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SUMMARY

The main interest of the cytogenetic dosimetry is the prevision of an unknown radiation
dose based in cytogenetic analysis. In this paper the dosimetry problem is formulated as
a linear calibration problem for binary response data. Two approaches are considered for
inference on the quantity of interest, which is expressed as a calibration parameter in a
discrete response variable situation. One is based on the maximum likelihood approach,
which depends on large sample results and the second one is based on a Markov chain
Monte Carlo (MCMC) simulation approach using BUGS. Application to a data set obtained
from blood cultures exposed in vitro to Co at the Energetic Nuclear Research Center (IPEN
- Brasil) is considered.

1 Introduction

The well known calibration problem can be briefly described as follows. There are two
related responses r and y, where z represents the true value of the characteristic of interest
and y a variable related to it. In the literature the general case where y and z are linearly
related and y is normally distributed has been extensively considered. A good exposition
of this area is presented in Brown [7]. Extensions for Student-t models and more generally,
elliptical linear models are presented in Branco et al. [5,6].

In this paper, it is considered that the response variable y is discrete. The cytogenetic
dosimetry problem consider y;; as the number of cells with j micronuclei (MN) among k;
cells exposed to a fixed radiation dose d;, ¢ = 1,...,n, j = 1,...,p. We consider here a
dicothomous situation, cells without MN or with one or more MN. The interest centers on
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estimating the unknown dose, do, to which ko new cells with MN were exposed, based in the
number of cells with MN and a dose-response model. See Madruga et al. [22] for details on
the data set.

The model used for describing the dose-response relationship considered in the paper is
described in Finney {11], where it is suggested the use of the logit and probit models to study
the problem. Two components are considered: the stimuli (radiation, for example) and the
response observed in a subject (blood cells, for example). The denomination dose is used to
describe the intensity of the stimuli at which the subject is submitted. Tolerance, denoted
by T, is the value used to specify the limit of the stimuli, after which a response is expected
(cell deformation, for example). Moreover, tolerance is a population characteristic varying
with the population units. Given a dose d, a response is expected in subjects with T < d.
Thus, the expected proportion of subjects with positive responseis p = P[T < d] = T2 g(t)dt,
where g(t) is the probability density function associated with T'. Since T is a positive random
variable, the transformation X = log T may be considered, taking values in ® and for which
we consider p = P[X < z] = [Z, f(t)dt, z € R. If f is the normal density then the probit
model follows. To establish the calibration problem, let y be the positive response among n
subjects submitted to a value z of the independent variable. Considering ylz ~ Bin(k,p) in
the probit model, z and y are related through the nonlinear model

p=PIX <ol =&(=H),

where ®(z) = P[Z < 2], with Z ~ N(0,1). Then, $-!(p) = B; + Bsz, with B, = —p/o and
B2 = 1/c, B1 € R and B3 € R*. Thus, a linear transformation is obtained relating z and a
function of p, ®~1(p). In the logistic case, the transformation obtained is

log f_p = B1 + Paz.

1
Estimates obtained by using the logist or the probit model are similar, except for small
(close to zero) or large (close to one) values of p, as considered, for example, in Lloyd [21].
Estimates for 8; and §; can be obtained by using the maximum likelihood approach, which
are computed by using numerical techniques, since analytical expressions are not available.
The Bayesian methodology for analyzing logist regression models abound in the literature.
See, for example, Zellner and Rossi [29], Albert and Chib [1] and Bedrick et al. [3]. The
above references mainly address the issue of Bayesian calculation for inference about the
regression coefficients. In this paper, the main interest is focused on the calibration problem
which seems not to have been considered in the literature using either classical or Bayesian
approaches. As it happens in the case where interest centers on the regression coeflicients,
there is no analytical or closed form posteriors for the calibration problem.
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Section 2 presents classical (based on the maximum likelihood approach) and Bayesian
(based on the MCMC methodology) solutions to the calibration problem under the bino-
mial model for logit and probit link functions. The problem of model comparisons is also
investigated. An asymptotic approximation is considered for the posterior distribution for es-
timating z. Finally in Section 3 we present an application to a data set reported in Madruga
[22] on the number of blood cells affected by Co radiation.

2 The binomial calibration model

In this section, we consider the binomial calibration model,

(2.1) wlzis Br, B2 * Bin(ki, F(B1 + Pazi),
i=0,1,...,n, where f;, 82 and zo are unknown parameters and F(.) is a (known) continue

distribution function, which has a continue density function f(.). Note that if F is the
distribution function of the standard normal distribution, then the probit model follows and
if F is the distribution function of a logist distribution, then the logit model follows. It
follows from (2.1) that the likelihood function can be written as '

(22) L(ﬂl,ﬂﬂ,zo) = fI (k‘

i—o \Yi

)[F(ﬂl + Baz)|¥[1 — F(Br + Bazi)]5 V.

Thus, it is not simple to deal with the likelihood (2.2) in the sense of obtaining explicit
expressions for the maximum likelihood estimator (MLE) and for the posterior distribution
of zo. To overcome this difficulty, two different approximations are considered. One is
based on the asymptotic distribution of the MLE and the other approximation is based
on the Markov chain Monte Carlo approach to posterior approximation, by using BUGS
(Spiegelhater et al. [27]).

2.1 The maximum likelihood approach

It is well known that under certain regularity conditions the distribution of the MLE of
(B1, B3, %0) can be approximated (see Lehmann [20]) by a normal distribution with mean
(B1, P2, zo) and the covariance matrix as the inverse of the Fisher information matrix eval-
uated at the MLE. In the following we discuss the derivation of the maximum likelihood
estimators for the binomial calibration problem discussed above. As such, considering the
reparametrization (8y, B2, zo) = (b1, P2, Po), Where pp = F(By + Bazo), and taking the loga-
rithm of the likelihood function (2.2), we obtain the log-likelihood given by

(2.3) 1(B1, B2, po) o yolog po + (ko — yo) log(1 — po)
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i=1
Let o and ($1,5s) be the MLE of po and (81, 52), respectively. Thus, from (2.3) it follows
that fo = yo/ko and (B, ;) is a function of the calibration data (k;, 2, 1), ¢ = 1,..., 1.
Note that po and (B4, B2) are independent. To obtain the MLE 2, of zo, we note that
F~Y(po) - B
30 - ﬂg )

so that by using the invariance property of the MLE, it fo]lov;rs that
. _ F(yo/ko) — By
Tg= ——7"——,

P2

(2.4)

(2.5)

In particular,
i) 2o = (®(vo/ko) — B1)/Ba, for the probit model, and
ii) £o = (log{vo/(ko — yo)} — 1)/ B, for the logit model.

As mentioned previously, it is known from the likelihood theory for generalized linear
models (see Lloyd [21]) that the MLE of (1, f2) can not be obtained explicitly, and numerical
algorithms such as the Newton-Raphson must be used to compute them. Thus, from the
MLE of (B1,5:), the MLE of z, can be computed by using (2.5) and S-Plus subroutines for
logit and probit link functions, for example.

The asymptotic variance of the MLE #; is considered next. Let

oL ol
In(0) = ((B{5,35;1)):

where 8 = (81, $2,p0) and N = I_7, ki, be the Fisher information matrix corresponding to
the log-likelihood function (2.3). Thus, after some algebraic manipulations, it can be shown
that

i;l kiw;i f:l kwaz; 0
(2.6) INO) = | 5 kw3 kiwiz} 0 k
i=1 =1
0 0 Po(1—p0)
where
F2(B1 + Bazi)

wy

= FBi % Pazi)[l - F(B1 + Paz)]’
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i =1,...,n and f is the density function corresponding to the distribution function F.
Assuming that k;/N — A\; > 0, as N — oo, with Y04 A; = 1, if follows that

SIn(0) + 10),

as N = oo, where I(#) is as in (2.6) with k; replja.ced by A, i =0,1,...,n. Thus, letting 8 be
the MLE of 8, it follows for large N that v/N(8 — 8) is approximately normally distributed
with mean vector 0 and covariance matrix I-?(8) (see Lehmann [20]), that is,

VN(d - 8) ~ AN(0,171(9)).
Consequently, since zo = zo(0) (see (2.4)), we have that
VN (%o — z0) ~ AN(0, A(8)),

where
a0 = (ZRr o)y,

where, from (2.4),

=0y _ ( 1 _g(m) -5 y’(po))
a8 Ba’ B B )’
with g{u) = F~!(u), the link function, and
dg(w) _ 1
I =" = Fawy
Thus, after some algebraic manipulations we obtain that
. Nwiz? — 283(0(m) — Bi) Ty A + (g(po) — Fo) iy M
T, M) (s Mewia?) — (T Awiz)'}
RSN
PYH
Note by assumption that py = F(B1 + Bazo), so that g(po) = F~'(po) = B1 + B2z0 and
d(m) = 1/f(g(po)) = 1/f(Br + Bazo). Thus, in terms of & = (B, B2, 7o) the asymptotic
variance of v N(Zp — :cn) is given by
A@) = { ):,_1 Aw;z? — 220 Y0, Awizi + 2 Toi daw;
AT N w:)(ﬂ‘—l wi) (T, dawiz?) — (Zi, hwizi)?
F(ﬁl + Bazo)[1 — F(B1 + ﬂz-‘b‘o)]}
Ao[f (B + Bazo))?
Notice that the above asymptotic variances require f(.) to be nonull on R. For large N,
Xxk/N,i= ,n, so that A(f) can be estimated consistently by A(ﬂ)
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2.2 The Bayesian approach

As mentioned before, it is not possible to obtain explicit expressions for the posterior distri-
bution of zg. In fact, from (2.1), it follows that

(zoly) o [ [ TLIE(B: + Br2)*11 ~ F(By + Bz ~n(Bs, Boleo)dprdfa.

=0

The last integral is intractable even for logit and probit models or for the case where non-
informative or reference priors are considered. So, to overcome such difficulties we consider
the MCMC methodology for approximating to the posterior distribution. As is well known,
the main idea behind MCMC is to build up a Markovian process whose stationary distribu-
tion (with density f) is the one of interest. Among the MCMC methods, the most popular
approach is the Gibbs sampler, introduced in Bayesian inference by Gemman and Gemman
[16] while studying problems related to image processing. The books by Robert and Casella
[25] and Chen et al. [10] contain a comprehensive review of these methods with applications
for logistic regression models.

In the case of the binomial calibration model with probit or logit links, the likelihood are
logconcave (Wedderburn [28)). So the adaptive rejection algorithm (Gilks and Wild [18])
can be used and implemented by using the software BUGS developed by Spiegelhater et
al. [27]. It is a free software and can be obtained from the world wide web page htip :
{lwwro.mreysu.com.ac.uk|bugs. The prior specification are Normal for f; and f; with large
variance (flat prior) and zog ~ N(mg,vp). For a more recent discussion about this see, for
example, Gelfand and Sahu [15].

Remark 2.1. Another alternative to approximating the posterior distribution is to consider
the normal approximation (see Section 2.1). Under general regularity conditions (Chen [10]),
the posterior distribution of 2o, can be approximated for large NV by the normal distribution

. Ad
N(xo,#),

where 8 = (By, B2, %0) is the MLE of @ = (8,, 81, z0) and A(8) is the asymptotic variance
of VN(&o — Zp) (see Section 2.1). Thus, the credibility interval for zy coincides with the
classical interval that follows by using the normal approximation to the distribution of the
MLE #,.

Another aspect of interest is to decide which of the two link functions is more appropriate
for a particular data set. The binomial calibration model with the logistic (probit) link
function is denoted by M;(M;). The Bayes factor can be computed with the aim of deciding
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for one of the two models. Let p;(y|0;) and =;(8;), respectively, the distribution of the data
¥ = (¥1,-.-,¥a)" and the prior distribution for the parameter vector 8; under model M;,
i = 1,2. Thus, the Bayes factor for model M against model M, is given by

Ba(y) = g%,

where m;(y) is the marginal (predictive) distribution of y under M;, i = 1,2, The predictive
distribution can be approximated by using Monte Carlo methods (see, for example, Bedrick
et al. {2] and Carlin and Chib [8]). Because the Bayes factor can be extremely sensitive to
the specified prior 7(8;) (see, for example, O‘Hagan [24] and de Santi and Spezaferri [26]),
several authors have proposed the use of robust Bayes factors and Partial Bayes factors.
One of them is the pseudo Bayes factor which is easy to compute and is implemented in
the program BUGS. It was introduced in Geisser and Eddy {12] (see also Gelfand et al. [13]
and Gelfand and Dey [14]) and it is based on the conditional predictive densities p(y,|y(),

where Y= (yla e Y- Yr415- 0 yﬂ)'
The pseudo-Bayes factor for model M; against model M, is

[Trz1 pa(yrly ()
PSFBy, = wr=t P (r)]
1 M, pa(y- ly (r))

Using Monte Carlo methods and the fact that

p(urlye) = f (-0, y (-7 (6]y(-)db,
we can write (see Gelfand and Dey [14])

podve) = ([ s @)

which can be estimated by
5 1 -1
ﬁ(yr'yr)=3( _"—_.—) ’
© E P(yr'Y(r)vo( ))

where s is the size of the sample generated by using BUGS from the posterior of 8.
In our case, y, is independent of y(,) given 8, so that

Byrlye) =3 (Z ——l——) B

= ply.169)
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with .
ply.109) = (yr) [F(a(i) +p(-‘)$r)]vr [1 —Fa® + ﬂ(qzr)]"'-”',

i=1,...,s and r = 1,...,m. The estimates ¢,(I) = fi(y-|y(-)) can be plotted against r for
I = 1,2, which together with ¢(I) = [T"_, ¢.(i) will give indication of which model to select.

r=1

3 Analysis of citogenetic data

The data considered in the following is analyzed in Madruga et al. [22] using a different
approach. The frequencies of cells with one or two micro nuclei are the responses. The
experiment was conducted at the Sdo Paulo Nuclear Institute. Presence of MN indicates
cell aberration. We consider here only the presence (or absence) of the MN. Table 3.1
presents the frequency of cells with micronucley (MN) in blood samples from two healthy
older subjects, which were exposed to gamma radiation (Co).

We consider the transformation z; = log(d;), # = 1,...,8, where d; represents the i-th
dose value, which is previously fixed. For each one of the groups a model is specified by
considering

yilzi ~ B(ki,pi), with p; = F(B1 + Bazi),

i=1,...,8, where y; is the frequency of MN cells associated with the i-th dose value, k; is
the number of cells exposed to dose d;, p; is the probability of a cell exposed to the i-th dose
value to present micronucley and F is a distribution function.

Using the maximum likelihood approach, three models are considered: the probit, the
logit and the Student-t with » = 8 degree of freedom. The three models are compared by
using the mean squared error (MSE) computed using cross validation. The MSE obtained
for the probit, logit and Student-t were 0.0000804, 0.0000637 and 0.0000638, respectively.
Note that the results for the logit and Student-t with 8 degrees of freedom links are very
close which is not unexpected as the logistic distribution is well approximated by a Student-t
distribution with 8 degrees of freedom (Mudholkar and George [23]). We can see that the
probit model performs worst according to the MSE criterion.

The graphical results presented in Figure 3.1 relate the value of d; (horizontal axis) with
the p; (vertical axis).

Table 3.2 presents maximum likelihood estimators and large sample confidence intervals
(C.L.) for dp using the Student-t model.

For a new individual coming into the study it was observed yo = 1117 cells with MN in
a total of 2427 evaluated cells. Table 3.3 presents classical and Bayesian point and interval
estimates based on the probit and logit link functions. The Bayesian computation is based
on normal prior specification for zo, with mean mo = Z and variance vp = 10 and on
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normal prior specifications for 8; and B; with large variance (10%). The Gibbs samples were
generated by using a program implemented in software WinBUGS (see Spiegehalter et al.
[27]) with an average time of 46 seconds used to generate a sample of 90,000 disregarding
the 10,000 initial iterations. The results are presented in table 3.3.

Using BUGS, we also computed the conditional predictive densities. As we can see in the
Figure 3.2. the logit link performs better than the probit link for the most part of the time.
However there is not a uniform best model. Convergence was verifyed by considering the
Geweke statistics (Geweke [17]) and also by looking at the graphics of the generated values.

4 Conclusion

The present paper considers Bayesian and classical approaches for the calibration problem
with binomial response under logit and probit links. A new kind of link is proposed, the
t-Student link. This are considered in the classical, or asymptotic Bayesian solutions. In
the MCMC Bayesian solution, it is not straightforward to implement the t-Student model.
However, that can be done by introducing latent variables as considering by Branco [4]. The
Bayesian approach is very helpful for model comparasion as we can see from Figure 3.2. As
remarked before, here we consider the response variable as binomial, but in the original data
set the response is multinomial. Exploring the multinomial calibration problem it is under
current investigation and will be reported in future work. Some results are presents in Branco
[4] and Kottas, Branco and Gelfand [19]. The last one presents a Bayesian nonparametric
proposal approach for the multinomial calibration problem. However, in both cases we lost
the easy of computational implementation using BUGS and more elaborated programs are
required.
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Table 3.1: Frequency of MN for binucleated cells from healthy
older subjects

’7Doses 20 50 100 200 300 400 3500

vi| 49 70 146 243 268 363 470

ko

; (1038 1003 1085 1037 951 1105 1241
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Figure 3.1: Graphics (p; versus d;)
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Table 3.2: MLE and 95% asymptotic C.I. for dy (dtnudent-t [ink)

Dose | MLE asymptotic C.L

20| 27.8563| (18.6603,41.5841)
50 | 36.7177| (25.4559,52.9618)
100 | 95.2111| (74.8464,121.1167)
200 | 220.3152 | (182.4256,206.0745)
300 | 201.5146 | (241.3704,352.0761)
400 | 377.3032 | (315.6008,451.0689)
500 | 504.1587 | (417.1400,609.3301)
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Table 3.3. MLE, posterior mean and 95% C.I. for do, when yo = 1117

Link MLE Bayesian
Logit 757.21 761.4
(649.7,882.5) | (654.7,891.9)

Probit 834.2 840.0
(702.1,991.2) | (708.6,1001.0)

Student-t 754.6 —
(646.6, 880.7) —
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