayesian 
(based on the MCMC methodology) solutions to the calibration problem under the bino­
mial model for logit an1 probit link functions. The problem of model comparisons is also 
investigated. An asymptotic approximation is considered for the posterior distribution for es­

timating x. Finally in Section 3 we present an application to a data set reported in Madruga 
(22] on the number of blood cells affected by Co radiation. 

2 The binomial calibration model 

In this section, we consider the binomial calibration model, 

(2.1) 

i = 0, 1, ... , n, where /31 , /32 and x0 are unknown parameters and F(.) is a (known) continue 
distribution function, which has a continue density function /(.). Note that if F is the 
distribution function of the standard normal distribution, then the probit model follows and 

if F is the distribution function of a logist distribution, then the logit model follows. It 
follows from (2.1) that the likelihood function can be written as · 

(2.2) L(/31, /32, xo) === !! (:) [F(/31 + /3:,x;)]'"[l - F(/31 + /3:zx;)]k.-l',. 

ThllB, it is not simple to deal with the likelihood (2.2) in the sense of obtaining explicit 
expressions for the maximum likelihood estimator (MLE) and for the posterior distribution 
of x0 • To overcome this difficulty, two different approximations are considered. One is 
based on the asymptotic distribution of the MLE and the other approximation is based 
on the Markov chain Monte Carlo approach to posterior approximation, by using BUGS 
(Spiegelhater et al. [27]). 

2.1 The maximum likelihood approach 

It is well known that under certain regularity conditions the distribution of the MLE of 
{/31,/32,:z:0 ) can be approximated (see Lehmann [20)) by a normal distribution with mean 
(/31, /32 , x0 ) and the covariance matrix as the inverse of the Fisher information matrix eval­
uated at the MLE. In the following we discuss the derivation of the maximum likelihood 
estimators for the binomial calibration problem discussed above. As such, considering the 
reparametrization (/31,/32 , x0 ) ➔ (/31 , /32 , Po), where Po = F(/31 + /3:,xo), and taking the loga­
rithm of the likelihood function (2.2), we obtain the log-likelihood given by 

(2.3) l(/31, /J:,, Po) oc Yo log Po+ (ko - Yo) log(l - Po) 
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n n 

+ E y, log[F(1'1 -t- fi,izi)] + E(k, - Yi) log[l - F(/31 + /32z,)]. 
~1 ~1 

Let Po and (/J1,/J2) be ~he .MLE of Po and (/31i/32), resi,ectively. Thus, from (2.3) it follows 
that Po= y0 /ko an.d (fJ1,P2) is a function of the calibration da.\<1. (k.,z,,y,), i = 1, ... ,n. 
Note that Po and (/31,(32) are independent. To obtain the MLE xo of a:o, we note that 

(2.4) 
F-1(Po) - fJ1 

zo = fJ
2 

, 

so that by using the invariance property of the MLE, it follows that 

(2~5) 

In particular, 

i) xo = (~(yo/ko) - P1)/P2, for the probit model, and 

ii) zo = (log{yo/(ko-yo)} - P1)/P2, for the logit model. 

As mentioned previously, it is known from the likelihood theory for generalized linear 
models (see Lloyd [21]) that the MLE of (flt, /32) can not be obtained explicitly, and numerical 
algorithms such as the Newton-Raphson must be used to compute them. Thus, from the 
MLE of (fJi./32), the MLE of x0 can be computed by using (2.5) and S-Plus subroutines for 
logit and probit link functions, for example. 

The asymptotic variance of the MLE z0 is considered next. Let 

where B = (fJi./32,Po) and N = E:'=0k;, be the Fisher information matrix corresponding to 
the log-likelihood function (2.3). Thus, after some algebraic manipulations, it can be shown 
that 

(2.6) 

where 

" E k.w;z; 
isl 

" E k;w;x~ 
i=l ' 

0 

w; = F(/31 + /32x;)[l - F(/31 + /32x;)]' 
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i = I, ... , n and J is the density function corresponding to the distribution function F. 

Assuming that ki/ N ➔ >.; > 0, as N ➔ oo, with Li=O A; = 1, if follows that 

1 
NIN(I) ➔ 1(9), 

as N ➔ oo, where 1(8) is as in (2.6) with k; replaced by>.,, i = 0, I, ... , n. Thus, letting j be 

the MLE of I, it follows for large N that '1N(i - 8) is approximately normally distributed 
with mean vector O and covariance matrix 1-1(9) (see Lehmann [20]), that is, 

\/N(B - I) ~ AN(O, J-1(8)). 

Consequently, since x0 = x0 (8) (see (2.4)), we have that 

\/N(zo - xo) ~ AN(O, A(8)), 

where 
A(O) = (8xo)i-1 (0)(lho)' 

89 89 ' 
where, from (2.4), 

(8xo) = (-.!.. g(Po) -/31 d(Po)) 
89 /32 ' /3? ' f3i ' 

with g(u) = F-1 (u), the link function, and 

, dg(u) 1 
g (u) = ~ = f(g(u)) · 

Thus, after some algebraic manipulations we obtain that 

A(I) = /J~ Ef-1 >.;w;xf - 2/32(9(Po) - /J1) E:'-1 A;W;X; + (g(Po) - /31)2 Li=l >.,w; 
/3H(Ef=l .>.,w,)(E:::1 .>.,w,xn - CE:'=1 .>.,w;x,)2} 

+
Po(l - Po)[g'(Po)]2 

.>.o/31 . 
Note by assumption that Po = F(/31 + fJ1x0), so that g(Po) = p-1(Po) = fJ1 + f32xo and 
g'(Po) = 1//(g(Po)) = 1//(/31 + fJ2xo). Thus, in terms of I= (/31,/32,xo) the asymptotic 
variance of ./N(zo - Xo) is given by 

A(8) = 2._{ E:::1 .>.,w,xf - 2xo Ef=I >.,w;x; + xi E:::1 >.,w; 
/31 (E.~1 .>.,w,)(I:'=1 .>.;w;)(E:=1 >.,w,xn - (Li=l ,\;w;x,)l 

F(/31 + .82:ro)[l - F(.81 + .82:ro)]} 
+ .>.o[/(.81 + .B2xo)]2 · 

Notice that the above asymptotic variances require /(.) to be nonull on R. For large N, 
>., ~ k;/N, i = 0, ... , n, so that A(O) can be estimated consistently by A(I). 
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2.2 The Bayesian approach 

As mentioned before, it is not possible to obtain explicit expressions for the posterior distri­
bution of z0 • In fact, from (2.1), it follows that 

7r(zolY) ex// {I[F(.81 + ,82z;)]V1[l - F(fJ1 + .B2z;)].1:1-
111 1r(.81,.82lzo)d,81d,82, 

,=0 

The last integral is intractable even for logit and probit models or for the case where non­
informative or reference priors are considered. So, to overcome such difficulties we consider 
the MCMC methodology for approximating to the posterior distribution. As is well known, 
the main idea behind MCMC is to build up a Markovian process whose stationary distribu­
tion (with density/) is the one of interest. Among the MCMC methods, the most popular 
approach is the Gibbs sampler, introduced in Bayesian inference by Gemman and Gemma.n 
[16] while studying problems related to image processing. The books by Robert and Casella 
[25] and Chen et al. (10] contain a comprehensive review of these methods with applications 
for logistic regression models. 

In the case of the binomial calibration model with probit or logit links, the likelihood are 
logconcave (Wedderburn [28)). So the adaptive rejection algorithm (Gilks and Wild [18]) 
can be used and implemented by using the software BUGS developed by Spiegelhater et 
al. (27]. It is a free software and can be obtained from the world wide web page http : 
llwww.mrq,.,u.com.ac.uklbugs. The prior specification are Normal for (31 and /32 with large 
variance (flat prior) and zo ~ N(mo, Vo). For a more recent discussion about this see, for 
example, Gelfand and Sahu [15]. 

Remark 2.1. Another alternative to approximating the posterior distribution is to consider 
the normal approximation (see Section 2.1). Under general regularity conditions (Chen [10]), 
the posterior distribution of zo, can be approximated for large N by the normal distribution 

N(• ~(')) 
zo, N , 

where i = (P1,P2,zo) is the MLE of 8 = ({3i,,82,z0) and ~(8) is the asymptotic variance 
of ./N(zo - zo) (see Section 2.1). Thus, the credibility interval for :r0 coincides with the 
classical interval that follows by using the normal approximation to the distribution of the 
MLE zo. 

Another aspect of interest is to decide which of the two link functions is more appropriate 
for a particular data set. The binomial calibration model with the. logistic (probit) link 
function is denoted by M1(M2), The Bayes factor can be computed with the aim of deciding 
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for one of the two models. Let p;(yl8;) a.lid 11';(8;), respectively, the distribution of the data 
y = (y1, ••• , y,.)' and the prior distribution for the parameter vector 8; under model M;, 
i = 1, 2. Thus, the Bayes factor for model M2 against model M1 is given by 

m2(Y) 
B21(Y) = - (-)' m1 y 

where m;(y) is the marginal (predictive) distribution of y under M;, i = 1, 2. The predictive 
distribution can be approximated by using Monte Carlo methods (see, for example, Bedrick 
et al. [2] and Carlin and Chib [81). Because the Bayes factor can be extremely sensitive to 
the specified prior 1r(8;) (see, for example, O'Hagan [24] and de Santi and Spezaferri [261), 
several authors have proposed the use of robust Bayes factors and Partial Bayes factors. 
One of them is the pseudo Bayes factor which is easy to compute and is implemented in 
the program BUGS. It was introduced in Geisser and Eddy [12] (see also Gelfand et al. [13] 
and Gelfand and Dey [141) and it is based on the conditional predictive densities P(YrlY(r)), 
where Y(r) = (Y1, ... , Yr-1, Yr+i, · ·., y,.). 

The pseudo-Bayes factor for model M1 against model M2 is 

Using Monte Carlo methods a.nd the fact that 

p(yrlY(r)) = / P(Yrl8,Y(r)7r(81y(r)d8, 

we can write (see Gelfand and Dey [14]) 

( 
1 )-l 

P(YrlY(r)} = / p( I 8) 1r(8jy)d8 ' 
Yr Y(r), 

which can be estimated by 

wheres is the size of the sample generated by using BUGS from the posterior of 8. 
In our case, Yr is independent of Y(r) given 8, so that 



with 

p(yr!O(iJ) = (::) [F(a(iJ + pCilxr)r [1 - F(a<•l + ,a<•1xr)t-••, 

i = 1, ... ,s and r = 1, ... , m. The estimates c,.(l) = MYrlY(r)) can be plotted against r for 
l = l, 2, which together with c(l) = f1~=1 c,.(i) will give indication of which model to select. 

3 Analysis of citogenetic data 

The data considered in the following is analyzed in Madruga et al. [22] using a different 
approach. The frequencies of cells with one or two micro nuclei are the responses. The 
experiment was conducted at the Sao Paulo Nuclear Institute. Presence of MN indicates 
cell aberration. We consider here only the presence (or absence) of the MN. Table 3.1 
presents the frequency of cells with micronucley (MN) in blood samples from two healthy 
older subjects, which were exposed to gamma radiation (Co). 

We consider the transformation x,::::; log(d;), i = 1, ... ,8, where d; represents the i-th 
dose value, which is previously fixed. For each one of the groups a model is specified by 
considering 

Y;lz; ~ B(k;,p;}, with p; = F(fJ1 + fJ2x;), 

i = 1, ... , 8, where y, is the frequency of MN cells associated with the i-th dose value, k; is 
the number of cells exposed to dose d;, p; is the probability of a cell exposed to the i-th dose 
value to present micronucley and F is a distribution function. 

Using the maximum likelihood approach, three models are considered: the probit, the 
logit a.nd the Student-t with 11 = 8 degree of freedom. The three models are compared by 
using the mean squared error (MSE) computed using cross validation. The MSE obtained 
for the probit, logit and Student-t were 0.0000804, 0.0000637 and 0.0000638, respectively. 
Note that the results for the logit a.nd Student-t with 8 degrees of freedom links are very 
close which is not unexpected as the logistic distribution is well approximated by a Student-t 
distribution with 8 degrees of freedom (Mudholkar and George (231). We ca.n see that the 
probit model performs worst according to the MSE criterion. 

The graphical results presented in Figure 3.1 relate the value of d; (horizontal axis) with 
the p; (vertical axis). 

Table 3.2 presents maximum likelihood estimators and large sample confidence intervals 
(C.I.) for do using the Student-t model. 

For a new individual coming into the study it was observed y0 = 1117 cells with MN in 
a total of 2427 evaluated cells. Table 3.3 presents classical a.nd Bayesian point and interval 
estimates based on the probit and logit link functions. The Bayesian computation is based 
on normal prior specification for :z:0 , with mea.n m0 = if and variance v0 = 10 and on 
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normal prior specifications for /31 and /32 with large variance (103). The Gibbs samples were 

generated by using a program implemented in software WinBUGS (see Spiegehalter et al. 

[27]) with an average time of 46 seconds used to generate a sample of 90,000 disregarding 

the 10,000 initial iterations. The results are presented in table 3.3. 

Using BUGS, we also computed the conditional predictive densities. As we can see in the 

Figure 3.2. the logit link performs better than the probit link for the most part of the time. 

However there is not a uniform best model. Convergence was verifyed by considering the 

Geweke statistics ( Geweke (17]) and also by looking at the graphics of the generated values. 

4 Conclusion 

The present paper considers Bayesian and classical approaches for the calibration problem 

with binomial response under logit and probit links. A new kind of link is proposed, the 

t-Student link. This are considered in the claBsical, or asymptotic Bayesian solutions. In 

the MCMC Bayesian solution, it is not straightforward to implement the t-Student model. 

However, that can be done by introducing latent variables as considering by Branco [4]. The 

Bayesian approach is very helpful for model comparasion as we can see from Figure 3.2. As 

remarked before, here we consider the response variable as binomial, but in the original data 

set the response is multinomial. Exploring the multinomial calibration problem it is under 

current investigation and will be reported in future work. Some results are presents in Branco 

[4] and Kottas, Branco and Gelfand [19]. The last one presents a Bayesian nonparametric 

proposal approach for the multinomial calibration problem. However, in both cases we lost 

the easy of computational implementation using BUGS and more elaborated programs are 

required. 
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Table 3.1: Frequency of MN for binucleated cells from healthy 
older subjects 

Doses 20 50 100 200 300 400 1'.lOO 

Yi 49 70 146 243 268 363 470 

k, 1038 1003 1085 1037 951 1105 1241 
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Figure 3.1: Graphics (p; versus~) 
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Table 3.2: MLE and 95% asymptotic C.I. for do ll)<,•tdent-t link) 

Dose MLE asymptotic C.I. 

20 27.8563 (18.6603,41.5841) 
50 36.7177 (25.4559,52.9618) 

100 95.2111 (7 4.8464,121.1167) 
200 220.3152 (182.4256,206.0745) 
300 291.5146 (241.3704,352.0761) 
400 377.3032 (315.6008,451.0689) 
500 504.1587 ( 417 .1400,609.3301) 
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Table 3.3. MLE, posterior mean and 95% C.I. for do, when Yo= 1117 

Link MLE Bayesian 

Logit 757.21 761.4 
(649.7,882.5) (654.7,891.9) 

Probit 834.2 840.0 
(702.1,991.2) (708.6,1001.0) 

Student-t 754.6 -
(646.6, 880.7) -
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Figure 3.2: Conditional predictive densities 
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