DEPARTAMENTO DE CIENCIA DA COMPUTAGAO

Relatorio Técnico

RT-MAC-2010-02
JAiA SESSION - KNOWLEDGE-BASED
INTERACTION PROTOCOLS FOR INTELLIGENT
INTERACTIVE ENVIRONMENTS
FLAVIO SOARES CORREA DA SILVA

Janeiro de 20)0

Jam Session — Knowledge-based Interaction
Protocols for Intelligent Interactive Environments

Flavio Soares Correa da Silva

Laboratory of Interactivity and Digital Entertainment
University of Sao Paulo
Rua do Matao, 1010, Sac Paulo, Brazil 05508090
fes@ime, usp.br

February 3, 2010

Abstract

In the present article we characterise a class of problemns, based on the
solutions that can be brought to them. This class of problems are those
that can be solved by systems based on Intelligent Interactive Lnviron-
ments. We first introduce the notion of Intelligent Interactive Environ-
ments, then we introduce the Jam Session language, which is a compact
and simple to use conceptual tool to build systems based on the notion
of Intelligent Interactive Environments. Finally, we convey our view that
such solutions can be particularly effective for those systems which shall
address the needs of a wide spectrom of diverse users - as occurs, for
example, in the case of Electronic Govermnent systems. In order to con-
vey more clearly this view, we present a small prototype of a system to
address an issue related to cross-borders Electronic Government, namely,
the issuing of visas to enter a country for specific purposes.

1 Introduction

In the present article we characterise a specific class of problems, for which a
confluence of techniques from different areas of specialisation can be relevant.
We have coined the solutions to these problems intelligent interaciive environ-
ments. Hence, the class of problems with which we deal in the present article
are those problems that can be solved by means of modelling and utilisation of
intelligent interactive environments.

An intelligent interactive environment is an environment in which:

o A notion of location is relevant, either because it is an inherent feature of
the environment (as, for example, when the displacement of objects in a
physical environment is relevant) or because this concept can be useful to

characterise and control relevant aspects of the problem we intend to solve
(as, for example, when we have specific services in the system that must
be switched on or off depending on the status of circumscribed portions
of the system - in which case we can model such portions of the system
as mobile agents and their status as locations they occupy in a virtual
space).

o Responsiveness is an expected feature, i.e. the environment is expected to
interact with users (which can be called inhabitants in this case), in order
to generate useful actions in response to their needs, goals and intentions.

e Intelligence is also an expected feature, i.e. the environment is expected
to sense the behaviour of its inhabitants, reason abont the motivations,
needs, goals and intentions that may have generated that behaviour, and
respond accordingly.

In order to model and implement an intelligent interactive environment, it
is required, therefore, that techniques and methods from at least the following
areas be used:

¢ Distributed and mobile computation, in order to capture the notions of
mobility of software components, as well as of computational devices that
may host them.

¢ Interaction design, in order to communicate effectively with inhabitants
and capture their behaviour and actions with utmost efliciency.

¢ Artificial intelligence, and more specifically knowledge representation and
inference, in order to respond intelligently to the motivations, needs, goals
and intentions of inhabitants.

In order to build A more concrete image of the class of problems that can be
modeled and solved effectively through intelligent interactive environments, we
present in the following paragraphs a few illustrative examples.

¢ Augmented Reality: the availability of location aware portable devices
that can communicate to each other and inform their locations (e.g. mobile
phones and ultra-portable computers that can locate themselves through
GPS sensors or proximity to cellphone base stations, and hroadcast this
location through Wi-Fi or Bluetooth networks), as well as provide multi-
media information to their users, has enabled the possibility to build low
cost infrastructures for augmented reality systems, in which users provide
input data to virtual worlds by means of interacting with each other and
moving about in the physical world. and inhabit siinultaneously hoth the
physical and virtual worlds, in such way that these worlds are connected
to each other through the portable devices carried by the users.

Applications of this sort of systems are manifold: they can be used for
entertainment, as e.g. in alternate reality games (8]; remote and semi-
automated assistance in complex engineering tasks [7]; and augmented and

mixed reality applications for education, tourism and cultural information
[10).

Our proposed approach for this sort of applications is based on the con-
struction of a virtual world, inhabited by proxies of the hearers of portable
devices in the physical world, whose behaviour is influenced by actions and
movements in the physical world. In turn, the behaviour and actions of
these proxies in the virtual world influences back the physical world, by
communicating with sensors and actuators that change their status ac-
cordingly (5, 6].

Hence, we need the appropriate resources to maintain the virtual and the
physical worlds synchronised, so that reasoning and intelligent reactions
of the environment for actions of its inhabitants can be concentrated in
the virtual world.

One important feature of an intelligent interactive environment is that,
even though it is clearly a multiagent system, in which computer con-
trolled agents must co-exist with humans and human controlled agents,
the environment itself must react to actions that arise from its inhabi-
tants. Environments, based on this view, are a special sort of intelligent
agents, which embody all relevant notions to characterise and regulate the
allowed interactions among the agents that inhabit them.

This sort of applications can also scale up to highly complex systems. In
order to be able to build reliable systems, the tools that are used to design
and implement those systems must feature resources to verify and monitor
the behaviour of the proposed designs and implementations.

Virtual Worlds and Computer Games: in the majority of systems
comprising user interactions through virtual worlds, as well as in many
computer games, a simulation of a physical setting is proposed as the arena
in which computer controlled and human controlled characters interact.

Considered this way, virtual worlds and computer games can be envisaged
as a special case of augmented reality systems, in which the tracking of
movements and actions in the physical world is deemed unnecessary, and
all interactions are transported to the virtual environment.

All features highlighted in the previous example are relevant in this case,
hence the tools that are built for augmented reality systems shall also be
useful for virtual worlds and computer games.

Interactive Systems: in some cases, the notion of location can be used
as an interesting metaphor to characterise context and implement con-
trol features Lo ensure reliability and security of systems, by enabling or
disabling, depending on context, specified services and modules within a
system.

This approach has been used in the development of languages and tools for
the specification and implementation of mobile and distributed systems,
as can be found, for example, in the Ambient Calculus [2].

Most often than not, languages for algebraic specification of mobile and
distributed computing are expressive and mathematically well grounded,
but can also be complex and difficult to handle. Additional desired fea-
tures of tools to specify, design and implement intelligent interactive en-
vironments are simplicity and user friendliness.

In the following sections we introduce a proposed conceptual tool for intel-
ligent interactive environments. In section 2 we present a few related projects,
which have been particularly influential in the design of our proposed concep-
tual tool. In section 3 we introduce the Jam Session language for design and
implementation of intelligent interactive systems. In section 4 we illustrate Jam
Session at work. through a simple concrete example. Finally, in section 5 we
draw some conclusions and proposed future work.

Our proposed language has heen coined Jam Session, in reference to the
standard practice of jazz musicians inangurated during the forties in New York
City. “Jam” is actually an acronym and states for “Jazz after midnight”, and
the original jam sessions were relaxed and innovative performing sessions that
professional musicians developed after their duties in clubs and restaurants were
over, Our Jam Session language orchestrates previously existing computational
resources in original ways for innovative applications, hence the analogy.

2 Related Projects

The development of the Jam Session language has been inspired by existing
research initiatives which account for specific subsets of the expected features
of this conceptual tool.

A conceptual architecture that bears several similarities with our approach
is that of Electronic Institutions [4]. Electronic Institutions are comprised by
agents, roles, normative rules that characterise the institutions per se and scenes
in which regulated dialogues occur involving agents. For an agent to partici-
pate in a dialogue, it must assume a specific role that is compatible with that
dialogue, and in order to assume a specific role the agent must ensure that it
has the necessary capabilities required for that role. Once all roles required
for a dialogue are fulfilled by agents, the dialogue can start and, if all norms
are followed, the dialogue can run to its end, thus performing a structured and
controlled sequence of linguistic actions.

Our notion of location is replaced in Electronic Institutions by the notion of
roles. Furthermore, actions in Electronic Institutions are restricted to lingnistic
actions. It can be an interesting future exercise to verify whether Electronic
Institutions and Jam Session specifications are formnlly equivalent. Clearly,
however, they are not ergonomically equivalent: systems whose most important
actions are primarily linguistic may be better modeled by means of Electronic
Institutions, whereas systems inhabited by agents that perform actions of dif-
ferent nature, e.g. physical interactions with the environment and mobility
accross physical and/or virtnal spaces, may be modeled more naturally using
Jam Session.

In Jam Session, a central concept is the concept of environmenl, which is
the location where inhabitants meet to interact. The capabilities of the envi-
ronment are the enablers of interactions between inhabitants as well as between
an inhabitant and the environment itself. In the case of Electronic Institutions,
the related concept is that of institutions, which are abstract sets of norms that
specify the possible interactions that agents can perform.

The notion of norm-mediated interactions - thus placing norms as a central
notion to regulate and guide agent interactions - has been pushed forward and
has taken central stage in other approaches [11]. Indeed, we have also, in the
past, focused on norms to specify courses of interactions among agents in virtual
worlds [3]. We have reused this notion in Jam Session, complemented with lo-
cation based situatedness to control the availabhility of resources for inhabitants.

Another initiative in a similar vein to the ones cited above has been the
development of the Lightweight Coordination Calculus (LCC) [9). Indecd, the
LLCC is a language to build executable specifications akin to algebraic specifi-
cation languages such as the Ambient Calculus, similar to Jam Session. It has
been proved to have similar expressive power to Electronic Institutions, and it
has been used extensively in a variety of applications.

The main difference between the LCC and Jam Session is that the former
does not account explicitly and directly for the notion of mobility and situated-
ness. Even though it is possible to simulate these notions in LCC, specifications
of interaction protocols in which these are central notions can become a little
terse in that language. We have designed Jam Session specifically to simplify
the specification of interaclions in this situation.

The LCC has indeed been extended to account for situatedness explicitly,
thus resulting in a language coined Ambient LCC, which however seems not to
have used in practice, perhaps because it has turned to be a little unfriendly
and difficult to implement.

Contrasting to the approaches mentioned thus far, the Multilayered Multia-
gent Situated Systems architecture (MMASS) [12] considers mobility as the cen-
tral notion for situatedness and interactions in multiagent systems. In MMASS
we find the notion of locations, which are structured by pathways forming a
graph of sites through which agents can move to look for specific resources to
accomplish their goals. We have borrowed these concepts for Jam Session.

As will be presented in the following sections, the Jam Session language
combines the features of all previously mentioned initiatives, to build a user
friendly and simple language to specify, design and implement efficiently soft-
ware solutions based on the notion of intelligent interactive environments.

3 The Jam Session Language

As advanced in the previous sections, a fundamental notion in Jam Session
is the concept of location. Intuitively, we have services in the environment
as a whole which are blocked or unblocked for utilisation, depending on the
location of agents. Agents have capabilities, which become active when they

Figure 1: A graph of locations. Agents can move, for example, from location 1
to location 2, but they cannot move from location 2 to location 4

reach specified locations. Whenever we need a specific service, we must make
sure that the agent that has the capability of furnishing that service in a specific
location has actually moved to that location.

Formally, we have a directed graph to specify locations and their connec-
tions. The nodes of the graph are the locations, and the arrows characterise the
admissible transitions that agents can perform to move about locations (Fig-
ure 1).

Agents are entities that inhabit locations. An agent stays in a location until
it receives an order to move to a different location.
An order for an agent Lo move is a triple of the form

mone(Agent, Locution,, Localiona).

In this order, the agent Agent is assumed to be in Location; and is being
requested to move to Locations. An order to move can be evaluated, in which
case an attempt to execute it shall be performed and a corresponding truth
value shall be assigned to it, depending on the success of the execution.

Inconsistent

Trug False

Undefined

Figure 2: The Belnap four lattice of truth values

In Jam Session, we employ a four valued lattice of truth values known as
Belnap four[1). In this lattice, we have the truth values undefined, true, false
and inconsistent. The truth value undefined stands for a statement whose
truth value cannot be determined. The truth values true and false correspond
to the usual (classical) notions of truth and falsity. The truth value inconsistent
stands for a statement whose truth value has been determined as both true and
false. The order relations in the Belnap four lattice are depicted in Figure 2.

When an agent receives such order, two situations can occur:

1. Something goes wrong. There are three possibilities for something to go
wrong:
(a) The agent may not he in Location, in the first place.

(b) There may not be an arrow starting in Location; and ending in
Locationa.

(¢} The agent may have a registered prohibition to move to Locations.

T

[]

If something goes wrong (i.e. any of the possibilities above occurs), then
the agent stays wherever it is and the order is evaluated as bearing the
truth value undef ined.

2. Everything works fine. In other words, all three conditions above are
fulfilled. In this case, the agent is actnally transported from Location, to
Locations, and the order is evaluated as bearing the truth value true.

Jam Session can be envisaged as an orchestrator of external resources. The
constructs in this language have heen designed to provide the appropriate means
to coordinate and to regulate the triggering of available resources. The concep-
tual tool to perform this coordination and control of resources is the movement
of agents through locations.

External resources are named predicates in Jam Session. Each predicate is
associated to a pair [Agent, Location]. Predicates also have parameters, which
are formed as classical first-order terms. Hence, a predicate has the form

[Agent, Location)predicate(Term,, ..., Term,,)

A predicate can be triggered. i.e. there can be an attempt to evaluate it.
Most typically. predicates are used to consume external resources and call ex-
ternal services. The predicate parameters are passed to these external resources
and services, and if the resources and services are successful they are expected
to send back appropriate instantiations of the parameters.

When a predicate is triggered, three situations can occur:

1. The predicate is blocked. This can occur because the agent Agent is not
present in the location Location, or because the attempt to trigger the
predicate is ill specified, e.g. the requested predicate is not actually asso-
ciated to the given pair [Agent, Location]. or the number of parameters
that has been passed to the predicate does not correspond to its definition.
In this case, no services or resources are consumed and the predicate is
evaluated as undefined.

2. The predicate is triggered accordingly, and the external corresponding
services or resources run successfully. In this case, the parameters are
instantiated and the predicate is evaluated as true. In this case, there is
also consumption of resources and/or services.

3. The predicate is triggered accordingly, but the external corresponding ser-
vices or resources fail. In this case, the predicate is evaluated to false.
Notice that, in this case, since an attempt to execute the corresponding
external services and/or consume external resources has actually occurred,
the predicate parameters may be instantiated to values corresponding to
the partial execution of services and utilisation of external resources. In
other words, when a predicate fails, there can occur side eflects as a con-
sequence of its evaluation.

The resource we have in Jam Session for the orcherstration of resources is
the construction of protocols. A protocol is a structured chain of events, and it
specifies who should come after who. Events can be of four types:

1
2.
3.
4.

Orders for agents to move.
Triggering of predicates.
Triggering of auxiliary protocols.

Combination of previous events by means of connectives. as explained
below.

Protocols are linked to locations. A request Lo trigger a protocol can result
in the following alternative situations:

1.

The requested protocol is not actually defined for the specified location.
In this case, the obtained truth value is undefined.

The requested protocol is defined for the specified location. In this case,
the specification of the protocol is retrieved and evaluated, hased on the
algebraic rules that govern the behaviour of the connectives that are used
in the specification of the protocol. The result of the evaluation determines
the truth value that shall be assigned to the protocol.

A protocol is denoted as

(Location]protocol(Termy, ..., Term,)

Here, Location stands for the location to which the protocol is connected,
and Term; are first order terms as before. The expected utilisation of terms
in the specification of protocols is for parameter passing accross predicates and
auxiliary protocols.

For the specification of protocols, we employ four binary connectives, whose
behaviour is as follows:

1.

Classical conjunction (A): classical conjunction builds the greatest lower
bound of the truth values of its operands: given two (structures of) events
a and S, and assuming that we can assess the truth values associated 1o
each of them, then the truth value of a A # shall be the greatest lower
bound for the truth values of a and 3.

. Classical disjunction (V): classical disjunction builds the least upper bound

of the truth values of its operands: given two (structures of) events a and
S, and assuming that we can assess the truth values associated to each of
them, then the truth vahie of a Vv 3 shall be the least upper bound for the
truth values of a and 5.

3. Sequential conjunction (M): sequential conjunction evaluates left to right,
and employs different rules depending on the event to the right. The basic
idea is to regulate the evaluation of chains of events, by taking into account
the success or failure of orders for agents to move:

(a) If the event to the right is an order to move, then the truth value of
the event to the left is expected to be true. In other words, an order
to move is expected to be triggered only if its antecedents have been
successful. Intuitively, this resource has been implemented in Jam
Session as a tool to regulate the global behaviour and security of sys-
tems. When an agent moves to a new location, previously available
services and resources are locked up, and new services and resources
are released. The sequential conjunction provides the means, in Jam
Session, to implement conditional rules for the switching of available
services and resources.

More specifically, if the event to the right of a sequential conjunc-
tion is an orcder to move, then we have the following table for the
evaluation of the truth value of the whole expression:

o aflmone(A, Ly, La):
truth value of « is
undefined == result is undefined.
o afmove(A, L, La):
truth value of « is either false or
inconsistent = result is false.
e aNmove(A, L, L.):
truth value of a is
true = order to move is triggered, end truth value is the result
of classical conjunction between what comnes out of the attempt
to move and true.

(b) If the event to the right is any other event different from an order
to move, then the truth evaluation follows the rules of classical con-
Jjunction.

4. Sequential disjunction(U): sequential disjunction evaluates left to right,
and employs different rules depending on the event to the left. The basic
idea here is to attempt diflerent alternative solutions only if necessary.
When a satisfactory truth value is achieved, the evaluation is resumed.

More specifically, the evaluation of sequential disjunction goes as follows:

(a) aUf:

truth value of « is inconsistent —> inconsistent.

(b) aup:

truth value of a is true = true.

10

(c) aup:
truth value of « is either undefined or false = order to move is
triggered, end truth value is the result of classical disjunction between
both operands.

The specification of a protocol is & chain of events linked by connectives,
thus forming nested pairs of the form (a; conny ag} conna az)...) conny ay41),
in which a; are events and conn; are connectives.

Sequential conjunction has priority over classical conjunction; both conjunc-
tions have priority over sequential disjunction; all these three connectives have
priority over classical disjunction.

Protocols can be threaded. This means that more than one single protocol
may be running at any time. It shall be left to the programmer to ensure that
the resulting concurrent groups of threaded protocols generate behaviours that
are in accordance with the existing systems requirements for each application.

Just to see how the specification of a protocol looks like, we consider the
following simple protocol:

[loer)prot(X,Y) u= {locy, agi]predi (X) Nmove(ag, , locy, loca) T
[loca, agypreda(Y) U [locy, ags)preds (X, ¥).

In this protocol, we have two locations - loe; and loca — and two agents -
ag; and ags. There are also two variables that act as placeholders for specific
values when the protocol is triggered.

The protocol executes as follows:

1. The predicate pred; must be defined for ag; in loc). If it is not, then the
result of this evaluation is undefined, otherwise pred;(X) is evaluated,
possibly producing as a side effect a value for X.

2. If the evaluation of pred;(X) is true, then agent ag, receives an order to
move from loe; to locy.

3. If the attempt to move to loe; is successful, then the move receives a value
true.

4. All results being true so far, then the predicate preds is verified and
attempted to evaluate, if this is the case. The end result of the protocol
is the result of the classical conjunction applied to all events.

5. If the end result of the evaluation of this branch of the protocol results in
true, then the evaluation resumes and this is the end result. Otherwise,
the second branch of the protocol is verified, and the end result is evaluated
as a classical disjunction between the two branches. If the first branch (i.e.
the piece of the protocol that comes before the U connective) is evaluated
to false and the second branch is evaluated to true, then the overall
protocol is evaluated to inconsistent; if the first branch is evaluated to
undefined and the second branch is evaluated to true, then the overall
protocol is evaluated to true; and so on.

11

If we take again the illustrative examples of section 1, we can sketch the cor-
responding protocols that could ground the corresponding intelligent interactive
environments that solve them.

1. Augmented Reality: in order to build intelligent interactive environ-
ments to support augmented reality systems, we must keep track of the
physical and the virtual location of every inhabitant of the environment,
to ensure that the appropriate services and resources are the only ones

available at all times. We must also have the means for users to consume
services and resources.

These features can be implemented by using three special sorts of proto-
cols:

(a) Infinite loop protecols: an infinite loop protocol can he written us a
chain of events connected by sequential conjunctions, in which the
last event is a recursive call to the protocol itself as an auxiliary pro-
tocol. Infinite loop protocols must be carefully designed, to ensure
that, upon arrival to the recursive call, the global state of the envi-
ronment - locations of agents, instantiations of terms etc. — has been
returned to the initial state that could be found at the moment the
protocol was first triggered.

Infinite loop protocols can be employed, for example, to monitor the
presence of agents in locations.

(b) Threaded protocols: threaded protocols are collections of protocols
that are triggered concurrently and compete for the consumption of
resources and services. The design of threacded protocols can be quite
complex, as we must ensure that the asynchronous consumption of re-
sources and services does not lead to unexpected or undesired global
states of the environment. In future work, we shall develop tools
for the automated or semi-automated verification of threaded proto-
cols, possibly based on simulated execution of protocols. resorting to
techniques similar Lo those employed in model checking in general.
Threaded protocols can be employed, for example, to monitor the
migrations of all agents simultaneously, as well as to satisfy the re-
quests from external users in multiuser scenarios. In these cases, the
protocols can update persistent variables that stay as resources in
specified locations, as if leaving messages in message boards (or clues
in treasure hunting) for other protocols to access.

(c) User controlled protacols: user controlled protocols are protocols that
can be triggered directly by users through appropriate user interfaces.
User interfaces can be also implemented as infinite loop protocols,
whose external resources can check the value of user controlled pa-
rameters and trigger auxiliary protocols accordingly.

Infinite loop, threaded and user controlled protocols can be combined to

12

implemented the necessary responsiveness of intelligent interactive envi-
ronnients.

2. Virtual Worlds and Computer Games: as referred to in previous
sections, interactions through virtual worlds can be comprised as a spe-
cial case of angmented reality, in which certain interactions do not occur.
Therefore, similar programming resources to those referred to for aug-
mented reality can be employed in order to eflectively build virtual worlds
and highly immersive computer games.

3. Interactive Systems: as also referred to in previous sections, interactive
systems can also be envisaged as a special case of virtual worlds, in which
the notions of location and mobility can be taken metaphorically as well
as literally. Hence, the same programming resources can be employed for
these systems.

In the next section we introduce a highly simplified example of system for
the delivery of cross border public services, based on the notions above.

4 A Simple Illustrative Example

In this section we put Jam Session to work. Qur goal is to show how it can be
used to orchestrate the consumption of external resources, in order to compose
complex systems.

Our illustrative example belongs to the domain of Electronic Government
- more specificelly, to cross borders e-GOV services. It is well known that the
requests for special purpose visas for individuals to visit foreign countries can
be quite complicated. Significant portions of the workflow to obtain a visa
could be automated and presented to citizens through the web, thus creating
opportunities to simplify the corresponding procedures, as well as to make the
system more user friendly and cost effective. Furthermore, the web presentation
of services and resources related to e-GOV should always be highly user friendly
and directed to the broadest possible spectrum of individuals.

We have implemented a simple prototype to inform Brazilian citizens about
the required procedures to obtain student visas to study in Chile!. In this
prototype, we have five locations and one agent. Depending on what location
the agent is, different predicates are available, which trigger external resources
that provide speech-based information about the procedures to follow, as well
as capture information from the user.

There are at least two intuitive interpretations of what is going on when we
use this systemu:

1. The system can be envisaged as mimicking the actual physical interactions
a user could go through while at the Chilean consulate in Brazil. Each

1We thank Prof. Rosa Alarcon, from Pontificia Universidad Catolica de Chile, for invalu-
able information about the workflow to obtain student and work visas to Chile.

13

location can be seen as the simulation of a desk, a clerk or a specific
acitivity developed by a clerk at the consulate, and when the agent moves
to a different location the user could have a sense of having moved to a
different step in the process to obtain the visa.

2. The system can be taken more leisurely as a computer game. The user
can feel as if solving a puzzle, which happens to be a carefully built one
so that, as a side effect, once it is solved, the user may have learned about
the information he/she needs to obtain the needed visa.

In both cases, the idea is to build a user friendly, fun to use, accessible for
all system, whose utilisation would break barriers that users may face in order
Lo access complex services.

Qur prototype can only provide useful information to citizens. It would actu-
ally be simple to extend it to perform services that could support the provision
of visas to citizens. All that would be necessary would be to replace certain
services — which at the moment only provide relevant information to citizens
- by services which could effectively perform parts of the required workflow in
order to simplify the issuing of visas.

A prototype for the Jam Session language has been implemented in PRO-
LOG, to build a demo system for the provision of information to study in Chile.
In this prototype, the user is advised about what to do by an animated cartoon
character. The messages that are spoken by the animated character are pre-
recorded messages®. A screenshot of the demo, in which the animated cartoon
appears providing information to the user, is presented in Figure 3.

The five locations are organised as a tree, as depicted in Figure 4.

Location 1 is the entrance door to the system (and to the virtual environment
that provides information to the user). When a user starts to use the system,
the agent is placed in location 1, which also hosts a predicate that can trigger
an external resource which salutes the user, provides information about how the
system works and asks for some basic information.

Depending on what the user replies, the agent is directed to either location
2 or location 3. Once in one of these new locations, the agent can trigger
the predicates that are hosted by that location, which shall provide the user
with additional information and ask for additional answers. This way, as the
agent hops from location to location, different system states are characterised,
different resources are released, and different behaviours of the system can be
perceived by the user.

21n order to create the spoken messages from written text, we have employed a commercial
product called CrazyTalk®©.

14

AR e gt ot oktn

LGN et rreani e

SIEV I RPN

s seid Decibec AN

1 a5 ke a3 0

Figure 3: Screenshot of the demo system to inform about how to obtain student
visas to Chile

Figure 4: The structure of locations in the demo

16

In our demo, once the agent reaches one of the “leaf” locations, the system
halts. More sophisticated protocals consd be devised, in which e.g. paths con-
necting the leaf locations back to the entrance door could be added, and the
protocols could loop back to Lthe starting state to attend the next user.

A set of protocols that implement chis demo can be as below. In these
protocols, we use PROLOG standard notation for logical terms and variables.
We also assume that the user interface captures user input and stores it as
publicly accessible terms, which can be read by the protocols as values of the
PROLOG fact lustInput(Input). We have added some parentheses to simplify
the reading of the protocols.

¢ The predicate predWelcome() triggers the external resource that contains
an animation that greets the user, provides initial information to him/her
and captures some initial user input.

e The predicate predCompareStrirg(X,Y) compares two strings, and re-
turns true if they are identical or false otherwise.

o The predicates

= predShortStay(),
— predCompleteDocs(} and
= predGoToQ f fice()
provide additional informations tc the user and halt.

o The predicate predDocsPending() provides additional information to
the user and waits for additionsal input, which then updates the fact
lastInput{Input),

— [l]protWelcome() = :
[1, 1}predWelcome() N protMigrate2or3(last Input(Input)).
= [1)protMigrate2or3(lastinput(Toputy)) ==
([1, JpredCompareString(Jnputy,
I shall stay in Chile for 3 months or less)Mmove(l,1,2)
N1, 2]predShartStay()) U (move(1, 1,3) N (1, 3lpredDocs Pending()
M[3jprot Migratedord(lastInput(Inputs))).
— {3lprot Migratedord(lasiInm t(Inpita)) ==
{(1, 3jpredCompareString({rputa,
I still must obtain some documents)Mnowc(l,3,4)
(1, 4]predCompleteDocs()) U (move(1, 3,5)
N1, 5|predGoTa0 fice()).

Evidently, for a simple system as the one depicted in this demo, much simpler
solutions could be developed. We have sed this example only as an illustration
of how Jam Session works and can be used. The advantages of Jam Session
over more traditional development tools becomes more evident as we scale up
the complexity of interactions in the intelligent interactive environment that is
being developed.

17

5 Conclusion and Future Work

In the present work we have identified a special class of problems, for which
interesting solutions can be developed based on what we have coined intelligent
interactive environments. We have also introduced the Jam Session language,
which can provide the means to design and implement sytem solutions based
on the notion of intelligent interactive environments.

Further empirical assessment of Jam Session must still be developed, to
ensure that the expressiveness of the proposed language is appropriate for the
envisaged solutions that shall be developed using this conceptual tool. Moreover,
we have founded many of our arguments towards Jam Session on the view that
friendly interactive environments can be useful to improve the quality of services
provided by computational systems to broad spectra of users, as occurs, for
example, in the development of systems for Electronic Government. This view
shall also, in the future, be empirically assessed.

We have developed a small interpreter for Jam Session, written in PROLOG,
which can cope with one protocol at a time. The code for this interpreter can
be accessed from the Jam Session project webpage®. As can be appreciated by
locking at the code that implements this interpreter, the Jam Session language
is indeed simple, compact and easy to understand and to use.

This interpreter has been used to implement a prototype for a system thal
provides information to citizens interested in obtaining student visas to study
abroad. The source code, as well as all required auxiliary resources to run this
prototype, can also be downloaded freely from the Jam Session web site.

We are, at the moment, working on a more extensive implementation of Jam
Session, that shall be capable of dealing with threaded protocols and multiuser,
distributed environments. Future implementations of interpreters for Jam Ses-
sion shall also be published for free access from the Jam Session project web
page.

References

(1] Belnap, N.D.: A useful four-valued logic. Modern Uses of Multiple-
Valued Logic. (Dunn, J. M., Epstein, G. - eds.). Dordrecht: Reidel
(1977) 8-37

[2] Cardelli, L.: Mobility and Security. Lecture Notes for the Marktober-
dorf Summer School - Foundations of Secure Computations. Bauer, F.
L., Steinbrggen, R. (eds.). NATO Science Series, 108 Press. Germany
(1999) 3-37

[3} Correa da Silva, F. S, Vasconcelos, W.: Rule schemata for game arti-
ficial intelligence. International Joint Conference IBERAMIA/SBIA.
Springer-Verlag Lecture Notes in Artificial Intelligence 4140 (2006)
451-461

3nttp://lidet.ime.usp.br/JanSession.

18

4

—

6

—_

[7

—_—

(8]

[9

(10]

(11]

(12]

Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Garcia, P., Arcos,
J. L.: On the formal specification of electronic institutions. Agent-
mediated electronic commerce. Dignum, F., Sierra, C. (eds.). Springer-
Verlag Lecture Notes in Artificial Intelligence 1991 (2001) 126147

Guerra, C. A. N, Correa da Silva, F. S.: Semantic web services for
intelligent responsive environments. Workshop on Intelligent. Agents
and Services for Smart Environments. (Correa da Silva. F. S., Bandini,
S. - organisers). Proceedings of British Society for Studies of Artificial
Intelligence and Simulation of Behaviour. Scotland (2008)

Guerra, C. A. N, Correa da Silva, F. S.: A middleware for smart envi-
ronments. Workshop on Intelligent Agents and Services for Smart Envi-
ronments. (Correa da Silva, F. S., Bandini. S. - organisers). Proceedings
of British Society for Studies of Artificial Intelligence and Simulation
of Behaviour. Scotland (2008)

Henderson, S., Feiner, S.: Evaluating the benefits of augmented reality
for task localization in maintenance of an armore« personnel carrier tur-
ret. Procs. IEEE International Symposium on Mixed and Augmented
Reality. USA (2009) 135-144

Kim, J., Lee, E., Thomas, T.. Dombrowski, C.: Storytelling in new
media: the case of alternate reality games, 2001-2009. First Monday, v.
14(6) (2009)

Robertson, D.: Declarative Agent Languages and Technologies. Leite,
J. A., Omicini, A., Torroni, P., Yolum, P. (eds.). {2004) 236-249

Shapshak, M.: New approaches for mixed reality in urban environ-
ments: the CINeSPACE project. 5th International Conference - Virtual
City and Territory. Spain (2009)

Vasconcelos, W., Kollingbaum, M. J., Norman, T. J.: Normative
conflict-resolution in multi-agent systems. Autonomous Agents and
Multiagent Systems, v. 19(2) (2009)

Vizzari, G.: Dynamic interaction spaces and situated multi-agent sys-
tems: from a multi-layered meodel to a distributed architecture. PhD
thesis. University of Milano-Bicocca. Italy (2004)

19

RELATORIOS TECNICOS

DEPARTAMENTO DE CIENCIA DA COMPUTACAO
Instituto de Matematica e Estatistica da USP

A listagem contendo os relatorios técnicos anteriores a 2006 podera ser consultada ou
solicitada & Secretaria do Departamento, pessoalmente, por carta ou e-mail
(mac@ime.usp.br).

Marco A. S. Netto, Alfredo Goldman and Pierre-Frangois Dutot

A FLEXIBLE ARCHITECTURE FOR SCHEDULING PARALLEL APLICATIONS ON
OPPORTUNISTIC COMPUTER NETWORKS

RT- MAC 2006-01 - Janeiro 2006, 18 pp.

Julio M. Stern
COGNITIVE CONSTRUCTIVISM AND LANGUAGE
RT - MAC 2006-02 — Maio 2006, 67 pp.

Arlindo Flavio da Conceigdo and Fabio Kon

EXPERIMENTS AND ANALYSIS OF VOICE OVER IEEE 802.11 INFRASTRUCTURED
NETWORKS

RT - MAC 2006-03 — Junho 2006,

Giuliano Mega and Fabio Kon
DISTRIBUTED SYMBOLIC DEBUGGING FOR THE COMMON PROGRAMMER
RT - MAC 2006-04 — Junho 2006

Pedro J. Fernandez, Julio M. Stern, Carlos Alberto de Braganga Pereira and Marcelo S.
Lauretto

A NEWMEDIA OPTMIZER BASED ON THE MEAN-VARIANCE MODEL

RT -~ MAC 2006-05 — Junho 2006, 24 pp.

P. Feofiloff, C.G. Femandes, C.E. Ferreira and J.C. Pina,

"4 NOTE ON JOHNSON, MINKOFF AND PHILLIPS' ALGORITHM FOR THE
PRIZE-COLLECTING STEINER TREE PROBLEM"

RT-MAC2006-06 — Setembro 2006, 11 pp.

Julio Michael Stern

DECOUPLING, SPARSITY, RANDOMIZATION, AND OBJECTIVE BAYESIAN
INFERENCE

RT-MAC2006-07 — Novembro 2006, 36 pp.

Cristiane Maria Sato, Yoshiharu Kohayakawa
ENTROPIA DE GRAFOS
RT - MAC2006-08 — Dezembro 2006 , 44 pp.

Julio M. Stern

LANGUAGE, METAPHOR AND METAPHYSICS: THE SUBJECTIVE SIDE OF
SCIENCE

RT-MAC-2006-09 - Dezembro 2006, 35 pp.

Thiago A. de André and Paulo J. S. Silva

EXACT PENALTIES FOR KKT SYSTEMS ASSOCIATED TO VARIATIONAL
INEQUALITIES

RT-MAC-2007-01- Margo 2007, 21 pp.

Flavio Soares Correa da Silva, Rogério Panigassi and Carlos Hulot
LEARNING MANAGEMENT SYSTEMS DESIDERATA FOR COMPETITIVE
UNIVERSITIES

RT-MAC-2007-02 — Maio 2007, 12 pp.

Alexandre Freire da Silva, Fabio Kon, Alfredo Goldman
THREE ANTI-PRACTICES WHILE TEACHING AGILE METHODS
RT-MAC-2007-03 — Maio 2007, 20pp.

Silvio do Lago Pereira e Leliane Nunes de Barros
PLANEJAMENTO BASEADO EM PROCESSOS DE DECISAQ MARKOVIANOS
RT-MAC-2007-04 — Maio 2007, 17pp.

Silvio do Lago Pereira e Lgliane Nunes de Barros
DIAGRAMAS DE DECISAG BINARIA
RT-MAC-2007-05 - Maio 2007, 16pp.

Carlos Alberto de Braganga Pereira and Julio Michael Stern

AN ESSAY ON THE ROLE OF BERNOULLI AND POISSON PROCESSES IN
BAYFESIAN STATISTICS

RT-MAC-2007-06 — Junho 2007, 39pp.

Flavio Soares Corréa da Silva

ARGUMENTS IN FAVOR OF A CONTROLLED PLURALITY OF OFFICE
FORMATTING STANDARDS
RT-MAC-2007-07 - Junho 2007, 9pp.

Silvio do Lago Pereira, Leliane Nunes de Barros and Fabio Gagliardi Cozman
STRONG PROBABILISTIC PLANNING
RT-MAC-2007-08 — Junho 2007, 25pp.

Silvio do Lago Pereira and Leliane Nunes de Barros . '
FORMALIZING PLANNING ALGORIT. HMS FOR TEMPORALLY EXTENDED GOALS

RT-MAC-2007-09 - Junho 2007, 22pp.

Flavio S. Corréa da Silva

THEPROLOGPLAY: AN INTERACTIVE VIRTUAL ENVIRONMENT FOR ARTIFICIAL INTELLIGENCE
AND RELATED FIELDS

RT-MAC-2007-10 — Setembro 2007, 12pp

Vanessa Sabino and Fabio Kon
LICENCAS DE SOFTWARE LIVRE HISTORIA E CARACTERISTICA 5%

RT-MAC-2009-01 - Margo 2009, 40pp.

Alexandre Noma, Ana B. V. Graciano, Roberto M. César Jr., Luis A. Consularo and
Isabelle Blech

INEVACT GRAPH MATCHING FOR SEGMENTATION AND RECOGNITION OF QBJECT PARTS
RT-MAC-2009-02 — Margo 2009, 31pp.

Claudia J. Abro de Arajo and Flavio S. Corréa da Silva
GOVERNMENTAL VIRTUAL INSTITUTIONS
RT-MAC-2009-03 ~ junho 2009, 19pp.

Cristina Gomes Fernandes e Rafael Crivellari Saliba Schouery
ALGORITMOS DE APROXIMAGCAO E PROBLEMAS COM SEQUENCIAS
RT-MAC-2009-04 - agosto 2009, 38pp.

Marcelo Finger e Glauber De Bona
Unid CONJECTURA REFUTADA SOBRE SATISFAZIBILIDADE PROBABILISTICA
RT-MAC-2009-05 - dezembro 2009, 18pp.

Alexandre Matos Arruda e Marcelo Finger
CARACTERIZACAO DA INDEPENDENC14 CONDICIONAL EM LOGICA MODAL
RT-MAC-2010-01 - Janeiro 2010, Spp.

Flavio Soares Correa da Silva

JAN SESSION — KNOWLEDGE-BASED INTERACTION PROTOCOLS FOR INTELLIGENT INTERACTIVE
ENVIRONMENTS

RT-MAC-2010-02 - Fevereiro 2010, 23 pp.

